VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGII
USTAV INTELIGENTNICH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

BRAIN SIGNALS VISUALIZATION

BAKALARSKA PRACE
BACHELOR’'S THESIS

AUTOR PRACE
AUTHOR

BRNO 2015

IVAN SEVCIK

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

NN

FAKULTA INFORMACNICH TECHNOLOGII
USTAV INTELIGENTNICH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
fll DEPARTMENT OF INTELLIGENT SYSTEMS

VIZUALIZACE ELEKTRICKYCH SIGNALU MOZKU

BRAIN SIGNALS VISUALIZATION

BAKALARSKA PRACE
BACHELOR'’S THESIS

AUTOR PRACE IVAN SEVCIK
AUTHOR

VEDOUCI PRACE Ing. MICHAL KOSIK
SUPERVISOR

BRNO 2015

Abstrakt

Tato prace pojednava o problematice zpracovani a vizualizace mozkovych signali a jejich
vyuziti pri analyze dat méfenych pomoci EEG. Prace obsahuje Gvod do anatomie mozku a
povahy mozkové aktivity, ktery je pak vyuZit pri popisu jedné z metod mefeni této aktivity,
konkrétné EEG. Dale se prace zabyva metodami zpracovani signalt, predevsim filtraci, a
metodami vizualizace. Rovnéz je zde uveden préhled piedchozich reseni zabyvajicich se
vizualizaci biosignélt, které slouzily jako vychozi predstava pii tvorbé konceptu vlastni ap-
likace. Tato aplikace byla napsana v jazyce C++ s vyuzitim knihovny Qt pro vytvoreni
multiplatformniho grafického uzivatelského rozhrani. Dulezitym aspektem bylo také vyuziti
rozhrani OpenGL, které umoznilo hardwarové akcelerovat vykreslovani a tim padem dosah-
nout uspokojivé prekreslovaci frekvence. Déle bylo vyuzito knihoven, ktére implementuji
nacteni EEG dat ze souboru, rychlou Fourierovou transformaci, matematické operace v 2D
a 3D prostoru, a nacitani 3D objektt ze souboru. Implementace pak fesi né€kolik problémrt.
V prvni fade je to vykreslovani 2D a 3D modeli mozku a vizualizace mozkové aktivity nad
témito modely formou animovanych elektrod. Za timto Gcelem byl stazen model skuteéného
lidského mozku, ktery byl nasledné optimalizovan v grafickém 3D editoru. S vyuzitim tohto
modelu a modelu lebky byly urceny 3D pozice elektrod podle standardniho pozi¢niho sys-
tému 10-10 vyuzivaného pfi EEG méfenich. 2D pozice byly definovany tak, aby co nejvic
odpovidali obrazkim uvadénym ve védeckych ¢lancich. Tyto pozice je mozné predefinovat
pro vyuziti s jinymi nez standardnimi systémy. Elektrody jsou na téchto pozicich vykresleny
jako kruhy vzdy natocené k uzivateli a animovany jsou zménou barvy, ktera je odvozena
od pribéhu signalu. Aplikace dale obsahuje prohlize¢ mozkové aktivity ve formé vicena-
sobného carového grafu. U néj bylo vyuzito decimace signdlu metodou max-min, ktera
poskytuje vyrazné zrychleni prekreslovani zredukovanim poc¢tu vzork signalu pii zachovani
jeho charakteristické kiivky. Aplikace podporuje filtraci signali pomoci dolni a horni pro-
pusti a dvojici vahovacich oken — Hammingovo a Blackmanovo. Implementace této ¢asti
byla testovana porovnanim vysledkt rtiznych konfiguraci s vystupem programu MATLAB,
ve kterém byli vytvoreny shodné filtry. Vysledné aplikace pfedstavuje nastroj pro analyzu
mozkovych signal kombinujici prohlizeni signald s prostorovymi vizualizacemi. Prostorova
vizualizace poskytuje zpusob pro zkoumani pribéhu vsech signald v ¢ase a umoznuje snad-
nou vizualni identifikaci mozkové aktivity. Ta mize byt podrobnéji analyzovana prave
pomoci prohliZece signalti. Aplikace byla testovana pod operacnimi systémy Windows 7 a
8, pro které je primarné urcena, ale byla také ispésne prelozena, sestavena a spustena pod
operacnim systémem Linux. Aplikace nepodporuje fadu Zéddanych funkci, napf. nahra-
vani a zpracovani signal v redlnem case. Tyto nedostatky spolu s navrhovanymi fesenimi
jsou uvedena v zdvéru prace. Soucasna implementace vSak poskytuje vhodny zdklad pro
planovany budouci vyvoj.

Abstract

EEG is a non-invasive method for measuring brain activity, which gives an important
insight into mental processes. This work presents an application that serves as a visual
EEG data analysis tool. The application concept is based on the existing solutions, which
were analyzed as a part of this thesis. The application combines signal browser in form
of a view composed of multiple charts with 2D and 3D visualizations that are helpful
in recognition of particular brain activity. In addition, it implements convenient signal
processing methods. The thesis is concluded by a summarization of accomplishments and
future work’s directions.

Klic¢ova slova

lidsky mozek, elektroencefalografie, zpracovani signalu, vizualizace dat, OpenGL, 3D model
mozku

Keywords

human brain, electroencephalography, signal processing, data visualization, OpenGL, 3D
brain model

Citace
Ivan Sevéik: Brain Signals Visualization, bakalaiska prace, Brno, FIT VUT v Brné, 2015

Brain Signals Visualization

Prohlaseni

Prohlasuji, Ze jsem tuto bakalarfskou praci vypracoval samostatné pod vedenim pana Ing.
Michala Kosika. Uvedl jsem vSechny literarni prameny a publikace, ze kterjch jsem cerpal.

Ivan Sevéik
May 19, 2015

Podékovani

Tymto by som sa rad podakoval svojmu vedicemu Ing. Michalovi Kosikovi za odbornt
pomoc a cenné rady pri vypracovani bakalarskej prace.

© Ivan Seveik, 2015.

Tato prdace vznikla jako skolni dilo na Vysokém uceni technickém v Brne, Fakulté in-
formacnich technologii. Prdce je chrdnéna autorskym zdkonem a jeji uZiti bez udélend
oprdvnéni autorem je nezdakonné, s viyjimkou zdkonem definovanych pripadi.

Contents

O a &8 »

Introduction

Human Brain
2.1 Brain Biology
2.2 Electroencephalography

Approaches to Signal Processing and Visualization

3.1 Signal Processing
3.2 Data Visualization Methods . . .
3.3 Programmable Graphics Pipeline

Overview of Existing Solutions

41 Emotiv
4.2 Svarogo oo
4.3 SigViewer
4.4 Comparison of Solutions

Application Concept
5.1 Logical Division

Implementation

6.1 Electrode Placement
6.2 FIR Filters
6.3 Graphical User Interface
6.4 Rendering System
6.5 Animation of Electrodes

Conclusion and Future Directions
Content of DVD

Image of Graphical User Interface
Signal Filtering Tests

Code metrics

W

12
12
15
16

18
18
19
20
21

22
22

26
26
28
29
32
34

35

39

40

41

42

Chapter 1

Introduction

A Dbrain is a central organ of a human nervous system and as such it has a very important role
in almost every human activity. When performing conscious and subconscious tasks, the
brain exhibits an electrical activity caused by communication between neurons — elementary
units of a neural tissue [I]. The complexity of the brain makes it difficult to study and
understand. This is further complicated by the fact that a person must be alive and
conscious during many trials.

Because of that, the brain activity can provide a valuable insight into mental processes
and brain functions. The activity can be measured using multiple approaches. This thesis
is interested in electroencephalography (EEG), a non-invasive method that measures the
activity from a scalp using electrodes and additional electronic equipment.

EEG has many uses. It can be used to diagnose patients and represents an important
tool for studying human brain. Many brain-computer interfaces (BCI) are also based on
EEG. These are devices that provide direct communication pathway between the brain
and an external device, typically personal computer. BCIs can be used to provide severely
impaired patients a way to interact with their surroundings [7], but they can be also used by
healthy persons to augment cognitive or mental functions, for example to control a device
without any motor movement. [17].

Data measured by modern EEG are usually just signal amplitude values in digital form,
which are hard for humans to interpret. Another issue is that, generally, users are not
interested in raw values but in some features that the EEG signal carries, such as intensity
at certain frequency or specific patterns that represent a certain activity performed by a
measured subject [10].

This creates a need for applications capable of presenting measured data interactively.
There are already existing applications for this purpose, some of which are analyzed as a
part of this thesis. However, these applications are often incomplete and either offer only
basic visualizations, miss any methods of signal processing, or have performance issues with
large datasets. This requires a user to use two or more applications and switch between
them.

The goal of this work is to create a single, modern application that could serve as an EEG
data analysis tool. The application will implement a chosen set of data processing methods,
including signal filtering and classification by frequency. More importantly, the application
will provide visualization methods, such as charts showing waveform of measured signal
in time domain, and both a two and a three-dimensional models displaying brain activity.
Another task will be to create an intuitive and clean, yet customizable graphical user
interface that will be responsive for real-time signal inputs. However, the application should

be able to process also large offline data measured earlier without noticeable performance
decrease.

The text is structured into chapters that start as a general theory and progressively get
more specific, concluded by an application concept and implementation.

