
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

QUERY LANGUAGE FOR BIOLOGICAL DATABASES

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE TOMÁŠ BAHUREK
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

DOTAZOVACÍ JAZYK PRO DATABÁZE
BIOLOGICKÝCH DAT
QUERY LANGUAGE FOR BIOLOGICAL DATABASES

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE TOMÁŠ BAHUREK
AUTHOR

VEDOUCÍ PRÁCE Ing. TOMÁŠ MARTÍNEK, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt
S rapidně stoupajícím množstvím biologických dat stoupá i důležitost biologických databází.
U těchto databází je nezbytné objevování znalostí (nalezení spojitostí, které nebyli známé
v čase vkládání dat). K získávání znalostí z biologických databází je nutná konstrukce
složitých SQL dotazů, což vyžaduje pokročilou znalost SQL a použitého databázového sché-
matu. Biologové většinou tyto znalosti nemají, proto je potřeba nástroje, který by poskytl
intuitivnějšího rozhrání pro tyto databáze. Tato práce navrhuje ChQL, intuitivní dota-
zovací jazyk pro databázi biologických dat Chado. ChQL umožňuje biologům poskládat
dotaz za použití pojmů, které dobře znají bez nutnosti znát SQL nebo použité schéma.
Tato práce implementuje aplikaci pro dotazování databáze Chado pomocí ChQL. Webové
rozhrání provede uživatele procesem zostavení věty jazyka ChQL. Aplikace přeloží tuto větu
do SQL dotazu, odešle jej do databáze Chado a zobrazí vrácená data v tabulce. Výsledky
jsou vyhodnoceny testováním dotazů na reálných datech.

Abstract
With rising amount of biological data, biological databases are becoming more important
each day. Knowledge discovery (identification of connections that were unknown at the
time of data entry) is an essential aspect of these databases. To gain knowledge from these
databases one has to construct complicated SQL queries, which requires advanced knowledge
of SQL language and used database schema. Biologists usually don’t have this knowledge,
which creates need for tool, that would offer more intuitive interface for querying biological
databases. This work proposes ChQL, an intuitive query language for biological database
Chado. ChQL allows biologists to assemble query using terms they are familiar without
knowledge of SQL language or Chado database schema. This work implements application
for querying Chado database using ChQL. Web interface guides user through process of
assembling sentence in ChQL. Application translates this sentence to SQL query, sends it
to Chado database and displays returned data in table. Results are evaluated by testing
queries on real data.

Klíčová slova
Dotazovací jazyk, Databáze biologických dat, Chado, Gene ontology, Sequence Ontology,
Vaadin

Keywords
Query Language, Biological Database, Chado, Gene ontology, Sequence Ontology, Vaadin

Citace
Tomáš Bahurek: Query language for biological databases, diplomová práce, Brno, FIT VUT
v Brně, 2015

Query language for biological databases

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Tomáše Martínka, Ph.D.

. .
Tomáš Bahurek
May 24, 2015

Poděkování
Ďakujem Ing. Tomášovi Martínkovi, Ph.D. za podnetné rady pri vypracovávaní tejto práce.

c© Tomáš Bahurek, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě infor-
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 5

2 Genome Annotation 7
2.1 Gene Ontology . 7
2.2 Sequence Ontology . 7
2.3 GFF3 format . 8

3 State of the Art 12
3.1 Biological databases . 12
3.2 Biological querying tools . 13

4 Chado 18
4.1 Modules . 18

4.1.1 General Module . 19
4.1.2 Sequence Module . 20
4.1.3 CV Module . 29

5 Design 31
5.1 Schema and interface . 31
5.2 Solution proposal . 32

5.2.1 Creation of queries . 32
5.3 Language Proposal . 35

5.3.1 Functions and operators . 35
5.3.2 Language definition . 37
5.3.3 Translation to SQL . 39

6 Implementation 49
6.1 Web Interface . 49
6.2 Core Implementation . 49

7 Evaluation and Results 54
7.1 Data . 54
7.2 Experiments . 55

7.2.1 Recreating 4 template queries in ChQL language 55
7.2.2 Manual vs automatic queries . 60
7.2.3 Data statistics . 61
7.2.4 Performance . 61

8 Conclusion 65

1

A Contents of USB flash drive 67

B SQL queries 68
B.1 SELECT clause for different feature types 68
B.2 Manually created SQL queries . 69

B.2.1 Element inside promoter of gene . 69
B.2.2 Element near transcription factor . 70
B.2.3 Element intersect nth intron of gene 70
B.2.4 Element inside gene . 71

B.3 ChQL translated to SQL . 71
B.3.1 Element inside promoter of gene . 71
B.3.2 Element near transcription factor . 72
B.3.3 Element intersect nth intron of gene 72
B.3.4 Element inside gene . 73

C Data fixes 75
C.1 Inconsistent sequence ids . 75
C.2 Bad reference to source featue . 75

2

List of Figures

2.1 Structure of gene [4] . 10

3.1 Summary database schema for UCSC Genome Browser [6] 13

4.1 Modules in Chado and their relationships [8] 19
4.2 Tables in Feature Module [8] . 22
4.3 Interbase sequence coordinates [8] . 24
4.4 Example of featureloc graph [8] . 25

5.1 Finite State Machine accepting ChQL Level 1 38

6.1 Web interface for creating sentence in ChQL language 50
6.2 Query results in web interface . 50
6.3 UML diagram for ChQL Query Builder . 53

7.1 Number of features on chromosomes (per 10 Mb chunks) 62

3

List of Tables

2.1 Tags in GFF3 format [4] . 11

4.1 Sequence ontology terms in Chado [8] . 20

5.1 Parameters of ChQL language . 37
5.2 Grammar for ChQL Level 2 . 40
5.3 Words of ChQL with relationship to increasing wid (word id) 41
5.4 Aliases for tables based on context . 41
5.5 Near parameters: values of start and end variables 48

7.1 Triplexes in promoter of gene ”C1orf170“ . 56
7.2 Quadruplexes near transcription factors . 58
7.3 Quadruplexes in first intron of gene . 59
7.4 Triplexes in gene ”RERE“ . 60
7.5 Types of features in database . 61
7.6 Runtimes of queries searching for triplex in different feature types. 63

4

Chapter 1

Introduction

Considering the vast amount of available biological data, biological databases are one of the
most important tools used by biologists. These databases are usually used for knowledge
discovery. They are queried to gain some new information, which was not known at time of
data entry.

Typical questions asked by biologists are :

• Which genes have promoters containing specified element (triplex, quadruplex, palin-
drome, transcription factor, etc.)?

• How often can be a specified DNA structure (triplex, quadruplex, palindrome, etc.)
found near given transcription factor (for example TP53)?

• Which nonB DNA structures are inside gene with specific gene ID (especially in human
genome)?

It can be quite complicated to write such queries in SQL, especially for biologists who
are often not familiar with this language. In their queries biologists often use terms like
promoter, intron, exon, transcription factor and so on. Some of these terms are not exactly
identifiable, for example: promoter can have variable length. Sometimes promoter before
gene is taken into account, other times promoter before specific transcript is of interest.
Adverbs describing positional relationships are ambiguous as well (What is the distance
threshold to consider something being near? Does it still count if objects are overlapping
as well?). Biologists are often interested, if a specific element exists near other element, if
they are overlapping, or if one element is part of other element.

To summarize, there are two problems:

1. Biologists need a more intuitive way to create queries than SQL.

2. Biologists use ambiguous terms in their queries.

This work proposes solution to these problems in form of ChQL. ChQL (Chado Query
Language) is a language for querying Biological database Chado. This language uses terms
biologists are familiar with, while leaving the unknown technical terms in the background.
Wherever possible it uses default values for ambiguous terms with the option of changing
them.

Instead of making the user typing words in ChQL, we created a web interface that
navigates user through process of assembling sentence in this language. Interface lets user
choose next word from the menu, but offers only words that are syntactically correct in

5

current context. It also lets user send the query only if current sentence is completed. This
is to avoid situation when user makes a typo or syntax error and has to figure out how to fix
it. When user completes sentence in ChQL, application translates it to SQL query, which
it sends to database server and displays returned results in a table.

This is work contains 8 chapters. Chapter 2 explains gene ontology, sequence ontology
and GFF3 file format. Chapter 3 shows some of current database schemas for biological
data and querying tools for biological databases. Chapter 4 explains Chado and its most
relevant modules. Chapter 5 proposes design of a language for biological databases including
its translation to SQL. Chapter 6 describes implementation of this translation and entire
application. Chapter 7 evaluates results and performance of queries translated to SQL.

6

Chapter 2

Genome Annotation

2.1 Gene Ontology

The Gene Ontology (GO) project [1] is a collaborative effort to address the need for consis-
tent descriptions of gene products across databases. Founded in 1998, the project began as
a collaboration between three model organism databases: FlyBase (Drosophila), the Sac-
charomyces Genome Database (SGD) and the Mouse Genome Database (MGD). The GO
Consortium (GOC) has since grown to incorporate many databases, including several of the
world’s major repositories for plant, animal, and microbial genomes.

The GO project has developed three structured, controlled vocabularies (ontologies) that
describe gene products in terms of their associated biological processes, cellular components
and molecular functions in a species-independent manner. There are three separate aspects
to this effort: first, the development and maintenance of the ontologies themselves; second,
the annotation of gene products, which entails making associations between the ontologies
and the genes and gene products in the collaborating databases; and third, the development
of tools that facilitate the creation, maintenance and use of ontologies.

The use of GO terms by collaborating databases facilitates uniform queries across all
of them. Controlled vocabularies are structured so they can be queried at different levels;
for example, users may query GO to find all gene products in the mouse genome that
are involved in signal transduction, or zoom in on all receptor tyrosine kinases that have
been annotated. This structure also allows annotators to assign properties to genes or gene
products at different levels, depending on the depth of knowledge about that entity.

2.2 Sequence Ontology

The Sequence Ontology [4] is a set of terms and relationships used to describe the features
and attributes of biological sequence. SO includes different kinds of features which can be
located on the sequence. Biological features are those which are defined by their disposition
to be involved in a biological process. Examples are binding_site and exon. Biomate-
rial features are those which are intended for use in an experiment such as aptamer and
PCR_product. There are also experimental features which are the result of an experiment.
SO also provides a rich set of attributes to describe these features such as ”polycistronic“
and ”maternally imprinted“ .

The Sequence Ontologies are provided as a resource to the biological community. They
have the following uses:

7

• To provide for a structured controlled vocabulary for the description of primary anno-
tations of nucleic acid sequence, e.g. the annotations shared by a DAS server (BioDAS,
Biosapiens DAS), or annotations encoded by GFF3.

• To provide for a structured representation of these annotations within databases. Were
genes within model organism databases to be annotated with these terms then it would
be possible to query all these databases for, for example, all genes whose transcripts
are edited, or trans-spliced, or are bound by a particular protein.

• To provide a structured controlled vocabulary for the description of mutations at both
the sequence and more gross level in the context of genomic databases.

2.3 GFF3 format

GFF3 is a standard file format for storing genomic features in a text file. GFF stands for
Generic Feature Format. The description of GFF 3 format has been summarized from [4].

Description of the Format

GFF3 files are nine-column, tab-delimited, plain text files. Literal use of tab, newline,
carriage return, the percent (%) sign, and control characters must be encoded using RFC
3986 Percent-Encoding; no other characters may be encoded. Backslash and other ad-hoc
escaping conventions that have been added to the GFF format are not allowed. The file
contents may include any character in the set supported by the operating environment,
although for portability with other systems, use of Latin-1 or Unicode are recommended.

Note that unescaped spaces are allowed within fields, meaning that parsers must split
on tabs, not spaces. Use of the ”+“ (plus) character to encode spaces is deprecated from
early versions of the spec and is no longer allowed.

Undefined fields are replaced with the ”.“ character.

