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Abstract

The goal of this project was to create a software for an autonomous mobile robot capable
of navigation in indoor scenarios and of detection and recognition of the objects on its
way. An important condition that the final software had to meet was to find the cheapest
solution possible. I achieved the given goal and its conditions using an open source software
framework Robotic Operating System (ROS) and its tools. The final system is a set of ROS
modules communicating with each other, using a single sensor as an input data stream
and a small motor which is able to send information about its velocity and rotations to
the control part of the system. This mobile robot can, without any significant problems,
navigate through a mapped area while trying to find trained objects. Such a robot could
be easily used (after adding specific mechanical parts) to help retired or disabled people,
to cooperate with industry workers or in many other fields.

Abstrakt

Cielom tohto projektu bolo vytvorit softvér pre autonémneho pozemného robota, ktory
bude schopny navigovat sa vo vnitornom prostredi a detekovat a rozpoznavat objekty na
svojej ceste. Ddlezitou podmienkou, ktortt musel vysledny softvér spliiat, bolo néjst ¢o na-
jmenej nakladné riesenie. Dany ciel som splnil s pouzitim frameworku Robotic Operating
System (ROS) a néstrojov, ktoré poskytuje. Vysledny softvér je skupina ROS modulov ko-
munikujtcich medzi sebou, pouzivajucich jeden hibkovy senzor ako vstupny datovy prad a
maly motor, ktory je schopny poskytovat informacie o pohyboch robota do riadiaceho sys-
tému. Tento robot sa dokaze bez vyraznych problémov navigovat zmapovanym prostredim,
zatial ¢o sa snazi vyhladdvat zndme objekty. Podobny robot by mohol poméct (po do-
plneni Specifickych mechanickych ¢asti) starym alebo hendikepovanym ITudom, pracovnikom
v priemysle ¢i v inych oblastiach.
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Chapter 1

Introduction

Autonomous and smart machines are an interesting technology area which is being used
more and more in many fields. Its potential is undoubtedly huge and we are still extremely
far from using any significant percentage of it. Getting these technologies closer to the
ordinary people and people in need is what I was trying to achieve with my work. The
result is an open source software which can, placed to a mobile robot, autonomously localize
itself within a room, navigate through it and seek known objects within it. This can be,
with additional mechanical equipment, used to fulfill many different tasks to make human
life easier.

An important fact here is the amount of used resources. While the common robots
developed by researchers can cost thousands of dollars, the components needed by the robot
system described in this bachelor thesis will not be more expensive than several hundreds.
Because of the simpler equipment I had to choose such algorithms and techniques which
would not be very compute intensive. With these basic capabilities such as the sense
of direction and vision and with its low-cost requirements, many people could find this
platform helpful in lots of different areas. It can be used as a corner stone of bigger projects
(e.g. after installing a mechanical arm on the robot, so it could manipulate with found
objects).

The initial idea of this project was to bring up a robot which can determine where it
is according to a saved map (it can localize itself) and can move from this location to a
given destination on the map (can navigate itself through the map). Further, an interesting
extensions were added to the original idea. That means abilities to explore indoor areas,
detect objects on its way and recognize the known (trained) ones.

This work describes how to bring up a robot software to fulfill the mentioned tasks
using mostly existing tools. It is divided into three main chapters. The chapter 2 is a short
theoretical introduction to robotics and computer vision techniques I used. The chapter 3
explains what parts does the whole system consists of and what is the job of each individual
module. The last chapter 4 deals with the final system implementation and its realization.
That means configuration of the existing packages and the implementation of my packages
are described there. This chapter also presents actual results of the implemented software.



Chapter 2

Robotics and computer vision

Basic autonomous robot abilities are knowing how the world around the robot looks like
so the robot can move through it and the ability to manipulate with objects within it.
To do that the robot has to see its surroundings to be able to create a world model. To
create the world model the robot takes different types of input data which are processed
later and useful information is obtained from it. Besides the vision part robots also has
to be able to control its movements to navigate itself to a given area and manipulate
with objects. Because robotics and computer vision are huge areas with great amounts
of different techniques, methodologies and approaches to solve the mentioned tasks, this
chapter presents a brief overview of them, especially the ones I used in this project.

2.1 Mobile robot approaches

Mobile robots (or autonomous navigation systems in general) have found their place in
many different areas such as automation of industry, autonomous cars, army or service
robots helping humans in complex environments. However the result of navigation is always
similar (moving through the area to a given destination) robots use different approaches
depending on possibilities of the specific environment. That means specific methodologies
are used in specific situations. For example the methodologies for navigation in indoor
scenarios have to be different from the ones in outdoor scenarios, although this is just
a broad division. Some outdoor areas have more difficult terrain than others, suitable
techniques have to be chosen for every concrete assignment.

Figure 2.1: Automated Guided Vehicles (AGV) using printed lines on the floor to navigate
in indoor scenarios.



An interesting approach to navigate the robot in outdoor areas is described in [5]. In
this work specific characteristics of the terrain are taken into account. The existence of
several regions with different navigation costs are considered. The costs are determined
experimentally by navigating the robot through the regions and measuring the influence
of the terrain on its motion. The authors measured the robot vertical acceleration, which
reflected the terrain roughness.

Navigation in indoor scenarios is slightly different. There is usually no rough terrain,
just a straight floor plane. Knowing that the terrain is a simple floor makes navigation a
bit easier. In the industry (but also in other areas) mobile robots often use various kinds
of markers which define the robot’s path. Markers can be lines on the floor, wires, buried
inductive loops, magnets or different indicators. These robots are called Automated Guided
Vehicles (AGVs). An example can be seen in the figure 2.1.

Different approaches in navigation problematics use depth data which allows them to
measure distances between obstacles and to build maps of the environment. Having a map
robots can localize themselves within it. I used this approach in this work as it results
in probably the most autonomous behavior as no markers are required. There are lots of
robots from different research groups capable of solving vision and navigation tasks using
depth data. They are usually equipped with combinations of several types of sensors, such
as cameras, depth sensors and lidar scanners and also with other mechanical parts. Various
softwares can be run on these robotic platforms, including the one from this bachelor thesis.