Chapter 2 offers an introduction to a human brain and methods for measuring its activity
using EEG.

Moving on, Chapter 3 provides fundamentals of signal processing and computer visual-
ization relevant for this thesis.

Chapter 4 contains reviews of several existing solutions for biosignals visualization,
which serve as an inspiration for this work.

The concept for the application is introduced in Chapter 5 and eventually transformed
into the implementation, which is described in Chapter 6.

Chapter 2

Human Brain

A human brain is a central unit of a human nervous system and has an important role in
almost every aspect of life. It performs both conscious tasks and an automatic operation of
vital organs, including breathing, maintaining blood pressure, and releasing hormones. It
also processes all the sensory inputs, such as odors, sounds, or light, interprets them, and
makes associations with representations preserved in memory.

2.1 Brain Biology

A biology of the human brain is complex and many mental processes are still not well
understood. This section will, therefore, provide rather a very brief introduction to brain
anatomy and communication mechanisms that are relevant for this work.

2.1.1 Anatomy

From an anatomy point of view, this work is interested primarily in a cerebrum because
it is the part of the brain where an EEG activity occurs. The cerebrum is the outermost
structure of the brain. It is divided into two separate hemispheres that are bridged by a
bundle of fibers. The cerebrum is associated with a high-order functioning and a control
of a voluntary behavior. This includes thinking, perceiving, planning, and language under-
standing. The cerebrum is covered with a sheet of a tissue called cerebral cortex, which is
further divided into regions called lobes that are functionally differentiated. There are four
lobes, each with a different role [1]:

Frontal lobe is where initiation and coordination of motor movements take place, along
with higher cognitive skills, such as thinking, planning, and organizing. It is also
important for a personality and an emotional makeup.

Parietal lobe is responsible for processing sensory inputs, attention, language and spatial
orientation.

Occipital lobe helps to process visual information and to assist with a recognition of
shapes and colors.

Temporal lobe is a region where auditory information is processed and information from
other senses is integrated. It also has a role in the short-term memory and in learned
emotional responses.

Lateral View of the Brain Sagittal Section of the Brain

Olfactory:tract

Temporal lobe

Figure 2.1: Brain anatomy'

Figure 2.1 shows all the discussed structures on a model of the brain.

2.1.2 Neurons

The neural tissue is made of cells called neurons that communicate with each other and
represent basic working units of the brain. The neuron consists of a cell body, dendrites
and an axon, which can be seen in Figure 2.2. The cell body contains a nucleus and

Dendrites

Signal
direction

Presynaptic cell =X]
Myelin sheath terminals %\ Postsynaptic cell

Figure 2.2: Neuron structure’

a cytoplasm, and produces peptides required for communication. Dendrites extend from
the cell body and receive signals from other neurons through synapses — contact points
where axons of other neurons connect to dendrite. The axon is responsible for transmitting

Tmage source http://www.compelvisuals.com/wp-content/uploads/2013/12/
BrainAnatomy-Newsletter. jpg

’Image source http://2012books.lardbucket.org/books/beginning-psychology/section_07/
6a3f£0732c22683476ea201ffcbe428ad. jpg

http://www.compelvisuals.com/wp-content/uploads/2013/12/BrainAnatomy-Newsletter.jpg
http://www.compelvisuals.com/wp-content/uploads/2013/12/BrainAnatomy-Newsletter.jpg
http://2012books.lardbucket.org/books/beginning-psychology/section_07/6a3f0732c22683476ea201ffc5e428ad.jpg
http://2012books.lardbucket.org/books/beginning-psychology/section_07/6a3f0732c22683476ea201ffc5e428ad.jpg

electrical impulses outward from the neuron. These electrical impulses originate from a
sudden change of an electrical potential caused by a flow of ions through a cell membrane.
The change, also called an action potential, then passes along axon’s membrane and upon
hitting its end releases neurotransmitters in nerve terminals. The neurotransmitters diffuse
across the synapse and bind to receptors on the surface of a target cell’s dendrite, which
causes response in the target [1].

2.2 Electroencephalography

As has been presented, the nature of the human nervous system is electrical. When many
neurons are active at the same time, the collective charge of ions is large enough to prop-
agate as a wave to the surface of a brain or even to a scalp. Therefore, it is possible to
observe a brain activity in underlying brain structures by measuring the variation of the
surface electrical potential on the scalp. This is done by placing a conductive electrodes
on the scalp and taking a measurement of the potential. The method just described is
known as electroencephalography (EEG) and it is a noninvasive way to monitor and study
human brain. Earliest works used galvanometers and sophisticated techniques to take mea-
surements [3], which has been since substituted by A/D converters and computers or other
equipment for recording digital data. The recorded data can be then subjected to further
digital signal processing (DSP) [10].

The main advantage of EEG over other methods for monitoring brain activity, namely
MRI® and PET?, is speed as it can record responses to a stimulus within fractions of a
second [18]. Applications of EEG include:

e Research — monitoring of brain activity during cognitive and motoric tasks in high
time resolution

e Medical — diagnosis of brain diseases or confirmation of brain death
e Human computer interaction — execution of commands using brain activity

Recently, the EEG based devices were introduced also to a consumer market so users
can monitor their brain activity at home, play simple games, or control toys using their
thoughts®.

2.2.1 Basic Principles

The neural activity has mostly asynchronous nature. Because of this, it is impossible
to measure or distinguish electrical activity of each neuron with EEG as the individual
potentials are combined by the time they propagate to the scalp. What EEG measures is a
summated potential of a neural activity, which includes a spontaneous electrical activity of
the cerebral network and cortical responses to external and internal events. The responses
to events, characterized by their onset latency and voltage amplitude, are referred to as
event-related potentials and are either results of physical stimuli or behavioral responses

[7]-

3 Magnetic resonance imaging is using magnetic fields and radio waves to form images of the body.
4 Positron emission tomography is using radioactive tracers to map functional processes in the body.
Shttp:/ /www.livescience.com/43250-mind-controlled-quadcopter.html

2.2.2 Equipment for Taking EEG Measurements

The setup used for encephalographic measurements usually consists of:
e Electrodes with conductive media
e Amplifiers with filters
e A/D converter

e Recording device

Electrode Caps — Electrodes exist in various forms but this thesis will focus on headsets
and electrode caps, such as one displayed in Figure 2.3. These caps usually consist of
small discs serving as electrodes made of a very conductive material, such as gold, silver,
or stainless steel. The electrodes have long leads that can be plugged into an amplifier
[18]. The discs are in a direct contact with the scalp and can already measure the electric
potential produced by the brain. However, a conductive media in form of a gel or a paste is
often used to increase conductivity even more by lowering contact impedance and improve
readings at the lowest level. It also helps electrodes to stick to the scalp surface so accidental
shift in a position is less likely.

There is also another type of electrodes that doesn’t require application of gel. These
are called dry electrodes and they use additional electronics to lower skin impedance, such
as local impedance converting amplifier. Because of this, systems using dry electrodes are
more bulky and more expensive but they don’t require skin preparation and usage of gels
that cause skin irritation [16].

The electrodes are prepositioned on a silicon cap in locations according to standardized
placement system, which will be discussed later in this section. This both speeds up the
setup stage and allows for unified mapping of electrodes to head surface. However, it fails
to account for different shape and features of each individual’s head [1&]. This problem
is usually solved by involving a method for finding 3D coordinates of electrodes on the
head. Such methods include using magnetic field digitizer or elaborate algorithms that can
calculate position of each electrode from few distance and angle measurements by utilizing
specific properties of standard placement system [5].

Amplifiers — The strength of the signal measured by electrodes is in order of microvolts
and normally range from 101V to 5001V [19]. Therefore, an amplifier is needed to bring
the amplitude to higher voltage levels that can be processed by other electrical circuits and
components. The requirements on amplifiers for use with EEG are high as they have to
provide amplification only for the physiological signal, which should not be distorted in any
way, reject superimposed noise and interference signals, and protect both the equipment
and measured subject from current surges. Amplifiers conforming to these requirements
are known as biopotential amplifiers. [9]

The trend in a development of neural recording devices is heading in a direction of small
and portable systems that can be used by patients with severe disorders in everyday life.
Consequently, energy efficient amplifiers are being designed lately that are very small, may
run on battery for long periods of time and dissipate only little heat [19].

Figure 2.3: Electrode cap®

Filters — An analog band pass filter is used to limit frequencies into a certain range of
interest after a signal amplification. In some cases it may be already a part of the amplifier.
Another common filter is a notch filter, which can used to filter out noise at frequency of a
power line. Depending on a country, it may be set to 50 or 60 Hz [2]. Such filter is required
only if it is desirable to keep also high frequencies. Otherwise, a low pass filter would be
sufficient because the interesting frequency bands usually lies bellow the frequency of the
power line.

A/D Converter — An A/D converter unit is used to convert filtered analog values to
digital representation. The converter should have a resolution of at least 12 bits and ideally
16 bits or more. With a high number of electrodes, analog multiplexers are sometimes
used to lower the number of necessary converter units at the expense of a limited sam-
pling frequency. The sampling frequency should be at least double of the highest recorded
frequency, for example the upper frequency limit of a band pass filter. This is known as
Nyquist-Shannon sampling theorem which is fundamental for correct signal reconstruction
without aliasing artifact. The preferred sampling frequency is 256 Hz to 400 Hz [11].