Column 1: ”seqid“

The ID of the landmark used to establish the coordinate system for the current feature.

Column 2: ”source“

The source is a free text qualifier intended to describe the algorithm or operating procedure
that generated this feature. Typically this is the name of a piece of software, such as

”Genescan“ or a database name, such as ”Genbank.“ In effect, the source is used to extend
the feature ontology by adding a qualifier to the type creating a new composite type that
is a subclass of the type in the type column.

Column 3: ”type“

The type of the feature (previously called the ”method“). This is constrained to be either:

• a term from the ”lite“ version of the Sequence Ontology - SOFA

• a term from the full Sequence Ontology - it must be an is_a child of sequence_feature
(SO:0000110)

8

• a SOFA or SO accession number.

The latter alternative is distinguished using the syntax SO:000000.

Columns 4 & 5: ”start“ and ”end“

The start and end coordinates of the feature are given in positive 1-based integer coordinates,
relative to the landmark given in column one. Start is always less than or equal to end. For
features that cross the origin of a circular feature (e.g. most bacterial genomes, plasmids,
and some viral genomes), the requirement for start to be less than or equal to end is satisfied
by making end = the position of the end + the length of the landmark feature.

For zero-length features, such as insertion sites, start equals end and the implied site is
to the right of the indicated base in the direction of the landmark.

Column 6: ”score“

The score of the feature, a floating point number. As in earlier versions of the format, the
semantics of the score are ill-defined. It is strongly recommended that E-values be used for
sequence similarity features, and that P-values be used for ab initio gene prediction features.

Column 7: ”strand“

The strand of the feature. + for positive strand (relative to the landmark), - for minus
strand, and . for features that are not stranded. In addition, ? can be used for features
whose strandedness is relevant, but unknown.

Column 8: ”phase“

For features of type ”CDS“ , the phase indicates where the feature begins with reference to
the reading frame. The phase is one of the integers 0, 1, or 2, indicating the number of
bases that should be removed from the beginning of this feature to reach the first base of
the next codon. In other words, a phase of ”0“ indicates that the next codon begins at the
first base of the region described by the current line, a phase of ”1“ indicates that the next
codon begins at the second base of this region, and a phase of ”2“ indicates that the codon
begins at the third base of this region. This is NOT to be confused with the frame, which
is simply start modulo 3.

For forward strand features, phase is counted from the start field. For reverse strand
features, phase is counted from the end field.

The phase is REQUIRED for all CDS features.

Column 9: ”attributes“

A list of feature attributes in the format tag=value. Multiple tag=value pairs are separated
by semicolons. URL escaping rules are used for tags or values containing the following
characters: ”,=;“ . Spaces are allowed in this field, but tabs must be replaced with the %09
URL escape. Attribute values do not need to be and should not be quoted. The quotes
should be included as part of the value by parsers and not stripped.

These tags have predefined meanings. See table 2.1

9

Figure 2.1: Structure of gene [4]

The Canonical Gene

Below is description of the representation of a protein-coding gene in GFF3. To illustrate
how a canonical gene is represented, consider Figure 2.1. This indicates a gene named
EDEN extending from position 1000 to position 9000. It encodes three alternatively-spliced
transcripts named EDEN.1, EDEN.2 and EDEN.3, the last of which has two alternative
translational start sites leading to the generation of two protein coding sequences.

There is also an identified transcriptional factor binding site located 50 bp upstream
from the transcriptional start site of EDEN.1 and EDEN2.

Here is how this gene should be described using GFF3:
##gf f−ve r s i on 3
##sequence−r eg ion ctg123 1 1497228
ctg123 . gene 1000 9000 . + . ID=gene00001 ;Name=EDEN
ctg123 . TF_binding_site 1000 1012 . + . ID=tfbs00001 ; Parent=gene00001
ctg123 . mRNA 1050 9000 . + . ID=mRNA00001 ; Parent=gene00001 ;Name=EDEN.1
ctg123 . mRNA 1050 9000 . + . ID=mRNA00002 ; Parent=gene00001 ;Name=EDEN.2
ctg123 . mRNA 1300 9000 . + . ID=mRNA00003 ; Parent=gene00001 ;Name=EDEN.3
ctg123 . exon 1300 1500 . + . ID=exon00001 ; Parent=mRNA00003
ctg123 . exon 1050 1500 . + . ID=exon00002 ; Parent=mRNA00001 ,mRNA00002
ctg123 . exon 3000 3902 . + . ID=exon00003 ; Parent=mRNA00001 ,mRNA00003
ctg123 . exon 5000 5500 . + . ID=exon00004 ; Parent=mRNA00001 ,mRNA00002 ,mRNA00003
ctg123 . exon 7000 9000 . + . ID=exon00005 ; Parent=mRNA00001 ,mRNA00002 ,mRNA00003
ctg123 . CDS 1201 1500 . + 0 ID=cds00001 ; Parent=mRNA00001 ;Name=edenprote in . 1
ctg123 . CDS 3000 3902 . + 0 ID=cds00001 ; Parent=mRNA00001 ;Name=edenprote in . 1
ctg123 . CDS 5000 5500 . + 0 ID=cds00001 ; Parent=mRNA00001 ;Name=edenprote in . 1
ctg123 . CDS 7000 7600 . + 0 ID=cds00001 ; Parent=mRNA00001 ;Name=edenprote in . 1
ctg123 . CDS 1201 1500 . + 0 ID=cds00002 ; Parent=mRNA00002 ;Name=edenprote in . 2
ctg123 . CDS 5000 5500 . + 0 ID=cds00002 ; Parent=mRNA00002 ;Name=edenprote in . 2
ctg123 . CDS 7000 7600 . + 0 ID=cds00002 ; Parent=mRNA00002 ;Name=edenprote in . 2
ctg123 . CDS 3301 3902 . + 0 ID=cds00003 ; Parent=mRNA00003 ;Name=edenprote in . 3
ctg123 . CDS 5000 5500 . + 1 ID=cds00003 ; Parent=mRNA00003 ;Name=edenprote in . 3
ctg123 . CDS 7000 7600 . + 1 ID=cds00003 ; Parent=mRNA00003 ;Name=edenprote in . 3
ctg123 . CDS 3391 3902 . + 0 ID=cds00004 ; Parent=mRNA00003 ;Name=edenprote in . 4
ctg123 . CDS 5000 5500 . + 1 ID=cds00004 ; Parent=mRNA00003 ;Name=edenprote in . 4
ctg123 . CDS 7000 7600 . + 1 ID=cds00004 ; Parent=mRNA00003 ;Name=edenprote in . 4

10

ID Indicates the ID of the feature. IDs for each feature must be unique
within the scope of the GFF file. In the case of discontinuous
features (i.e. a single feature that exists over multiple genomic
locations) the same ID may appear on multiple lines. All lines
that share an ID collectively represent a single feature.

Name Display name for the feature. This is the name to be displayed to
the user. Unlike IDs, there is no requirement that the Name be
unique within the file.

Alias A secondary name for the feature. It is suggested that this tag
be used whenever a secondary identifier for the feature is needed,
such as locus names and accession numbers. Unlike ID, there is no
requirement that Alias be unique within the file.

Parent Indicates the parent of the feature. A parent ID can be used to
group exons into transcripts, transcripts into genes, an so forth. A
feature may have multiple parents. Parent can *only* be used to
indicate a part_of relationship.

Target Indicates the target of a nucleotide-to-nucleotide or protein-to-
nucleotide alignment. The format of the value is ”target_id start
end [strand]“ , where strand is optional and may be ”+“ or ”-“ . If
the target_id contains spaces, they must be escaped as hex escape
%20.

Gap The alignment of the feature to the target if the two are not
collinear (e.g. contain gaps). The alignment format is taken from
the CIGAR format.

Derives_from Used to disambiguate the relationship between one feature and
another when the relationship is a temporal one rather than a
purely structural ”part_of“ one. This is needed for polycistronic
genes.

Note A free text note.
Dbxref A database cross reference.

Ontology_term A cross reference to an ontology term.
Is_circular A flag to indicate whether a feature is circular.

Table 2.1: Tags in GFF3 format [4]

11

Chapter 3

State of the Art

3.1 Biological databases

BioSQL

BioSQL is a generic unifying relational schema for storing sequences and sequence anno-
tations from different sources, for instance Genbank or Swissprot. It is also well suited to
work with phyloninformatics and phylogenetic trees. BioSQL is meant to be a common data
storage layer supported by all the different Bio* projects, Bioperl, Biojava, Biopython, and
Bioruby. Entries stored through an application written in, say, Bioperl could be retrieved
by another written in Biojava [10].

BioSQL is quite focused and is concerned with:

• Sequence

• Sequence annotation

• Phylogeny

• Publications

Extension modules extend the core schema and are optional unless specifically needed
for storing or retrieving the respective data types the module accommodates. At present,
there is one extension module, PhyloDB, for storing phylogenetic trees and taxonomies.
Supported RDBMs are at present PostgreSQL, MySQL, Oracle, HSQLDB, and Apache
Derby for the core schema. The current release of the BioSQL core schema is v1.0.1. made
in August 2008 [11].

Chado

Chado is a relational database schema now being used to manage biological knowledge for
a wide variety of organisms, from human to pathogens, especially the classes of information
that directly or indirectly can be associated with genome sequences or the primary RNA and
protein products encoded by a genome. Biological databases that conform to this schema
can interoperate with one another, and with application software from the Generic Model
Organism Database (GMOD) toolkit. Chado is distinctive because its design is driven
by ontologies. The use of ontologies (or controlled vocabularies) is ubiquitous across the
schema, as they are used as a means of typing entities. The Chado schema is partitioned

12

into integrated subschemas (modules), each encapsulating a different biological domain, and
each described using representations in appropriate ontologies [8].

3.2 Biological querying tools

UCSC Genome Browser

The UCSC Genome Browser was created to provide a graphical viewpoint on the very large
amount of genomic sequence produced by the Human Genome Project. The client–server
model employed by the UCSC Genome Browser has the advantage to the user of offering
access to a very large database of information in a uniform interface with no overhead of
importing datasets. The footprint of the data underlying the Genome Browser currently
amounts to 7.7 Terabytes (TB) of data in flat files (primarily sequence) and 3.3 TB of tables
in a MySQL database (annotations).

Database Structure

Figure 3.1: Summary database schema for UCSC Genome Browser [6]

The construction of a basic genome browser on a new assembly begins with assigning a
name. Because assemblies are given a variety of names by the different sequencing centers
and no standard nomenclature exists across all organisms, the UCSC database has stan-
dardized on a naming system that is internally consistent, though it has evolved. The first
assembly for an organism is given a name in the format gggSss# using the first three charac-
ters of the genus and species names, with subsequent assemblies incrementing the number.
For example, the cow, Bos taurus, currently has assemblies bosTau2 through bosTau6 on
the public site (bosTau1 having been archived).

Two other types of names continue to be used for organisms whose initial assemblies
predate the introduction in 2003 of the six-letter naming scheme. Human assemblies are
called hg##, because the database and Genome Browser began when UCSC was generating
the human assemblies in-house and the human genome was the only sequence represented.
The next several organisms to have browsers were given two-letter names in the format,
gs#, based on scientific names, until the two-character namespace proved inadequate; mouse
(Mus musculus) and rat (Rattus norvegicus) are mm# and rn#, respectively.

13

Data for each organism are stored in a separate database in the MySQL database system,
which is built in a modular design. Each genome assembly has a database named with
the genome name as described above (hg#, gs# or gggSss#). This database contains all
the assembly-specific tables needed to create a display in the browser graphic, including
individual tables for annotation datasets and several tables of metadata describing display
parameters, configuration options, etc., specific to the assembly (see Figure 3.1).

Several additional databases contain information used by more than one assembly (e.g.
data needed to show all the organisms in a pulldown menu). Thus, the hgcentral database
contains metadata about the assemblies, including genome name, scientific name, location
of the .2 bit file, official assembly name and date and other information. Similarly, the
hgFixed database (not shown in Figure 3) contains global information, such as restriction
enzyme recognition sites [6].

