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Abstrakt
Tato práce popisuje problematiku návrhu a v˝voje aplikace pro rekonstrukci 3D model˘
z 2D obrazov˝ch dat, oznaËované jako bundle adjustment. Práce analyzuje proces 3D rekon-
strukce a d˘kladnÏ popisuje jednotlivé kroky. Prvním z krok˘ je automatizované získání
obrazové sady z internetu. Je p¯edstavena sada skript˘ pro hromadné stahování obrázk˘
ze sluæeb Flickr a Google Images a shrnuty poæadavky na tyto obrázky pro co nejlepπí
3D rekonstrukci. Práce dále popisuje r˘zné detektory, extraktory a párovací algoritmy
klíËov˝ch bod˘ v obraze s cílem najít nejvhodnÏjπí kombinaci pro rekonstrukci budov. Poté
je vysvÏtlen proces rekonstrukce 3D struktury, její optimalizace a jak je tato problematika
realizovaná v naπem programu. ZávÏr práce testuje v˝sledky získané z implementovaného
programu pro nÏkolik r˘zn˝ch datov˝ch sad a porovnává je s v˝sledky ostatních podobn˝ch
program˘, p¯edstaven˝ch v úvodu práce.

Abstract
This thesis describes challenges in design and development of an application which recon-
structs 3D model given set of 2D images. This technique is called bundle adjustment.
The thesi discusses the 3D reconstruction pipeline and elaborates on each step. The first
step covers dataset acquisition from the internet. The scripts used to download such data
from Flickr and Google Images are described and image characteristics necessary for a
good reconstruction are identified. Hereafter the paper compares di↵erent feature detec-
tors, extractors and matchers to find best suited combination for reconstruction of historic
landmarks. This is followed by description the reconstruction and optimization steps and
their implementation. At the end of the thesis the implemented solution is examined on
several datasets and compared with other existing solutions presented at the very beginning
of the thesis.
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Chapter 1

Introduction

This chapter describes the motivation leading to the presentation of this thesis and how is it
related to the SLAM frontend1 and SLAM++2 libraries developed at Faculty of Information
Technology, Brno University of Technology. The objectives of the thesis and the subjects
included in this document are briefly explained. The chapter ends describing the overall
structure and contents of the remaining of the thesis.

Nowadays we have means to record our surroundings as we perceive it using cameras.
However, it has been proven di�cult to process such information digitally. Even automated
analysis of the 2D information like typeset books is not a trivial problem and far from be-
ing mastered. When it comes to 3D, the problem gets much more di�cult. Scanning 3D
objects reliably is nowadays possible in laboratory conditions, but there are hard limits like
the size of the object, its structure or surface and material properties. Also the laboratory
equipment used is much more expensive and physically larger compared to its 2D coun-
terpart. This thesis tries to address these problems by allowing user to create 3D model
from multiple pictures of an object of interest from various sources. Such 3D model, even
though it may be inaccurate, has number of applications. It can be used by archaeologists
to preserve cultural heritage, by architects for spatial planning, by entertainers to create
3D models and virtual reality, by engineers to replicate existing 3D objects or in robotics to
navigate and interact with the 3D world. One important point, especially for professional
use, is that many of the tools presented in chapter 2 are using cloud based processing.
This clashes with licensing and security, because copyrighted images could be uploaded to
another country, misused, etc. This concern applies for both medical uses and creative
industries.
The process of creating 3D models usually consists of two parts: scanning the object

and reconstruction of the model. There are three main approaches how to scan physical
object: contact, active non-contact and passive non-contact scanners. The contact 3D
scanners probe the subject through physical touch. The active non-contact scanners use a
light in forms of laser or X-ray to scan the object while the passive non-contact scanners are
using either multiple images from di↵erent angles, images with varying lighting conditions
or silhouettes extruded from image with contrasted background. In this thesis we will be
particularly interested in scanning objects using multiple images from various cameras.

1SLAM frontend, a collection of applications processing sensor outputs and generating inputs for the
SLAM++ graph optimizer http://sourceforge.net/projects/slamfrontend/

2SLAM++, high -performance nonlinear least squares solver for graph problems http://sourceforge.
net/projects/slam-plus-plus/
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The pipeline of the transformation from 2D images to the 3D models consists of 6 steps: 1)
keypoints detection 2) feature extraction 3) feature matching 4) feature and camera tracks
building 5) camera initialization and pose estimation 6) structure computation and finally
7) structure refinement. In principle, the algorithm firstly finds points of interests in every
image and tries to match them. Once matched the camera positions can be estimated
and the structure implemented as a series of 3D points called point cloud. Up till this
point we use the SLAM frontend framework which implements some of the pose estimation
algorithms. The SLAM++ will then be used for bundle adjustment (BA) as it o↵ers a
Nonlinear Least Square solver. Because the process is quite di�cult, the resulting 3D
structure contains a lot of noise and has to be filtered and segmented before a polygonal
model can be created. There is number of tools available for either manual processing of
point cloud data, like MeshLab[9], or the whole process can be automatized using framework
like the Point Cloud Library (PCL) [28].
This thesis aims to identify challenges and propose solutions of three-dimensional re-

construction from a set of two-dimensional images leading to creation of a software, that
can do so automatically. The objective is to reduce the correspondence problem between
each two images and study the camera modelling and calibration. An accurate estimation
of the camera model and correspondence allows us to compute three-dimensional informa-
tion from a two-dimensional image sequence. In order to eliminate artefacts the input set
of images, especially the ones obtained from internet, will have to be filtered to contain
only daytime images, without any repetitive watermarks, the image set should be consis-
tent season-wise and contain as little reflective surfaces as possible. Also we are trying to
avoid images that are too generic and contain little to none features. Another key goal of
this thesis is providing the reader with a complex insight on existing software, how does it
work and what are the reconstruction approaches. Lastly formulating and explaining the
problem, and the background, using suitable mathematical apparatus.
The study of the geometry involved in multiple camera vision systems should allow us

to present an application that can from a set of two-dimensional images reconstruct 3D
scene depicted by the images.
The thesis consists of 6 chapters. The chapter 2 introduces the reader to the current

state of the art libraries and programs used in the process of the estimation of the three-
dimensional structure from two-dimensional image sequences. Firstly, it discusses existing
bundle adjustment (BA) and structure from motion (SfM) solutions, like VisualSFM, Pho-
tosynth, OpenMVG and Bundler, and elaborates on the output of these programs and
libraries. Later some of them will be used as a benchmark for the implemented application.
Some of the mentioned programs, will be used for the final application performance and ef-
fectiveness evaluation. Lastly the chapter focuses on the state-of-the-art feature detectors,
extractors and matchers, built in the SLAM frontend (and OpenCV) and aims to compare
theirs e�ciency and performance.
In the chapter 3 the whole 3D reconstruction process is thoroughly discussed and step

by step explained. First the general pipeline is outlined and each step briefly explained.
Second, the camera model is presented and how the distinct camera parameters a↵ect the
reconstruction. The chapter also focuses on algorithms for structure evaluation and pose
estimation as well as the 3D reconstruction approaches.
The chapter 4 introduces the design of our application. It covers the whole pipeline

starting with the datasets acquisition and camera calibration scripts and programs which
outputs are the inputs for our software. However, the main focus of this chapter is on the
key data structures and algorithms we have designed and implemented as well as the one
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provided by the SLAM frontend and SLAM++ frameworks.
The chapter 5 evaluates the implemented solution on an artificial and real scenes by

means of the algorithms described in chapter 4. In the beginning of the chapter the datasets
used for the evaluation are introduced and their distinct characteristics described. Next, the
chapter evaluates di↵erent feature detectors, extractors and matchers and elaborates which
are suitable for our task and why. Lastly, the chapter presents qualitative results obtained
from our program as well as other existing solutions, their evaluation and comparison to
reference values where available as well as some complexity and resources consumption
evaluation.
Finally, chapter 6 summarizes this document by discussing achieved goals and outlining

the further work.
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Chapter 2

The State of the Art

The following chapter presents to the reader existing implementation of the bundle adjust-
ment and structure from motion techniques. Some of the applications and libraries described
will be used as a benchmark for the final solution. The rest of the chapter focuses on the
state of the art detectors, extractors and matchers which will be further surveyed in the
chapter 5 in order to choose the best suited combinations for our problem, reconstruction
of historic landmarks.

2.1 Existing 3D Reconstruction Applications

There are two image-based 3D reconstruction techniques based on estimating the position
of the 3D points in the environment; structure from motion (SfM) and bundle adjustment
(BA). The structure from motion tracks the image features from the image sequences ob-
tained by a moving camera. The problem requires camera calibration or an automatic
camera parameters re-estimation. If the input image sequence consists of images from mul-
tiple cameras with unknown, and often di↵erent camera with di↵erent intrinsic parameters
(like images from Flickr), the 3D reconstruction technique is called bundle adjustment.
Both of these techniques are similar, but generally SfM assumes small displacements, im-
ages taken from one camera and sequential image datasets, while bundle adjustment works
with an unstructured heap of images from multiple cameras.
Bundle adjustment and structure from motion are very similar with simultaneous local-

ization and mapping in robotics (SLAM). In order to deal with the inherent uncertainty,
they are formulated as estimation problems and can be elegantly solved using nonlinear
least squares (NLS). This is in general not an easy task, and remains a bottleneck in many
large-scale computer vision applications.
The problem of creating 3D reconstruction from a set of images has been addressed by

many research groups. In this section we will talk about few of the widely known solutions.
All of the programs discussed implement a subset of the bundle adjustment pipeline briefly
introduced in previous chapter 1.

Photosynth

Photosynth1 is a software application developed by Microsoft. It is based on Photo Tourism,
a research project by University of Washington graduate student Noah Snavely. Formerly

1Photosynth - Capture your world in 3D, https://photosynth.net
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the Photosynth was a 3D reconstruction software, however, in the current version the output
of the web application is not a point cloud nor 3D model but an animation of morphing
images or panorama. While it still works with images from various sources, the best result
is achieved by importing photos from a single camera. Once imported, user has to choose
the camera trajectory from four predefined options: spin, panorama, wall or walk.
The Photosynth technology is using an interest point detection and matching algorithm

developed by Microsoft Research which is similar in function to SIFT detector. Detected
features are then matched between images and by analysing subtle di↵erences in the rela-
tionships between the features (angle, distance, etc.), the program identifies the 3D position
of each feature, as well as the position and angle at which each photograph was taken. Ev-
erything is processed by Microsoft’s servers and, once finished, pushed to the website or
desktop/mobile application. There are little to none information about the whole process
as this is a commercialized technology.

Figure 2.1: The Photosynth output for the »ervená Lhota Castle (will be introduced in
section 5.2) in transition between several morphed images.