Recording Device — Converted samples from A/D converters are stored in a digital
memory for further processing which will be discussed later in this section 2.2.4. A recording
device may be represented by a computer or by a different piece of specialized equipment.
The computer can be additionally equipped with digital signal processor unit so that CPU
load is lower and can be used for other tasks.

5Image source http://www.psychologie.uzh.ch/fachrichtungen/plasti/Labor/\gls{eeg}-03. jpg

http://www.psychologie.uzh.ch/fachrichtungen/plasti/Labor/\gls {eeg}-03.jpg

2.2.3 Standard Electrode Placement

The need for a standardized electrode placement was evident as early as 1947 when the first
International EEG congress held place in London. Various methods of standardization were
proposed and this effort finally resulted in definition of a 10-20 electrode system in 1958
by H.H. Jasper [12]. This system consists of 21 electrodes placed evenly between certain
landmarks and the labels of electrodes are derived from cerebrum lobes above which the
electrodes are located. The first contour can be found by connecting inion and nassion.
Inion is a small protuberance at the back of a head and nassion is located just above the
bridge of a nose. The length of this line is measured and electrodes are placed along it using
following procedure. First electrode — Fpz, is placed at 10% of the contour length from the
nassion. The electrodes Fz, Cz, and Pz are placed in this order from front to back with
spacing defined as 20% of the length. Fz and Fpz are also spaced by 20%. Last electrode,
Oz, is placed at 10% of length from the inion which equals 90% of length from the nassion.
It should be clear now why the system is called 10-20. The rest of electrodes are placed in
similar fashion.

The 10-20 system offers only limited resolution but it was sufficient at the time of
its creation because the main limiting factor was technology. However, with advances in
electrode technology and miniaturization of electrodes, using more than 21 channels became
feasible. Naturally, many laboratories sought to take advantage of the higher resolution.
With more electrodes than what is 10-20 model capable of accommodating, first extension
to the standard placement system was needed. The extension, named 10-10 system, was
proposed in 1985 and extended the number of supported electrodes to 74. It uses additional
coronal contours lying halfway between original contours and combines the labels of these
original contours to create new label. For example, a contour lying between original contours
F and C is labeled FC [12]. The positions of electrodes according to this system are shown
in Figure 2.4.

The 10-5 electrode placement system further extends the 10-10 system to allow an even
higher number of channels to be used as systems with over 128 channels are not uncommon
anymore and have become commercially available”. The total number of possible locations
supported by 10-5 system is 345 [12]. This system is in a proposition stage and is yet to be
recognized as a standard.

2.2.4 Data Analysis

The recorded data are subject to further processing using numerical filters and transforms
in order to improve the signal-to-noise ratio and extract desired signal features. One such
feature is brain activity at a certain frequency. The frequency of brain waves range from
1Hz to 150 Hz. This range can be further divided into six common categories [5]:

e Delta waves — below 4 Hz

e Theta waves — between 4 and 8 Hz

e Alpha / Mu waves — between 8 and 13 Hz
e Beta waves — between 13 and 30 Hz

e Gamma waves — between 30 and 80 Hz

"http://www.egi.com/company

http://www.egi.com/company

Figure 2.4: International 10-20(black) and 10-10(gray) system of EEG sensor placement[!?2]

e High gamma waves — above 80 Hz

A healthy person exhibits brain waves mostly in the first four categories. Each band
is related to a certain group of an activity in the brain [5]. Delta waves are normally
distributed over scalp and may be significant during deep sleep, in childhood, or in serious
organic brain disease [10]. Theta waves are related to cognitive tasks such as working
memory and error monitoring tests. Alpha power is increased during inattention and lack
of visual input, therefore related to perception. Mu power, on the other hand, is linked to
movement and is decreased when person performs a motor action. The distinction between
alpha and mu waves is made by considering the location of the electrode. While alpha
waves form at the back of the scalp, mu waves can be observed in a strip of brain from ear
to ear called motor cortex. Beta waves are low amplitude, high frequency waves that have
power reduced at the onset of a movement, rebound if the movement is sustained, and are
enhanced if the movement is suppressed. Finally, peaks in gamma and high gamma bands
are observed in some brain areas but this activity varies too much across individuals to be

10

reliably characterized [5].

Another set of features are patterns, such as those of event related potentials, that
represent a certain activity more clearly than classification by frequency. Event related
potentials are electrical brain responses time-locked to a physical stimuli or behavioral
responses and characterized by their voltage amplitude and their latency in relation to
stimulus onset [7]. For example, the imagined movement of finger can be distinguished
from imagined movement of leg with this method. The classification accuracy is, however,
highly individual and a classification system usually needs a tuning or a calibration process
for each user [7]. Common approach to this problem is to train a neural network that can
classify patterns in brain waves with accuracy high enough for normal usage.

11

Chapter 3

Approaches to Signal Processing
and Visualization

Once the data from electrodes have been recorded they can be processed and visualized
according to chosen analysis method. This chapter will provide information about methods
that are commonly used for processing EEG signals. The chapter will also discuss general
data visualization methods and how these methods can be performed on modern graphics
card to produce a visual output in form of a raster graphics. A more specific terminology
will used in the following text. The term signal processing will be from now on restricted
to digital signal processing as the processing will be performed on software level. Likewise,
the term signal will be restricted to a discrete-time signals represented by a sequence of
numbers.

3.1 Signal Processing

In general, signal processing is concerned with representation, transformation, and manipu-
lation of signals and the information they contain. For example, it can be used after an EEG
measurement to ease analysis of recorded data by filtering out noise and selecting signal
features, as presented in Section 2.2.4. This section, therefore, provides general informa-
tion about methods of signal processing and specific implementation details are discussed
in Section 6.2.

3.1.1 Discrete Fourier Transform

Discrete Fourier transform (DFT) is an operation that produces a corresponding frequency
spectrum for any given sequence of numbers. Formally the DFT is defined by Equation 3.1

where the sequence z(n) represents the input, usually a signal [15, p. 401].
N-1 .
X(k)=> a(n)e@™/N 0<k<N-1 (3.1)
n=0

The product of the DFT is a new sequence X (k) of complex numbers equally spaced in
frequency domain. Each number represents a sample in the frequency spectrum. Because
the numbers are equally spaced, each sample belongs to a certain frequency interval that is
often referred to as a frequency bin. A bin resolution, that is the length of each frequency

12

interval, can be determined through Equation 3.2 where f; is the sampling frequency of the
input signal.

fs
N

The direct computation of DFT is inefficient and contains repeating, and therefore
redundant, operations. Because of that, a more efficient algorithm called fast Fourier
transform (FFT) is used in practical applications. The FFT algorithm takes advantage
of symmetry and periodicity to reduce number of operations needed to compute the re-
sult. The number of complex multiplications can be used as a criterion when comparing
the efficiency of DFT and FFT. Indeed, while DFT requires N? multiplications, the FFT
algorithm requires only (N/2)logaN multiplications to produce the exactly same results.
For example, the speed is improved 204.8 times for a 1024 point DFT [15, p. 459].

binges =

(3.2)

3.1.2 Filters in General

A filter in the broadest context is any system that modifies certain frequencies relative to
others. For the purposes of this thesis the term filter can be narrowed to a system that
passes certain frequency components and totally rejects others [13, p. 439]. All the discussed
filters will be causal. A system is causal, if for every choice ng, the output sequence value
at the index n = ny depends only on the input sequence values where index n < ng [13,
p. 21]. The stability of filters will be also discussed in section 3.1.3. A system is stable if
and only if every bounded input sequence produces a bounded output sequence. The input
x[n] is bounded if there exists a fixed positive finite value By, such that [13, p. 21]

|z[n]| < By < oo, for all n. (3.3)

The system is stable if for each bounded input there exists a fixed positive finite value B,,
such that [13, p. 22]
ly[n]| < By < oo, for all n. (3.4)

The filtering can be performed as convolution of the input signal with filter’s impulse
response in time-domain. Another, equivalent method is to first perform DFT for the
input signal, multiply the obtained spectrum with filter’s frequency response and perform
an inverse DFT.

3.1.3 FIR and IIR Filters

One of the most important decisions when considering the use of filters is the choice between
finite and infinite impulse-response filters. They are two fundamentally different groups of
filters with many differences, some of which will be discussed. The major difference between
the systems can be seen from difference equations 3.5 and 3.6 [15, p. 500]. While the FIR
system uses only current and past input values, the input to the IIR system includes also
previous output values.

M-1
FIR system y(n) = Z bz (n — k) (3.5)
k=0
N M
IIR system y(n) = — Z agy (n — k) + Z brx (n — k) (3.6)
k=1 k=0

Another difference between the FIR and IIR system involves stability. The FIR systems
are inherently stable from the definition but a great care must be taken in order to design
a stable IIR system. The IIR systems also suffer from limited precision of numbers in a
digital representation. Therefore, an error accumulates over time due to the feedback.

Considering the stated properties of both filter types it was chosen to further use only
FIR filters as they are more suitable for EEG data processing. This claim is further sup-
ported by frequent use of FIR filters in other EEG related works, for example [2] and

[10].