UCSC Table Browser

The UCSC Table Browser provides text-based access to a large collection of genome assem-
blies and annotation data stored in the Genome Browser Database. A flexible alternative
to the graphical-based Genome Browser, this tool offers an enhanced level of query support
that includes restrictions based on field values, free-form SQL queries and combined queries
on multiple tables. Output can be filtered to restrict the fields and lines returned, and may
be organized into one of several formats, including a simple tab-delimited file that can be
loaded into a spreadsheet or database as well as advanced formats that may be uploaded
into the Genome Browser as custom annotation tracks.

The UCSC Table Browser data retrieval tool is built on top of the Genome Browser
Database, a set of MySQL relational databases that each store sequence and annotation
data for one genome assembly (1). Tables within the databases may be differentiated by
whether the data are based on genomic start-stop coordinates or are independent of position.

Non-positional tables contain data not tied to genomic location. Some non-positional
tables relate internal numeric mRNA IDs to extended information such as author, tissue or
keyword. Other ‘meta’ tables contain information about the structure of the database itself
or describe external files containing sequence data.

The databases contain optimizations to support range-based queries from the Table
Browser and Genome Browser. Smaller tables are indexed on a few critical fields and the
data are presorted prior to loading into the database. With larger tables, the data are
separated by chromosome into smaller tables, and a binning scheme is implemented on the
larger chromosome tables.

In some situations graphical browser may not be optimal tool for working with genomic
data. User might wish to view the raw data or examine the relationships between the
tables underlying the browser. It is often desirable to filter the display output with greater
restrictions than are offered by the Genome Browser, or to output the data in a text-based
format that can be imported into other programs.

The UCSC Table Browser provides a powerful and flexible alternative for querying and
manipulating the annotation tables within the Genome Browser Database. Using Table
Browser form-based or free-form queries, one may quickly and easily extract subsets of the
database, in many cases eliminating the need to set up a local copy of the MySQL database.
By configuring the tool’s output options, the user can generate a custom annotation track
that may be automatically added to the graphical browser session, or create a file in one of
several output formats that can be used as input into other programs. The Table Browser

14

can also display basic statistics calculated over a selected subset of data.

Basic Data Queries

The Table Browser can be used to retrieve a specific subset of records from a table in a
selected genome assembly. The user specifies a position of interest within the assembly
(or the keyword ‘genome’ to access data from the entire assembly), selects a table, and
then chooses the‘Get all fields’ option. The Table Browser displays the query results in a
tab-delimited text format that can be easily downloaded and imported into text editors,
spreadsheets and other databases, or may be further processed by the user’s own scripts.
For example, a user who is examining alternative splicing in the human genome might be
interested in downloading the indices of all mRNA sequences that align to a chromosomal
region containing a particular gene. One would set the Table Browser to the gene position,
select the chrN_mrna positional table, and then click the Get all fields button. This query
produces a tab-delimited list of names and positions of mRNAs that align to the specified
location.

Advanced queries

Although basic data retrieval is useful, the real power of the Table Browser lies in the ability
to filter and refine queries, intersect query results from different tables and configure the
resulting output. These options may be accessed through the Table Browser’s set of ad-
vanced query features. The available query formats and output options vary by table. Many
apply only to tables in which the data is position-oriented, thus preserving the database
distinction between positional and non-positional tables. Position-based tables may be fur-
ther differentiated by the types of data they characterize. For example, alignment tables
describe a block structure for each element, but other tables may describe only a starting
and ending position. Still others may specify translation start and end positions as well as
transcription start and end points.

Filtering

The most flexible feature in the Table Browser is its filtering mechanism. The form-based
filter provides a straightforward interface for configuring simple SQL-based queries of the
data. By default, a Table Browser search retrieves all records for a specified coordinate
range or position. Using the filter, the user may set constraints on the values of some or all
of the fields within a table to restrict the set of records retrieved from the query range.

The text fields within the filter support wildcard pattern matching and multiple entries.
If any word or pattern within the text field matches the value, then the record meets the
constraint on that field. Numeric field comparisons support the operators <, >, and != (not
equal) and allow comparisons with ranges of numbers.

To satisfy the needs of advanced users who find the form-based filtering options to
be insufficient, the Table Browser also supports free-form queries allowing more complex
constraints, typically to relate two or more fields within the selected table. These queries,
which use SQL ’where’ clause syntax, can combine simple constraints with AND, OR and
NOT, using parentheses as needed for clarity. A basic free-form constraint consists of a field
name (or an arithmetic expression of numeric field names), a comparison operator and a
value.

15

For example, when searching for gene models in which a promoter region may be present,
the simple free-form query (txStart != cdsStart) on the refGene table will produce a list of
genes that have the expected 5’ untranslated region (UTR) upstream sequence. Note that
if the strand is negative, this will search for cases of 3’ UTR downstream sequence. In a
more complex version of the previous query, (txStart != cdsStart) AND (txEnd != cdsEnd)
AND (exonCount = 1) will return a list of single exon genes with both 5’and 3’ flanking
UTRs.

Multiple table comparisons

At times one may wish to compare the data between two tables to determine whether any
features have positions in common within the genome. The Table Browser provides a simple
interface offering the choice of several types of table comparisons based on feature positions.
One class of comparisons preserves the gene or alignment structure of the primary table,
resulting in output that describes the same type of feature as is shown in that table. Primary
table features are kept or discarded based on the amount of positional overlap with features
contained in the secondary table. The user controls the query output by specifying the
threshold of overlap: any, none or a percentage. For example, one might want to identify all
the spliced ESTs that align to a particular region in the Known Genes annotation track. The
user would select the location of interest in the Table Browser, choose the chrN_intronEst
table, and then proceed to the advanced query options. Intersecting the EST table with
the knownGene table results in the desired list. A second class of intersections and unions
compares the positions of table features one base position at a time. These queries return
only position ranges and do not preserve the structure of the primary table. A base-by-base
intersection of two tables will include the base in the output if the nucleotide position is
covered by at least one feature of both tables. In a union, the base position need only be
covered by the feature of one table.

Retrieving subregions of features

In addition to the SQL constraints on queries, the Table Browser allows the user to specify
which subregions of features should be present in the output. For example, someone inter-
ested in promoters may want to view the region covered by a gene as well as 5000 additional
bases upstream from the 5’ end (or downstream from the 3’ end on the negative strand).
The set of available subregion constraints varies among table types. For instance, gene pre-
diction tables specify both exon structure and translated region. The user may constrain
the output to show upstream and downstream regions, exons, introns, or 5’, 3’, or coding
exons. Alternatively, alignment tables, which specify block structure but not translated
region, offer only upstream, downstream, blocks or inter-block regions.

Flybase

FlyBase [9], a database of Drosophila genes and genomes, was created in 1992 as a resource
for collecting and disseminating Drosophila-related information. The website contains over
2.5 million report pages incorporating data from over 42 000 primary Drosophila research
papers and an ever-increasing number of genome-scale projects. As the amount, detail and
scope of data in FlyBase has increased, the range of data-retrieval tools has been expanded
and improved to ensure that the data in FlyBase are as accessible as possible.

16

FlyBase curates a variety of data from published biological literature, including pheno-
type, gene expression, interactions (genetic and physical), gene ontology (GO) information
and many others. These data are organized in 31 different data-type reports such as the
Gene Report or the Allele Report. The range of data provided increases and changes as
new types of data become available.

Data-Mining Tools

The tools Flybase provides range from straightforward general search tools and datatype-
specific tools to more sophisticated search tools that facilitate wide-range querying of multi-
ple data types simultaneously. For straightforward searches, the FlyBase homepage contains
the search tool QuickSearch, as well as quick links, via large icons, to a variety of other pop-
ular tools, such as BLAST and GBrowse. All tools in FlyBase can be found by using the
Tools drop-down menu in our navigation bar, found on every FlyBase page.

QueryBuilder

QueryBuilder (http://flybase.org/.bin/qbgui.fr.html) is a sophisticated web-based search
tool that allows combinatorial searching of any fields from any report in FlyBase. Its ad-
vanced search capability takes maximum advantage of the data field layout in the underlying
Chado database, but its easy-to-use interface means that absolutely no knowledge of this
table structure is required. Query segments are built one by one to create complex searches.
Data fields are chosen that are specific to a given data type (e.g. the Symbol field from
the Gene Report, or the Author field from the Reference Report). After the data type of
interest is selected, only appropriate fields are shown as options for each data type, and
the fields are presented in similar order and format as in FlyBase report pages to aid nav-
igation. Individual query segments can then be combined using Boolean operators (AND,
OR and BUT NOT) to build up complex searches. Depending on the fields selected, search
criteria can include text strings, CV terms or numbers. Number fields can include calcula-
tions and logical functions such as greater than (>) or less than (<), and for many fields
an index dictionary is available to allow user to see the most commonly used terms. Wild
cards are also allowed, to give user the best chance of carrying out the most appropriate
search. An auto-complete function facilitates entry of productive queries. When clicking
on the QueryBuilder button on the homepage user is presented with three options: ‘Use a
query template’, ‘Import a saved query’ or ‘Build a new query’. For first time users the
‘Use a query template’ option is recommended as a starting point. It contains series of
pre-constructed templates covering the most commonly used QueryBuilder queries. These
templates are divided into sections according to data type and are fully editable allowing
user to adapt them to their individual search criteria.

17

Chapter 4

Chado

Chado is a relational database schema that underlies many GMOD installations. It is ca-
pable of representing many of the general classes of data frequently encountered in modern
biology such as sequence, sequence comparisons, phenotypes, genotypes, ontologies, publi-
cations, and phylogeny. It has been designed to handle complex representations of biological
knowledge and should be considered one of the most sophisticated relational schemas cur-
rently available in molecular biology. The price of this capability is that the new user must
spend some time becoming familiar with its fundamentals [8].

4.1 Modules

The Chado schema is built with a set of modules. A Chado module is a set of database
tables and relationships that stores information about a well-defined area of biology, such
as sequence or attribution.

Arrows are dependencies between modules. Dependencies indicate one or more foreign
keys linking modules.

• General - Identifying things within the DB to the outside world, and identifying things
from other databases.

• Controlled Vocabulary (cv) - Controlled vocabularies and ontologies

• Publication (pub) - Publications and attribution

• Organism - Describes species; pretty simple. Phylogeny module stores relationships.

• Sequence - Genomic features and things that can be tied to or descend from genomic
features.

• Map - Maps without sequence

• Genetic - Genetic data and genotypes

• Companalysis - Storage of Computational sequence analysis. The key concept is that
the results of a computational analysis can be interpreted or described as a sequence
feature.

The modules that will be of interest in this work are: sequence and cv.

18

Figure 4.1: Modules in Chado and their relationships [8]

4.1.1 General Module

General purpose tables are housed in the module general. The primary purpose of this
module is to provide a means of providing data entities with stable, unique identifiers. In
Chado, all identifiable data entities have bipartite identifiers, consisting of a dbname plus
an accession, together with an optional version suffix.

By convention, these are normally presented using a ’:’ separator. An example of an
identifier in this notation would be GO:0008045 or FlyBase:FBgn00000001. In the Chado
schema the atomic units are the dbname and the accession, the separator is introduced
only in the presentation layer. Each dbname uniquely identifies the authority responsible
for a particular ID-space (so there cannot be two GO in any single Chado instance). The
accession must be unique within the ID-space. Thus there can be two accessions 0008045,
but there can only be one data artefact identified as GO:0008045.

These uniqueness constraints are encoded in the schema, so it is impossible for any
Chado relational database instance to violate them.

Each identifier is stored as a row in the dbxref table, with the dbname stored in the db
table. Keeping the dbname in a separate db table ensures that the Chado schema retains
its commitment to normalization. Entries in other tables can refer to entries in the dbxref
table by means of foreign keys.