(a) PR2. (b) Care-o-bot-4.

(c) Turtlebot.

Figure 2.2: Robots examples.

A well known robot from this area is PR2' which is quite an expensive robot used
mostly in research areas. This robot is equipped with several lidar scanners, depth sensors

Thttp:/ /www.willowgarage.com/pages/pr2/overview



and cameras. It also has two arms with lots of joints so it is capable of very interesting
things. Sadly, having so many devices it is an opposite of the low-cost robot that I was
trying to build. Another interesting robot meant to be used as a servant in ordinary human
environments such as households or hospitals is Care-O-Bot?. Although it was meant to
be used by ordinary people not just by researchers it is still not affordable for everyone
and its cost is several thousand dollars. The most similar solution to the one I was trying
to achieve is Turtlebot®. It is an open source robotic platform based on ROS framework
using just one depth sensor and although it is very similar to my solution, its software uses
slightly different tools than the one I built. Mentioned robots can be seen in the figure 2.2.

2.2 Depth data

One of the commonly used input data types in robotics and computer vision are depth data.
Its added value in comparison with standard video data is that while a video stores just
information about the 2D scene (a column and a row of the pixel with its color), the depth
data or point clouds consist of 3D points (column, row and distance of the point from the
sensor). That means although the depth data are more memory and computational power
consuming they offer greater possibilities in solving computer vision and robotics tasks such
as navigation, filtration, segmentation, objects detection and others.

Figure 2.3: An example of a point cloud captured with an ASUS Xtion sensor.

Processing depth data

A point cloud from a depth sensor is usually processed by several modules which perform
different operations with the received point clouds. A typical point cloud processing pipeline
consists of severals steps depending on a specific goal which is being accomplished. The
first step is collecting the depth data from a sensor. There are lots of kinds of depth sensors.
They differ in quality of their data, resolution, frequency of published frames, format of
the published data, price and in other parameters. A typical and well known sensor is
a Kinect from Microsoft or an ASUS Xtion which I used to run my software with. The
mentioned sensors capture the whole scene with a specific resolution with a number of

http://www.care-o-bot-4.de/
http://www.turtlebot.com/



rows and columns, where every point provides also a depth information. Other types of
depth sensors are lidar scanners that do not create the whole scene point clouds. They
create horizontal scans of its surroundings, typically with a higher frequency than Kinect
like sensors. Their product is one or more rows containing depth points saying how far the
nearest obstacles are in a certain height.

After receiving point clouds from a sensor, data are usually not suitable for immediate
processing by complex algorithms (e.g. because of the noise and outlier points), the pre-
processing part must come before that. Preprocessing usually means removing points that
will not be used in the next steps of the pipeline or they could make these next steps more
difficult to accomplish. They are usually noise or lie too far from the sensor or there are
other reasons depending on a specific task. Another typical step in point cloud processing is
segmentation. It divides the points of the point cloud into several clusters each representing
a real object of the scene or they are part of a connected area. Created clusters can be used
in other processing parts such as object recognition.

Point Cloud Library

A powerful library for processing depth data is a Point Cloud Library (PCL)*. Using C++
language it implements plenty of algorithms solving every part of the point cloud processing
such as I/O operations, filtration, segmentation, recognition, registration and many others.
It also provides tools for visualizing point cloud data. As ROS (a robotic framework I used,
it is explained in the section 2.5) packages can be implemented in both python and C++,
PCL is a great choice. A brief introduction to PCL tools can be found in [7].

2.3 Segmentation

Before further processing and analysis of an image or a point cloud it is usually divided into
multiple segments. Each segment should represent a group of pixels or points which are
somehow connected to each other. The process is called segmentation and it can segment
areas of an image with the same color, points of the point cloud belonging to the same real
world object or find a certain model in the image/point cloud such as a plane etc.

Figure 2.4: Result of segmentation.

Segmented areas are usually used in the following image analysis and other computations
(e.g. detection). An example of the segmentation can be seen in the figure 2.4, with four

*http:/ /pointclouds.org/



areas segmented. As the segmentation is a big part of this work (the finding/detecting
objects problem is solved with segmentation techniques), some of the segmentation methods
will be described in this section.

Random sample consensus

Random sample consensus (RANSAC) is a method for solving a problem of fitting a model
to experimental data [2]. It is capable of interpreting/smoothing data containing a signif-
icant percentage of gross errors, and is thus ideally suited for applications in automated
image analysis where interpretation is based on the data provided by error-prone feature
detectors. In other words RANSAC tries to determine which of the given points are part
of a certain model such as a line, a plane or more complicated ones. In the figure 2.5,
RANSAC tries to choose points lying in circles (with a given tolerance/threshold).

Figure 2.5: The RANSAC method tries to find points lying in a circle.

The algorithm behind this randomly selects the minimal subset of points to define
the searched model (e.g. three points in the case of a circle, two points for a line) and
estimates parameters for this model according to the selected points. Then the algorithm
finds out how many of the points from the whole set fit the defined model. If the number
is large enough the fit is accepted. If not, the process of selecting the subset of points and
estimating parameters is repeated until a suited solution is found or a given number of
iterations finished (then it is considered as a failure). Although the RANSAC technique is
not usually considered as a segmentation technique it can be used to segment a model such
as a plane which was the use case in this project.

Region growing

The purpose of the region growing segmentation algorithm is to merge the points of the
point cloud that are close enough in terms of the smoothness constraint. Thereby, the
output of this algorithm is a set of clusters, were each cluster is a set of points that are
considered to be a part of the same smooth surface. The work of this algorithm is based on



the comparison of the angles between the points normals. The algorithm works as follows:
First of all it sorts the points by their curvature value. It needs to be done because the
region begins its growth from the point that has minimum curvature value. The reason for
this is that the point with the minimum curvature is located in the flat area (growth from
the flattest area allows to reduce the total number of segments). Having the sorted cloud,
algorithm picks up the point with a minimum curvature value and starts the growth of the
region. It is repeated until there are no unlabeled points in the cloud. More about the
region growing algorithm can be found in [4].