3.1.4 Low-pass and High-pass FIR Filters

A low-pass filter is a system that ideally passes only frequencies below a specified threshold
called cutoff frequency f.. Accordingly, a high-pass filter is a system that passes only
frequencies higher than the threshold and attenuates the others [15, p. 331].

The filter is created by finding the coefficients by for Equation 3.5. This can be done in
general by designing the desired frequency response in frequency domain and using inverse
Fourier transform to obtain filter’s impulse response h(n) which represents the coefficients.
However, the low- and high-pass filters are so common that the impulse response can be
obtained using equations 3.7 and 3.8 where w, = 27 f. and M is the filter’s length [13, p.
472].

sin(we(n—M/2)) ¢ M/2
Low-pass h(n) = m(n—M/2) A n 7 M/ (3.7)
2fe if n=M/2

_sin(we(n=M/2) e /o
High-pass h(n) = |
1—2f. it n=DM/2

3.1.5 Window Functions

In general, the filter’s impulse response obtained through inverse Fourier transform is infinite
in length. Therefore, it must be truncated at some point, say at n = M — 1, to yield the
FIR filter of length M [15, p. 624]. The truncation is equivalent to multiplying the infinite
impulse response by a rectangular window which is defined by Equation 3.9.

1 0<n<M-1
w(n) = - (3.9)
0 otherwise

However, such truncation produces undesired effects in the filter’s frequency response.
For example, let’s consider an FIR low-pass filter with a cutoff frequency f. = 0.4 Hz and
length M = 31. The left graph in Figure 3.1 depicts the frequency response of such filter
after truncation. It can be seen that the gain at frequencies below cutoff moderately fluc-
tuates and also that the attenuation at frequencies above cutoff is relatively small. The
graph on the right side shows the frequency response for the exact same filter but the
truncation was done using Hamming window. Clearly, the fluctuations are much smaller,
almost invisible at this level of detail. Also, the filter better attenuates undesired frequen-
cies. However, this comes at a cost of a longer transition to reach the stop band. While
the filter with rectangular window reaches the stop band at frequency little over 0.4 Hz,

14

Rectangular Window Hamming Window

10
0 0
P o
oQ o
B T o
[} [}
g -30 '8 -30-
= =
c c
D 40 D -40-
(o] (s}
= =
-50- -50r
ATATATAT]
T o1 oz] 03 04 05 06 07 08 09 1 TS o1 o2] 03 04 05 06 07 08 09 1
Normalized Frequency (xttrad/sample) Normalized Frequency (xmtrad/sample)

Figure 3.1: Comparison between filters with Rectangular and Hamming window

the filter using Hamming window gets to the stop band at approximately 0.5Hz. This is
because the window attenuates data at its edges. Decreasing width in the time domain in-
creases uncertainty in the frequency domain, which is represented by a filter response that
has a shallower transition band stretching farther from the cut off frequency. Therefore,
a choice must be made but the advantages of using window function usually outweigh the
disadvantages.

The window function in essence weighs samples entering the filter so that transition into
truncated area is smooth rather than sudden as in the case of rectangular window. The
Equation 3.10 defines the already discussed Hamming window and Equation 3.11 defines
another commonly used Blackman window [15, p. 626]. The definitions are only for 0 <
n < M — 1 as the rest of the impulse response is still truncated.

2
Hamming window w(n) = 0.54 — 0.46 cos M7m1 (3.10)
. 2mn ™
Blackman window w(n) = 0.42 — 0.5 cos W1 + 0.08 cos V1 (3.11)

3.2 Data Visualization Methods

So far, only methods for measuring and processing data have been discussed but the primary
goal of this thesis is to visualize them. Therefore, this section will discuss methods of data
visualization using PC and common display devices such as monitors and screens, and how
these visualizations can be used to help humans analyze data more easily.

3.2.1 2D Representations

Display devices and other media used for presenting information have mostly two-dimensional
nature. This has great implications for how the data are usually visualized and manipu-
lated. The most natural representations are those that are already organized spatially as
two-dimensional, without need for any projections and mappings. It is still possible to add
a next dimension of information through usage of colors, different shapes and sizes, but the
diagram layout remains two-dimensional. The most commonly used diagrams are based on
graphs and charts, although schematics and maps are also popular.

The graph is a type of diagram made of interconnected objects. The connection may
be represented by a line or curve which may be directed, meaning that it goes only one

15

way. Graphs are usually used for visual representations of data where individual entities
and their relations can be recognized, for example a network of roads between cities, but
they are also useful for displaying hierarchies.

The chart is a visual representation of data useful for plotting, categorizing, and showing
trends. It may come in many forms, like bars or lines drawn in an area designated by axes
with scales, or slices of a pie. It is important to choose the most suitable one, so that the
most significant fact stands out.

3.2.2 3D Models

The world and objects within it are perceived by humans as three-dimensional and, there-
fore, it is preferable to use three-dimensional representations of objects called 3D mod-
els. However, there is lack of technology for displaying such representations truly three-
dimensionally, with holograms being the most advanced one. Because of that, the models
must be projected into two dimensions so that they can be displayed using existing de-
vices. This is done using projection matrices during process called rendering. The two
most common projections are orthogonal and perspective.

There are multiple ways to create the 3D model. It is possible to scan real world objects
by various means, such as tomography and optical surface imaging. Another method is to
use special modeling software and reconstruct the model from basic primitives. The model
may have defined volume using volumetric or voxel representations, or it can be just a
surface of an object which is usually represented by a mesh. The mesh is a collection of
points in 3D space called vertices which are interconnected to form basic primitives, like
triangles and polygons.

3.3 Programmable Graphics Pipeline

A graphics pipeline represents the process of rendering and its stages. The input data in
form of vertices, colors, and other information are passed to the first stage which processes
and passes them down the pipeline to another stage. The result of the final stage is rendered
image of a scene. Before a programmable pipeline was developed, programmers could only
use vendor defined operations and combine them to create their application. That imposed
certain constraints on what could be done, for example the number of light sources was
limited. This approach was called a fixed pipeline because the action performed by each
stage was fixed and could be only modified through parameters or states. With introduction
of the programmable pipeline, it was possible for programmers to step into the rendering
process in several places and define their own techniques. The custom programs that have
become part of pipeline are called shaders. The Figure 3.2 displays an OpenGL graphics
pipeline [20]. The three most important types of shaders with respect to their position in the
pipeline will be presented in following text. The terminology used in this section complies
with OpenGL but the basic principles are similar for most of the graphics card APIs. For
example, OpenGL shader programs are written OpenGL Shading Language (GLSL) and
DirectX shader programs are written in High Level Shading Language (HLSL), both of
which are derivatives of C language and provide similar features. A good introductory
tutorial to modern OpenGL can be found at http://www.opengl-tutorial.org/.

16

http://www.opengl-tutorial.org/

Shader
Program
Vertex Data

Vertex
Shader

Geometry Primitive |
shader Assembly -I

Depth & N Color Buffer ;
Stencil Test Blend

(position, pma

color, ...)

Fragment
shader

—> Dither uma

Figure 3.2: OpenGL 3.3 programmable graphics pipeline [20]

3.3.1 Vertex Shader

A vertex shader is at the very beginning of the graphics pipeline, just after the primitive
processing. It allows properties of vertices to be modified before they enter the geometry
shader or the primitive assembly stage. The input to vertex shader is single vertex with
all the related information. Typical usage of this stage consists of applying projection and
transformation matrices, performing Gouraud shading [4], and controlling particle effects.

3.3.2 Geometry Shader

A geometry shader, if present, is executed right after the vertex shader but instead of work-
ing with isolated vertices, it works with whole primitives like points, lines and triangles.
It may perform transformation from one type of primitive to another and also emit com-
pletely new geometry. For example, it is possible to have as input only one point and output
may be a circle with that point as a center. The circle can be made of varying number
of triangles, depending on how far from camera the point was. This not only saves time-
expensive transport operation between CPU and GPU, but also optimizes performance by
dynamically lowering details.

3.3.3 Fragment Shader

A fragment shader works with individual pixels. However, the three-dimensional informa-
tion have not been discarded yet and is accessible during processing. This allows three-
dimensional effects, such as Phong shading [14], to be applied at the finest level. The output
of this program is a single color that will be displayed by that specific pixel.

17

Chapter 4

Overview of Existing Solutions

This chapter analyzes existing solutions focusing on their user interface, features, extensi-
bility and intuitiveness. The work of other individuals or companies can serve as a source
of inspiration when creating new application with similar purpose. It is possible to identify
good ideas, which can be reused, by analyzing their solution.

4.1 Emotiv

Emotiv is a company specializing in the area of EEG devices for consumer market. The
product of the company is a headset accompanied with basic software and additional soft-
ware can be bought or downloaded for free through a store separately. On one side, the
store allows the developers to create new applications independently but as a result, there
is a lack of a single, unified user experience. This is caused not only by different styles the
authors of each application are using, but also because each application has its own set of
settings, controls, and displays, many of which are duplicated between applications. For
example, a chart with signals from electrodes is included in both TestBench and 3D brain
activity map applications. There is also another brain activity map that displays each fre-
quency band in 2D. The settings, such as gain factor and buffer size, are not shared in any
way between the applications, resulting in different behavior which can be quite confusing.
However, the focus on ordinary computer users can be felt as the applications are visually
appealing and user-friendly. The TestBench and 3D activity map are displayed in figure
4.1.