Note that all stable identifiers are stored in the dbxref table, whether or not they refer
to ’external’ data entities. Chado does not have an explicit notion of a data entity being
external. Some dbxrefs have further information fully fleshed out in other tables in the
database, and others are ’dangling’ dbxrefs.

19

4.1.2 Sequence Module

A central module in Chado is the sequence module. The fundamental table within this
module is the feature table, for describing biological sequence features. Chado defines a
feature to be a region of a biological polymer (typically a DNA, RNA, or a polypeptide
molecule) or an aggregate of regions on this polymer. As the term is used here, region can
be the entire extent of the molecule, or a junction between two bases. Features can be typed
according to an ontology, they can be localized relative to other features, and they can form
part-whole and other relationships with other features.

Features

Chado does not distinguish between a sequence and a sequence feature, on the theory that a
feature is a piece of a sequence, and a piece of a sequence is a sequence. Both are represented
as a row in the feature table.

There are many different types of features. Examples include gene, exon, transcript,
regulatory region, chromosome, sequence variation, polypeptide, protein domain and cross-
genome match regions. Chado does not have a different table for each kind of feature; all
features are stored in the feature table.

Feature types are taken from the Sequence Ontology controlled vocabulary (see also Con-
trolled Vocabulary module, also known as cv). Types of feature are differentiated using a
type_id column, which is a foreign key to the cvterm table in the cv (ontology) module,
described here. This allows us to type features according to the Sequence Ontology. The use
of ontologies to type tables gives Chado a subtyping mechanism, which is absent from the
standard relational model. For example, SO tells us that mRNA and snRNA are different
kinds of transcript. It can be assumed that any reference to genes, exons, polypeptides,
SNPs, chromosomes, transcripts and various kinds of RNAs and so on refers to features of
that Sequence Ontology type.

A selection of Chado-relevant types from SO are shown below:

SO Term SO id
Exon SL:0000025
Intron SL:0000027
mRNA SL:0000037
miRNA SL:0000044
regulatory_element SL:0000052
transcription_factor_binding_site SL:0000054

Table 4.1: Sequence ontology terms in Chado [8]

The Chado feature table has a text-valued column named residues for storing the se-
quence of the feature. The value of this column is string of IUPAC symbols corresponding
to the sequence of biochemical residues encoded by the feature. This column is optional,
because the sequence of the feature may not be known. Even if the sequence of a feature
is known, it may not be desirable to store it in the feature table, as it may be possible to
infer the sequence from the sequence of other features in the database. For example, exon
sequences are generally not stored, as these can trivially be inferred from the sequence of
the genomic feature on which the exon is located. In contrast, mRNA and other processed
transcript sequences are stored as it is less trivial and more computationally expensive to

20

dynamically splice together the mRNA sequence.
It is important to realize that the existence of a row in the feature table does not

necessarily imply that the feature has been characterized as a result of genome annotation.
It is possible to have features of SO type ”gene“ for genes that have only been characterized
through genetic studies, and for which neither sequence nor sequence location is known.
This is in contrast to other feature schemas (such as GFF) in which it is not possible to
represent features without representing a location in sequence coordinates. This design
decision is crucial for the use of Chado as a database for integrating information about the
same entity from multiple perspectives.

Because the sequence is stored as a column in the feature table rather than as an inde-
pendent table, sequences cannot exist in the absence of a row in the feature table; sequences
are dependent upon features. This is in contrast with almost all other genomics schemas
that allow independent treatment of sequences and features. This design decision follows for
both philosophical and pragmatic reasons. The feature table also contains columns seqlen
and md5checksum, for storing the length of the sequence and the 32-character checksum
computed using the MD5 algorithm. The length and checksum can be stored even when
the residues column is null valued. The checksum is useful for checking if two or more
features share the same sequence, without comparing the entire sequence string.

The existence of these columns means that this table is no longer in third normal form
(3NF), which is usually a desirable formal property of relational database. On balance,
the utility of these columns outweighs the disadvantages of violating 3NF. In practical
terms, it means that the values of the residues, seqlen and md5checksum columns are
interdependent and cannot be updated independently of one another.

The feature table has a Boolean valued column, is_analysis, indicating whether this is
an annotation or a computed feature from a computational analysis. Annotations are fea-
tures that are generated or blessed by a human curator, or in some cases by an integrated
genome pipeline (for example, MAKER or DIYA) capable of synthesizing gene models and
other annotations from in silico analyses. They constitute the definitive version of a partic-
ular feature, in contrast to the features generated by gene prediction programs and sequence
similarity searches such as BLAST.

The feature table has a dbxref_id column that refers to a global, stable public identifier
for the feature. This column is optional, because not all classes of features have such
identifiers for example, features resulting from gene predictions and BLAST HSP features
may be less stable and thus lack public identifiers. It is recommended that most annotated
features have dbxref_ids. The organism_id column refers to a row in the organism table
(defined in the organism module). This column is mandatory if the feature derives from a
single organism.

Names of Features

The name and uniquename columns allow features to be labelled. The name column is op-
tional, but it is recommended that all annotated features (as opposed to those that arise
from purely computational methods) have names. The name should be a simple, concise,
human-friendly display label (such as a gene or gene product symbol, as defined by the
nomenclature rules of governing the organism). User interface software (such as GBrowse
and Apollo) can use the name column for labelling feature glyphs in user displays. Unique-
ness of name within any particular organism or genome project is a desirable characteristic,
but is not enforced in the schema, since there are occasions where name clashes are unavoid-

21

able. In contrast, the uniquename column is required, and guaranteed to be unique when
taken in combination with organism_id and type_id. This is enforced by a constraint in
the relational schema. The unique name may be human-friendly (for example, it can be the
same as the name); however, it is not guaranteed to be so, and in general should not be
displayed to the end user. Its use is mainly as an alternate unique key on the table .

The unique name normally conforms to some naming rule. These rules may vary
across chado instances, but they should all guarantee the uniqueness of the uniquename,
organism_id, type_id triple.

Figure 4.2: Tables in Feature Module [8]

22

Feature Synonyms

In addition to having a name or symbol, it is common for referencing features such as
genes to have multiple synonyms or aliases. These synonyms may exist due to different
publications referring to the same gene with different symbols, or because one gene was
once believed to be two or more separate genes. A common curation operation on genes is
splitting and merging, which results in the creation of synonyms.

This is modelled in Chado with a synonym table and a feature_synonym linking table;
thus multiple features can potentially share the same, and a single feature can be have
multiple synonyms. Use of a synonym in the literature is indicated with a pub_id foreign
key referencing the pub table (see the publications module), indicating historical provenance
for the use of a synonym.

Feature synonyms are found by joining to feature_synonym and synonym. Below is an
example query to find gene by name or synonym:

SELECT f eature_id FROM f e a t u r e
WHERE name = ’name␣ o f ␣ i n t e r e s t ’
UNION SELECT f eature_id
FROM feature_synonym fs , synonym s
WHERE f s . synonym_id = s . synonym_id
AND s . name = ’name␣ o f ␣ i n t e r e s t ’
AND f s . i s_current ;

Feature Locations

Features can potentially be localized using a sequence coordinate system. A relative lo-
calization model is used, so all feature localizations must be relative to another feature.
Some features such as those of type chromosome are not localized in sequence coordinates.
Locations are stored in the featureloc table, also part of the sequence module. Other
non-sequence oriented kinds of localization (such as physical localization from in situ ex-
periments, or genetic localizations from linkage studies) are modelled outside the sequence
module (for example, in the expression module or map module).

A feature can have zero or more featurelocs, although it will typically have either one
(for localized features for which the location is known) or zero (for unlocalized features such
as chromosomes, or for features for which the location is not yet known, such as a gene
discovered using classical genetics techniques). Features with multiple featurelocs will be
explained later.

A featureloc is an interval in interbase sequence coordinates (see figure), bounded by
the fmin and fmax columns, each representing the lower and upper linear position of the
boundary between bases or base pairs, with directionality indicated by the strand column.
Interbase coordinates were chosen over the more commonly used base-oriented coordinate
system because they are more naturally amenable to the standard arithmetic operations
that are typically performed upon sequence coordinates. This leads to cleaner and more
efficient database coding logic that is arguably less prone to errors. Of course, interbase
coordinates are typically transformed into the more common base-oriented system used by
BLAST reports and so forth prior to presentation to the end-user.

The relational schema includes a constraint which ensures that fmin != fmax is always
true, and any attempt to set the database in a state which violates this will flag an error.

23

As mentioned previously, a featureloc must be localized relative to another feature, in-
dicated using the srcfeature_id foreign key column, referencing the feature table. There
is nothing in the schema prohibiting localization chains; for example, locating an exon rel-
ative to a contig that is itself localized relative to a chromosome (see figure). The majority
of Chado database instances will not require this flexibility; features are typically located
relative to chromosomes or chromosomes arms. Nevertheless, the ability to store such local-
ization networks or location graphs can be useful for unfinished genomes or parts of genomes
such as heterochromatin, in which it is desirable to locate features relative to stable contigs
or scaffolds, which are themselves localized in an unstable assembly to chromosomes or chro-
mosome arms. Localization chains do not necessarily only span assemblies protein domains
may be localized relative to polypeptide features, themselves localized to a transcript (or to
the genome, as is more common). Chains may also span sequence alignments.

Figure 4.3: Interbase sequence coordinates [8]

The Feature Location Graph

A featureloc graph (LG) can be defined as being a set of vertices and edges, with each
feature constituting a vertex, and each featureloc constituting an edge going from the parent
feature_id vertex to the srcfeature_id vertex. The node is labeled with column values
from the feature table, and the edge is labeled with column values from the featureloc table.
The LG is not allowed to contain cycles, it is a directed acyclic graph (DAG). This includes
self-cycles - no feature may be localized relative to itself.

The roots of the LG are the features that do not have featureloc rows, typically chromo-
somes or chromosome arms, although LG roots may also be unassembled contigs, scaffolds or
features for which sequence localization is not yet known (such as genes discovered through
classical genetics techniques). The leaves of the LG are any features that are not present as
a srcfeature_id in any featurelocs row typically the bulk of features, such as genes, exons,
matches and so on. The depth of a particular LG g, denoted D(g), is the maximum number
of edges between any leaf- root pair. As has been previously noted, many Chados will have
LGs with a uniform depth of 1. Such LGs are said to be simple and the features within
them are said to be singletons. The maximum depth of all LGs in a particular database
instance i is denoted LGDmax(i).

The schema does not constrain the maximum depth of the LG. This flexibility proves use-
ful when applying Chado to the highly variable needs of multiple different genome projects;
however, it can lead to efficiency problems when querying the database. It can also make
it more difficult to write software to interoperate with the database, as the software must
take into account different contingencies. We can solve this problem by collapsing the LG,
in which a graph of arbitrary depth is flattened to a depth of 1, transforming or project-

24

Figure 4.4: Example of featureloc graph [8]

ing featurelocs onto the root features (typically chromosomes or chromosome arms). The
original featurelocs are left unaltered in the database, and additional redundant featurelocs
between leaf and root features are added to the database. These new featurelocs are known
as inferred featurelocs. In the schema inferred featurelocs are differentiated from direct fea-
turelocs using the locgroup column. Direct (non-inferred) localizations are indicated by the
locgroup column taking value 0, and transitive localizations are indicated by this column
having value !0.

The terminology used above can be used to define specifications for applications intended
to interoperate with the database. Certain kinds of features have paired locations. These
include hits and high-scoring-pairs (HSPs) coming from sequence search programs such as
BLAST, and syntenic chromosomal regions. These kinds of features have two featurelocs
(in contrast to the usual 1) one on the query feature and one on the subject (hit) feature.
We differentiate the two featurelocs with the rank column. A rank of 0 indicates a location
relative to the query (as is the default for most features), and a rank of 1 indicates a location
relative to the subject (hit) feature.