VisualSFM

The Chungchang Wu’s Visual Structure from Motion System2 is a GUI application for 3D
reconstruction using structure from motion. The reconstruction system is modular and in-
tegrates several of other projects: SIFT on GPU (SiftGPU), Multicore Bundle Adjustment,
and Towards Linear-time Incremental Structure from Motion. VisualSFM eploits multicore

2VisualSFM : A Visual Structure from Motion System, http://ccwu.me/vsfm/index.html
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parallelism (both CPU and GPU) for feature detection3, feature matching, and bundle ad-
justment [35]. For dense reconstruction, the program supports Dr. Yasutaka Furukawa’s
Patch-based Multi-view Stereo Software (PMVS) [12] and Clustering Views for Multi-view
Stereo (CMVS) [11] tool chain. It can also prepare data for Michal Jancosek’s CMPVS [17]
- Multi-View Reconstruction Software which can create textured polygonal model given
camera parameters and set of perspective images. In addition, the output of VisualSFM is
natively supported by Mathias Rothermel and Konrad Wenzel’s Photogrammetric Surface
Reconstruction from Imagery - SURE [22].
The software follows the overall 3D reconstruction pipeline; It detects features using

SIFT detector and SIFT extractor, matches feature pairs, creates camera tracks, estimates
the camera model for each image, removes images’ distortion and then runs the dense
reconstruction. Most of these parts are done using other libraries mentioned before. The
output files of feature extraction and matching are stored as a binary files and are loaded
if provided to save processing time. This enables use of other than built-in extractors and
matcher, but the format is not widely supported. The whole model is then stored in the
N-View Match file format (NVM4) which can contain number of models with cameras, 3D
points and associated PLY models (polygon file format, also known as Stanford Triangle
Format5). Tutorial on a 3D reconstruction using VisualSFM can be found in appendix C.

Bundler

Bundler [31] is the oldest structure from motion system for unordered image collections
used by professional public made by Noah Snavely. One of the first versions of the Bundler
system was used in the Photo Tourism project that was aqired by Microsoft and is now
part of Photosynth.
Bundler takes a set of images, image features, and image matches as input, and produces

a 3D reconstruction of camera and sparse scene geometry as output. In order to get
sparse point clouds, one has to run Bundler to get camera parameters, use the build-in
Bundle2PMVS program to convert the results into the PMVS input and then run the
Dr. Yasataka Furukawa’s PMVS software mentioned earlier. The Bundler reconstructs
the scene incrementally, a few images at a time, using a modified version of the Sparse
Bundle Adjustment (SBA) package of Lourakis and Argyros6 as the underlying optimization
engine. Bundler has been successfully run on many Internet photo collections, as well as
more structured collections. However, it is a rather old piece of software that does not run
without modifications on new systems.
The bundler was modified and used in the Photo Tourism [31, 32] project that aims to

browse large collections of photographs in 3D. The algorithm behind Photo Tourism was
further modified to be used in reconstruction of entire cities. The project Rome in a Day
[3, 1, 2] reconstructs the city of Rome from more than two million photographs.

3Changchang Wu, SiftGPU: A GPU Implementation of Scale Invariant Feature Transform (SIFT), http:
//cs.unc.edu/~ccwu/siftgpu, 2007

4VisualSFM : A Visual Structure from Motion System - Documentation, http://ccwu.me/vsfm/doc.
html#nvm

5PLY - Polygon File Format, http://paulbourke.net/dataformats/ply/
6Sparse Bundle Adjustment in C/C++, http://users.ics.forth.gr/~lourakis/sba/
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Figure 2.2: The VisualSFM application GUI with sparse reconstruction of the »ervená
Lhota Castle (will be introduced in section 5.2).

libmv

The libmv7 is a multiple view reconstruction and tracking library that aims to sometime
in future take a raw video footage or photographs and produce full camera calibration
information and dense 3D models. It consist of multiple modules which allow to resolve
part of the SfM process. This library has been incorporated as a module to the open source
3D creative suite program Blender8. However, last update for this library was 4 years ago
and while the library is now part of the Blender software, it is still not available with last
code change in January 2014.

7libmv/libmv, https://github.com/libmv/libmv
8blender.org - Home of the Blender project - Free and Open 3D Creation Software, http://www.blender.

org
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OpenMVG

The OpenMVG9 is another library for multiple view geometry. The core design is based
on the libmv but unlike libmv this project is still very much alive and ongoing. Apart
from core functionality the library also provides few samples and ready to use software as
a toolchains processing: feature matching in unordered photo collection, SfM pipelines and
color harmonization of photo collection. The SfM pipeline follows the pipeline introduced
earlier and is implemented as a Python script. Part of the library is a database of intrinsic
camera calibration for various cameras which is automatically extracted from the image’s
Exif data (Exchangeable image file format10). Even though the database contains almost
3500 records for distinct cameras, it does not include any version of Canon or iPhone
cameras that we have used. The library itself, given camera calibration in the Exif data,
outputs sparse point cloud and with camera poses for both ordered and unordered image
collections. However, if the Exif data are missing it fails with uncaught exception and for
many other image collections fails after the keypoints matching.

Figure 2.3: Sample of the OpenMVG SfM pipeline output as a 3D model (left, red dots are
cameras) for the default image collection Sceaux Castle, France (on the right).

Autodesk 123D Catch

The Autodesk 123D Catch11 is part of a complex application bundle from Autodesk. It
is not a standalone application but rather a client available for Windows desktop, iOS,
Android and Windows Phone. Therefore there is little known about the 3D reconstruction
approaches, but the application is user friendly and so far the only one that can be used
without any advanced computer knowledge. The application gives a brief manual how
should the set of input images look and provides simple guides to ensure that the object is
scanned from each side. After the pictures are taken, they are uploaded to the Autodesk’s
servers where all the computation happens. Once the processing finishes, the user is notified

9Pierre Moulon and Pascal Monasse and Renaud Marlet and Others, OpenMVG, https://github.com/
openMVG/openMVG

10TsuruZoh Tachibanaya, Exif file format, http://www.media.mit.edu/pia/Research/deepview/exif.
html

11Autodesk 123D Catch — Generate 3d model from photos, http://www.123dapp.com/catch
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for review of the 3D model which he/she can save within the application (and with paid
version even export). Unfortunately we have encountered number of problems on the iOS
version, where the model creation failed without any feedback repeatedly, the program
complained that there is not enough images (the minimum amount required is 8 but such
information is nowhere to be found) and lastly quite often fails to show the model for
review. However, if nothing breaks the system is straight forward and easy to follow. What
we lack (at least in the iOS version) is the ability to upload pictures taken before outside
of the application, higher limit on how many pictures can be processed (current limit is 40)
and an OS X version (every other application of the 123D bundle is available for OS X).

Figure 2.4: 3D model (right) obtained from the Autodesk 123D Catch application on iOS.

Sketchup and Blender

While we are mainly interested in an automated process of creating 3D models from a set
of 2D pictures, it is worth mentioning that there are solutions for creating 3D models to
match 2D images manually. Both the SketchUp12 and Blender o↵er such functionality. The
process13 is rather simple and consists of mapping the x, y and z axes to the picture and
than drawing over it. Once done, next picture is matched and rest of the visible structure
drawn. The figure 2.5 shows the process of creating a simple 3D model in SketchUp.

Figure 2.5: Creating a simple 3D model of the Model House (will be introduced later in
section 5.2) in SketchUp.

123D for Everyone — SketchUp, http://www.sketchup.com
13Match Photo: Modeling from photos — SketchUp Knowledge Base, http://help.sketchup.com/en/
article/94920
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SLAM frontend and SLAM++

The SLAM frontend and SLAM++ developed at the Faculty of Information Technology
at Brno University of Technology, are libraries for the bundle adjustment and structure
from motion applications. It is worth mentioning, that the SLAM frontend is still under
development and so far was not released. The SLAM++ is a library containing several
methods used in problems like bundle adjustment, structure from motion, simultaneous
localization and mapping (SLAM) and many others. The core of the library is a general
graph optimizer along with several problem solvers, nonlinear least squares solvers and
block linear solvers. It is written in C++ and it is very fast due to the fact that it exploits
the block structure the problems and o↵ers very fast solutions to manipulate block matrices
within iterative nonlinear solvers (this will be detailed in the section 3.6).
The SLAM frontend is a collection of applications that take as input image files or any

other sensor data files and generate inputs for the SLAM++ block-sparse linear algebra
SLAM solver. Apart form SLAM++, it requires OpenCV. The SLAM frontend is also an
easy to use interface for implementing custom structure from motion or bundle adjustment
application. It provides means to load set of images and detect, extract and match features.
The framework provides templates for custom estimators, such that one can implement
camera pose estimator for a BA application. Right now there are three finished applications:

• The Mono app which reconstructs 3D scene from an ordered image dataset made
by single camera with known intrinsic camera parameters.

• The Spheron app reconstruct the 3D scene from a spheron camera with known
intrinsic camera parameters.

• The Stereo app uses a stereo vision to reconstruct the 3D scene from a pair of
horizontally displaced cameras with known intrinsic camera parameters .

• Lastly, the Uncalibrated app which attempts to implement the general bundle
adjustment problem (unordered image dataset with unknown intrinsic camera cali-
bration). The application is subject of this thesis and the implementation will be
further described described in chapter 4.

2.2 Detectors

A successful 3D reconstruction stands and falls on good feature detection. The quality and
the robustness of features is usually much more important then their quantity which will
be demonstrated later in this section. The ideal feature detector finds salient image regions
such that they are repeatedly detected despite change of viewpoint; more generally it is
robust to all possible image transformations. Therefore, it does not detect any points in
uniform and uninteresting surfaces like sky or texture-less walls. The best detector to be
used depends heavily on the requested task. In our application features we are interested
in are edges and corners of buildings and their distinct parts.
We can divide types of image features into following categories (please note that a

detector can detect features from multiple categories):

• Edge is a point where there is a sudden change between adjacent pixels (strong
gradient magnitude). Generally an edge can be of almost any arbitrary shape and
may include junctions. Locally edges have a one-dimensional structure.
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• Interest point has a local two dimensional structure. We can think of it as two-
dimensional edge, in fact early algorithms were used to detect interest points as edges
and then selected the interest points by further calculation. In some literature you
the interest points may be referred to as corners.

• Blobs provide a complementary description of image structures in terms of regions,
as opposed to corners that are more point-like. A term regions of interest or interest
points are sometimes used as the blob descriptors often contain a preferred point (a
local maximum or a center of gravity). Blobs allows detection of smooth areas in an
image that might not be detected as an edge or corner.

• Ridges are in computer vision a set of curves whose points are have a local maximum
in at least one dimension. This notion captures the intuition of geographical ridges.
Ridge detection is usually much harder then Edge, Interest point or Blob detection.

The detector algorithms used are implemented in the Open source Computer Vision
(OpenCV)14 library but other implementations exist (eg. VLFeat15). The OpenCV was
designed with a strong focus on real-time applications and contains number of algorithms
from computer vision. In the remainder of this section feature detectors wrapped in the
SLAM frontend will be presented and briefly compared as we will evaluate their perfor-
mance for our problem in section 5.3.

1. The Harris Corner Detector is one of the most known feature detectors . It can
identify similar regions between images that are related through a�ne transformations
and have di↵erent illuminations. Even though the Harris Corner Detector is fast, it
does not select enough keypoints and therefore is not suitable for the 3D building
reconstruction16.

2. The Good feature to Track (GFTT) detector is modified version of the Harris
Corner Detector described earlier. It is still classified as a corner detector, however,
the scoring function di↵ers. Compared to the Harris, the algorithm was slightly
slower, with higher amount of features. Nevertheless, both of these algorithms do not
perform well enough for our problem [29].

3. A Scale-invariant feature transform (or SIFT) is an algorithm in computer vision
to detect and describe local features in images. The algorithm was published by David
Lowe in 1999. The algorithm uses as a keypoints image structures which resemble
blobs. The use of the detector is licensed which is an argument against using of this
detector in our application. However, as expected, the detector performs very well
and is used in many other SfM and BA tools presented earlier [21].

4. The Speeded Up Robust feature (SURF) detector is modification of the SIFT
detector. It addresses the slow processing of the SIFT while maintaining reasonable
e�ciency. While it can surely be used in the SfM application, from our experiments
we discovered that the increased performance greatly decreases feature detection for
(in our case) important structures [7].