2.4 Navigation prerequisites

To navigate a robot it has to know its position at first. It means that the robot has to be
able to process visual input data to find itself in the world scene and to use this information
to find an appropriate path to move to a specific destination. In this project I used several
computer vision (robotics in general) techniques and algorithms to solve the navigation
and localization problems. They will be described in this chapter. One of them is SLAM
(Simultaneous Localization And Mapping) for a map creation, the other one is a Monte
Carlo localization algorithm for localizing the robot in the map.

Simultaneous localization and mapping

Simultaneous localization and mapping (SLAM) solves a problem of acquiring a spatial
map of a mobile robot environment while simultaneously localizing the robot relative to this
model [10]. Formally, the SLAM problem is best described in a probabilistic terminology.
Let’s assume we have a set of robot’s positions (two-dimensional coordinates of the robot’s
position in the map and its orientation), a set of odometry values such that from one saved
odometry value the past position of the robot can be recovered and a set of measurement
values used to determine the relationship between one position value and the features stored
in the map (a map feature describes how the map looks like in the corresponding place).

OBROBR®
@ O &

Figure 2.6: Model of the SLAM problem. z values represent robot’s positions, u values
represent odometry information, z values are measurements determining the relationship
between the position value and features stored in the map and m stands for the map data.
Shaded nodes are directly observable to the robot. In SLAM the robot seeks to recover the
unobservable variables.



Relationships between these data sets are shown in the figure 2.6. The SLAM problem
is now a problem of recovering a model of the world map (the map features) from the
odometry and measurements data. In this project I used SLAM methods just for building
a static map which is used later for localization and navigation where SLAM is not used
anymore for its high computational requirements.
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Figure 2.7: The essential SLAM problem. A simultaneous estimate of both robot and
landmark location is required. The true locations are never known or measured directly.
Observations are made between true robot and landmark locations. [1]

Monte Carlo localization

Monte Carlo localization is also known as a particle filter localization. Obviously it is
an algorithm solving the localization problem using particle filters. The basic idea of the
particle filters is that the robot has a map and through a sensor it sees the scene around
itself (objects, walls...). With this information possible positions of the robot in the map and
likelihoods of these positions are computed. As the robot moves, the data from the sensor
are slightly changed and the new likelihoods of those positions are computed according to
how the new data from the sensor match the new position in the map. After a few steps,
robot should, with some likelihood, know were it is within the saved static map. Detailed
mathematical explanations of Monte Carlo localization and particle filters can be found in

[9].



2.5 Robotic Operating System

A typical robot consists of multiple hardware parts such as sensors and motors. Each of
them works with different data representations. Data received from a sensor can affect
actions taken by the motor and so on. To do that, the robot parts have to communicate
with each other. To make the manipulation with robots easier various tools are available.
One o them is Robotic Operating System (ROS)°. ROS is an open source framework offer-
ing system environment and hardware interfaces for packages implementing solutions for
different robotics tasks. ROS’ work is to make manipulation with robot’s hardware parts
as easy and effective as possible. It creates an abstract layer above the robot hardware so
the programmer does not have to care whether he or she works with this or that kind of
a sensor. The sensor can be just plugged to the computer (e.g. via USB cable), then a
corresponding ROS node (module) processes its data.

ROS nodes are running processes, each solving its own task of the system and per-
forming some computations. A running ROS system can manipulate with many nodes
simultaneously. It provides communication methods for them and offers tools to control
them. The nodes usually communicate with each other using messages. The basic commu-
nication consists of a publisher and a subscriber. The publisher is a node which publishes
data (messages) on a topic which is a defined channel or a stream for sending certain types
of messages. An example of such a publisher can be a video camera publishing video data.
The subscriber is a node which can receive data from a publisher. The process is called
listening to a topic. If the subscriber listens to a topic it can read data from it and do
specific operations with them. It can send the new processed data to another topic where
it will be available for other nodes listening to this topic.

Besides the mentioned messages and topics ROS also provides a server-client kinds of
communication methods. One of them is an actionlib server and client communication. The
actionlib server is a node which continuously works on some task which can be interrupted
by the client. The server changes (or not) its behavior accordingly to a specific command
received from the client.

Several visualization and simulation tools can be also found among the ROS tools. The
most interesting and useful ones are rviz and gazebo. Rviz is used mostly to visualize data
from the published topics which is sometimes necessary when one wants to check whether
the incoming data looks correct. Gazebo is a tool to simulate the robot and the environment
around it so the programmer does not have to work with an actual robot (which can be big
or expensive or just difficult to manipulate with) just with the simulated one in the gazebo
simulator.

All ROS tools provided by some open source packages are configurable with their launch
files. Launch files are xml files containing specific parameters for the nodes to be run with.
A substantial part of this work consists of such launch files. More about ROS framework
and its tools can be found in [3].

http://www.ros.org/
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Chapter 3

Design of a mobile robot

The whole system consists of several modules, each performing a different task of the data
processing pipeline. In this chapter I will describe how the final system architecture looks
like, what parts does it consist of and what modules and algorithms were used to fulfill the
assignment.