For multiple alignments (e.g. CLUSTALW results), this scheme is extended to un-
bounded ranks [0..n], with arbitrary ordering. Alignments are stored in the residue info
column. CIGAR format is used for pairwise alignments.

Multiple featurelocs may also be required for features of type ”sequence variant“
(SO:0000109), indicating points or extents which vary between reference and non-reference
sequences. From a modelling standpoint, variants are conceptually similar to alignments;
with variants we are noting a difference as opposed to a similarity. Here a rank of zero
indicates the wild-type (or reference) feature and a rank of one or more indicates the variant
(or non-reference) feature, with the residue info column representing the sequence on wild-
type and variant. A featureloc is uniquely identified by the feature_id, rank, locgroup

25

triple. This means that no feature can have more than one featureloc with the same rank
and locgroup. In other words, rank and locgroup uniquely identify a featureloc for any
particular feature.

Feature Coordinates

Features are located relative to other features using the featureloc table rows. Features can
be located on more than one sequence. For example, a BLAST hit HSP can be a feature of
both the query and target sequences. To locate a feature, create a featureloc record with:

• srcfeature_id = the id of the sequence on which the feature is being located

• feature_id = the id of the feature being located

• strand is 1 for the positive strand, -1 for the negative, and 0 for both or indifferent.

• fmin, fmax – the minimum and maximum coordinates of the interval

• is_fmin_partial, is_fmax_partial = true if needed to indicate that the sequence
is incomplete (e.g. for ESTs or EST assemblies which are known to not go all the way
to the 3’ or 5’ end.)

• phase = 0, 1, or 2 – denotes phase of first base pair in a nucleotide feature with respect
to a source protein, or the offset of the first nucleotide in its codon.

• rank, locgroup – these are used to organize groups of feature locations and can be
ignored in simple cases (the details are discussed below).

Multiple Locations for a Feature

The ability to have multiple locations for a feature has many uses. For example one can
locate a SNP, exon, or protein motif on the genome, on a transcript, and on a protein. A
region of similarity between two sequences (HSP) can be located on both of them, so if
either is viewed the ”hit“ is visible.

Difference Between the Chado Location Model and Other Schemas

There is a crucial difference between the Chado location model and the sequence location
model used in other schemas, such as GFF, GenBank, BioSQL, or BioPerl.

First, Chado is the only model to use the concept of rank and locgroup. Second, and
perhaps more important, all these other models allow discontiguous locations (also known as

”split locations“). These will be familiar to anyone who has inspected GenBank annotated
DNA records for an organism that has introns within the transcripts; the transcript location
is modelled as a sequence of non-contiguous intervals on the genome. The interval represents
the location of an exon. For example:

/ gene="Acph"
CDS j o i n (914 . . 1 0 63 , 1143 . . 1241 , 1297 . . 1536 , 1605 . . 2054 ,

2667 . . 2925 , 3063 . . 3 172)

Although Chado allows a feature to have multiple locations, this is only with variable
rank and locgroup and this is enforced by a uniqueness constraint in the relational schema.
We made a conscious decision to avoid discontiguous locations, because the extra degree of

26

freedom this affords results in either redundancies or ambiguities. Redundancies arise when
exons are stored in addition to a discontiguous transcript, and ambiguities arise by virtue
of the fact that explicit representation of the exons may be seen as optional. Ambiguities
are undesirable as it makes it harder for databases to interoperate. The omission of discon-
tiguous locations does not restrict the expressive capacity of Chado in any way, because any
discontiguous location can be modelled as a collection of features with contiguous locations.
For example, a transcript with a discontiguous location can be modelled as a collection
of exons with contiguous featurelocs, and a transcript with a single contiguous featureloc
representing the outer boundaries defined by the outermost exons.

Feature Rank

The rank field is used when a feature has more than 1 location, otherwise the default rank
value of 0 is used. Some features have two locations, for example BLAST hits and HSPs:
one location on the query, rank = 0, and one location on the subject, rank = 1.

Extensible Feature Properties

The feature table has a fairly limited set of columns for recording feature data. For example,
there is no anticodon column for recording the RNA triplet for the adapter in a tRNA feature
(all feature types, including tRNAs, are recorded as rows in the feature table). If we were to
add columns such as anticodon then the number of columns in the table would become very
large and difficult to manage; most would end up being nullable (for example, anticodon
does not apply to non-tRNA features). This is because different organisms, different types
of feature and different projects have differing needs regarding what extra data should be
attached to any one feature. How then are we to attach both biologically relevant and
project specific data to features?

Chado solves this by using an extensible mechanism for attaching attribute-value pairs to
features via the featureprop table. The featureprop.type_id foreign key column references
a property in the Sequence Ontology. The value text column stores the value filler for that
property. Sets or lists of values for any property can be stored in the featureprop table,
differentiated by the value of the rank column. Provenance for the featureprop assignment
is stored using the featureprop_pub table in the publications module, allowing multiple
publications to be associated with any one assignment.

Because featureprop values can be of an arbitrary size, they are modelled using a SQL
TEXT type. This has some disadvantages from a query efficiency perspective.

Numeric values cannot be indexed correctly, and sorting the results of a query can only
be done via a SQL casting operation, or in software outside of the database management
system, either of which may result in poorer performance. This is one of several areas in
Chado where performance has been traded in favour of a simpler, more abstract and generic
model.

Linking Features to External Databases

Public database identifiers are stored in the dbxref table, which holds the database name,
the accession number, and an optional version number. Note that this table holds accession
numbers published internally by the Chado instance as well as by other databases. A
feature can have a primary dbxref, which is linked directly from the feature table. It can
also have additional secondary dbxref’s linked via feature_dbxref. A feature need not

27

have a primary dbxref; e.g. computed features may be considered “lightweight” and not
assigned accession numbers. Some groups may wish to set up a trigger to automatically
assign primary dbxrefs to features of types that are locally accessioned; a sample trigger is
provided with the schema.

Feature Annotations

Detailed annotations, such as associations to Gene Ontology (GO) terms or Cell Ontology
terms, can be attached to features using the feature_cvterm linking table. This allows
multiple ontology terms to be associated with each feature.

Provenance data can be attached with the feature_cvtermprop and
feature_cvterm_dbxref higher-order linking tables. It is up to the curation policy of each
individual Chado database instance to decide which kinds of features will be linked using
feature_cvterm. Some may link terms to gene features, others to the distinct gene products
(processed RNAs and polypeptides) that are linked to the gene features.

Annotations for existing features can also go into the featureprop table using the Chado
feature_property ontology (defined in chado/load/etc/feature_property.obo) and the
comment or description terms as appropriate. The purpose of the feature property ontology
(and the related chado/load/etc/genbank_feature_property.obo file) is to capture terms
that are likely to appear in GFF or GenBank sequence files. In theory there is no overlap
between these ontologies and the Sequence Ontology.

Relationships Between Features

Biological features are inter-related; exons are part of transcripts, transcripts are part of
genes, and polypeptides are derived from messenger RNAs. Relationships between individ-
ual features are stored in the feature_relationship table, which connects two features via
the subject_id and object_id columns (foreign keys referring to the feature table) and
a type_id (a foreign key referring to a relationship type in an ontology, either SO, or the
OBO relationship ontology, OBO-REL, indicating the nature of the relationship between
subject and object features.

The core relationships between features are part-whole (part_of) or temporal
(derives_from). Subject and Object describes the linguistic role the two features play in
a sentence describing the feature relationship. In English, many sentences follow a subject,
predicate, object syntax, and word order is important. To say that ”exons are part of tran-
scripts” is the correct way to describe a typical biological relationship. To say ”transcripts
are part of exons” is either grammatically or biologically incorrect.

We use this same terminology (which comes from RDF) again in the cv module. The
collection of features and feature relationships can be considered as vertices and edges in a
graph, known as the Feature Graph (FG). Example feature graphs are shown above and in
the Introduction to Chado.

The FG is independent of the LG and in general the FG and the LG should have no
edges in common. If there is a featureloc connecting two features, then the addition of
a feature relationship between these same two features is redundant. The FG is required
in order to query the database for such things as alternately spliced genes, exons shared
between transcripts, etc.

Although the chado schema admits any FG, certain configurations are biologically mean-
ingless, and should not be used. The FG can be constrained by the Sequence Ontology.
Standardized FG structures are required for complex applications to be interoperable.

28

Unlike the LG, the FG may be cyclic, although cycles in the FG are not common. The
subset of the FG corresponding to certain kinds of relationship may be acyclic for example,
the subset of the FG connecting parts with wholes via part of must be acyclic.

Compliance

Chado uses a layered model - this is tried and tested in software engineering. Some generic
software can be targeted at the lower layers and be guaranteed to work no matter what.
Other more specific software needs a more tightly defined rigorous model and should be
targeted at the upper layers.

We require validation software and more formal or computable descriptions of these
layers and policies - for now natural language descriptions will have to suffice.

Chado Compliance Layers Proposal for levels of compliance.

Level 0: Relational Schema Level 0 conformance basically means the schema is adhered
to. Obviously, this is enforced by the DBMS.

Level 1: Ontologies Level 1 conformance is minimal conformance to SO - all fea-
ture.types must be SO terms, and all feature relationship.types must be SO relationship
types.

Level 2: Graph Level 2 conformance is graph conformance to SO - all feature relation-
ships between a feature of type X and Y must correspond to relationship of that type in
SO; for example, mRNA can be part of gene, but mRNA can not be part of golden path
region. [more detailed/formal explanation to come]. In practice Level 2 conformance may
be undesirable, we may need to make modifications to SO. Orthogonal to these layers are
various additional policy decisions. Some of these are more tolerant of non-conformance
than others. (there is also some overlaps with levels 1 and 2).

4.1.3 CV Module

This module is for controlled vocabularies (CVs), semantic networks and ontologies, de-
pending on which terminology you prefer. It is intended to be rich enough to encapsulate
anything in the Gene Ontology (GO) or OBO family of ontologies. The schema reflects
the data model of OBO and of the OBO Edit tool currently used by these projects. This
module is also intended to be extensible to richer formalisms such as OWL (Ontology Web
Language), but this is outside the current requirements. The schema is similar to the GO
database schema, which was also developed by one of the Chado designers.

Overview

An ontology, or controlled vocabulary (CV) is a collection of classes (or concepts or terms,
depending on your terminology) with definitions and relationships to other classes. Each
class (a word or phrase) can only appear once in a controlled vocabulary and has a defined
meaning within that vocabulary. The controlled vocabularies are chosen so that the contents
do not overlap; if the same text string is used to describe two different concepts in two
different CVs, these are distinct classes. These terms are housed in the cvterm table in the

29

Chado schema. CVterms are related to one another via cvter_relationship. This can be
thought of as a graph, or semantic network. The relationship types (the labels on the arcs
of the graph) are also stored in the cvterm table. The relationship types are extensible, but
the type is a (subtyping relationship) is assumed to be present; many OBO ontologies use
the part of relationship, and GO also uses the regulates relation. Relationship types also
come from a controlled vocabulary, the OBO Relation Ontology. The cvterm_relationship
can be thought of as specifying sentences about the cvterms. These sentences have 3 parts
- a subject term, an object term, and a verb or type. For example in the phrase ”an exon is
part of a transcript“ the subject of the sentence is ”exon“ and the object is ”transcript“ . If
you prefer to think of it as a directed graph), then you can think of the subject as the child
node, and the object as the parent node.

Associating features to cvterms

This module is used by most of the Chado modules. But it is useful to describe here how
this module would be used in the context of the sequence module. It is often desired to
attach cvterms to features. One example is typing features with SO - this is central to the
sequence module. Each feature has one primary type, stored in featuretype_id. We can
also attach an arbitrary number of non-primary cvterms to a feature. For example, we may
want to attach GO annotations to gene or protein features. We may also want to attach
phenotypic terms to gene features (although the preferred way to do this is via a genotype
using the genetics module).