Feature-wise, the applications are ranging from visualization software and data im-
porters to games. One important feature that seems to be missing from most of the appli-
cations is lack of any control of time, meaning they are only able to display current values.
It was only observed in the TestBench application. This is a very limiting factor for data
analysis, as one of basic tasks is comparing data. Being able to do so between two or
more moments in time is often desirable. The SDK for creating new applications is freely
available, so anyone can start developing.

Currently, the company offers two options — 14 channels EPOC and 5 channels Insight
headsets. These headsets come with built-in amplifiers, filters and A/D converters, and
communicate wirelessly with PC through bluetooth.

18

3D brain activity map

delta theta

" a

Figure 4.1: Emotiv TestBench and 3D brain activity map'

4.2 Svarog

Svarog is an acronym that stands for Signal Viewer, Analyzer and Recorded on GPL. It is
intended for use as an advanced analysis tool capable of both online and offline signal view-
ing and processing. The data may be in any data format as long as SignalML description
is provided.

The application offers only basic visualization methods. Main GUI element visible after
starting the program is a chart with EEG waveforms. It allows a user to:

e Modify the amplitude range, time scale and amount of space between signals.
e Zoom in and out by reducing the number of displayed signals.
e Select part of a signal spanning one or multiple electrodes.

e Perform FFT and show frequency spectrum for a segment of signal in superimposed
window as shown in Figure 4.2.

An interesting element is a time-frequency map that is used for presenting results of a
matching pursuit algorithm, which is one of the available processing tools. Time is plotted
on a horizontal axis, frequency on a vertical axis and amplitude is represented by a color in
a range from blue to red. However, there is no brain or electrode map, or any other visually
appealing elements.

The GUI is sometimes cluttered with too many options, which could have been hidden
in some advanced view, but overall is clean, quite customizable, and informs a user about
progress of operations. It also allows auxiliary signal plots to be created, which are useful
for signal comparison. Svarog is implemented in Java.

'Image source http://common.ziffdavisinternet.com/util_get_image/22/0, 1425, sz=1&i=221770,
00.jpg and https://emotiv.com/upload/iblock/801/mainscreen. jpg

19

http://common.ziffdavisinternet.com/util_get_image/22/0,1425,sz=1&i=221770,00.jpg
http://common.ziffdavisinternet.com/util_get_image/22/0,1425,sz=1&i=221770,00.jpg
https://emotiv.com/upload/iblock/801/mainscreen.jpg

Svarog v.1.0.10-protoc2.4-26-g65627d9 - Ea

WV\WMWWmwwm,wwwG\fU“U\MWU\WWM\QWMNLWWW\/ N/\}mewww‘w«wwwmMMMWW,MWVWMMMW‘,{/‘AWUMW

L s b gl A A AL LN it A b " L LAk)
T ¥ 7 LAGLULARACR A U] RARAE KA § A LA Rt e R A T

Figure 4.2: Svarog’s main window

4.3 SigViewer

SigViewer is a viewing application for biosignals designed to display EEG and other biosig-
nal data. It also supports creating annotations to select artifacts or specific events. Fur-
thermore, it features signal processing modules such as the average over selected epochs
and the power spectrum of selected signals.

The main window has a large area that is composed of individual charts for each signal.
The chart can be vertically scrolled and zoomed independently of others, which is useful as
waveforms have often very different shape. The annotation tool allows annotations to be
created directly over the waveforms and right click on the annotation provides next options.
The responsiveness somewhat degrades with too many displayed signals, probably because
the plots are rendered in software. SigViewer is implemented in C++ and Qt.

) TEST.EDF - SigViewer - R
File Edt Mode View Tools Help

BE0+~v0 Aoy #=HAAXX

Sgrelats @ | Events

condton 1 - segin 28,201 ourstan [015 BRI
.
200- /WWHW‘W“
v / e, 3
SN S - . B
T
X £ o [T,
20- % Change Channel. AN o, »
& Change Type. /
0 PRI A NI AN AT AR it NSTANA 0 i ncert Over Cu+l)
CuteRight e S AP
0 A A A A A AR A AN AN IAAS S AT t Cuisleft s g b
w \\ 5
a0 it
" AN A A A A o

o A A P A A R,

, -
- =\

N e

ol el J"\"’WﬁﬁMrVWN“"WWWMMW‘““”‘W‘«““I‘WI‘W N P I VN

o

= i " A g
e ,m//vmml\f,\wv“wxwf\ﬂﬁ/\M/WMWWY\WW/WMMAW Wy A L,;lw/\w\f"‘wmwd\j\a/.www o NWWM W/\M/M/W%NVVWM/M " mﬂw v »/\A’»\A
: v

0

258 2 72 24 276 s = =2 2832 6 58 » 22 24 56 58 B
>

Length: 15205 Channels 13¢

Figure 4.3: SigViewer’s main window

20

4.4 Comparison of Solutions

The analyzed solutions are diverse enough so that comparison can be made. From the
targeted audience view point, it is noticeable that Emotiv software package with all its
games and visualization tools targets casual users that are not so much interested in signal
analysis, but in the utilization of a brain-computer interface for various tasks. On the other
hand, Svarog and SigViewer are more suitable for researchers interested in data analysis.
Svarog is a more feature complete and sophisticated application than SigViewer. However,
the SigViewer’s signal browser, which is the most important element in both applications,
is much more convenient to use and signals are easier to interpret. Table 4.1 provides a
short summary of features for each solution.

Emotiv Svarog SigViewer
Recording Support Yes Yes No
Signal Browser Limited Yes Yes
Visual Electrode Maps Yes No No
Annotation Support No Yes Yes
Open Source No Yes (GPL) | Yes (GPL)

Table 4.1: Comparison of solutions

21

Chapter 5

Application Concept

It is usually a good idea to create a concept before implementing a non-trivial project.
A concept development process helps to make clear which are the important parts of the
project and how they are going to communicate and work together to provide desired results.
The concept also helps to maintain a good code structure and class hierarchy. Therefore,
the text in this chapter defines the concept that will be used during development of the
application. Unless explicitly stated otherwise, the term application will further refer to a
program that has been developed as a practical part of this thesis.

5.1 Logical Division

The application should serve as an EEG signal browser with support for a 2D and a 3D
electrode visualization. Therefore, the application will be mostly graphical, as opposed to
textual. A part of the application will have to support reading EEG data and another part
will be responsible for displaying the data. Because the data are digital signals, a built-in
support for signal processing would further improve usability of the application. After a
deeper analysis of the problem it is possible to split the whole application into individual
subsystems:

e GUI

Model importer

3D math library

Signal input module

Signal processing module
e Rendering system
e Animation system

The following sections will address each subsystem individually.

5.1.1 Graphical User Interface

A user interface provides both a user input to the application and an output or feedback
from the application. The graphical user interface (GUI) is a user interfaced composed of

22

graphical elements, such as windows, buttons, text areas, scrollbars, etc. The elements can
be grouped and create layouts that are visually appealing.

An important question to ask is who will be the target audience. The difference between
targeting ordinary users and researchers can be seen in Chapter 4. For example. The
original assignment predetermines this work to be used primarily for academic purposes.
Nevertheless, the ideas of visually appealing graphical elements and friendly user interface
will be also incorporated as they can dramatically improve the experience.

A common approach to GUI design is to first create a simple model called mockup. The
mockup can be drawn on paper or created using a specialized software. It should capture all
the important elements and define their position and purpose. The GUI is then created to
resemble the mockup using a technique that is specific to a platform. Section 6.3 presents
GUI that was created for application.

5.1.2 Model Importer

Loading 3D mesh models into a memory in a representation that may be used for rendering
is a non-trivial task. This is further complicated by the diversity of file formats that are
used to store 3D models. One of the most popular file formats is Wavefront .obj file. It
can store whole scenes with multiple objects that are represented using polygons. Most of
the 3D modeling software also allows exporting the model composed solely of the triangles
that can be rendered directly by OpenGL. Another advantage of the Wavefront .obj file
format is that it uses ASCII and human readable data representation. The Listing 5.1
shows an example of .obj file that defines a triangle. Due to the stated properties, the
format was chosen to store the model of brain. The model of brain was provided by the
Brain for Blender project'. This brain is an MRI scan of a real human brain.

object Triangle
v —0500

v 0.5 00

v 0.25 0.5 0

3 vertices

g Triangle
f 123
1 face

Listing 5.1: The .obj file example

A model importer has to be able to open .obj file, list stored objects, and provide
data for each of them. The data, such as vertex positions, are then passed to rendering
system that will render the objects. A Tiny obj loader? library is a perfect solution for our
needs. It is light-weight C++ library implemented by single file that is simply compiled
with the rest of the application and has no dependencies except for C++ STL. After loading
the triangulated model from .obj file, the geometry and other information is conveniently
stored inside STL vector that can be used directly by rendering system.

"http://brainder.org/download/brain-for-blender/
Zhttp://syoyo.github.io/tinyobjloader/

23

http://brainder.org/download/brain-for-blender/
http://syoyo.github.io/tinyobjloader/

5.1.3 3D Math Library

A 3D math library is required in order to manipulate objects in 3D space. Minimal require-
ment is a support for translation, rotation and projection is needed. The library should
also include algorithms for creating transformation matrices used by OpenGL. Naturally,
the data structures such as vectors, matrices, and basic geometry should be part of the
library.