3.1 Assignment analysis

Let’s assume we have a situation in which a disabled man on a wheelchair drops an object
which falls some distance from him. As moving the wheelchair to the object and bending
down to it could be a difficult task for the disabled man, a robot capable of finding the
object and bringing it to the man would be definitely useful. Another possible use case
could be a factory worker working on some manual task. A robot could save him some
time by bringing him tools he asks for. To fulfill such tasks the robot has to be able to do
following subtasks:

e localize itself in the area (knowing where is the position of a user, the position of an
object and the position of the robot itself in the map)

e navigate through the area (exploring the area, moving between the found objects and
the user)

e detect objects (selecting potentially known objects from received point clouds)
e recognize found objects (learning which object is which)
e speech recognition (communication with the user, this part is not solved by this work)

e audio localization (to localize speakers from their voices, this part is also not involved
in this work)

The initial assignment was to bring up a robot capable of localization and navigation
in indoor scenarios using existing methods, techniques and tools. An extension was added
to the initial assignment later. Robot’s navigation skills should be used to explore its
surrounding areas and to find certain objects lying on the ground within the area. In the
localization and navigation part of the assignment my task was to choose suitable ROS
packages solving given problems, design a complex system built on them and make the
individual nodes work with each other. In the extended part of the assignment (detection

11



and recognition) I had to implement a package detecting objects in the view field of the
sensor and bring up a specific existing ROS package for image recognition (it had to be a
package developed by a certain research group from another university). The last part was
to connect these modules with each other using a suitable exploration package so it could
compute a path of the robot and send navigation goals to the navigation module.

As the target users group may be disabled people and common households, the added
value of the final software solution must be the low-budget hardware requirements. Used
devices should be as cheap and simple as possible. That means robot equipped just with
one depth sensor and a simple mobile base with a motor. All needed input data must be
obtained from these two devices.

System architecture

I designed a system architecture consisting of several modules. The whole system schema
is displayed in the figure 3.1. It shows how the input data from the depth sensor and the
mobile base flow through the individual nodes. One data stream is published by the sensor.
Data from it are received by an object detector module and a module creating laser scan
data which are used by a map creation module and localization and navigation modules.
These modules process received data and send new data to other nodes in the chain. The
figure also shows how the navigation module receives laser scan data, map data and mobile
base odometry data and sends new data (velocity commands) back to the mobile base. All
of these parts will be described in the following sections.

Objects recognition

T

Objects detection

i

Depth sensor data

Y

Laser scan creation

/N

. Localization and
Map creation

Navigation

NV

Mobile base data

Figure 3.1: All parts of the system and how the input data from the sensor and the mobile
base flow through other nodes are shown in this schema.
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3.2 Building a static map using SLAM

As I mentioned earlier this solution has to use algorithms and techniques with low compu-
tational requirements. Although the SLAM methodology is capable of solving the whole
localization problem including building a map, it would be compute intensive. That is why
I chose a different approach to solve this problem. SLAM is used only to build an initial
static map which is later used for localization and navigation. The localization and naviga-
tion parts are fulfilled by other techniques and SLAM is used no more in the system. This
implies that building a static map is a prerequisite for the later functioning of the system.

Laser scan

Before building a map, input data streams must be handled (specifically laser scan and
odometry data are required by the map building module) and a proper robot setup is
needed. As the used robot is equipped just with a depth sensor there must be a module
which can receive a point cloud and create laser scan data from it. The laser scan is a
horizontal scan of the area. It can be obtained by selecting depth points with a certain
height in the point cloud which can be seen in the figure 3.2. They are then reordered to a
different data structure (a laser scan) which stores data in a single array (e.g. one index of
the array for one column of the point cloud).

Figure 3.2: A laser scan (red) retrieved from a point cloud.

Transformations between coordinate frames

The second required input data type is odometry, which is provided by the packages con-
trolling the mobile base. It gives information about the robot movements (e.g. velocities,
rotations...) to the system. Having a fake laser scan data and odometry information, there
is one last thing to do before starting building a map. Every data publishing component
in the ROS system publishes them in its own coordinate system or frame. ROS system
has to know the relative position of each of these frames so their real spatial relationship is
obvious to other running nodes.

There are nodes in the ROS that can transform data from one coordinate frame to
another. This operation is called transformation between the frames. An example of

13



base_laser

base_link

Figure 3.3: Data published by devices like a sensor or a motor have their own coordinate
systems. Transformations between them are needed so the other nodes in the running ROS
system know the relationships between the positions of these devices.

possible robot’s frames is shown in the figure 3.3 where the transformation node would
require information about the base_laser frame being 20cm above and 10cm in front of the
base_link frame. In case of my system transformations between the depth sensor and the
mobile base frames are needed. With laser scan data, odometry data from the mobile base
and the transformations between them, the map of the environment can be created. While
building the map the robot is not autonomous. The map building module takes odometry
and laser scan data as an input. Thus, the user has to move with the robot manually and
take it (using a keyboard or a joystick) around the room(s). The result is an image with
pixels having three values: free, occupied and unknown. An example can be seen in the
figure 3.4.

Figure 3.4: Example of a static map. Black pixels stand for occupied area, light gray for
free and dark gray for unknown area.

3.3 Localization and navigation

Before the system is able to navigate itself to a given destination using a map it has to
determine, where it is within the given map. In other words, the system has to be able
to localize itself within the map. The solution described in this work uses fast particle
filters implementation and sensor models. The principle of the particle filters methods
was described in the section 2.4. The localization is accomplished by a single node that
subscribes to the laser scan and map topics. It tries to match an incoming laser scan to a
given map. As a result the module publishes the robot’s pose.

14



The navigation techniques I used are based on dividing the navigation problem into two
parts, specifically local and global planning of the path. Global planning means planning
the path from the initial position to the final destination avoiding the obstacles on the saved
static map. The local planner tries to avoid nearest obstacles (also the ones that are not in
the static map) while keeping the robot as close to the original global path as possible.

To achieve this both global and local planners create supplementary maps called costmaps.
The difference between a normal map created in the previous section and a costmap is that
the costmap assigns one of many (e.g. 255) values to a pixel instead of three values for free,
occupied and unknown. That provides an information about the distance of the specific
point in the map to a nearest obstacle. This is used by the path planners to find the best
path considering a given configuration which specifies how the values are assigned to points
of the costmap. A costmap based on the static map from the previous section is shown in
the figure 3.5.

Figure 3.5: Layers of a costmap.