Complex annotations

The sequence module makes extensive use of terms taken from various ontologies such as
SO and the OBO Relations Ontology, using the type_id foreign key column. In addition,
features can be annotated using ontologies such as GO using the feature_cvterm linking
table. These terms are modelled using the cv module, the core of which is the cvterm
table. The chado cv module is based on the GO Database schema. Terms are stored in the
cvterm table, and relationships between terms are stored in the cvterm_relationship table.
This table follows an analogous structure to the feature_relationship table, in that it has
columns subject_id, object_id and type_id. Here, all three of these foreign keys refer to
rows in the cvterm table. A brief treatment of relationship types in biological ontologies can
be found here. Of particular interest to Chado is the is_a relation, which specifies a sub-
typing relationship between two terms or classes. Recall that tables in the sequence module
frequently (such as the feature table) defined a type_id foreign key column to indicate
the specific type or class of entity for each row in that table. The combination of the
type_id column and the is_a relationship gives Chado a data sub-classing system, beyond
what is possible with traditional SQL database semantics. The collection of cvterms and
cvterm_relationships can be considered to constitute vertices and edges in a graph. This
graph is typically acyclic (a DAG), though it is not guaranteed to be as certain relationship
types are allowed to form cycles.

30

Chapter 5

Design

5.1 Schema and interface

Before designing language for querying biological database two decisions needed to be made:
(1) Which biological database to use, and (2) What kind of user interface (or style) to use
for querying.

For database, UCSC Genome browser was considered mainly for its popularity. Un-
fortunately it uses its own custom schema, hence language designed for this schema would
work only for UCSC Genome browser.

Two other relational database schemas for biological data considered for were BioSQL
and Chado. While BioSQL is more simple and better interacts with Bio* projects (Bioperl,
Biojava, Biopython, and Bioruby), Chado offers more complex schema, connecitvity with
other GMOD tools, more detailed documentation and capability to import data from GFF3
files. Chado is also successfully used as schema for Flybase project, for which it was originally
designed. That doesn’t mean it can be used only for Drosophila. Since it was made generic
and extensible, it can be used for any model organism data. For these reasons Chado was
chosen to be used as a database schema.

Regarding querying style two tools were considered: UCSC Table Browser and Flybase
QueryBuilder.

UCSC Table browser offers filtering (returning only those records where selected columns
have selected values) with wildcard pattern matching, comparisons (<, >, and !=) for
numeric fields and simple user-defined free-form queries. However it doesn’t offer pre-defined
queries or templates.

Flybase has QueryBuilder, that allows to build queries either from scratch or from
prepared template queries. Its interface is user-friendly and useful even for users who are
not familiar with underlying database structure.

Common queries by biologists can have certain ambiguities. For example, biologist can
be searching for something related to promoter. Promoters are usually not included in
organism data sets and this creates uncertainty in how to translate such query to SQL. For
example: one gene can have more transcripts and we can consider promoters before each of
these transcripts. Unfortunately existing applications do not deal with such uncertainties.

31

5.2 Solution proposal

We will propose a simple language that biologists can use to query the database. This
language will also deal with some of the mentioned uncertainties, that existing applications
don’t consider. Our application will translate query in this language to SQL. The language
will be designed to use Chado as its underlying database schema. It will mainly use Sequence
Module, which can be considered Chado’s main module. It will focus on queries regarding
sequence features, feature localizations and relationships between features from localization
point of view. Application will offer a web interface for navigating the user in assembling
the query.

5.2.1 Creation of queries

Before designing our language we’ll show how to manually create SQL queries for Chado.
For this purpose we have 4 queries written in natural language that will be translated to
SQL.

• Find nonB DNA element in promoter of (specific) gene.

• Find nonB DNA element near (specific) transcription factor.

• Find nonB DNA element in nth intron of (specific) gene.

• Find nonB DNA element in (specific) gene.

We will describe how to construct SQL queries for Chado database representing the 4 ex-
ample queries in natural language. We will explain each term for each query excluding terms
that were already explained in some of the previous queries. When speaking about specific
column of table following naming convention will be used: column_name (table_name). The
meaning is the same as table_name.column_name in SQL command.

Find nonB DNA element inside promoter of a gene

In our example query (see apendix B.2.1) we chose triplex as element (specifying only

”ss_type“), used promoter 100bp long and used strict definition of word inside.

Non-B DNA element is a an entry in table feature, which has a corresponding entry
in cvterm table with column name specifying the Non-B DNA element. These two tables are
joined on equal values of columns type_id (feature) and cvterm_id (cvterm). Sometimes
terms in Chado are not specific enough to distinguish different non-B DNA elements, but
we can insert custom feature property to database for this purpose. This property would
be called ss_type. In this case, if we were looking for triplex, we would look for entry in
cvterm table with column name having value ”DNA_sequence_secondary_structure“ . We
would also join table featureprop on same value of columns feature_id (feature) and
feature_id (featureprop) where value of column value (featureprop) is ”triplex“ . We
would then join cvterm table on same values of type_id (featureprop) and cvterm_id
(cvterm) where value of column name (cvterm) equals ”ss_type“ . In case we use ”ss_type“ ,
joining cvterm table is not necessary, since results will be the same.

32

Gene is a an entry in table feature, which has a corresponding entry in cvterm table
with name having value ”gene“ . These two tables are joined on equal values of columns
type_id (feature) and cvterm_id (cvterm). If we were looking for specific gene, the value
of column name (feature) would be same as the name of this gene.

Promoter is a region of DNA that initiates transcription of a particular gene. Promoters
usually aren’t stored in database, but it’s known they are located near the transcription
start sites of genes, on the same strand and upstream on the DNA and that their length can
be about 100–1000 base pairs. With this information an arbitrary number can be chosen
(for example: 100) and any sequence of this length ending at the beginning of a gene can
be considered a promoter. If we join entry in feature table for gene with its corresponding
entry in featureloc table, we will get location of the gene. These two tables are joined
on equal values of columns feature_id (feature) and feature_id (featureloc). Column
fmin (featureloc) marks start of the gene and column fmax (featureloc) marks end of the
gene. If promoter has a length of 100 base pairs, then beginning of promoter is represented
by fmin (featureloc) - 100 and end of the promoter is represented by fmin (featureloc).

Inside in a less strict sense means the two features overlap. If we are looking for overlap-
ping features, we are looking for their corresponding entries in featureloc tables, which
have same value of srcfeature_id (this means they both lie on same feature, usually chro-
mosome or contig). In case of ”nonB DNA element in promoter of a gene“ , we are looking
for two entries in featureloc table (let’s assign them aliases lg and le), one for gene, one
for non-B DNA element, where intervals defined by <le.fmin, le.fmax> and <lg.fmin
- 100, lg.fmin> overlap. In more strict sense, it would mean that interval <le.fmin,
le.fmax> begins after and ends before interval <lg.fmin - 100, lg.fmin>.

Find nonB DNA element near transcription factor

In our example query (see apendix B.2.2) we chose triplex as element (specifying only

”ss_type“) and used 100bp long border from both sides to define word near (with accepting
also overlap with transcription factor itself).

Transcription factor is an entry in table feature, which has a corresponding entry in
cvterm table with column name having value ”TF_binding_site“ . These two tables are
joined on equal values of columns type_id (feature) and cvterm_id (cvterm).

Near means that one feature is overlapping a defined border around other feature. We
choose an arbitrary number (for example 100) saying how many base pairs this border
is from the actual feature. If we are looking for one feature near other feature, we are
looking for their corresponding entries in featureloc tables, which have same value of
srcfeature_id (this means they both lie on same feature, usually chromosome or contig).
In case of ”nonB DNA element near transcription factor“ , we are looking for two entries
in featureloc table (let’s assign them aliases lt and le), one for transcription factor, one
for non-B DNA element, where sequences defined by <le.fmin,le.fmax> and <lt.fmin -
100, lt.fmax + 100> overlap. Alternatively we could also define the border only from one
side (left or right) or be more strict and consider one feature near other only in case one
feature overlaps defined border of another feature, but does not overlap the feature itself.

33

Find nonB DNA element inside nth intron of gene

In our example query (see apendix B.2.3) we chose triplex as element (specifying only

”ss_type“), first intron of gene and used strinct definition of word inside.

Intron could be an entry in table feature, which has a corresponding entry in cvterm table
with name ”intron“ . These two tables are joined on equal values of columns featuretype_id
and cvterm.cvterm_id. However in most cases introns are not stored in the database like
this, because their position can be calculated from exons

Exon is a an entry in table feature, which has a corresponding entry in cvterm table
with name ”exon“ . These two tables are joined on equal values of columns featuretype_id
and cvterm_id (cvterm).

Nth Exon is a an entry in table feature for exon having feature property ”exon_number“
with value of N (N is an integer greater than zero). That is an entry in table feature,
which has a corresponding entry in cvterm table with name ”exon“ . These two tables are
joined on equal values of columns type_id (feature) and cvterm_id (cvterm). It also
has corresponding entry in featueprop table. These tables are joined on equal values of
columns feature_id (featureprop) and feature_id (feature). The featureprop table
has a corresponding entry in cvterm table with name ”exon_number“ . These tables are
joined on equal values of columns type_id (featureprop) and cvterm_id (cvterm). The
value of column value (featureprop) is N.

Nth Intron is located between ”Nth Exon“ and ”(N+1)th Exon“ . To get location of intron
we need to get 2 exons that have the same source feature, have exon numbers of N and N+1
respectively, and belong to the same gene. To see if exon belongs to a certain gene, we join
feature table with table feature_relationship on same value of columns feature_id
(feature) and subject_id (feature_relationship). We can then join feature for gene
on same value of columns feature_id (feature) and object_id (feature_relationship).

Let there be 3 entries in featureloc table. Frist entry (with alias lge1) represents
location of first exon of a gene. Second entry (with alias lge2) represents location of second
exon of the same gene. Third entry (with alias le) represents location of non-B DNA element
lying on same feature (chromosome, contig...) as first two entries. if sequence defined
by interval <le.fmin, le.fmax> overlaps sequence defined by <lge1.fmax, lge2.fmin>,
then le represents location of ”NonB DNA element in 1st intron“ . This is in case of the
less strict interpretation of inside, where any overlap is taken into account. In the more
strict interpretation interval <le.fmin, le.fmax> would have to begin after and end before
interval <lge1.fmax, lge2.fmin>.

Find nonB DNA element inside specific gene

In our example query (see apendix B.2.4) we chose triplex as element (specifying only

”ss_type“) and used strict definition of word inside.
This query is similar to query ”Find nonB DNA element inside promoter of a gene“ . The

difference is that we directly compare locations of gene and element instead of calculating
position of gene’s promoter. If we used aliases defined before, we would compare intervals
<le.fmin, le.fmax> and <lg.fmin, lg.fmax>

34

Summary

This section covered creation of four example SQL queries for Chado based on queries in
natural language. The SQL queries used 9-20 joins (including the first table) and 10-20
where conditions. To construct such queries a person needs to have knowledge not only of
SQL, but also of Chado database schema. Even for person with such knowledge, manually
constructing these queries is inconvenient and takes a lot of time. It’s clear that biologist
without SQL knowledge won’t be able to construct such queries and needs a more convenient
solution.

5.3 Language Proposal

We will propose a language that would allow biologists to create their queries in a convenient
way. This language should resemble natural language with use of biological terms. It will
be heavily based on locations of features and comparison of these locations. It will allow to
look for features based on feature types (gene, intron, exon, . . .) and positional relationships
(inside, near, . . .). We will call it Chado Query Language or ChQL.