14OpenCV — OpenCV, http://opencv.org
15A. Vedaldi and B. Fulkerson, VLFeat: An Open and Portable Library of Computer Vision Algorithms,
2008, http://www.vlfeat.org/
16Harris corner detector - OpenCV 2.4.9.0 documentation, http://docs.opencv.org/doc/tutorials/
features2d/trackingmotion/harris_detector/harris_detector.html
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5. The Feature from Accelerated Segment Test (FAST) aims to rapidly increase
performance of feature detection while sustaining feature quality of SIFT-like detec-
tors. The algorithm detects corners in the image and should be used with SIFT or
SURF extractor for best performance. In our case, the FAST selects three times more
features and it is hundred times faster than SIFT (resp. 50 times faster than SURF)
we mark this as one of the interesting detectors for the final implementation [26].

6. The Robust Invariant Scalable Keypoints (BRISK) detector uses scale-space
pyramid layers of octaves and intra-octaves to detect corners in an image. The al-
gorithm uses FAST feature detector score and was developed to get the better of
SIFT and SURF detectors. However, in our case the performance gain is not worth
decreased feature quality [19].

7. Dense Sampling uses a regular grid to find a keypoints in the image. This results in
good coverage of the entire object or scene and a constant amount of features per im-
age area. The dense sampling is fast as the detector selects all points on a grid without
analysis of the surrounding. On the downside, dense sampling cannot reach the same
level of repeatability as obtained with interest points, unless sampling is performed
extremely densely, but then the number of features quickly grows unacceptably large.
The dense sampling is therefore not useful in the SfM model estimation, but can be
used for a dense reconstruction once sparse structure is calculated [34].

8 The Oriented FAST and Rotated BRIEF (ORB) detector originated from the
OpenCV Labs. Its goal was to o↵er robustness of a SIFT and SURF, while maintaining
fast processing time like FAST and BRIEF combination. While this may be true, for
our problem the ORB detector does not perform well enough. The features found
rarely belong to a building and usually chunks around trees and vegetation [27].

8. The Maximally Stable Extremal Regions is a blob detector. The MSER al-
gorithm extracts from an image a number of co-variant regions, called MSERs: an
MSER is a stable connected component of some gray-level sets of the image. MSER is
based on the idea of taking regions which stay nearly the same through a wide range
of thresholds [10]. For our task this detector performs poorly and takes even more
time than SIFT detector.

2.3 Extractors

In order to work further with the keypoints detected in previous step, the keypoints have to
be analysed and transformed into so called feature descriptors (often only the term features
or descriptors is used). The process consists of inspecting local image patch around the
keypoint to be extracted. This extraction may involve quite considerable amounts of image
processing and involves reducing the amount of resources required to describe the original
data. The result is known as a feature descriptor or a feature vector. Among the information
that may be stored within feature descriptor, one can mention local histograms. In addition
to such attribute information, the keypoints detection step may also provide complementary
attributes, such as the edge orientation, gradient magnitude in edge detection and the
polarity or the strength of the blob in blob detection. The authors of detectors usually
specify which extractor should work best for their detection algorithm, some even provide
their own.
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There are two types of descriptors in OpenCV library; a) descriptors using floating point
numbers and b) descriptors storing information as a binary data in unsigned char type.

a) Float descriptors:

– SIFT: The scale-invariant feature transform of a neighbourhood is a 128-dimensional
vector of histograms of image gradients. The region, at the appropriate scale and
orientation, is divided into a 4 ⇥ 4 square grid, each cell of which yields a his-
togram with 8 orientation bins. The SIFT extractor is advised to be used with
the SIFT, SURF and FAST detector.

– SURF: The speeded up robust feature extractor uses either 128 or 64-dimensional
vector of histograms of image gradients.An oriented quadratic grid of 4⇥4 square
sub-regions is laid over the keypoint and a wavelet response computed for each
square. According to literature the SIFT, SURF and FAST detector can be used
with the SURF extractor [7].

b) Binary descriptors:

– BRIEF: The Binary Robust Independent Elementary Feature descriptor is a
128, 256 or 512-dimensional bitstring which is a good compromise between speed,
storage e�ciency and recognition rate. The descriptor is much smaller (16, 32
or 64 bytes) compared to floating point descriptors, while maintaining a good
performance compared to SURF or U-SURF [8].

– ORB: Unlike BRIEF, Oriented FAST and Rotated BRIEF (ORB) is compara-
tively scale and rotation invariant while still employing the very e�cient Ham-
ming distance17 metric for matching. As such, it is preferred for real-time appli-
cations, but may be suitable for some o✏ine applications as well [27].

– FREAK: The Fast Retina Keypoint extractor aims to be faster and more robust
than SIFT and SURF extractors. It uses a novel keypoint descriptor inspired by
the human visual system to compute cascade of binary strings [4].

– BRISK: The Binary Robust Invariant Scalable Keypoints extractor uses a 64-
byte binary descriptor composed as a binary string by concatenating the results
of simple brightness comparison tests [19].

2.4 Matchers

So far we are able to find points of interest in an image and describe them in such a way
that they are e↵ectively stored but still contain information about the point and its local
image patch. Once descriptors are extracted from two or more images, we want to match
points present in more then one image. This is e↵ectively a nearest neighbour search [30]
which is an optimization problem for finding closest (or most similar) points. There are
two approaches to this problem that are implemented in the OpenCV: a) Brute-Force and
b) Approximate Nearest Neighbour (ANN)-based matching.

17University of Manchester, Coding Theory lecture notes, http://www.maths.manchester.ac.uk/~pas/
code/notes/part2.pdf
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a) The Brute-Force matcher is simple and naive approach. It takes the descriptor of one
feature from the first image set and matches it with all other feature from the second
image set. During the process a distance of some sort is calculated and the match
with best metric selected. There are number of metrics implemented in the OpenCV
to be used with di↵erent descriptors but we, once again, tried all the combinations
in order to get best result for our problem. The algorithm promises best possible
matches, but due to the fact that it tries to match each pair of features, can take a
lot of time to process.

b) The Fast Library for Approximate Nearest Neighbors (FLANN) implemented in
OpenCV, performs a fast ANN searches in high dimensional spaces. It uses the Hier-
achical K-means Tree for generic feature matching. Nearest neighbors are discovered
by choosing to examine the branch-not-taken nodes along the way [23].
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Chapter 3

Methodology

This chapter thoroughly describes the whole 3D reconstruction process. First, the general
pipeline is outlined and each step briefly discussed. Second, the camera model is presented.
The reader will learn about the intrinsic and extrinsic camera parameters, distortion and
how does it relate to the camera pose. Next we talk about the epipolar geometry and fun-
damental matrix which allows us to obtain the camera poses and reconstruct the scene up
to some degree of ambiguity. The main focus of the chapter is on the 3D reconstruction.
We start with the 3D reconstruction approaches and what form of reconstruction can be
achieved in various scenarios. The chapter continues with the stereoscopic and multiple-
view camera calibration and finishes of with bundle adjustment. That is the refinement of
estimated 3D model and camera calibrations.

3.1 Three-dimensional Structure Estimation Pipeline

The pipeline of the 3D reconstruction application (depicted in figure 3.1) consists of 7
distinct steps:

1. Dataset aquisition. First step in the 3D reconstruction pipeline is the selection of
input data. Specific requirements on the data varies throughout di↵erent software,
however, we can generalize some properties of such set of images. The set has to
contain images that are overlapping one another, depict mostly static scene, are not
too general (for example an image sequence along one face of a building with multiple
similarly looking windows) and contain little to none reflection. Only such images
are used in the reconstruction as they provide points seen by multiple cameras and
therefore the 3D position can be calculated.

2. Feature detection and extraction. Keypoints are parts of the image that are
significant in some way. The significance is usually caused by a sudden change in
gradient on relatively small part of the image. These points will be used to estimate
the 3D representation. The detected keypoints are rarely used as provided by the
detector as they do not provide enough information about the point itself. A set of
calculations is applied in order to extract data from the surroundings of such point
and enrich information about the keypoint. At this point the input image does not
have to be kept in memory any more.

3. Feature matching. Now that we have keypoints represented as features we want to
establish a visual correspondence between a set of keypoints from two closely related
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1. Input dataset 2. Feature detection 
and extraction

3. Feature matching

5. Camera pose 
estimation 

6. Structure 
computation

7. Structure 
refinement

4. Feature
 and camera 

track building

8. Visualization

Figure 3.1: The three-dimensional structure from two-dimensional images estimation
pipeline to be implemented in the final application.

images. This is done by so called feature matching and was discussed in detail in
section 2.4.

4. Features and camera track building. The problem of features tracking is to
follow the position of a characteristic point in a set of images. These multi-view
correspondences are called tracks. Track identification in a set of images (ordered, or
not) is an important task in not only our application but in many other computer
vision problems. Another part of this problem is building camera tracks - estimating
sequences or bunches of cameras which together form a model and selecting initial
camera pair.

5. Camera pose estimation. Once correspondence between some two images are
known, the camera pose can be estimate. This can be divided into two cases: 1) this
is first camera pair in the scene (initialization) 2) there are already some cameras and
structure points in scene, and the new camera pose can be estimated from 2D - 3D
correspondences.

6. Structure computation. Next step is to calculate 3D structure from camera poses
obtained earlier. This is also incremental process which consist of initialization for
the first camera pair and addition of new structure points to an existing structure for
each newly added camera.

7. Structure refinement. The structure and camera poses in the scene are subject to
errors caused by reprojection ambiguity, distortion etc. Therefore the structure needs
to be refined to minimize the impact of such errors.

8. Visualization and further processing. Lastly the resulting 3D structure in form of
point cloud is visualized. In this thesis we will not be interested in the visualization of
the resulting model, however we see this as an important part of the bundle adjustment
pipeline. As of now there are no plans to implement visualization of a final sparse
reconstruction, but the output of our application is a 3D point cloud with camera
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poses in a PLY format that can be displayed in many 3D editing applications (eg.
Blender introduced earlier). There are also means to further process the output in
order to create a polygonal model (either manually using programs like MeshLab,
Blender, SketchUp or automatically using programs and libraries; eg. Point Cloud
Library [28] or PMVS and CMVS mentioned earlier).

3.2 Camera Model

Before we explain the reconstruction process, it is important to explain how is the cam-
era modelled. For purpose of this thesis we will be using the pin-hole camera model (or
sometimes projective camera model) which is a widely used in many computer vision ap-
plications. It is simple and accurate enough for most applications. The name comes from
the type of camera, like a camera obscura, that collects light through a small hole to the
inside of a dark box or room. In the pin-hole camera model, light passes through a single
point, the camera center C before it is projected onto an image plane. Figure 3.2 shows an
illustration where the image plane is drawn in front of the camera center. The image plane
in an actual camera would be upside down behind the camera center, but the model is the
same.

y
x

image plane

focal plane

camera coordinates world coordinates

M

m

extrinsic parameters

intinsic parameters

f

y
x

Y

XZY
X

Z

C

p

Figure 3.2: The pin-hole camera model showing projection of 3D point M on the image
plane as a 2D point m. An oriented central projective camera.