Having all the necessary input data the navigation module can receive navigation goal
messages and publish velocity messages to the mobile base which results in the robot moving
to the given destination.

3.4 Objects detection

While the robot is moving through the area it simultaneously detects objects in its field of
view. The detection is done by a module which was implemented by myself. It receives
point clouds from the sensor. In every received point cloud it removes the floor plane so
the points remaining in the point cloud belong to the detected objects (or just an empty
point cloud remains, which indicates no objects are in the robot’s view field). Elementary
steps of the detection algorithm are shown in the figure 3.6.

As the floor removal is a frequently performed operation it has to be done effectively. The
floor plane segmentation in every received point cloud using a complicated algorithm could
be compute intensive. That is why I used the following optimization: The segmentation of
the floor plane is required just after some longer time intervals (assuming that the sensor
angle will not change very often). After each plane segmentation is done the angle between
the sensor and the floor plane is computed. The angle computation uses the 3D plane
coefficients a, b, ¢ obtained by the segmentation. As the coefficients are values of the
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Figure 3.6: A schema showing steps of the objects detector algorithm.

normal vector of the plane the angle can be obtained using the equation 3.1. Where the
computed angle is the angle between the floor plane normal and the xy axis plane normal.

a1 *ag + by *x by +c1 %y

cosf =
Vai + b2+ + /a3 + b3 + 3

(3.1)

Using this angle every received point cloud can be rotated so the floor plane in the
rotated point cloud is parallel to the zz coordinate axis plane. Knowing the distance
between the floor plane and the parallel zz plane, all points with a certain y coordinate
value can be removed. The equation 3.2 computes the exact y coordinate value.

Ynew = Yoriginal * COS 0 (32)

As the transformation is just a multiplication of all points by some value and the floor
removal is just a simple filter removing points with certain values, this is definitely more
efficient solution than performing a segmentation with every received point cloud. The
last thing to do is to assign the remaining points in the output point cloud to individual
clusters, each cluster representing a corresponding real world object. Specific segmentation
methods which I used are described in the following chapter. The results of the described
algorithm are demonstrated by the figure 3.7.

3.5 Objects recognition

The objects recognition module uses a neural network to recognize and classify the trained
objects. Specifically a type of a convolutional neural network is used in this work. Its exact
architecture is specified in [8]. As training a neural network needs a big data set, this neural
network is trained on an academic data set ImageNet'. The user of the robot system has
to only retrain the top layers, the rest of the network remains untouched. The pretraining

"http://image-net.org/
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Figure 3.7: Objects detection is done by removing the floor plane points from every received
point cloud. Remaining points are points belonging to the detected objects. Segmentation
algorithm assigns these points to clusters representing the real detected objects.

of the network makes things much more easier as the user now needs just several images of
the objects to be recognized by the robot.

With a trained neural network the module can start receiving images of the detected
objects from the object detector node. The recognition module returns likelihoods of the
possible classes which were assigned to the detected object. The class with the best likeli-
hood wins or the detected object is considered to be an unknown object. Implementation
details about the process of training and using the neural network module are described in
the next chapter.

Exploration

During the detection and recognition fazes the exploration module sends navigation goals
to the navigation module which tries to accomplish them. The module controlling detection
and recognition also controls the exploration by sending messages about whether to continue
with exploring (when there are no objects detected) or to stop for a moment (while the
detected objects are recognized). If a known object is found the detection module stops the
exploration and publishes a navigation goal message which results in the robot moving to
the recognized object.
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Chapter 4

Objects finder implementation

To run and implement the mentioned modules I used the Robotic Operating System and
the Point Cloud Library. Existing packages and also packages implemented by myself will
be described in this chapter, together with their implementation, configuration and usage.

4.1 Robot setup

I used a very simple robot to work with. It consists of several hardware components which
need to be configured properly. This section presents a description of how to bring up these
robot’s hardware components and how to connect them with ROS to allow other nodes to
receive required input data and send them commands.

Mobile base

As a robot mobile base I used kobuki' which is a remodeled vacuum cleaner (with the
cleaning part removed). It provides a motor, wheels and several ports to be connected with
a computer or other devices (e.g. Raspberry Pi).

pE=_N Y

Figure 4.1: My robot for the test purposes, constructed from a kobuki mobile base and an
ASUS Xtion depth sensor.

Thttp://kobuki.yujinrobot.com/
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The research group which developed kobuki also implemented ROS packages to control
it. That means ROS nodes publishing odomentry data and subscribing to velocity topics
so other nodes can send signals to move with the kobuki mobile base. Specifically, I used
two nodes to control kobuki. The first one is kobuki mnode. It is the main interface between
ROS and kobuki’s hardware. It subscribes to velocity topics and publishes data on an
odometry topic. I run it with its default launch file minimal.launch which is installed with
the package. Another kobuki ROS node I used (while building the map) is kobuki_keyop.
After launching it user can control kobuki with a keyboard. I also used its default launch
file keyop.launch. No special customizations of launch files were needed to bring up this
part.

Depth sensor

As a depth sensor I used an ASUS Xtion device. It provides depth and RGB data. A ROS
package openni2_launch provides an interface between the sensor and ROS and it publishes
point cloud data into the system. It is important to use the version 2 as the version 1
does not work with this device. This package can be launched with its default launch file
openni2.launch. 1 only lowered the publishing frequency so the computational requirements
are lower. This can be done because the recognition module is not so fast so there is no point
in publishing data with a high frequency. In this part transformations between the frames
are done. A ROS package tf takes care of this via its node static_ transform__publisher. It
publishes transformations between the base_ footprint frame which is the frame in which
kobuki publishes odometry and the camera_ link frame which is the frame of the sensor.
The exact values (distances) in meters are set in static_transform__publisher launch file.
With these transformations published, the system knows what is the relationship between
the position of the sensor and the position of the mobile base.