The OpenGL Mathematics® library covers most of these requirements. It provides the
same functionality and data types that are found in the GLSL language plus additional
useful features such as the matrix transformations, quaternions, data packing, etc. The
only drawback is that the library does not provide any 2D or 3D objects. Therefore, the
application will have to implement these as needed.

5.1.4 Signal Input Module

The EEG data is required by the application in order to produce actual results. The
problem is that there are many file formats actively used, some of which are specific to
a single medical laboratory or recording equipment. However, there is an effort to create
single standard file format. The European Data Format (EDF) is an example of such effort.
This format stores electrode signals in form of data records which are time-continuous blocks
of samples. The electrode signal may consist of multiple data records and each data record
has specified start time. Therefore, the data records may not be contiguous, resulting in a
sparse recording. The format also provides additional information, such as duration of the
data record and duration of the whole file, maximum and minimum of the signal amplitude,
information about a patient, etc. [0].

The EDF format was chosen to be a primary source of EEG data because of its popu-
larity and versatility. However, the data format is not trivial to read. Because of this, an
already existing C library was used. The EDFIib* library supports not only the original
EDF format but also its extension EDF+ and derivations BDF and BDF+. The library
has also some limitations, such as that the files must be continuous. In other words, sparse
recordings are not supported. However, discontinuous files can be converted to continuous
files with EDFbrowser®. After opening a file in the EDF format, each signal can be read
individually as a stream. The signal input module then provides the data to the rest of the
application in an internal format.

5.1.5 Signal Processing Module

The signal processing module implements filters and transformations presented in Section
3.1. As discussed in that section, the discrete Fourier transform is usually implemented as
the fast Fourier transform. There are already many libraries implementing FFT. One such
library is Kiss FFTS and it was chosen due to its simplicity, compact size, and benevolent
license. However, no simple library could be found that implements FIR filters. It was
decided the few filters that are necessary will be implemented anew, rather than including
large digital signal processing DSP library with lots of dependencies. Section 6.2 provides
implementation details for these filters.

Shttp://glm.g-truc.net/0.9.6/index.html
“http://www.teuniz.net/edflib/
Shttp://www.teuniz.net/edfbrowser/
Shttp://sourceforge.net/projects/kissfft/

24

http://glm.g-truc.net/0.9.6/index.html
http://www.teuniz.net/edflib/
http://www.teuniz.net/edfbrowser/
http://sourceforge.net/projects/kissfft/

5.1.6 Rendering System

The rendering system provides a necessary functionality to produce a visual output. It is
the most complex part of application and can be further divided into:

e General rendering support for OpenGL primitives
e 3D mesh object rendering support

e Electrode visualization

e EEG data visualization

The whole rendering system is hardware accelerated in order to provide a good perfor-
mance. The hardware acceleration is provided by the OpenGL API and graphics pipeline
introduced in Section 3.3. Because of that, a shader program is needed for each rendering
task. The implementations details of shader programs are discussed in Section 6.4.

A Unishader” library is used to load and utilize the shader programs. The Unishader
is previous work by author of this thesis that creates an automatized wrapper around
OpenGL focusing on the shader support. It greatly simplifies the setup and rendering
using shader programs. For example, it can automatically query a shader variable type and
use appropriate functions, compile and link programs when needed, perform configuration
checks, and manage GPU resources. It also helps to keep OpenGL context in a valid state,
which is a non trivial task that requires tracking of all the performed operations.

5.1.7 Animation System

The animation system prepares the EEG data for visualization. The system resembles a
media player that can play, pause and rewind the content, in this case EEG data. However,
the amplitude of signal still needs to be somehow transformed into visual information. It
was decided that the color of electrode will be used to represent the amplitude. The green
color is used for zero amplitude. The maximum positive amplitude is represented by red
and negative amplitude by blue color. The resulting gradient is shown in Figure 5.1. If no
signal is assigned to the electrode it remains gray. A purple color is used if there is not
enough data available. The section 6.5 describes the conversion of signal data to the color
in more detail.

Figure 5.1: Electrode color gradient

"https://github.com/BetaRavener/UniShader

25

https://github.com/BetaRavener/UniShader

Chapter 6

Implementation

This chapter provides more details about significant algorithms and methods used during
development of application. The information provided here is still at some level of abstrac-
tion so that the algorithms can be understood without knowledge of a specific programming
language.

6.1 Electrode Placement

It is possible to use a custom layout and electrode labels by importing Electrode map
file. The structure of file is simple with a single line header as a first line that is used to
check compatibility. The rest of the file are tuples of an electrode name, a 2D position, and
a 3D position. Each tuple specifies a single electrode. If an electrode position is unknown
or was not supplied, it may be omitted by using * . An example of such file is shown in
Listing 6.1.

Electrode map file v100
AF1 —5.91481 30.148 16.8014 24.7601 98.6503
AF10 29.3892 40.4509 =
AF2 5.9148 30.148 —17.1713 24.3079 98.5821

Listing 6.1: Electrode map file example

If there is a file default.elmap present inside electrodes folder during the application
startup, it will be used to load electrode positions. Otherwise, electrodes will be named
according to the 10-10 electrode placement system presented in Section 2.2.3 and 2D posi-
tions will be generated by program but no 3D positions will be available because automatic
3D placement is not supported. The 2D layout tries to resemble those found in scientific
papers. The 3D positions may be additionally loaded from .obj file. The objects inside
this file must be named after electrodes so mapping can be made. The shape of the object
doesn’t matter as long as the object’s center of gravity is in desired position. The Figure
6.1 illustrates this process using Autodesk 3ds Max.

1. The brain model that is used in application is imported to 3ds Max.

2. The model of brain is then fitted by a model of skull' that provides features necessary
for electrode placement, such as nassion, inion, and auricular points.

'The model of skull was obtained from http://www.sharecg.com/get_file.php?upload_file_id=
437874PSID=7e83ca0fc9bc28c873e73£17939£7b13

26

http://www.sharecg.com/get_file.php?upload_file_id=43787&PSID=7e83ca0fc9bc28c873e73f17939f7b13
http://www.sharecg.com/get_file.php?upload_file_id=43787&PSID=7e83ca0fc9bc28c873e73f17939f7b13

3. The important contours are marked according to Section 2.2.3 and objects, in this
case boxes, are spaced evenly along the contours. The contour is obtained by slicing
the skull with a plane that passes through marked points.

4. The objects are named after the electrodes.

5. electrodes.obj file is exported from 3ds Max.

This file can be imported into application to provide 3D electrode positions.

2 Spacing Tool =

Figure 6.1: Electrode placement in 3ds Max

As mentioned before, the 2D layout can be generated by the application if the default
file was not found. This is done by following procedure:

1. A horizontal and a vertical line is created so that their middle points cross at a
coordinate space origin. Both lines have length of 1. The lines are evenly divided into
10 segments. The end of each segment represents an electrode position.

2. Two circles are created with center at the origin. First circle has a radius of 0.5 and
second has a radius of 0.4. Both circles are evenly divided into 19 segments. Again,
the end of each segment represents an electrode position.

3. 6 arcs are created by circumscribing circle to the 3 already defined points. The first
point is on the left side of the smaller circle, followed by a point on the vertical line,
and the last point is on the right side of the smaller circle. This is better described
by Figure 6.2. Each arc is then divided into 8 segments and an electrode is placed at
the end of each but last segment.

27

The result is the 2D layout centered at the origin and bounded by a square with a side
length of 1. The layout can be scaled as needed to prevent electrodes from overlapping
when rendered. Figure 6.5 shows the described layout rendered by the application.

Figure 6.2: Automatic 2D electrode placement

6.2 FIR Filters

As discussed in Section 3.1, the filtering is done by convolution of the input signal with a
filter’s impulse response. The filter’s impulse response is computed directly from the equa-
tions presented in Section 3.1.3. To implement convolution, a sliding window of predefined
length is first created. The order of the filter determines the length of the sliding window.
The sliding window moves over the signal and at each step it is filled by values it covers.
The values are then multiplied by the filter’s impulse response and window function coeffi-
cients. The values are summed and stored as a single element in a new, filtered sequence.
The process is illustrated by Figure 6.3.

However, there is a problem at the beginning of the input signal because there are not
enough values to fill the sliding window. This is solved by prepending the input sequence
with initial conditions. This is a short sequence which per-fills the sliding window with
values, so that first input sample can already produce an output sample. The conditions
are generated for each signal individually before it is processed. They may be just filled
with zeros, repeat the value at the edge of the signal, or copy the signal values in reversed
order. The choice usually depends on the type of the filter.

In order to test the implementation, the results were compared with MATLAB output.
First, a set of testing data was created in plain-text format. This data was then processed
by the implementation described here using multiple combinations of cut off frequencies,
window lengths and window functions. The output was stored in a new file and compared
to the output produced by MATLAB filters with the same configuration. The difference
between the two was only marginal and can be attributed to floating point errors.