The projection properties of a pin-hole camera can be derived from this illustration and
the assumption that the image axis is aligned with the X and Y axis of a 3D coordinate
system. The optical axis of the camera then coincides with the z axis and the projection
follows from similar triangles. By adding rotation and translation to put a 3D point in this
coordinate system before projecting, the complete projection transform follows.
With a pin-hole camera, a 3D pointM is projected to an image pointm (both expressed

in homogeneous coordinates) as:
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where � is the distance of M from the focal plane of the camera. The projection matrix P
is a 3⇥ 4 matrix defined as:

P3⇥4 = K3⇥3A3⇥4, (3.2)

where K is intrinsic camera matrix which describes some of the properties of the physical
camera and represents 2D transformation on the image plane. The camera matrix have 5
degrees of freedom (DOF). We write:

K3⇥3 =

2

4
f/s

x

f/s
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where f is the camera focal distance in millimeters, c
x

, c

y

are coordinates of camera’s
principal point (image centre) in pixels, s

x

resp s
y

is width resp height of the pixel footprint
on the camera photosensor in millimeters and � is the angle between the axis (usually ⇡/2).
The ratio s

y

/s

x

is called aspect ratio and is usually close to 1.
Matrix A then refers to the extrinsic camera parameters and describes the camera

position(3 DOF) and rotation (3 DOF) on the 3D coordinate system (see figure 3.2).

A3⇥4 = [R3⇥3|t1⇥3] =
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r2,1 r2,2 r2,3 t

y

r3,1 r3,2 r3,3 t

z

3

5 (3.4)

This matrix describes how to transform points in world coordinates to camera coordinates.
The vector t can be interpreted as the position of the world origin in camera coordinates,
and the columns of R represent the directions of the world-axes in camera coordinates. The
important thing to remember about the extrinsic matrix is that it describes how the world
is transformed relative to the camera [33].

a) Original image b) Negative radialdistortion c) Positive radial distortion

Figure 3.3: Illustration of radial distortion e↵ect.

The previously described model is an ideal camera without any lens distortion. However,
real cameras su↵er from distortion. The most common distortion is a radial distortion

20



(depicted in figure 3.3) that can be characterized by following equation (distortion around
(0, 0)): 
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where k1, k2 are distortion parameters. In our program will only model radial distortion.

3.3 Epipolar Geometry

Lets have a scene where either: 1) scene is static and camera moves, or 2) there are
multiple pictures of same scene taken at the exactly same time from di↵erent viewpoints,
which is ultimately the same as case 1. Given two distinct images of the scene taken from
di↵erent positions we can re-project a point (for example a detected feature) from one
camera into the 3D space. Because the point has one degree of freedom, it can be observed
somewhere on a line in the second camera. And similarly a point in second camera is
projected somewhere on a line in the first camera. These lines are called the epipolar
lines. A line connecting centres of both cameras is called baseline and the intersection
with the image plane the epipole. All epipolar lines in each image intersect in the epipole.
The corresponding epipolar lines from camera 1 and camera 2 (conjugate epipolar lines)
constrain the search of correspondences [16].

Y
X

Z
1C

Y

X
Z

2C

m

M1

M2

M3

m1

m2

m3

epipolar line

baseline

Figure 3.4: An illustration of epipolar line in camera 2 for point m in camera 1.

The epipolar lines can be obtain from a fundamental matrix. The fundamental matrix
F is a 3⇥ 3 matrix defined as:
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x1 y1 1
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5 = 0 (3.6)

for any (x1, y1) $ (x2, y2) correspondence, (x1, y1) in image 1 and (x2, y2) in image 2. If
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Figure 3.5: An illustration of constraint given by epipolar lines to the search of corre-
spondence problem (the red and blue lines in each image are in pairs conjugate epipolar
lines).

we fix the (x2, y2) we get an epipolar line for the first image by:
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which gives us the epipolar line equation

ax1 + by1 + c = 0. (3.8)

Even though the fundamental matrix is a 3⇥ 3 matrix, it only has 7 degrees of freedom
(one constraint is scale second is the existence of epipole, the derivation can be found
in [16]). Now that we know the characteristics of the fundamental matrix we can estimate
it using several algorithms, following is the eight-point algorithm [25, 6, 16] (requires at
least 8 correspondences):

1. Obtain feature correspondences

2. Normalize correspondence to have standard deviation=1 and mean=0

3. Given n correspondences, n � 8, create an equation for each correspondence i, 1 
i  n:
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and create the system:
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4. Compute singular value decomposition of A

A = UDV

T (3.11)

5. Let F be the last column of V and reshape F to be F 0
3⇥3.

6. Compute SVD of F 0 = U

0
D

0
V

0T , zero out the lowest singular value of D0 then recom-
pute F = U

0
D

0
V

0T

7. Re-normalize F

There are several other methods which require less points or have other benefits. Interested
reader may find the whole list in [16].

3.4 Stereo and Multi-view Stereo Camera Calibration

The epipolar geometry can be described analytically in several ways, depending on the
amount of the knowledge about the system. We can identify three general cases:

1. Neither intrinsic nor extrinsic camera parameters are known, the epipolar geometry
is described by fundamental matrix. This is called projective reconstruction and the
only information available are pixel correspondences. The reconstruction problem can
be solved but only up to an unknown, global projective transformation of the world.
By providing other restrictions on the model we can reduce the ambiguity.

2. Only intrinsic camera parameters are known, the epipolar geometry is described by the
essential matrix. The reconstruction is ambiguous up to scale and a rigid transforma-
tion corresponding to the freedom in fixing the world reference frame - reconstruction
up to a similarity called euclidean or metric.

3. Both intrinsic and extrinsic camera parameters are known, the epipolar geometry is
described by the projection matrices. The reconstruction is unambiguous. This case
will not be further discussed as this is not the goal of this thesis.

y
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xz
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M1

m2
1

Fundamental matrix
F

Figure 3.6: Illustration of stereo system camera for camera calibration.

The goal of the pose estimation is to, given two cameras, estimate their calibration
matrices P1 and P2. Let there be a system with two cameras pointing at the same object
with enough 3D points visible in both cameras 3.6.
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1. Projective Reconstruction

We start with the most general case, the projective reconstruction. First we need to calcu-
late the fundamental matrix F between these two cameras which gives us the transformation
between points in both images, described by equation 3.6. Let

P1 = K1[I|0] =
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be the first camera matrix. Then we search for the

P2 = K2[R|t]. (3.13)

Now we can easily calculate the epipoles e1, e2 as:
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If the intrinsic camera parameters are unknown, the projection matrix P2 can be estimated
using epipolar lines:

P2 =
h⇥
e2
⇤
⇥ F + e2v

T |�e2
i

(3.15)

where v is a 3⇥ 1 vector and � any non-zero scalar value.

2. Euclidean reconstruction

However, if the intrinsic camera matrices K1,K2 are known, we can transform the corre-
sponding points.
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(3.16)

Then the camera matrices can be written in form:
P1 = [I|0]
P2 = [R|t]

(3.17)

The fundamental matrix can now be either recalculated from transformed correspondences
given by equation 3.16 or modified using the calibration matrices into special form called
the essential matrix E.

E = K

�T

1 FK

�1
2 (3.18)

The rotation matrix R and translation vector t is then obtained by a singular value decom-
position of F = UDV

T which gives us four options:

P2 = {[UWV

T | ± u3], [UW
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0 0 1

3
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where u3 is the last column of U . By triangulation (described in next section) we can
resolve which of these four options is the correct one (selected 3D point is in front of the
camera as shown in figure 3.7 a)) [25, 6, 16].
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Figure 3.7: Four possible options of camera calibration when the intrinsic camera parame-
ters are known.

3.5 Three-dimensional Reconstruction Approaches

Based on the image source we can distinguish between three types of vision: stereoscopic,
monocular and uncalibrated. The type of the vision defines the di�culty of the 3D recon-
struction problem [16].
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a) Parallel aligned cameras b) Aligned cameras with rotation around Y axis

Figure 3.8: An illustration of obtaining the 3D position from stereo image.

Stereoscopic Vision

The stereoscopic vision is similar to human binocular vision. Two cameras, displaced
horizontally from one another are used to obtain view of the scene, simulating human
vision. By comparing both images, the relative depth information can be obtained, which
is proportional to the di↵erences in distance to the objects. If the images are undistorted,
and camera parameters known, we can easily calculate the 3D relative position of the points.
Figure 3.8 shows how the point 3D position can be calculated using following equations:
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Z =
fb

x1 � x2 + f ⇤ tan(✓)
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+ tan(�)Z,

(3.20)

where ✓ is a rotation around Y axis and � is a rotation around X axis. The rotation
( ) around Z axis is usually dealt with by rotating the image before triangulation. If the
cameras are not aligned and the optical axes are not parallel, the 3D coordinates can still be
calculated. We present one of the simplest methods called linear transformation, but many
other can be find in literature [15, 16]. The overall algorithm for linear transformation
requires camera poses and is following:

1. Create matrix A:

A =

2
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where the matrix P is represented by the block form: P = [P (1 : 3)|P (4)] (the bracket
denotes a range of columns).

2. Compute the singular value decomposition of X = AV .

3. The 3D point M in homogeneous coordinates is then M = X3.
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Figure 3.9: An illustration of the process of camera pose estimation using P3P algorithm.2

Monocular Vision

The monocular vision consists of one camera moving in space. Because we have only one
camera, the 3D structure can not be easily calculated as in the aligned stereoscopic vision.

2Original image from the Monocular camera 3D reconstruction presentation by Ing. Marek ©olony.
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Instead the camera poses has to be estimated first (this process is often referred to as a
camera calibration). First step is detection of the features in each image and finding feature
correspondences. Next, the camera poses are estimated. This consists of two parts: 1) first
camera pair pose estimation and 2) additional camera poses estimation. The first camera
pair pose estimation was described in the previous section. The next step is triangulation
of the feature correspondences from the pair to get the initial 3D structure. Any additional
cameras’ poses can now be estimated from the 3D structure and the corresponding 2D
points. This is known as Perspective-n-Point (PnP) camera pose determination problem
and there exist number of di↵erent algorithms how to solve it [5]. In our program we will be
using variation of the P3P algorithm which requires at least three 3D$ 2D correspondences.
The core of the problem is forming a set of equations:

d
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= S

2
i

+ S

2
j

� 2S
i
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j
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i,j

, for i, j 2 {(1, 2), (1, 3), (2, 3)}, (3.22)

where the S
i

= ||M
i

� C|| is the unknown depth of point i from the camera center in the
camera frame, d

i,j

= ||M
i

�M

j

|| is the known inter-point distance and the �
i,j

is the angle
between each pair of rays and can be calculated from intrinsic camera matrix K.
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Figure 3.10: Canonical depiction of the P3P problem.

Uncalibrated Vision

Until this point the intrinsic camera parameters were shared among all cameras and often
known. However, this is not the case when dealing with images downloaded from the
internet. Therefore we need to estimate the intrinsic camera parameters first. This process
is called autocalibration and there are two classes of methods: 1) direct which solve the
intrinsic parameters directly and 2) stratified in which the projective reconstruction is
obtained first and then transformed into euclidean reconstruction. Several autocalibration
methods can be found in [16]. Once the calibration matrices are known, we can continue
with the steps described in the monocular vision.