Fake laser scan

The last part of setting up the robot is creation of the fake laser scan data. There are
two ROS packages available capable of fulfilling this task, each of them has its own way
of achieving it. The first is pointcloud to_laserscan. As the name indicates it creates the
laser scan data from a received point cloud. It iterates through all depth points of the point
cloud and selects a point with the closest distance from every column of the cloud.

Figure 4.2: The fake laser scan data visualized in rviz.

The result is an array of the selected points - the fake laser scan. It is visualized in the
figure 4.2. The other ROS package creating laser scans is depthimage to_laserscan. The
first difference between the previous package and this one is that depthimage to_ laserscan
does not use point clouds to create laser scans. It takes a depth image as an input. A depth
image is a grayscale image where pixels with the same distance from the sensor have the
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same shade of gray color. The depthimage to laserscan package does not iterate through
the whole image instead it takes one row (or more, depending on the configuration) of the
image with its distance values and that is the output. I chose the second package as its
output is more similar to the one a lidar scanner would give. Another advantage of the
depthimage__to__laserscan package is that after a little code customization the specific row
can be selected. It would be useful in a situation, when the angle between the sensor and
the floor would not be zero. In such case we do not want to take the middle (default) row
of an image as a laser scan. Instead some of the higher rows would be better, depending
on the sensor angle.

4.2 Building a map using SLAM

Before the system can start with the localization a static map has to be prepared. Build-
ing the map is done by a ROS package gmapping which implements SLAM algorithms.
This package requires laser scan and odometry data which are provided by the packages
described in the previous sections. The node is launched with a launch file containing re-
quired parameters. The most important step here is to set the correct names of the topics
publishing the data and the frame names they are published in. Specifically it is the scan
topic name - ,scan“, mobile base frame - ,base_footprint* and odometry frame - ,odom*.
After launching the configured package the user has to manually walk the robot through
the area using keyboard. It can be done with the kobuki keyop package. The process of
building a map can be seen in the figure 4.3.

Figure 4.3: The process of building a map using a gmapping package. The black pixels
mean the area is occupied, the light gray pixels mean it is a free space, the rest is an
unknown area.

The map created with the gmapping package is usually not perfect, especially when
using fake laser scan instead of a real lidar scanner. Also the odometry is not always a
hundred percent accurate because the low-cost mobile base motor and its wheels does not
work with such an accuracy. These can result in irregular or broken walls or other objects
in the map. It can be solved by editing the map a little bit in an image editor. Although
it is not necessary, it helps later in the localization part.
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4.3 Localization

I tried two approaches while solving the localization part of the problem. The first one was
a package amcl (which stands for adaptive Monte Carlo localization) which is a widely used
tool among the ROS community. The turtlebot robot mentioned in the section 2.1 also uses
this package to localize itself. The other approach I tried uses a module which is part of a
bigger project solving robotics tasks called Environment Descriptor. The package from this
project I used is called ed_localization and it also implements particle filters. The difference
between these two packages is that while the amcl package works only with a static map
provided by gmapping (or a similar package), ed_ localization and Environment Descriptor
in general offer an interesting extension. Besides the classic static map user can provide
models of the real world objects by defining their positions and shapes in a yaml file. By
that the system can work with a much more accurate world model which leads to more
accurate localization results. Such an accuracy could be hardly achieved with a simple map
from the gmapping package. I chose the ed_localization approach exactly because of this
feature. Although I did not really use it, it is good to have that in the final solution in case
of some future improvements.

The whole ed__localization package is configured in a specific yaml file. Most of the
parameter values in this configure file I let set up to default values. Setting up the proper
topics and frames names is important here and a path to the static map created in the
previous step is also required. After the correct ed_localization configuration the module
can be launched. The output of localization can be checked in the ROS rviz visualizer. The
localization node should match the laser scan data to the walls and other objects in the
map. It can be seen in the figure 4.4.

Figure 4.4: The localization module tries to match laser scan data (the red dots) to the
objects in the map (the black pixels) using particle filters. The red arrow is a position and
orientation of the localized robot.
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4.4 Navigation

The navigation module in ROS is in general called a navigation stack. There is a package
taking care of its functionalities, move_base and it has several files to be configured. The
main launch file just loads other important files plus remaps the velocity topic name from
cmd__vel to mobile__base/commands/velocity which is the topic name used by the kobuki
package. The remaining configure files are for global costmap creation, local costmap
creation and for configuring the parameters of the path planner itself like minimum and
maximum velocities, allowed distances from the obstacles and other specific parameters for
the algorithm. An example of a local costmap placed to the global one is shown in the
figure 4.5. When the navigation stack is running, navigation goals can be sent to it through
the move__base/goal topic. It can be done in the rviz visualizer by clicking somewhere on
the map or in the code by sending a message to the mentioned topic.

Figure 4.5: An example of a local costmap placed to a global costmap created by the
navigation stack.

4.5 Objects detection

The detector module is implemented with the C+-+ library PCL. It is implemented as a
subscriber to the point cloud topics from the depth sensor. The first step of the algorithm
is preprocessing. That means noise and outliers are removed from the incoming point cloud
using a Passthrough filter class from the PCL library. The preprocessing part also crops
the point cloud so the points which are higher than a certain threshold or their distance is
bigger than a certain threshold are removed. With the preprocessed point cloud next steps
follow.

After receiving the first point cloud the floor plane is segmented. To do this I chose a
PCL class SACSegmentation. It takes a segmentation method name as an argument plus
a searched model type (which is a plane in this case) and the threshold values, which I
set to 1 centimeter. As a segmentation method I used RANSAC. I chose the RANSAC
algorithm as the robust estimator of choice which was motivated by its simplicity. More
about RANSAC can be found in the section 2.3 or in [6]. Additional optimizations are often
used with RANSAC, but the basic algorithm was sufficient enough in this case. The PCL
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method returns coefficients of the segmented plane (which are values of the normal vector
of the plane) and with them the angle between the sensor and the floor can be computed.
Details about the angle computation were explained in the section 3.4. Having the angle,
a transformation matrix can be prepared. With this transformation matrix every received
point cloud is transformed until the next plane segmentation is done in which a new angle
is computed and a corresponding transformation matrix is prepared. The time interval is
controlled by a ROS Time class.