28

Initial Conditions Original Signal

0 0 0 0 0 0 0 2 1 2 3 0 4 1 8 2 2 1

Fill 0 1 2 Sliding Window

Multiply |0.17 |0 2|065]|0.17 Window Function Coefficients

Multiply | 0.04 [-0.06| -0.2 | 0.4 | -0.2 | -0.06| 0.04 Filter Impulse Response

0 0 |(-0.01{-0.19| 0.08

Filtered Signal

Figure 6.3: Illustration of signal filtering

6.3 Graphical User Interface

The application user interface was created with emphasis on simplicity and clean look.
When the application is executed, only a main window appears. Its dominant element is
the chart view described in Section 6.4.2 and displayed in Figure 6.4. The main window
features only two more buttons for playing and rewinding the animation. The current
animation time is shown in the chart as a yellow line. Using a right mouse button over the
chart moves the line into the mouse position and sets the animation time accordingly. The
main window menu bar gives access to additional dialogs and windows:

Open signal file dialog provides interface for opening a file with data and listing avail-
able signals. The user then selects which records he wants to work with by moving
them into the second list. The labels used for records in the file may not conform
to names used for electrodes in the electrode placement system. To address this, the
user can assign the electrode to each recording manually. However, if the electrode
and data record labels match, an auto-assignment button can be used to pair them.
The electrode assignments can be exported to a file and imported later as needed.

Electrode map dialog allows importing and exporting electrode map files. It also allows
electrode positions to be set using .obj file as described in Section 6.1.

Filter dialog provides an interface to the signal filtering. It allows choosing between the
low pass and high pass filter and specifying the cutoff frequency, window function,
and length of the window. The dialog also provides feedback on progress in form of
a progress bar as the filtering operation can take a long time to finish.

Player settings dialog allows the animation settings to be modified. The gain factor
introduced in Section 6.5, refresh rate, and animation speed can be changed here. The

29

m
|

Figure 6.4: Chart view

user can also select the transformation used by animation and specify the frequency
range. Changes to this dialog are applied immediately to make it easier to experiment
with different values.

Electrode 2D and 3D view can be displayed, each in its own window. Both views can
be manipulated using mouse. The panning can be done by moving the mouse while
holding the right mouse button and using the scroll wheel the user can zoom in and
out. In the 3D view the user can also rotate the view by holding the left mouse
button. Figures 6.5 and 6.6 show the 2D and 3D view respectively.

30

2D electrade view

Figure 6.5: Electrode 2D view

3D electrode view

Figure 6.6: Electrode 3D view

31

6.4 Rendering System

All the rendering tasks are hardware accelerated using OpenGL in order to provide a
reasonable performance. Because OpenGL is only a low level API, a group of shader
programs had to be developed to provide required rendering support. The first shader
program allows shaded mesh objects to be rendered in a 3D space. A shader program that
is used for electrode visualization is described in Section 6.4.1. Another shader program
provides functionality to render signals in time domain using lines with custom thickness.
More details about this shader program are provided in Section 6.4.2. Finally, a general
purpose shader program for rendering 2D geometry is included that can be used to render
miscellaneous objects in orthogonal projection.

6.4.1 Electrode Visualization

The visual appearance of electrodes should resemble an illuminated sphere. Normally this
would be done by creating a mesh of the sphere that could be rendered the usual way.
However, in order to save memory and to demonstrate capabilities of shader programs, we
used a different approach. The input to the shader program consists only of a sphere center
position, a color, and a radius. The vertex shader passes the data unaltered to geometry
shader. The geometry shader then generates a triangle fan around the center position that
is always directed towards the camera. The number of triangles in the fan is variable and
when high enough, the fan starts to resemble a circle. The result is then passed to the
fragment shader that applies Phong shading. The shading gives a 3D effect to the circle
which now looks like a sphere. Figure 6.7 illustrates the described rendering process.

Vertex Data
i aRd Geometry
Color] Shader
Radius 10

Fragment_>
Shader

Figure 6.7: Electrode rendering process

6.4.2 Chart View

The chart view is used primarily to display EEG signals in a time domain. The view can
be zoomed horizontally to control displayed duration. A vertical zoom is also supported
so that the number of signals displayed in the view can be changed. However, the amount
of data from an ordinary EEG measurement is fairly large. 10 minutes of recording at
sampling frequency of 200 Hz produces 120000 samples for each electrode. Rendering so
much data would be a very demanding task. Moreover, let’s consider a FullHD computer
monitor with horizontal resolution of 1920 pixels and a chart view that is fully zoomed out.
In this case, approximately 63 samples map to each monitor column, which is obviously
redundant.

A solution to this problem is a signal decimation. The most simple way to decimate a
signal is to take each N-th sample. However, this would produce very poor results. A better
method is to find maximum and minimum value from the samples that would map to the

32

same monitor column and render both of them. While this method is more computationally
demanding than just taking N-th sample, it is still much more efficient than rendering all
of the data and preserves the shape of the signal. The difference between an original signal
and a signal decimated using N-th sample and Min-Max method can be seen in Figure 6.8.
The decimated signal contains in both cases 100 times less samples than original signal. The
decimation was performed on the actual EEG data. To optimize even further, the signal
decimation is performed only when horizontal zoom changes and the result for that zoom
level is cached. This allows scrolling the view swiftly without any further preprocessing.
This approach can be also used for real-time recording when data are not static. A newly

Original N-th sample Min—Max

Figure 6.8: The original and decimated signals

recorded sample is simply appended to the signal and only last value of cache needs to be
updated.

The decimated signal can be finally rendered using a specialized shader program. The
main feature of this shader program is the support for rendering lines with specified thick-
ness. This must be done by generating two triangles for each line in a geometry shader
because OpenGL can draw only lines without thickness. However, this produces gaps
between lines as the slope changes. In order to render a smooth, continuous curve, the
geometry shader also creates capped line joins. Figure 6.9 illustrates the situation where
the points A, B, and C are the samples that define two lines. Furthermore, each signal has
designated area for drawing to prevent overlaps which are confusing when analyzing data.
A pixel that is produced outside of this area is discarded by fragment shader.

Join

R0

Figure 6.9: The lines with a thickness and a capped line join

The chart view is interconnected with Qt elements. When scrollbar is moved or the
window size changes, the view is scrolled or updated accordingly. Therefore, it was necessary

33

to somehow define the displayed section so that both the GUI and the rendering system
would be aware of what is displayed. At first this was done by calculating the number
of samples that are visible and scrolling was done by changing the index of first sample.
However, this approach was difficult to work with and had many limitations, such as that
sampling frequency each displayed signal had to be the same. Because of this, the viewed
section was later redefined as a time period. Scrolling is done by changing the beginning of
the time period and horizontal zoom is performed by altering the duration.

6.5 Animation of Electrodes

The electrodes are animated by changing their color over time. The electrode remains
gray if there is no signal assigned. Otherwise, a normalized value in range from -1 to 1
determines the color of the electrode using gradient presented in 5.1.7. A user can choose
between two animation modes. The first one produces normalized value directly by dividing
the amplitude of the signal at the current animation time by the maximum signal amplitude
range according to Equation 6.1. The second mode uses FFT to obtain the spectrum of
the signal around the current animation time. The user can specify frequency range that
will be analyzed. A frequency component with maximum amplitude over this range is then
selected and normalized. The electrode color turns purple if there is not enough data to
perform FFT. Because most of the time the signal amplitude is much lower than maximum
amplitude, a gain factor can be specified. The normalized value is multiplied by this factor
and the result is clamped back to the allowed range.
T — Tmin

Tnorm = (61)

Tmazxr — Tmin

34

Chapter 7

Conclusion and Future Directions

The goal of this thesis was to implement an application for visualization of brain activ-
ity measured by EEG. Visualization methods were expected to include two- and three-
dimensional brain models along with methods for graphical representation of brain signals,
and a graphical element for browsing EEG signals.

To better understand the problem, the thesis provided necessary information, beginning
with an introduction to a human brain and description of neuronal activity that occurs
within the brain. EEG, a method for measuring this activity, was presented in detail along
with information about electrode placement, which was required later for correct electrode
positioning. This work also provided information about basic methods of signal processing,
such as DFT and signal filtering, and presented modern techniques of data visualization
using GPU accelerated shader programs.

Following the theoretical background, a concept for a multi-platform application was
presented. The concept built upon previously analyzed applications created by other indi-
viduals or companies and defined the structure of the application. This concept was later
transformed into an implementation. Significant algorithms along with solutions to prob-
lems that arose during implementation were described. One such problem was that the
amount of data produced by EEG recording was large and had to be optimized in order to
be visualized with a reasonable performance. The performance had to be considered also
when designing the signal processing module as it encompasses demanding operations.

All rendering tasks were hardware accelerated by a GPU. Therefore, the host applica-
tion, which was executed on a CPU, had to be accompanied with a set of shader programs
that can render brain, electrodes, signal waveforms, and other visual elements. The hard-
ware acceleration allowed large data sets and models to be rendered in quality that would
not be possible with software rendering.

The work provides solid foundations for an application which can serve as an EEG
data analysis tool. The application combines the ability to browse signals with interactive
graphical visualizations and capability to replay measured data. A built-in signal processing
module allows data to be filtered directly by the application, which obviates the need for
another application and data reloading.

The application was tested under operating systems Windows 7 and 8, which were the
targeted platform. The application was also compiled, linked, and executed successfully
under Linux distribution Lubuntu. The signal processing methods were tested against
MATLAB implementation.

EEG, signal processing, and data visualization are broad subjects and as such provide
room for a lot of improvements. The application was formerly designed as both an online

35

and an offline data analyzer and visualizer. However, only the offline part was implemented
due to complications with real-time signal processing and unavailability of recording equip-
ment.