3.6 Bundle Adjustment

The bundle adjustment is an optimization problem which tries to simultaneously refine 3D
coordinates describing the scene geometry as well as the parameters of the camera. It is
expressed as a sum of squares of a number of non-linear real-valued functions. Thus, the
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minimization is achieved using non-linear least squares algorithm. To begin, assume that
n 3D points are seen in k views and let m

i,j

be the projection of the i-th point on image j.
Each camera j is parametrized by a vector a

j

(containing the extrinsic and often intrinsic
camera parameters) and each 3D point i by a vector b

j

. For simplicity we assume that all
points are visible in all images. The bundle adjustment minimizes the reprojection error
with respect to all 3D point and camera parameters:

min
ajbi

nX

i=1

kX

j=1

d(Q(a
j

, b

i

),m
i,j

)2, (3.23)

where Q(a
j

, b

i

) is the predicted projection of point i on image j and d(x, y) denotes the Eu-
clidean distance between the inhomogenous image points represented by x and y. Note that
if o is the dimension of each a

j

and p the dimension of b
i

the total number of minimization
parameters is ko+ np.
The bundle adjustment can be cast as a non-linear minimization problem as follows. A

parameter vector
P = (aT1 , ..., a
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is defined by all parameters describing the k projection matrices and the n 3D points. A
measurement vector
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is made up of the measured image point coordinates across all cameras. Let P0 be an initial
parameter estimate and ⌃

X

the covarience matrix corresponding to the measured vector X
(if not enough information about the system is known, it is an identity matrix). For each
parameter vector, an estimated measurement vector

X̂ = (m̂T

1,1, ..., m̂
T

1,k, m̂
T

2,1, ..., m̂
T

2,k, m̂
T

n,1, ..., m̂
T
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)T (3.26)

with m̂

i,j

= Q(a
j

, b

i

). Therefore the bundle adjustment is a minimization of the squared
Mahalanobis distance (X� X̂))T⌃�1

X

(X� X̂)) over P [20]. The complexity of this problem
can by improved greatly by exploiting the sparsity of the problem; however, this is beyond
the scope of this thesis and interested reader is referred to [18].
In case with known intrinsic camera parameters, the system we want to solve has for

each camera 6 degrees of freedom (3 for rotation and 3 for translation). If the intrinsic
parameters are unknown the problem has at least 9 DOF (3 rotation, 3 translation and
assuming the pixels are square 3 for intrinsic, up to 6).
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Chapter 4

Implementation

This chapter describes the implementation of the 3D reconstruction pipeline outlined in pre-
vious chapter. More than on the implementation details, we will focus on the overall design
and customization capabilities. The chapter starts with our approach on automated gener-
ation of datasets from internet sources. We also provide a means to create datasets from
pictures taken by the user and we use the OpenCV calibration library to get the intrinsic
camera calibration. Because this application will be included in the SLAM frontend and at
some point released for the general public, the section 4.2 presents the key data structures,
algorithms and overall pipeline. The thesis finishes with the outline on further processing
of the resulting point cloud and camera poses.

4.1 Dataset Generation and Camera Calibration

Creating a dataset is a crucial part of the process of estimating three-dimensional struc-
tures from two-dimensional image sequences. The dataset has to contain enough images
with a feature pairs to be viable for reconstruction. We also want to filter out images taken
during the night or throughout various seasons as the depicted object and its surround-
ings may change significantly. Another problems are too generic photos and photos with
reflection, which may degenerate the reconstruction (an example of this phenomenon is in
figure 4.1). The last problem, unique to the datasets from unknown sources, is an existence
of a watermark, text or other 2D manipulation of these pictures.
With this in mind we have decided to download images from Flickr webpage. Flickr1

is well known and widely used web service for sharing pictures. The advantage of this
service, in comparison to other picture sharing websites, is the ability to tag the photo.
Each image can contain a number of tags describing it. Most of the pictures uploaded
contain information about the place where the photo was taken and can be aggregated by
that tag. A tool we designed, Flickr downloader2, allows downloading images with specified
tag from Flickr in batches. It is an easy to use Python script expecting two parameters;
number of photos to be downloaded and a tag to be browsed. The script connects to the
Flickr webpage, downloads the search results page, cyclically opens each photo page and
downloads the image. The downloaded images are stored to the downloaded output folder.
While the Flickr yields good results for well known places in countries like USA or

western Europe, there is not enough images in the Czech Republic yet. This is the reason
1Flickr, a Yahoo company | Flickr - Photo Sharing! https://www.flickr.com
2Flickr downloader https://github.com/xsimet00/Flickr-downloader
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why we have, for now, decided to use di↵erent services, like Google Image3 search, as well. A
second script that works similarly to the Flicker downloader was designed which downloads
images from the Google Image search. It is worth noting that such datasets may contain
photos subject to copyright. The datasets acquired were manually filtered to eliminate
irrelevant images, limit the selection to daytime photos taken in summer.

Figure 4.1: An example of a degenerated reconstruction as a result of too generic photos
of the building. Even though there was 7 (out of 40) photos of the whole building (as
illustrated on the left), from any other position the photos could contain at most distance
between 2 windows. The resulting reconstruction (on the right) is therefore degenerated
and contains only one column of windows instead of four (reconstructed using the Autodesk
123D Catch iOS client).

However, sometimes a user may find it useful to use a dataset containing pictures he/she
has taken. It is likely, that such collection of photos was taken by a single camera and this
camera can be further used. Even though the ultimate goal of our program is to process
photos from di↵erent cameras and estimate their calibration, the reconstruction process
is much faster and more precise if the intrinsic camera parameters are known. For this
purpose we have used the OpenCV calibration sample, that given at least three images of
calibration pattern, calculates the intrinsic camera parameters as well as radial distortion
coe�cients of the image. The datasets used will be detailed in section 5.2.

4.2 Core of the Application

The implemented application is part of the SLAM frontend framework and uses many of
the classes and functions provided along with the SLAM++ optimizer. The application
implements the pipeline introduced earlier starting from step 2, feature detection, and
ending with the step 7, optimization of the estimated 3D structure and camera poses. The
core of the application is a data structure ModelSystem which encapsulates the information
about cameras, feature correspondences, 3D structure and operations on top of them.

3Google Image search engine https://images.google.com
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a. Cameras. Each camera is described by its intrinsic camera parameters (matrix K),
extrinsic camera parameters (matrix [R|t]), normalized, distorted coordinates of the
keypoints in the image (list of (x, y) pixel coordinates with (0, 0) at the principal
point), radial distortion coe�cients and filename of the image. Because the whole
system is iterative, new cameras are added to the system gradually and stored in a
linear container. The camera structure also provides number of additional information
that are used once the system is passed into the optimizer (like IDs of the vertices).

b. Feature correspondences. In order to build camera tracks and select initial pair of
cameras, we need to store and process how many feature correspondences (from now
on referred as matches) there are between every image pair. Once such information is
known a list of camera pairs, starting with the initial pair, can be created. Each new
pair adds to the scene either one new camera or just new observations of the structure
points as a result of newly known relation between two cameras already present in
the system. The selection of the initial pair and creation of such list will be described
later. For now it is worth noting that the matrix of such camera pairs is symmetric
and sparse as many cameras probably do not share any matches. An illustration of
such matrix for real dataset is in figure 4.2.

c. Structure points. The last important data structure is a collection of the structure
points. The problem we are facing here, is the tracking of the 3D point observed
by several cameras as some 2D keypoint. Therefore, the structure point is in our
system described by its 3D coordinate, list of observations representing the feature
track (pairs camera ID, keypoint ID), vertex ID in the optimizer and several flags
indicating whether the 3D point is valid and if it needs to be optimized.

High number of matches 
(more than 30% of keypoints)

Fair amount of matches
 (more than 10% of keypoints)

Low amount of matches 
(close to 0% of keypoints)

Figure 4.2: The matrix of matches showing number of feature correspondences between each
two images for the Guilford Cathedral dataset (described in section 5.2). Each column and
row in the matrix represents some image, and the darker the color of the cell is, the more
feature correspondences there is for given image pair. It is a square shaped, sparse and
diagonally symmetric matrix.
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Now that the reader is familiar with the key data structures, we can continue explaining
the rest of the pipeline from section 3.1. The core of the pipeline is in the method run()
in the UncalibratedProcessingLoop class.

2. Keypoints Detection and Feature Extraction. So at this point we have an
input dataset of photos (and possibly intrinsic camera parameters). The next step
in the pipeline is keypoint detection and extraction of the feature descriptors. The
UncalibratedProcessingLoop class is e↵ectively a template taking the type of the
feature detector as a template parameter. This allows us, with little to none over-
head, change the type of detector and extractor. Because not all of the detec-
tors described earlier are build in the SLAM frontend, an interface between the
SLAM frontend and the OpenCV was created. The interface is again a C++ template.
The distinct extractors are defined using the typedef keyword and naming con-
vention follows this scheme: FeatureExtractor OpenCV [detector] [extractor]
(eg. FeatureExtractor OpenCV SIFT SIFT). The detected keypoints are stored in
the camera class described earlier, but because the feature descriptors are only needed
for matching, they can be inserted to a temporal list and cleared later.

3. Feature Matching. After extracting features from each image we need to determine
which keypoints from distinct images represent the same structure point. These cor-
respondences will be obtained using the FLANN matcher (but again one can provide
di↵erent matcher as a template parameter). The matches are then filtered to remove
outliers and, if enough matches persist, stored in the matrix of matches. At this
point it is worth discussing the impact of ordered versus unordered datasets. If the
dataset is ordered (there are enough matches between each consequent images), we
may choose not to match every image to each other. Instead, a path of matches is
computed, matching each image to k previous images. The benefit of this solution is
much lower time and space complexity (O(kn) in contrast to O(n2)). However, every
structure point will then only have limited number of observations (at most k + 2)
which decreases the structure refinement constraints.

Algorithm 1 Unordered feature tracking (Union-Find algorithm) described in [24].
Input: List of matches.
Output: Feature tracks as a list of observations - pairs (camera, keypoint index).

1: for each matched feature do
2: Create a list containing observation
3: end for
4: for each feature match (i, j) do
5: join(observation list

i

, observation list
j

)
6: end for
7: return each observation list as a track

4. Feature and Camera Track Building. The building of feature tracks, described
by algorithm 1, is in our case an iterative algorithm run each time some image pair is
matched. The original algorithm is described in [24] and has a quasi-linear complexity.
Each keypoint contains index of the feature track (structure point index), therefore
finding the correct camera track is easy and has a constant complexity. Because the
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feature tracks are build purely from feature correspondences before the structure is
estimated, it is quite likely that some correspondences are incorrect. The incorrect
matches may cause merging of two distinct structure points. This is even worse
taken into account that the structure was not yet estimated and now the estimation
will be o↵. Moreover, this results in two distinct feature in some of these images
having a same structure point. One possible solution is to build tracks when the
structure is estimated and this approach is implemented when the dataset is ordered.
Unfortunately, we can’t do the same for unordered datasets because the optimizer
prevents us from merging two structure points unless we would build new system
after processing each camera pair.

The second problem we have in unordered datasets is selecting the first image pair
and building camera track of correspondences. The matches matrix, apart from stor-
ing matches between two images, also calculates statistics for each image like; total
number of matches, count of images with non-zero matches with this image etc. Using
these statistics, it is just a matter of selecting correct metric in order to get the most
suitable initial image pair and assemble camera tracks. Some of these metrics are
evaluated in chapter 5. The most promising is selecting the first camera as the one
with highest product of matches between every other image. The second camera is
then simply the one with highest matches count to the first one. The algorithm 2 de-
scribes the procedure of building camera track from the initial pair. Because we had
to have information about correspondences between all cameras to build the camera
tracks and select initial pair, until this point the pipeline was not iterative (clearly this
restriction only applies for unordered image sets). The following steps are iterative
for each newly added camera or information about correspondences.