Figure 4.6: White point cloud is the original one, the red one is the point cloud after the
rotation. Its floor plane has y coordinate with the same value everywhere so it can be easily
removed.

The input point cloud and the point cloud after the transformation are captured in the
figure 4.6. The white point cloud is the input one. Every y coordinate of the floor in the
red point cloud (the point cloud after the rotation) has the same value. Using a simple
PCL Passthrough filter method every point of the point cloud which has y coordinate in a
given interval can be removed.

3

Figure 4.7: The result of the detection algorithm. The point cloud is rotated, the floor
plane is removed and remaining objects are clustered.



I used interval 2 centimeters under and above the floor in case of some unexpected noise
in the point cloud. The exact y value is computed as shown in the equation 3.2.

After the floor is removed the point cloud either remains empty or some objects are
detected in it. The last step of the algorithm is to assign the remaining points to clusters
representing the real world objects. My choice how to do that was a PCL class implementing
the region growing algorithm mentioned in the section 2.3. This class provides options to
set thresholds for the minimal and maximal number of points in the segmented area. This
can be used to configure the size of the objects the robot will seek. The specific configured
size depends on the specific type of the work which will be done by the robot. The result of
the detection process (the transformation and the floor removal) are demonstrated in the
figure 4.7.

4.6 Objects recognition

When the detected objects are saved in the clusters their images have to be sent to the image
recognition module. The module I used is an image_recognition ROS package developed
by the same research group as the Environment Descriptor. It is built on a TensorFlow?
library and its neural network can classify trained objects.

The package nodes can be used either with its GUI plugins or by calling a corresponding
ROS service from the code. The services are implemented in an image__recognition package.
For the annotation of the training images I used the GUI plugin. It is shown in the figure 4.8.

image_recognition_rqt__Annotation Plugin - rqt

B abel plugin, listening to (fusb_camfimage_raw)

Edit path

Edit labels | | set(['peanut ok ero'j) Annotate again!

Figure 4.8: ROS image recognition package with a GUI plugin. Annotating of objects is
shown in this figure.

Annotating a few dozens of images (I used around 50) for every object was enough (al-
though there were just little improvements after using more than 20 images). When having
a training data set the neural network top layers can be retrained. The tensorflow_ros rqt
package provides the GUI plugin for the training process and a tensorflow_ros package does
all the necessary computations using an object recognition_node node. The node is a ROS
service server, it can receive images of objects in service calls and return their likelihoods.

Zhttps:/ /www.tensorflow.org/
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The paths to the training data sets and the training output graph are passed as arguments
while launching the node.

The recognition itself is done in the objects detector node. Because the detector node
creates clusters from depth data and the image recognition node takes a simple RGB image
as an input, a transformation between the point cloud points coordinates and the corre-
sponding image pixels has to be done. The detector is implemented as a subscriber to the
point cloud topic as well as to the image topic (the ASUS Xtion sensor provides both).
It processes the received messages synchronously, each point cloud and a corresponding
image with the same timestamp. The synchronous subscription is achieved with a ROS
Synchronizer class. As the detector has each object’s points saved in a cluster, it can com-
pute objects centroids, where a centroid is an average point of the whole cluster. Having
the 3D coordinates of the centroid, the detector node iterates through all the points of the
point cloud (which are implemented as a vector) finding the point with the most similar
distance values to the centroid point. Knowing the resolution of the point cloud (ASUS
Xtion has a resolution 640 x 480 px) the index of the found point can be easily assigned to
the corresponding 2D pixel. A slightly different position of the image camera and the depth
camera on the sensor (cca 3 centimeters) has to be also considered in the transformation
from the depth point to the pixel coordinates.

After obtaining the position of the detected object in the 2D image a window or a region
of interest is selected from the image. The window size is constant for every object now,
but it would be worth considering to add a functionality for detecting the object size, so
the region of interest would be automatically adjusted. For the image processing I used
tools from the OpenCV? library. The selected window is sent via a ROS service call to the
recognition node. The service call returns a vector of likelihoods for every object in the
training data set, where one of the returned likelihoods is the likelihood for that the object
is unknown. The best likelihood is chosen. If it is something else than an unknown object,
the detector node publishes a navigation goal for the navigation stack. The position of the
navigation goal is basically the same as the coordinates of the object centroid point. The
robot’s task ends here, the robot accomplished it by finding a known object.

4.7 Area exploration

I have not mentioned yet how the exploration node sends navigation goals to the move__base
node. For this purpose I implemented another ROS node called kobuki _exploration. It is an
actionlib client communicating with an actionlib server provided by a frontier _exploration
package. Before launching the exploration the package configuration is required. This node
creates a costmap similar to those created by the navigation stack. Also its configuration
is very similar to the one from the navigation stack. The configuration file loads several
plugins to build the map. Configuration of the individual plugins consists of setting map
layers parameters, obstacle distances, sensor topics and frames names, robot footprint size,
map updating frequency and parameters to compute cost of the area in the costmap.

The client part is implemented in python. It defines a polygon area which it tries
to explore. Exploring the area means moving through the selected area until all of it is
considered as seen. The client node connects to the actionlib server frontier exploration
and starts to send actionlib goals to explore the area. It continues exploring until the
detector node publishes a message about detecting some objects. The exploration client

3http://opencv.org/
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subscribes to this topic and after receiving such a message it stops exploration. The client
does that by sending a cancel goal command to the actionlib server. The client renews
the exploration again when it receives a new message about no objects detected. The
detector node publishes the messages about stopping the exploration after some objects are
detected. The exploration is stopped during the whole process of communication between
the detector node and the image recognition node. If no objects were classified as known,
the detector node publishes a message about not finding objects and the exploration client
starts to send actionlib goals to the frontier exploration server again.

4.8 FEvaluation

The implemented software was used in a real world environment. This section demonstrates
the results of the individual modules and the system as a whole in this environment.