Therefore, the plans for the future development include the real-time input module and
modification of signal processing algorithms. A preliminary concept is to provide an inter-
face for creating a sequence of filters that will be applied to newly acquired samples. Once
the sample passes all the filters, it can be simply appended to existing data. However, such
filter sequence can create a considerable delay, which will prevent real-time visualization.
To address this issue, a minimum-phase FIR filters or IIR filters should be used.

Other than that, the application could benefit from a wider range of data processing
tools and visualization methods, such as frequency spectrum chart that could display a
result of FFT. There could be a window with a grid of charts, where each chart would
belong to a single signal and would display it’s frequency spectrum at the current animation
time. Such visualization would be very useful when analyzing EEG data for brain waves.
These new methods of visualization are important because they provide better insight into
analyzed data and highlight signal features.

The plans for future development also include a plugin system. Currently, the only
way to provide a new feature is to add source code to application and recompile. A bet-
ter approach would be to create the plugin system which could automatically load new
functionality from libraries at the application startup.

36

Bibliography

1]

2]

[10]

[11]

[12]

Brain Facts: A Primer On the Brain and Nervous System. Society for Neuroscience,
Washington, D.C., 4th edition, 2002.

Odile Benoit, Agnes Daurat, and Jacques Prado. Slow (0.7-2 hz) and fast (2-4 hz)
delta components are differently correlated to theta, alpha and beta frequency bands
during nrem sleep. Clinical Neurophysiology, 111(12):2103-2106, 2000.

Thomas F Collura. History and evolution of electroencephalographic instruments and
techniques. Journal of clinical neurophysiology, 10(4):476-504, 1993.

Henri Gouraud. Continuous shading of curved surfaces. IEEE Transactions on
Computers, 100(6):623-629, 1971.

David M Groppe, Stephan Bickel, Corey J Keller, Sanjay K Jain, Sean T Hwang,
Cynthia Harden, and Ashesh D Mehta. Dominant frequencies of resting human brain
activity as measured by the electrocorticogram. Neuroimage, 79:223-233, 2013.

Bob Kemp and Jesus Olivan. European data format 'plus’(edf+), an edf alike
standard format for the exchange of physiological data. Clinical Neurophysiology,
114(9):1755-1761, 2003. Online version
http://edfplus.info/specs/edfplus.html.

Andrea Kiibler, Boris Kotchoubey, Jochen Kaiser, Jonathan R Wolpaw, and Niels
Birbaumer. Brain—computer communication: Unlocking the locked in. Psychological
bulletin, 127(3):358, 2001.

Jian Le, Min Lu, Emiliana Pellouchoud, and Alan Gevins. A rapid method for
determining standard 10/10 electrode positions for high resolution eeg studies.
Electroencephalography and clinical Neurophysiology, 106(6):554—558, 1998.

Joachim H Nagel. Biopotential amplifiers. The Biomedical Engineering Handbook,
2000.

Jorge Baztarrica Ochoa. Eeg signal classification for brain computer interface
applications. FEcole Polytechnique Federale De Lausanne, 7:1-72, 2002.

International Organisation of Societies for Electrophysiological Technology.
Guidelines for digital eeg. American Journal of Electroneurodiagnostic Technology,
39(4):278-288, 1999.

Robert Oostenveld and Peter Praamstra. The five percent electrode system for
high-resolution eeg and erp measurements. Clinical neurophysiology, 112(4):713-719,
2001.

37

http://edfplus.info/specs/edfplus.html

[13] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-time signal
processing. Prentice Hall, Upper Saddle River, NJ, 1999.

[14] Bui Tuong Phong. Illumination for computer generated pictures. Communications of
the ACM, 18(6):311-317, 1975.

[15] John G. Proakis and Dimitris G. Manolakis. Digital signal processing: principles,
algorithms, and applications. Prentice Hall, Upper Saddle River, NJ, 1996.

[16] Babak A Taheri, Robert T Knight, and Rosemary L Smith. A dry electrode for eeg
recording. Electroencephalography and clinical neurophysiology, 90(5):376-383, 1994.

[17] Desney Tan and Anton Nijholt. Brain-computer interfaces and human-computer
interaction. In Brain-Computer Interfaces, pages 3—19. Springer, 2010.

[18] Michal Teplan. Fundamentals of eeg measurement. Measurement science review,
2(2):1-11, 2002.

[19] Woradorn Wattanapanitch, Michale Fee, and Rahul Sarpeshkar. An energy-efficient
micropower neural recording amplifier. IEEE Transactions on Biomedical Circuits
and Systems, 1(2):136-147, June 2007.

[20] Richard S. Wright. OpenGL Superbible: Comprehensive Tutorial and Reference.
Addison-Wesley, Upper Saddle River, NJ, 5th edition, 2011.

38

Appendix A

Content of DVD

This work contains a DVD with following structure:

bin/ folder with a self extracting archive containing compiled application for Windows
along with required libraries.

doc/ folder containing source code documentation generated by Doxygen.
latex/ folder containing IXTEX source codes for generating text of this thesis.

source/ folder containing source codes for building the application. Refer to the
included README.mmd for instructions on how to build the application.

The content of the archive with compiled application is following:

data/ folder containing EEG data in the EDF format for testing purposes.

electrodes/ folder which contains default.elmap specifying default electrode place-
ment and electrodes.obj providing 3D electrode positions.

licenses/ folder containing licenses for used libraries, EEG data and models.
models/ folder containing mesh models.
platforms/ folder with Qt libraries specific for Windows platform.

shaders/ folder with GLSL source codes that are compiled during run-time by the
application.

bav.exe — the application executable.
.dll files — dynamic libraries required by the application.

MANUALL.txt — short manual describing basic interaction with the application.

39

Appendix B

Image of Graphical User Interface

| Brain Activity Visualizer =

File Filter Settings Windows

v
<< =
< >
(| Open Signal File | Signal Filtering
E:/Programming/GitHub, yVisualizer, Filter
Type Lowpass -
Cutoff frequency 5,00 s
46 ~ A1 Assigned electrode
A7 A10 None Windows
A8 Al AL T Type Rectangular -
h9 > ||A12 Assign If length
Agsig a
B1 Al3 Half lengt 10 =
B10 A4 Clear
0%
B11 A15
B2 216 Clear all
B13 = A2 Auto assign g
B14 A3
B15 Ad Import assignment b : a
s v As | Player Settings :
< > Export assignment
Gain [100,00 =]
oK Cancel
Refresh rate 30,30
- Speed factor 1,000 =
| Electrode Mapper ? P
Transfoermation
Import Map Expart Map Type None o
Import 30 Positions Begin 0,00 s
Frequency select =
Importing new electrode map will remove all current assignments. End 0,00 >
OK Cancel

40

Appendix C

Signal Filtering Tests

The signal module which encompasses signal processing methods was tested against the
MATLAB software to check the validity of implementation. First, a random signal with
10000 samples was generated. The signal was then filtered by the testing executable
The testing executable is generated during build if the project was con-
figured with -DTEST_PROJ=true. The filtering was done in multiple configuration which are
listed in table below.

sigTest.exe.

Filter Window | Order | Cutoff frequency Filename
Low-pass | Hamming 10 5 lowbHammb
Low-pass | Hamming 10 10 lowl0Hamm5
Low-pass | Hamming 20 5 lowbHamm10
Low-pass | Hamming 20 10 lowl0Hamm10
Low-pass | Blackman 10 5 low5Blackb
Low-pass | Blackman 10 10 low10Black5b
Low-pass | Blackman 20 5 lowb5Black10
Low-pass | Blackman 20 10 low10Black10
High-pass | Hamming 10 50 high50Hammb
High-pass | Hamming 10 100 high100Hamm5
High-pass | Hamming 20 50 high50Hamm10
High-pass | Hamming 20 100 high100Hamm10
High-pass | Blackman 10 50 high50Black5
High-pass | Blackman 10 100 high100Blackb
High-pass | Blackman 20 50 high50Black10
High-pass | Blackman 20 100 high100Black10

Each configuration produced single output file with the filtered signal. This file was
read by a MATLAB script and compared to the result of filtering using MATLAB filters in
the same configuration. The maximum and average deviation was calculated and printed
to output. The difference between signals filtered by testing executable and MATLAB in

Table C.1: Tested filter configurations

all configurations was marginal and can be attributed to floating point errors.

41

Appendix D

Code metrics

Files 89
Lines of code 7517
Percent of comments 11.5%
Statements 3436
Class definitions 47
Methods per class 7.98
Statements per method 5.2
Maximum depth 6
Average depth 1.12

Table D.1: Code metrics

42

	Introduction
	Human Brain
	Brain Biology
	Electroencephalography

	Approaches to Signal Processing and Visualization
	Signal Processing
	Data Visualization Methods
	Programmable Graphics Pipeline

	Overview of Existing Solutions
	Emotiv
	Svarog
	SigViewer
	Comparison of Solutions

	Application Concept
	Logical Division

	Implementation
	Electrode Placement
	FIR Filters
	Graphical User Interface
	Rendering System
	Animation of Electrodes

	Conclusion and Future Directions
	Content of DVD
	Image of Graphical User Interface
	Signal Filtering Tests
	Code metrics