5. Camera Pose Estimation. The camera pose estimation can be divided into two
cases: a) the case with known intrinsic parameters and b) the case where the intrinsic
camera parameters are unknown. Both of these cases consist of the initialization
phase for the first image pair and iterative addition of a new camera as described in
previous chapter. The calibrated case pose estimation is straightforward: 1) Initialize
first par from the essential matrix and 2) estimate poses of other cameras from 2D
$ 3D correspondences. It is just a matter of calling adequate functions we have
implemented and storing the estimated extrinsic parameters of the cameras. Similarly
for the uncalibrated case. After first iteration we can clear all of the feature descriptors
(the memory impact can be seen in figure 5.10).

6. Structure Computation. Now that the camera poses are known, the 3D structure
can be estimated. If the feature tracks were already build, the 3D position of each
feature track is initialized by triangulation. However, if the feature tracks are unknown
they need to be build now. When introducing newly triangulated structure point to
the system, the ID of the structure point is added to the corresponding keypoint in
both images. Therefore, when one of these keypoints is matched again with a keypoint
from another camera, instead of creating new structure point, new observation is
added to the already existing structure point (these observations represents the feature
track). The advantage of the latter approach is further elimination of incorrect feature
correspondences, because the reprojection error can be calculated.

7. Structure Refinement. At this point we have a system containing cameras with
estimated calibration and some 3D structure points visible from these cameras. Now
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Algorithm 2 Creating camera track (Tree generation and variation of Breadth-first traver-
sal, see figure 4.3)
Input: Matrix of numbers of matches n⇥ n, where n is the number of images and initial
camera pair (i1, i2), 1  i1  n, 1  i2  n, i1 6= i2.

Output: Linear list of pairs (i1, i2), where image i1 represents a camera already in the
system (except for the initial pair) and image i2 is a newly added camera or a camera
existing in the system but matches between i1 and i2 were not yet registered in the
system.

1: Select initial pair of images
2: Add initial camera pair (i1, i2) to result
3: Add camera i1, i2 to list todo
4: for each camera i from todo do
5: for each image pair (i, j), 1  j  n, i 6= j do
6: if |(i, j)| 6= 0 then
7: Add pair (i, j) to tmp result
8: Add camera j to list todo
9: end if
10: end for
11: Sort tmp result descending by the number of matches.
12: Add all new pairs from tmp result to result
13: Clear tmp result
14: end for

we try to optimize the system to minimize the metric from equation 3.23. This is
achieved using the SLAM++ bundle adjustment optimizer (again, any other opti-
mizer with same interface can be supplied through the template arguments). The
ModelSystem class, which contains the whole system, provides a set of methods for
building the graph for the optimizer. These functions consist of two parameters; ref-
erence to the optimizer object and index of the camera data to be added. These meth-
ods are; addCamVertex(), addIntrinsicsVertex(), and addStructureVertices().
The latter adds all new structure points’ 3D coordinates and for each observation it
adds the edge telling which camera with which intrinsic sees these points. The last
method, getOptimizedData(), extracts the optimized data from the optimizer and
updates the structure and camera poses. This step ends with filtering the 3D points
too far away from the point cloud centre.

It is worth noting that many implementation details and problems were omitted (eg. dealing
with distortion, keypoint normalization, mapping between optimizer and system data etc.)
and the interested reader is invited to consult the source codes and generated program
documentation. Also the overall system was designed with the future removal of OpenCV
from the SLAM frontend framework in mind. All interfaces are free of any OpenCV code
and every function containing OpenCV code is marked with note.
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Figure 4.3: Illustration of the algorithm 2. The vertices (A,B,C,D) are images and the
edges represent matches (the number of matches between two images is written on the
edge). The input of the algorithm is matrix of matches, depicted as a graph in a). The
algorithm creates a tree b), where the root is the first image of the initial pair and the
leftmost child node the other initial image. The traversal order is the breadth-first. The
children of each parent are sorted depending on the number of matches between parent and
child node from left to right in descending order. For shown tree the resulting linear list of
pairs would be: {(A,B), (A,C), (B,C), (B,D)}.

4.3 Visualization and Further Processing

The goal of our program was to estimate the camera poses and sparse reconstruction. As
of now, this is exactly the output of the program. The structure with cameras is stored in
the PLY format and can be viewed by several 3D editing programs. The estimated camera
calibration is saved in a single text file shared for every camera. Nevertheless, we acknowl-
edge the sparse reconstruction as a intermediate goal. We are currently researching best
ways to further process the output, ultimately leading to a textured polygonal model. Such
processing would include dense reconstruction, filtration of the dense point cloud, surface
reconstruction with some probabilistic method and texture mapping. One of the options
is to use the CMVS and PMVS tools, described earlier, to create the dense reconstruction.
The surface reconstruction can be then achieved, manually, with the MeshLab and Blender
programs. The latter process can be found in the appendix D.
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Chapter 5

Experimental Evaluation

This chapter presents the experimental results obtained on an artificial and real scenes by
means of the algorithms described in previous chapters. In the beginning of the chapter we
will present the datasets used for the evaluation and describe their characteristics. These
datasets will be used to determine precision of the program. Also this chapter presents
qualitative results obtained from our program as well as other existing solutions and their
evaluation and comparison to reference values where available. Lastly we will compare
our program to other previously mentioned programs in terms of complexity and resources
consumption.

5.1 Introduction

This chapter presents the experimental results obtained from the implementation of the
system described in previous chapters. After each experiment a brief discussion of a results
is included with the aim of giving the reader further details. First, we introduce the datasets
that are being tested. Then we present evaluation of the feature detection, extraction and
matching methods with the aim of selecting the best combinations for our problem. The
section 5.5 presents results obtained from the program when the intrinsic camera parameters
are known on both ordered and unordered image sets. It also compares each implemented
camera tracking algorithm and elaborates on which one is best in which scenario. In order
to provide as precise results as possible, if not stated otherwise, all programs were compiled
and run separately, without any user intervention on a machine with following specification:

Model: MacBookPro6,1 (2010)
OS: OS X 10.10.4
CPU: Intel Core i5 2.53 GHz
RAM: 8 GB 1067 MHz DDR3
GPU: NVIDIA GeForce GT 330M and Intel HD Graphics
HDD: OCZ-AGILITY4 512 GB
Compiler: Apple LLVM version 6.1.0 (clang-602.0.53)

To evaluate output camera positions as well as structure we are using a cross-platform
open source 3D animation suite Blender. The main reason for this choice was, apart from
native support for PLY file format, easy extensibility with custom python scripts. Because
the output of all SfM and BA programs is at least ambiguous to scale and rotation, the
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Precise Align extension1 is used to match cameras and structure to the 3D model. A detail
on how exactly is the resulting structure matched to the 3D model is specific for each case
and usually depends on landmarks in the scene. The camera position error is calculated as
a root-mean-square error against reference values using formula:

RMSE =

vuuut
nP

k=0
(x

k2 � x

k1)
2 + (y

k2 � y

k1)
2 + (z

k2 � z

k1)
2

n

, (5.1)

where n is a number of cameras and x
k

, y

k

, z

k

are the 3D camera’s coordinates. This value
is normalized as we match positions of the first and last camera with reference cameras and
the middle camera to be as close as possible to the middle reference camera.

5.2 Datasets

In order to test our programme we have collected a number of datasets. These datasets
usually o↵er not only images, but also intrinsic and extrinsic camera parameters and a 3D
model or 3D points and lines. All these datasets along with the results can be found on the
attached dvd. .

000 004 010

Figure 5.1: The Model House dataset showing first, middle and last images of the sequence.

Model House

The University of Oxford provides a number of datasets used in many other papers for
a benchmark2. Some of these datasets contain images, camera parameters, 2D geometry
(interest points, line segments and matches) and 3D geometry (points, line segments and
camera matrices). However, these datasets usually lack the intrinsic camera parameters
apart from the Model House which we will be using. This dataset is a sequence of ten black
and white images rotating 90 degrees around a model of house in a clockwise direction
without any distortion and with the principal point in the centre of the images. The model
also contains the reference positions of the cameras as well as 3D points and 3D lines.
Out of the 3D points and lines we have created a simple 3D model that is used for visual

1Extensions:2.6/Py/Scripts/3D interaction/Precise Align - BlenderWiki, http://wiki.blender.org/
index.php/Extensions:2.6/Py/Scripts/3D_interaction/Precise_Align

2Visual Geometry Group Home Page, http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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comparison of the structure, but as this is not a reference model no qualitative results will
be given.

Temple of the Dioskouroi

The Temple of the Dioskouroi3 in Agrigento (Sicily) is a dataset made by the vision de-
partment of Muddlebury university in cooperation with Microsoft. One can either use the
a 16 view sparse ring around the temple model, 47 view ring or a 312 views hemisphere.
The dataset contains camera calibration parameters, the 3D positions of the cameras and
latitude, longitude angles for each image. The site also o↵ers an evaluation of various multi-
view stereo programs and once our software is able to create polygonal model we should
submit our solution.

Figure 5.2: The Temple of the Dioskouroi dataset showing first five images of the sequence.

3D model Dataset image

Figure 5.3: The City of Sights dataset with a 3D model (left) and a picture from the
CS FARO 12 dataset (right).

The City of Sights: An Augmented Reality Stage Set

The City of Sights [13] is a complex dataset by Graz University of Technology, Four Eyes
Lab, University of California at Santa Barbara and Muncich University of Technology. This

3vision.middlebury.edu/mview/data, http://vision.middlebury.edu/mview/data/
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dataset was specifically designed for a variety of Augmented Reality research. The images
in this datasets were captured by a robotic arm with calibrated camera. The whole scene
can be downloaded as a 3D model along with the ground truth camera tracks (which were
taken from a paper model of the scene). The camera movement between frames is quite
small (around 0.1 mm) therefore we will be using every fifth or tenth frame.

Guilford Cathedral

The Guilford Cathedral [14] dataset is a sequence of 92 images of a front face of cathedral
that are not absolutely ordered. It is ensured that each consecutive pair in sequence has
enough feture correspondences, but the camera trajectory does not always move in one
direction. The intrinsic camera parameters are known with a principal point at the centre
of each image and the images have no distortion. A rough 3D model is known but no
reference camera poses are o↵ered.

3D model Dataset image

Figure 5.4: The Guilford Cathedral dataset with a rough 3D model (left) and a picture
from the dataset (right).

Slezské divadlo, Opava

This dataset is a sequence of images taken by us using an iPhone with estimated camera
calibration using OpenCV sample described in section 4.1. The aim of this dataset is to
demonstrate that our program (and associated utilities) o↵ers complete solution that can
reconstruct 3D model from any camera.

Zámek »ervená Lhota

The Zámek »ervená Lhota is collection of 235 pictures from Flickr, Google Images and other
websites. Therefore the images have various camera calibration and distortion. However,
we have inspected each image manually to ensure that neither is flipped horizontally nor
vertically. This dataset is used to evaluate general bundle adjustment.
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Figure 5.5: The Slezské divadlo in Opava dataset obtained using camera with estimated
calibration.

Figure 5.6: Sample of the Zámek »ervená Lhota dataset which contains images from various
sources.