5.3.1 Functions and operators

Here we will explain the basic idea of functions, operators and their parameters. Element,
feature, gene and transcription factor are basic functions returning respective type of
feature. Exon of, intron of and promoter of are secondary functions that can only be
applied to function gene. Inside, intersect and near are positional operators that can
only be used on two basic functions. Nth is a tertiary function that can only be applied to
functions Exon of and intron of. Source_feature and query are special functions that
can be used only once at the end of sentence, but don’t have to be used at all.

Feature is a basic function returning a feature.

• Parameter type allows to specify type of feature. If this parameter is not present,
function returns any type of feature.

Gene is a basic function returning feature of type ”gene“

• Parameter name allows to specify name of the gene

• Parameter function allows to specify function of the gene.

Element is a basic function returning feature representing non-B DNA element.

• Parameter type allows to specify type of non-B DNA element. Possible values are

”triplex“ , ”quadruplex“ and ”palindrome“

Transcription factor is a basic function returning feature of type ’TF_binding_site’.

• Parameter name allows to specify name of the transcription factor

35

Promoter of is a secondary function calculating promoter position from position of a
gene.

• Parameter length allows to specify promoter length

Exon of is a secondary function returning feature of type ”exon“ in relationship with gene.
It has no parameters.

Intron of is a secondary function returning position of intron in relationship to gene. It
calculates this position from two consecutive exons in same gene. It has no parameters.

Nth is a tertiary function specifying order of intron or exon

• Parameter N specifies order of intron or exon

Inside is a positional operator stating that one feature is inside other feature. It has no
parameters

Intersect is a positional operator stating that one feature overlaps other feature

• Parameter overlap allows to specify required overlap

Near is a positional operator stating that one feature is near other feature

• Parameter allow_inside specifies if one feature is allowed to overlap other feature
(not just the defined area around feature)

• Parameter distance specifies length of surrounding area in bases, which other feature
has to overlap to be considered near the first feature

• Parameter side specifies from which side one feature should be near to the other.
Possible values are ”left“ , ”right“ and ”both“

Source_feature is a special function that can be only used once at the end of sentence
(but not after query). It allows to specify parameters of source feature

• Parameter name allows to specify name of the source feature.

• Parameter min allows to specify minimal position on source feature for search.

• Parameter max allows to specify maximal position on source feature for search.

Query is a special function that can be only used once at the end of sentence. It allows
to specify parameters of query

• Parameter limit allows to specify maximum of rows returned by query

The parameters are described in table 5.1. For each parameter it shows which function
it belongs to, its data type, if it is mandatory and default value.

36

in function parmeter type mandatory default value
feature type string no <none>
gene name string no <none>
gene function string no <none>
nth n integer yes 1
element type string yes triplex
promoter length integer yes 100
transcription factor name string no <none>
near allow_inside bool yes true
near distance integer yes 100
near side string yes both
intersect overlap yes no 1
query limit integer yes 5
source_feature name string no <none>
source_feature min integer no <none>
source_feature max integer no <none>

Table 5.1: Parameters of ChQL language

5.3.2 Language definition

The basic idea of ChQL language (which could be considered ChQL Level 0) is there has
to be at least one feature with the possibility of adding positional operator with another
feature one or more times. After that there can be zero or one source feature and at the
end zero or one query configuration word. If we disregard parameters of functions for the
moment, the regular expression for such language would be following:

f e a tu r e (operator f e a t u r e) ∗(source_feature) ?(query) ?

Valid sentences of such language then would be for example:

f e a tu r e
f e a tu r e operator f e a t u r e
f e a tu r e operator f e a t u r e operator f e a t u r e
f e a tu r e operator f e a t u r e query
f e a tu r e operator f e a t u r e source_feature
f e a tu r e source_feature query

ChQL Level 1

If we get more specific, ”feature“ can be any basic function (feature, gene, element, tran-
scription factor) possibly preceded by appropriate secondary function (promoter of, exon
of, intron of) possibly preceded by tertiary function. By this definition valid feature could
be ”element“ , ”promoter of gene“ , ”nth exon of gene“ and so on (see functions in 5.3.1).
We’ll also use specific positional operators, instead of just word ”operator“ . This way we
can create more advanced language, which we’ll call ChQL Level 1. Language ChQL Level
1 is accepted by deterministic finite automaton depicted on figure 5.1. Below is regular
expression defining ChQL Level 1 and a few example sentences:

((promoter o f) ? gene | f e a t u r e | t r a n s c r i p t i o n f a c t o r | e lement | (nth) ?(
↪→ i n t ron o f | exon o f) gene) ((near | i n s i d e | i n t e r s e c t) ((

37

↪→ promoter o f) ? gene | f e a t u r e | t r a n s c r i p t i o n f a c t o r | e lement | (nth
↪→) ?(in t ron o f | exon o f) gene)) ∗(source_feature) ?(query) ?

gene
promoter o f gene
t r a n s c r i p t i o n f a c t o r near element i n s i d e promoter o f gene
element i n t e r s e c t gene source_feature query
element i n s i d e nth in t ron o f gene

Figure 5.1: Finite State Machine accepting ChQL Level 1

ChQL Level 2

We also want to have parameters for some functions and operators in parentheses. If we
take language ChQL Level 1 and add possibility of parameters in parentheses, we get ChQL
Level 2. This language can be defined by grammar shown in table 5.2 (Grammar was verified
by Grammophone online tool: http://mdaines.github.io/grammophone/). Each table row
represents grammar rule with first and second column representing left and right side of the
rule respectively. Nonterminals begin with capital letter and are often written in camel case.
Terminals never begin with capital letter and are meant literally with these exceptions:

• Character ε means empty string.

• The vertical bar (or pipe) symbol (|) means or (alternative right side of rule).

• string means data type string.

38

• number means positive integer. In regular expression it would be [0-9]+.

5.3.3 Translation to SQL

We will describe how each word of ChSQL language should be translated to SQL. In most
queries same table will be used more times for different features. For example feature table
for exon, feature table for intron or even feature table for one gene and feature table for
other gene. To be able to distinguish for which exact feature is table used, we need to
number words in sentence and use these numbers when assembling a query. The number for
word will be called wid (word id) and will be increased for basic features as shown in table
5.3. Sometimes same table will be used more times for same feature in different context. For
example, cvterm table can be used to determine type of feature, but also type of particular
feature property or term relevant to feature (usually describing function of the feature). For
this reason we need to use different table aliases for same table in different context. To
be able to assemble SQL query correctly, we need to establish standard aliases based on
table and context, in which table is used, and adhere to this established naming convention
(see table 5.4). In snippets from SQL queries any word starting with symbol @ illustrates
a variable. If some part of query will be directly replaced by variable, it’s represented by
{variable}. Each SQL query will be assembled from three parts: SELECT, FROM and
WHERE clause. We designed SELECT clause for each feature type to select only certain
columns and rename them for better readability (described in appendix B.1). Only FROM
and WHERE clauses of queries will be described here, since they influence which rows are
retrieved (and therefore are most important).

Query in general

Each query will have source feature at the beginning of its FROM clause. We will use the
defined alias ft_src for feature representing the source feature. Beginning of FROM clause
of any query will look like this: FROM feature ft_src.

Source_feature

If parameter name is used a condition will be added to query to search only on source
feature with that name: WHERE feature ft_src.uniquename = @name. If at least one of
parameters min and max was used, for each feature a condition will be added to check
whether this feature lies in the boundaries specified by min and max. Depending on which
of the parameters min, max (min/max/both) were entered, there are 3 possible options of
comparison.

1. Both @min and @max were entered.

−− WHERE c l au s e −−
{ exampleFeatureLoc } . fmin BETWEEN @min AND @max
{exampleFeatureLoc } . fmax BETWEEN @min AND @max

2. Only @min was entered.

−− WHERE c l au s e −−
{ exampleFeatureLoc } . fmin >= @min
{exampleFeatureLoc } . fmax >= @min

39

Left side of rule Right side of rule
Start Continue MaybeSrcFeature MaybeQueryConfigPart
Continue Promoter Gene MaybeLocation
Continue MaybeNth IntronExon Gene MaybeLocation
Continue OtherFeatures MaybeLocation
OtherFeatures Gene | Element | Feature | TranscriptionFactor
MaybeLocation Operator Continue | ε
Operator inside | Near | Intersect
IntronExon intron of | exon of
Promoter promoter of (PromoterParams)
Element element (ElementParams)
Feature feature | feature (FeatureParams)
TranscriptionFactor transcription factor | transcription factor (TFParams)
PromoterParams length: number
MaybeNth Nth | ε
Nth nth (n: number)
Gene gene | gene (GeneParams)
GeneParams GeneParam | GeneParams , GeneParam
GeneParam name: string | function: string
ElementParams ElementParam | ElementParams , ElementParam
ElementParam type: ElementType
ElementType triplex | quadruplex | palindrome
FeatureParams FeatureParam | FeatureParams , FeatureParam
FeatureParam type: string | min: number | max: number
TFParams TFParam | TFParams , TFParam
TFParam name: string
Near near (NearParams)
NearParams NearParam | NearParams , NearParam
NearParam allow_inside: TrueFalse
NearParam distance: number
NearParam side: SideOption
SideOption left | right | both
Intersect intersect (IntersectParams)
IntersectParams IntersectParam
IntersectParams IntersectParams , IntersectParam
IntersectParam overlap: number
TrueFalse true | false
MaybeQueryConfigPart query (limit: number) | ε
MaybeSrcFeature source_feature (SrcFeatureParams) | ε
SrcFeatureParams SrcFeatureParam | SrcFeatureParams , SrcFeatureParam
SrcFeatureParam name: string | min: number | max: number

Table 5.2: Grammar for ChQL Level 2 (Nonterminals begin with capital letters. Terminals
representing data types are string and number. Character ε means empty string. Character
| means OR, in other words alternative right side of rule. Other terminals are taken literally)

40

word increases wid
gene yes
element yes
feature yes
transcription factor yes
near no
intersect no
inside no
query no
source_feature no
exon no
intron no
promoter no
nth no

Table 5.3: Words of ChQL with relationship to increasing wid (word id)

Table Alias
feature (original) ft
feature (source) ft_src
featureloc (original) loc
cvterm (feature type) cvt
feature_relationship rel
feature_cvterm ftcvt
cvterm (connected to original feature through feature_cvterm) cvt_ftcvt
featureprop (connected to original feature on same feature_id) prop
cvterm (conncted through featureprop type_id) cvt_prop

Table 5.4: Aliases for tables based on context

41

3. Only @max was entered.

−− WHERE c l au s e −−
{ exampleFeatureLoc } . fmin <= @max
{exampleFeatureLoc } . fmax <= @max

Basic features

The following applies to basic functions (element, feature, gene, transcription factor).
Different features will be assembled differently, but every feature type will be localized. This
means we will join featureloc on same value of its column srcfeature_id and column
feature_id of source feature.

−− FROM c lau s e −−
j o i n f e a t u r e l o c l o c {wid}
on l o c {wid } . s r c f e a tu r e_ id = ft_src . f eature_id
j o i n f e a tu r e f t {wid}
on l o c {wid } . f eature_id = f t {wid } . f eature_id

Feature

When used without parameter, feature can be any type of feature and is created the same
way as described above. In case parameter type is used (type: @feature_type)

−− FROM c lau s e −−
j o i n cvterm cvt {wid}
on f t {wid } . type_id = cvt {wid } . cvterm_id

−− WHERE c l au s e −−
cvt {wid } . name = @feature_type

Gene

When translating word gene into SQL we need to connect feature table with table cvterm
on same value of columns type_id (feature) and cvterm_id (cvterm). The value of name
(cvterm) has to be ”gene“ .

−− FROM c lau s e −−
join cvterm cvt {wid}
on f t {wid } . type_id = cvt {wid } . cvterm_id

−− WHERE c lau s e −−
cvt {wid } . name = ’ gene ’

In case parameter name is used (name: @gene_name), we need to add condition to
WHERE clause checking if feature.name is same as value of variable @gene_name.