Mapping

As a test room a chose the school robot laboratory. This room was appropriate because
there is a big space with an empty floor but also space with lots of obstacles to avoid. The
laboratory with its map is shown in the figure 4.14. In this image some of the characteristic
features of the room shape can be seen. Same features are stored in the map. I edited the
map in an editor a little bit, so the Environment Descriptor world model is more accurate.
I also removed objects from the map (tables, chairs...), so just walls and cabinets remained
there.

Figure 4.9: The map of the test environment.

Localization and navigation

The localization module was tested using the rviz visualizer. The accuracy of the localiza-
tion is easily checked after displaying the map and the laser scan topics. If the localization
is correct the laser scan should match the shape of the room in the map. After launching
the localization module, the initial pose of the robot has to be set (rviz provides a tool for
that). Without that the robot (usually) will not localize itself at all. It is maybe due to the
fake laser scan, which is only less than a 180 degree scan, while the real scans (provided
by lidar scanners) are usually 360 degree scans. A 360 degree scan has a greater power in
particle filters localization as there is more data to match with the map.
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After setting the initial pose (which do not have to be very accurate, it is enough to set
the pose more than half a meter next to the real robot position) the robot could localize
itself after it moved by a few centimeters. The result is demonstrated by the figure 4.10.
As we can see it is not a hundred percent accurate, but this is definitely enough for our
navigation purposes. There were also objects which are not captured by the map which is
why the localization is not a hundred percent accurate.

Figure 4.10: Accurate localization result.

When the robot moves too fast the localization is less accurate as it is shown in the
figure 4.11. Although it may seem as a problem, it is not an actual issue at all. I set the
robot speed to lower values so it usually does not come to that and if it does it does not
matter in navigation as it gets back to the accurate state when the robot position is fixed
or its speed is lowered.

™,

Figure 4.11: Inaccurate localization result. It happens when the robot moved too fast, it
is repaired in a fraction of a second.

The navigation as a single module was tested with the rviz visualizer. It is done by
setting a navigation goal in the map. The robot then tries to get to the given destination.
The robot was tested in an area with no obstacles, a few obstacles and a lot of obstacles. If
there are no obstacles or just a small amount of them the robot has no problem to navigate
around them. The areas with lots of obstacles sometimes confused the robot and it finished
with a failure. This result is not usually an actual issue (although it is sometimes and
the robot fails), because the navigation module is controlled with the exploration module,
which keeps sending new navigation goals although the previous one was not accomplished
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(every time when the detector module stops the navigation after detecting objects as it was
mentioned in the previous chapters).

Detection and recognition

The detection module was easily tested by placing some objects on the floor and capturing
the scenery with the sensor. The detected objects were visualized as in the figure 4.12.
The module itself had no problems with detecting objects in different situations and with
different angles between the sensor and the floor plane. However the angle computation
could not be used in the final system due to problems with transformations which I have
not solve so far, so the angle has to be 90 degrees during the whole navigation process.

Figure 4.12: The result of the objects detection module. The right image shows clustered
points of the point cloud representing the objects from the left image.

After computing a centroid of the detected object a region of interest for the recognition
module is selected from the image. The result of its creation is shown in the figure 4.13.
Also this part introduced no problems.

Figure 4.13: Region of interest sent to the recognition module.

The recognition module was trained to recognize four objects. For retraining the top
layers of the neural network approximately fifty images for every object were annotated. If
the region of interest sent to the module was accurate enough, the module recognized the
objects correctly in most cases. In some cases it returned wrong likelihoods so an unknown
object was considered to be a known one. Another issue (probably the worst one of the
whole system) was that the recognizing of a single image takes quite a long time (cca 2
seconds).

Objects finding

The whole system was able to find a known object in most cases except the ones where the
described problems occurred. Due to the low speed of the recognition module the whole
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process of finding objects is a bit slow (if there are lots of objects detected in the robot’s
surroundings). Using a different recognition module would rapidly speed up the process.

Figure 4.14: The robot accomplishing a goal of finding an object (a juice box in this case).
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Chapter 5

Conclusion

The goal of this work was to bring up a software for a mobile robot capable of localization,
navigation and objects recognition in indoor scenarios using existing tools. The solution
had to be as cheap as possible so the robot could be affordable by ordinary people. The goal
was accomplished using a Robotic Operating System framework, a single depth sensor and a
mobile base with a motor. The whole process of finding objects consists of several modules.
Most of them are existing ROS packages, two modules were implemented by myself. The
main parts of the system are a module for the map creation, localization module, navigation
module, objects detector module, recognition module and explorer module. This work
described how the individual modules work, how to use them and what results they gave.

The result of the work is an autonomous mobile robot that can find known objects
in indoor scenarios. Such a robot could help people in many different areas where this
functionality is required. That could be service robots in households or in industry (after
equipping the robot with specific mechanical components). The final solution has several
issues such as a slow recognition module and a transformation problem which makes it
unable to change the angle between the sensor and the floor plane. The navigation often
fails in difficult situations. The recognition module could be completely replaced by a better
one in the future, which will require better knowledge of the machine learning problematics.
Another important step in the future will be running the software on a hardware like
Raspberry Pi instead of a notebook. Also implementing an autonomous map building
module would be worth considering.
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Appendix A

Table of content of the
CD

The attached CD consists of these folders:

/
| poster

poster.pdf

| demo
LA,Video.mp4
,__src
detector_pkg
kobuki_exploration
launch_files
| environment_descriptor
Lg,ed_config.yaml
| frontier_exploration
L,frontier_global_map.launch
| move_base
bale_local_planner_params.yaml
costmap_common_params.yaml
global_costmap_params.yaml
local_costmap_params.yaml
move_base.launch
| _sensor

Lg,depthimg_to_laser.launch

| doc

Lg,usage_guide.pdf

| _tech_report
xsykor25_Mobile_robot_localization.pdf
latex_src
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