5.3 Feature Detectors, Extractors and Matchers

One of the key components for the SfM and BA application is selection of the keypoints
in the input images and their matching for the specific application. In the building re-
construction the repeated features are common. Many objects, such as clock towers with
nearly identical sides, or domes with strong radial symmetries, pose challenges for structure
from motion. When similar but distinct features are mistakenly equated, the resulting 3D
reconstructions can have errors ranging from phantom walls and superimposed structures
to a complete failure to reconstruct. This can be partially solved by a good selection of
the feature detecting, extracting and matching algorithms. We have conducted a number
of experiments in order to evaluate the detectors, extractors and matchers available in
OpenCV and SLAM frontend. The main goal is to select the best combination that detects
the most relevant keypoints in pictures of buildings in a reasonable time. Figure 5.7 shows
three detectors (SIFT, SURF and FAST) that are suitable for our task as they find enough
relevant features in an image.
Then we have manually selected 100 image pairs from the »ervená Lhota dataset and

tried every feature detection, extraction and matching combination available. The results
are shown in figure 5.8. To select only potentially good matches (G), following metric was
applied:
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Figure 5.7: Results of the feature detection evaluation on as set of 250 various images
from the »ervená Lhota dataset. Graph a) shows average time necessary for processing an
image using selected detector. In graph b) you can find how many features on average were
detected in a single image.
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0.02  |G|  2 ⇤ |M |, (5.2)

where |M | is a minimal distance found between a match pair for selected images. From
the results, we can conclude that best result, in terms of performance to e↵ectiveness ratio,
is achieved using FAST detector, SIFT extractor and FLANN matcher. Figure 5.9 shows
matches for one image pair using some of the well known feature detector, extractor and
matcher combinations. The picture a) shows that the ORB detector is fast, but for our
application does not yeld good results. The SIFT detector and extractor performs well
and can be used in the SfM and BA applications. In fact it is being used by nearly ever
other program (VisualSfM, Bundler, OpenMVG). The best obtained result is depicted in
c) where FAST detector and SIFT extractor were used.

a) ORB detector, SIFT extractor, FLANN matcher b) SIFT detector, SIFT extractor, FLANN matcher

c) FAST detector, SIFT extractor, FLANN matcher

Figure 5.9: Examples of various feature detector, extractor and matchers combinations on
an image pair. There are 307 good matches in picture a) and the whole process took 0,487
seconds. The picture b) took 12.7 seconds to process and has 274 good matches. The last
picture c) contains 1804 good matches and was processed in 23.853 seconds.
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5.4 Calibrated Ordered Case

Once we have estimated which feature detectors, extractors and matchers are suitable for
our application, we can continue evaluating the performance of the pose estimation and
structure estimation. There are two cases to evaluate: when camera calibration is known
and when it is not available and needs to be estimated. Another distinction is whether the
input sequence image is ordered or not. Let us start with the easier case; known camera
calibration and ordered sequential image input.
Because the input is ordered, there is no need to calculate matches between every image

pair, but we can build a single camera track containing all the pictures in a sequence. The
suitable datasets for this case are the Model House and Temple of Dioskouroi. The first
thing to evaluate is the memory and time complexity. The program was compiled and run
10 times for each case using three di↵erent detectors; FAST, SIFT and SURF with both
cached and uncached option. Each scenario was also run with and without the optimizer.
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140 MB

Time [s]
0 3 6 9 12 15 18 21 24 27 30 33

Feature 
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Keypoints 
matching

Other cameras reconstruction  
and optimization 

 First pair 
reconstruction

Figure 5.10: An example of the program run showing RSS memory on the Model House
dataset using uncached SIFT extractor and detector.

First, we present the evaluation in terms of memory and time required for run. While
we acknowledge it is not precise measurement because the measured memory is aligned in
blocks, we used the Unix ps tool to sample our programme’s Resident Set Size (RSS) mem-
ory and virtual size (VSZ). This allows us to visualize the memory change in time to further
understand the memory management. The figure 5.10 shows how does the RSS memory
change throughout the run. For reader’s easier orientation we have marked distinct phases
of the program. One can observe how demanding, in terms of memory, is feature detec-
tion and extraction. After the keypoints are matched, the program can not immediately
free all features as it needs them to calculate fundamental matrix between the first image
pair. Once done, the features can be unallocated and camera pose estimation and structure
reconstruction process starts with next pair that only needs 3D - 2D correspondences.
The table 5.1 shows what is the RSS memory and computation time of various com-

binations of the program. What is rather strange is, that if cached SIFT detector and
extractor are used the detection and extraction time lowers significantly, but the recon-
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struction time increases substantially. Also note that the total time when the structure
is refined by the SLAM++ optimizer is significantly smaller than when it is not, yet the
result is much better (as described later in this section). Unfortunately there is no base
of comparing our application with other solutions as the VisualSFM uses GPU algorithms
and the OpenMVG fails with uncaught exception when attempting to get intrinsic camera
parameters.

Detector Dataset Features Matches Matches after RANSAC

FAST
Model House 4727 1867 977 (52.33%)
Temple 1933 572 277 (48.43%)
Cathedral 90026 28272 15611 (55.21%)

SIFT
Model House 1169 555 341 (61.44%)
Temple 868 330 159 (48.18%)
Cathedral 20469 6059 2994 (49,41%)

SURF
Model House 2030 848 408 (48.11%)
Temple 1032 335 88 (26.27%)
Cathedral 31755 9703 3941 (40.62%)

Table 5.2: Average number of features, matches and matches after applying epipolar con-
strains for Model House, Temple of Dioskouroi and Guilford Cathedral (only first 15 im-
ages). The values in brackets represent ratio between number of matches before and after
epipolar constraints.

To give a full insight on the problem, table 5.2 shows how the features, matches before
and after RANSAC count changes in respect to di↵erent feature detectors. These data
directly a↵ect number of structure points and precision of the reconstruction and pose
estimation. Up until this point there was no reason for any comparison between our solution
and other programs. However, we can quite easily evaluate the RMSE of the pose estimation
using the Blender and equation 5.1. The results can be found in the table 5.3. The di↵erence
between run with and without optimizer is apparent not only from the time complexity but
also when it comes to precision. While the valid structure size does not change much, both
the reprojection error and camera pose RMSE is improved by factor of ten if the system
is optimized after each camera addition. When compared to the Visual SFM, our program
creates at about the same structure size but the RMSE is double. It is worth noting that
the Visual SFM does not reconstruct sequentially but instead matches each pair of images
and calculates the structure from the whole system, while our solution in sequential mode
only pairs each image with two other.
The figure 5.11 shows visual representation of the camera poses in Blender where we

have calculated how far o↵ are they compared to the reference values. The camera poses
are noticeably imprecise only when our program is run without any structure refinement
provided by SLAM++. Please note that this measurement is not precise as the scale is
ambiguous between di↵erent programmes (and possibly even within the same programme).
Therefore, the first and last cameras’ positions were matched to ensure similar scale and
only the gaps between cameras di↵er. The figure 5.12 shows how do the optimized and
unoptimized cameras and structure di↵er. It is not quite visible in a 2D picture, but the
unoptimized structure is rotated about 15 degrees as well as shifted one tenth of the house
length. The optimized structure is however quite on spot with the reference values.
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Our app unoptimized Our app optimized Reference values Visual SFM calibrated Visual SFM uncalibrated

Figure 5.11: Visualisation of the camera pose estimation measurement. The purple triangle
is part of the Model House 3D model. All programs used SIFT detector and extractor with
FLANN matcher.

Unoptimized Optimized

Figure 5.12: Visualisation of the camera poses and structure from optimized and unopti-
mized run on the Model House dataset. The black dots are the reference structure. All
programs used SIFT detector and extractor with FLANN matcher.

48



SIFT
SURF
FAST

New structure points

N
um

be
r o

f n
ew

 s
tru

ct
ur

e 
po

in
ts

0

275

550

825

1100

Number of cameras in the system (iteration)

2 3 4 5 6 7 8 9 10

Figure 5.13: Number of new structure points added in each iteration for the Model House
dataset. The SIFT extractor and FLANN matchers were used.
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Figure 5.14: Total number of structure points after each iteration for the Model House
dataset. The SIFT extractor and FLANN matchers were used.
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Figure 5.15: Mean reprojection error for the model house dataset after each iteration for
the SIFT extractor and FLANN matcher.
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Figure 5.16: Median reprojection error for the model house dataset after each iteration for
the SIFT extractor and FLANN matcher.
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5.5 Calibrated Unordered Case

While most image collections share same (and often known or easy to estimate) camera
calibration, the case where the collection is ordered and can be represented as a single
camera track is rather rare. The aim of this section is to evaluate initial pair selection and
building camera and feature tracks. Our programme collects number of statistic about each
pair of cameras with non-zero number of matches between them. These statistics should
help us to decide how to select the initial pair. The problem is, that if the camera motion
between two frames is not big enough, selecting one of the four options obtained from
the Essential matrix may be di�cult and the possibility of selecting incorrect pair quite
high. This can be partially detected because such frames are likely to share high number
of feature matches. But if a pair with low number of matches is used to initialize the
structure, another problem may appear. The cameras may not see the same set of points,
but because there may be repeating patters on the building or just due to a randomness
of the image collection, it may have enough matches to be considered as an initial pair. In
this case neither the camera poses will be incorrect and it is highly unlikely to reconstruct
meaningful structure. Therefore we have tried several strategies to select the initial pair.
Table 5.4 presents the values. The best strategies are Mult, First and Sum, First.

First camera Second camera Model House Temple Cathedral Average

Mult
First 95% 45% 75% 71.66%
Second 70% 20% 85% 58.33%
Last 65% 5% 80% 50%

Avg
First 80% 10% 80% 56.66%
Second 70% 10% 80% 53.3%
Last 80% 0% 75% 51.66%

Sum
First 95% 30% 85% 70%
Second 80% 0% 90% 56.66%
Last 70% 0% 30% 33.33%

Filled
First 90% 35% 80% 68.33%
Second 90% 0% 50% 46.66%
Last 60% 5% 30% 31.66%

Table 5.4: Evaluation of initial camera pair selection. The first column shows how the first
camera was selected. The camera with highest value was always selected: Mult - product
of the number of matches between this camera and any other camera (non-zero matches),
Avg - average number of matches, Sum - sum of all matches, Filled - number of non-zero
matches. The second camera selection strategies are following: First - camera with the
highest number of matches with the first camera, Second - camera with the second highest
number of matches, Last - camera with the lowest amount of matches with the first camera.
The program was run 20 times for each strategy combination on a randomly ordered dataset
with the FAST detector, SIFT extractor and FLANN matcher without optimization. The
values represent the number of times the program produced visibly correct structure.

Second important parameter for the 3D reconstruction is the minimal number of inliers
to the total number of matches ratio. In our program, this ratio determines which camera
pairs should be included in the camera track. Too low value creates a system, where
every camera pair is in the camera track resulting in reconstruction complexity O(n2) and
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high possibility to create incorrect reconstruction. If the value is too high, the dataset
may shatter into several small models out of which only one is selected and reconstructed,
because too many camera pairs were omitted. The impact of the ratio on the system was
studied and can be found in the table 5.5.

Ratio
Model House Temple Cathedral
Cams Track Cams Track Cams Track

60% 1 1 1 1 4 4
55% 5 5 1 1 6 8
50% 6 6 2 2 15 23
45% 6 9 6 7 15 37
40% 6 10 6 7 15 44
35% 7 10 11 12 15 55
30% 7 11 11 15 15 65
25% 10 17 15 19 15 77
20% 10 20 15 25 15 86
15% 10 21 15 35 15 93
10% 10 23 15 65 15 93
5% 10 36 15 105 15 100
2.5% 10 45 15 105 15 105

Table 5.5: The e↵ect of enforcing minimal inlier/total matches ratio has on the number of
cameras and length of the track. The column Cams shows how many cameras the longest
camera track covers and the column Track says how long is the longest track. Please note
that the output may not be a correct model, it is not the purpose of this experiment. Data
from a single run on ordered datasets with the FAST detector, SIFT extractor and FLANN
matcher without optimization.
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Chapter 6

Conclusion and Further Work

This chapter presents the conclusion of the masters thesis work. Further work is also
outlined providing the application will continue as a part of the SLAM frontend framework.

6.1 Conclusion

This thesis has focused on the study of a means to estimate three-dimensional information
from a two-dimensional image sequence. Usually, the first step is to create appropriate
dataset. We summarized requirements on such dataset, identified what qualities the images
should have and what sort of images should be filtered out. We have provided a simple tool
that allows downloading images in batches from the Flickr and Google Images services and
explained why we have decided to use additional image sources as well.
Another step in the 3D reconstruction is detection of the keypoints. A number of

keypoints detectors were introduced and their characteristics described. We have conducted
a series of experiments which goal was to understand qualities of the keypoint detection
in context of the building reconstruction. Then the reader was introduced to the issue
of extraction of the feature descriptors from the image. The extractors implemented in
OpenCV were described and compared one to another. This section was enclosed by the
feature matching algorithms, which provided us with a means to estimate relations between
image pairs. All combinations of feature detectors, extractors and matchers were tested on
a 100 image pair input set and the results evaluated. The ultimate goal of this experiment
was to select the best combination for our problem maintaining a good ratio between
performance and number of good matches. Ultimately the combination FAST detector,
SIFT extractor and FLANN matcher was selected, however few other promise fair results
and are often used when evaluating the whole system.
The problem of 3D information estimation was discussed and three di↵erent approaches

of non-contact scanning outlined. We started with the stereoscopic vision, where the depth
can be directly computed from the image disparity. The problem gets more di�cult when
only one camera scans the 3D space. This approach, monocular vision, uses features to
calculate camera position and reconstruct the 3D structure. Lastly, we have talked about
the uncalibrated approach, where the scene is being reconstructed from a number of images
made by multiple cameras, each having possibly a di↵erent intrinsic camera parameters.
The problem of pose estimation, structure reconstruction and optimization was presented
as a mathematical model followed by our implementation.
Finally, we have talked about existing solutions that are implementing the monocular
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or uncalibrated approach. Several di↵erent programs (eg. VisualSFM, OpenMVG, 123d
Catch, Photosynth) were introduced and briefly evaluated. Some of these program are
used to compare the robustness and computational complexity of our program. If possible
the results of these programs and our solution were compared to the ground truth as well.
From the results we see that our solution is comparable to other existing software. The
SLAM++ optimizer can minimise the pose estimation error by up to sa cale factor of 20
while contributing to the total processing time by at most 10%.

6.2 Further Work

The research and work presented in this paper proposes the following subjects for further
work:

• Completion of the uncalibrated scenario. As of now, the program can reconstruct 3D
structure if the intrinsic camera parameters are known.

• Removing OpenCV code. OpenCV is an enormous computer vision library which is
constantly evolving and introducing new features. The side e↵ect of this phenomenon
is limited backwards compatibility and frequent changes to some interfaces. It is hard
to maintain the functionality for multiple versions of the OpenCV library. The om-
nipresent conversion between Eigen data structures and OpenCV adds and overhead.

• Improving the overall performance of the application. The application works sequen-
tially on the CPU. But many of the problems can be parallelized and transferred on
the GPU. To name few: keypoints detection and feature extraction, feature matching.

• Extending the application functionality to dense reconstruction and automated sur-
face reconstruction.

• Introducing additional sources of the images and filtering the input datasets automat-
ically to remove images with watermarks, night-time pictures, edited pictures etc.

• Implementation of other models of camera lens distortion on top of the radial distor-
tion.
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Appendix A

Content of the DVD

• thesis.pdf - PDF version of the thesis text.

• tex/ - LATEX source codes of the thesis text.

• src/ - Source codes of our program described in chapter 4.

• datasets/ - Collected image datasets described in the section 5.2 and some other.

• scripts/ - Some of the scripts used in evaluation of our programme.

• experiments/ - Experimental results used in chapter 5.

• third party/ - Other Structure from Motion and Bundle Adjustment application
sources.

• install.sh - Installation script (requires OpenCV and cmake to be installed).

• README - Read me file describing the program interface and simple samples.

• bin/ - Location of a binary version of the program after running install.sh.
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Appendix B

Poster

3D  Reconstruction  of  Historic 
Landmarks from Flickr Pictures
Bc. Vojtěch Šimetka Ing. Lukáš Polok

Ing. Viorela Simona Ila, Ph.D.
Supervisors:

Problem statement:
Given name of a well known 
landmark,  create  a  textured 
3D model with as little human 
interaction as possible.

The pipeline:

Output of the program:

4. Building feature tracks:

- Tracks feature visible 
in multiple images
(same 3D point)

3. Matching:

- Creates 2D keypoint
correspondences

- Filters them using epipolar
constrain

2. Keypoint detection:

- Offers all widely used
keypoint detectors

- Easily customizable

1. Dataset aqusition:

- Automatically from:
Flickr
Google Images

- Manually:
Custom datasets from 
local images

5. Camera pose estimation:

- Estimates camera position
in 3D space from:
- 2D-2D correspondences

(initialization phase)
- 2D-3D correspondences

6. Structure computation:

- Triangulates feature tracks
to create sparse point
cloud

8. Further processing:

- Not part of the solution:
- Dense reconstruction
- Surface reconstruction
- Texturing/filtering

7. Structure refinement

- Refines camera poses 
and structure using non
linear least square solver

- Goal is to minimize
reprojection error

Motivation:

3D maps Films/visualization 3D printing City planning

3D Reconstruction of Historic Landmarks from Flickr Pictures, Bc. Vojtěch Šimetka, Masters Thesis,  UPGM, FIT VUT, Brno 2015

Figure B.1: Preview of poster presenting our program.
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Appendix C

Dense Reconstruction with
VisualSFM

The VisualSFM is an amazing collection of software that can create dense reconstruction
from random images of a static scene. The application has a graphical user interface
depicted in figure C.1.

previous/next 
image pair

switch between
2D and 3D view

show all pictures

toggle bounding 
box around

the reconstructed scene

compute missing
feature descriptors

and feature matches

run sparse reconstruction

Figure C.1: GUI of the VisualSFM with few important buttons.

C.1 Reconstruction Process

The whole process of reconstruction follows:

1. Choose File ! Open+ Multi Images, navigate yourself to the dataset and select
desired photos. After a while the photos should load into the system and should be
displayed in a matrix.

2. Next we need to compute keypoints and feature correspondences. Click or choose
SfM ! Pairwise Matching ! Compute Missing Match. The system will now
detect keypoints and calculate matches for all new photos. These feature and matches
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are implicitly cached in separate files .sift and .mat. Please note that this step may
take a significant amount of time. The progress is shows in the Log Window.

3. Click on the button or choose SfM ! Reconstruct Sparse to compute sparse
reconstruction. The view should change slightly showing the reconstructed 3D scene.
The program may not create single model for the input dataset, but you can browse
distinct models by pressing up and down arrow keys (model number is indicated in
the window name between first pair of square brackets).

4. Last step is running the dense reconstruction. Click or choose SfM ! Recon-
struct Dense. You will be prompted to choose working directory and once all the
files are saved to this directory, the PMVS2 dense reconstruction starts. Note that
the dense reconstruction is a complex problem and takes a lot of time. Once finished,
you can toggle between sparse and dense with hotkey tabulator. An example of
sparse and dense reconstruction is in the figure C.2.

The output, dense structure of each model is stored in folder models in a PLY format.
The estimated camera calibrations can be found in the text file cameras v2.txt. The
camera centres are stored in the PLY format as centers-[model ID].ply containing the
3D locations for every camera in each model.

Figure C.2: Sparse (left) and dense (right) reconstruction of the Model House dataset.

C.2 Useful Tips and Controls

The VisualSFM o↵ers many hidden functionality useful for reconstructing the 3D scene.
Full list can be found in the VisualSfM online documentation1.

• Camera calibration. If camera calibration is known, it can be provided to the
program by choosing SfM ! More Functions ! Set Fixed Calibration. This
calibration can be also made shared across all cameras.

1VisualSfM documentation http://ccwu.me/vsfm/doc.html
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• Selecting Initial Pair. Initial camera pair for the reconstruction can be chosen by
selecting the pair with left and right arrow keys and then choosing SfM ! More
Functions ! Set Initialization Pair.

• Keyboard shortcuts and mouse controls.
Mouse middle wheel Zoom the scene.
Right mouse drag Rotate the scene.
Left mouse drag Pan the scene.
Tabulator Switch between sparse and dense reconstruction.
Up/Down Switch between di↵erent models.
Left/Right Switch between camera pairs.

T Switch between visualization modes:
1) cameras + 3D points
2) cameras only
3) 3D points only
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Appendix D

Dense to Textured Surface
Reconstruction using Meshlab and
Blender

This chapter describes the process of creation textured 3D polygonal model from dense
point cloud. It assume that the user have a 3D dense reconstruction in a format produced
by VisualSFM. The process start in MeshLab:

1. In MeshLab, select File!OpenProject and choose file bundle.rd.out in the dense
reconstruction data folder. Next prompt requires the list.txt from the same folder.

2. Right now the sparse point cloud is opened which is not what we want. Click the icon

or View ! Show Layer Dialog. A new toolbar will appear on the right of the
screen. Click on the model with the right mouse button and from the context menu
select Delete Current Mesh (as depicted in figure D.1).

Figure D.1: How to erase sparse cloud mesh in MeshLab.

3. Choose File ! Import Mesh and select adequate model from folder models.

4. The model shown is now a dense point cloud, but it is almost certainly quite noisy.

We can remove some of the noisy data by selecting them with tool (Edit! Select
Vertices), and erasing them with .
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5. Next step is to create a surface reconstruction. Choose Filters ! Point Set !
Surface Reconstruction: Poisson. We suggest you to use following values:

Octree Depth 12
Solver Divide 10
Samples per Node 1
Surface o↵setting 1

6. However, the surface reconstruction creates a lots of incorrect faces. We once again
erase the vertices using tools from step 4. Once done, choose Filters ! Selection
! Select non-manifold Edges, hit apply and erase these points with vertex erase
tool .

7. Now we finally apply textures. Select Filters ! Texture ! Parametrization +
texturing from registered rasters. Make sure the following options are checked:
Color correction, Use distance weight, Use image border weight, Clean
isolated triangles and UV stretching.

8. The last step in the MeshLab tool is to export the model to the file format supported
by Blender. Select File ! Export mesh as and make sure you save it as an obj
type.

The next part is more or less optional and contains mostly just storing the texture in
the file itself.

1. Lets open Blender, right click on the cube, hit key x and click delete.

2. Choose File ! Import !Wavefront (.obj).

3. On the panel on the right select texture tab. Add new texture and change the type of
the texture to Image or Movie. Ten press Open and load the appropriate texture
file. If necessary the UV mapping coordinates can be altered, but this is beyond the
scope of our tutorial.

4. Now we can export the 3D model to some reasonable 3D file format, for example
thefbx.
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1. Sparse reconstruction

2. Original dense reconstruction

3. Dense reconstruction: 
Process of filtering stracture points

4. Filtered dense reconstruction

5. Filtered surface reconstruction

6. Textured filtered polygonal model

Figure D.2: Distinct reconstruction phases from sparse reconstruction to textured 3D
model.
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