−− WHERE c lau s e −−
f t {wid } . name = @gene_name

In case parameter function is used (function: @gene_function), we need to join ta-
ble feature_cvterm on same value of columns feature_id (feature) and feature_id
(feature_cvterm). We also need to join table cvterm on same values of columns cvterm_id
(feature_cvterm) and cvterm_id (cvterm). Finally we need to add condition to WHERE

42

clause that column name (cvterm) has same value as variable @gene_function and that
is_not (feature_cvterm) equals ’f’. Otherwise the connection could mean that gene does
not have the function.
−− FROM c lau s e −−
join feature_cvterm f t c v t {wid}
on f t c v t {wid } . f eature_id = f t 1 . f eature_id
join cvterm cvt_ftcvt {wid}
on f t c v t {wid } . cvterm_id = cvt_ftcvt {wid } . cvterm_id

−− WHERE c lau s e −−
and f t c v t {wid } . is_not = ’ f ’
and cvt_ftcvt {wid } . name = @gene_function

Promoter of gene

The only difference from using gene without promoter is that in case of comparison, the
start position will be represented by fmin - @promoter_length and end position will be
represented by fmin.

Transcription factor

When translating word transcription factor into SQL we need to connect feature table
with table cvterm on same value of columns type_id (feature) and cvterm_id (cvterm).
The value of name (cvterm) has to be ”TF_binding_site“ .
−− FROM c lau s e −−
join cvterm cvt {wid}
on f t {wid } . type_id = cvt {wid } . cvterm_id

−− WHERE c lau s e −−
cvt {wid } . name = ’ TF_binding_site ’

In case parameter name is used (name: @TF_name), we need to add condition to
WHERE clause checking if feature.name is same as value of variable @gene_name.
−− WHERE c lau s e −−
f t {wid } . name = @TF_name

Element

When translating word element into SQL we need to connect feature table with table
cvterm on same value of columns type_id (feature) and cvterm_id (cvterm). The value
of name (cvterm) has to be ”gene“ . Since the terms available in cvterm table for feature type
are sometimes not detailed enough, we use our custom feature property called ”ss_type“ .
For this reason we also need conenct table featureprop and cvterm on equal values of
type_id (featureprop) and cvterm_id (cvterm).
−− FROM c lau s e −−
join cvterm cvt {wid}
on f t {wid } . type_id = cvt {wid } . cvterm_id
join f ea tureprop prop{wid}
on prop{wid } . f eature_id = f t {wid } . f eature_id
join cvterm cvt_prop{wid}
on prop{wid } . type_id = cvt_prop{wid } . cvterm_id

43

Based on exact value of parameter type, there are thre possible WHERE clauses of
SQL query for element. In case type is a triplex cvterm representing feature type is

”DNA_sequence_secondary_structure“ and value of feature property ”ss_type“ is ”triplex“

−− WHERE c lau s e −−
cvt {wid } . name = ’DNA_sequence_secondary_structure ’
and cvt_prop{wid } . name = ’ ss_type ’
and prop{wid } . value = ’ t r i p l e x ’

In case type is a quadruplex cvterm representing feature type is ”G_quartet“ and value
of feature property ”ss_type“ is ”quadruplex“

−− WHERE c lau s e −−
cvt {wid } . name = ’G_quartet ’
and cvt_prop{wid } . name = ’ ss_type ’
and prop{wid } . value = ’ quadruplex ’

In case type is a quadruplex cvterm representing feature type is ”inverted_repeat“ and
value of feature property ”ss_type“ is ”palindrome“

−− WHERE c lau s e −−
cvt {wid } . name = ’ inverted_repeat ’
and cvt_prop{wid } . name = ’ ss_type ’
and prop{wid } . value = ’ palindrome ’

Performance improvement Our tests (see 7.2.4) showed that determining type of ele-
ment by checking both type and feature property negatively impacted performance. Since
custom property is more specific than type using standard SO terms, implementation only
checks the feature property. In this new version table with alias cvt{wid} is never joined
and therefore never used in WHERE clause.

Exon of gene

Translation of Exon of gene is a special case and won’t use the part of query that is
common for basic features, although it uses similar principles. Basic part joins featureloc
table for exon location and feature table for exon. It also joins feature table for gene
through feature_relationship table. Finally it joins cvterm table for exon and gene.
Were clause of query checks if name (cvterm) for feature type of exon and gene is ”exon“
and ”gene“ respectively

−− FROM c lau s e −−
join f e a t u r e l o c l o c {wid}_exon1
on l o c {wid}_exon1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t {wid}_exon1
on l o c {wid}_exon1 . f eature_id = f t {wid}_exon1 . f eature_id
join f e a t u r e_r e l a t i on sh i p r e l {wid}_gene_exon1
on r e l {wid}_gene_exon1 . subject_id = f t {wid}_exon1 . f eature_id
join f e a t u r e f t {wid}_gene
on r e l {wid}_gene_exon1 . object_id = f t {wid}_gene . f eature_id
join cvterm cvt {wid}_gene
on f t {wid}_gene . type_id = cvt {wid}_gene . cvterm_id
join cvterm cvt {wid}_exon1
on f t {wid}_exon1 . type_id = cvt {wid}_exon1 . cvterm_id

44

−− WHERE c lau s e −−
cvt {wid}_gene . name = ’ gene ’
and cvt {wid}_exon1 . name = ’ exon ’

Nth exon of gene

To translate Nth exon of gene (n: @n) same procedure will be used as for exon of gene.
Additionaly featureprop table will be joined to feature table for exon. Finally cvterm
table will be joined through featureprop table. In WHERE clause of query it will be checked
if feature property ”exon_number“ has value of @n.

−− FROM c lau s e −−
join f ea tureprop prop{wid}_exon1
on prop{wid}_exon1 . f eature_id = f t {wid}_exon1 . f eature_id
join cvterm cvt_prop{wid}_exon1
on cvt_prop{wid}_exon1 . cvterm_id = prop{wid}_exon1 . type_id

−− WHERE c lau s e −−
and cvt_prop{wid}_exon1 . name = ’ exon_number ’
and prop{wid}_exon1 . value = @n

Intron of gene

Translating intron of gene is very simillar to the exon of gene, but instead of having one
exon (and all related table entries), we have two exons for the same gene.

−− FROM c lau s e −−
join f e a t u r e l o c l o c {wid}_exon1
on l o c {wid}_exon1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t {wid}_exon1
on l o c {wid}_exon1 . f eature_id = f t {wid}_exon1 . f eature_id
join f e a t u r e_r e l a t i on sh i p r e l {wid}_gene_exon1
on r e l {wid}_gene_exon1 . subject_id = f t {wid}_exon1 . f eature_id
join f e a t u r e f t {wid}_gene
on r e l {wid}_gene_exon1 . object_id = f t {wid}_gene . f eature_id
join cvterm cvt {wid}_gene
on f t {wid}_gene . type_id = cvt {wid}_gene . cvterm_id
join cvterm cvt {wid}_exon1
on f t {wid}_exon1 . type_id = cvt {wid}_exon1 . cvterm_id
join f e a t u r e_r e l a t i on sh i p r e l {wid}_gene_exon2
on r e l {wid}_gene_exon2 . object_id = f t {wid}_gene . f eature_id
join f e a t u r e f t {wid}_exon2
on r e l {wid}_gene_exon2 . subject_id = f t {wid}_exon2 . f eature_id
join cvterm cvt {wid}_exon2
on f t {wid}_exon2 . type_id = cvt {wid}_exon1 . cvterm_id
join f e a t u r e l o c l o c {wid}_exon2
on f t {wid}_exon2 . f eature_id = l o c {wid}_exon2 . f eature_id
join f ea tureprop prop{wid}_exon1
on prop{wid}_exon1 . f eature_id = f t {wid}_exon1 . f eature_id
join cvterm cvt_prop{wid}_exon1
on cvt_prop{wid}_exon1 . cvterm_id = prop{wid}_exon1 . type_id
join f ea tureprop prop{wid}_exon2
on prop{wid}_exon2 . f eature_id = f t {wid}_exon2 . f eature_id
join cvterm cvt_prop{wid}_exon2

45

on cvt_prop{wid}_exon2 . cvterm_id = prop{wid}_exon2 . type_id

In this case the word nth wasn’t used in front of word intron. It needs to be chcecked
that features for first exon, second exon and gene have correct types (through cvterm table).
Area of intron is defined as area between two consecutive exons of same gene, which means
WHERE clause needs to check that exon number of second exon is same as exon number
of first exon + 1.

−− WHERE c lau s e −−
and cvt {wid}_gene . name = ’ gene ’
and cvt {wid}_exon1 . name = ’ exon ’
and cvt {wid}_exon2 . name = ’ exon ’
and cvt_prop{wid}_exon1 . name = ’ exon_number ’
and cvt_prop{wid}_exon2 . name = ’ exon_number ’
and cast (prop{wid}_exon1 . value as integer) = cast (prop{wid}_exon2 . value

↪→ as integer) − 1

Nth intron of gene

To translate Nth intron of gene (n: @n) same procedure will be used as for intron of
gene. In WHERE clause of query it will be checked if feature property ”exon_number“ has
value of @n for first exon and value of @n + 1 for second exon.

−− WHERE c lau s e −−
and cvt {wid}_gene . name = ’ gene ’
and cvt {wid}_exon1 . name = ’ exon ’
and cvt {wid}_exon2 . name = ’ exon ’
and cvt_prop{wid}_exon1 . name = ’ exon_number ’
and prop{wid}_exon1 . value = @n
and cvt_prop{wid}_exon2 . name = ’ exon_number ’
and prop{wid}_exon2 . value = @n + 1

Operators in general

Operators need to get information from the features they are trying to compare, because
different type of feature could mean comparing different @start and @end values. Below
is a description of how values for comparison will be assembled for different feature types.
Operators will only appear as conditions in WHERE clause of final query.

• basic functions without additional functions

– @start = "loc"+{wid}+".fmin"

– @end = "loc"+{wid}+".fmax"

• promoter of gene

– @start = "loc"+{wid}+".fmin - "+@length

– @end = "loc"+{wid}+".fmin"

• exon of gene

– @start = "loc"+{wid}+"_exon1.fmin"

– @end = "loc"+{wid}+"_exon1.fmax"

46

• intron of gene

– @start = "loc"+{wid}+"_exon1.fmax"

– @end = "loc"+{wid}+"_exon2.fmin"

Intersect

Positional operator intersect selects features that overlap each other. Two features (1 and
2) don’t overlap if @start1 > @end2 or if @end1 < @start2. From this we can conclude
that two features overlap when @start1 <= @end2 and @end1 >= @start2. This means
following condition needs to be added to WHERE clause of SQL query:

−− WHERE c lau s e −−
and s t a r t 2 <= end1
and end2 >= s t a r t 1

if minimal overlap is greater than 1, then following line will also be added to WHERE
clause of SQL query.

−− WHERE c lau s e −−
and g r e a t e s t (0 , l e a s t (l o c1 . fmax , l o c2 . fmax)
−g r e a t e s t (l o c1 . fmin , l o c2 . fmin)) > @overlap

Inside

For positional operator inside we will consider the most strict definition. This operator
will select only such results where entire feature 1 is in feature 2. In other words feature 1
begins after beginning of feature 2 and ends before ending of feature 2. Following condition
will be added to WHERE clause:

−− WHERE c lau s e −−
and l o c {wid1 } . fmin >= lo c {wid2 } . fmin
and l o c {wid1 } . fmax <= lo c {wid2 } . fmax

Near

Positional operator near defines an area surrounding feature 2 and checks if feature overlaps
this area. Values of @startBorder2 and @endBorder2 are based on parameters side and
allow_inside (see table 5.5 for details).

−− WHERE c lau s e −−
f t 1 . f eature_id != f t 2 . f eature_id
and @startBorder2 <= @end1
and @endBorder2 >= @start1

In case of patameter values side: both and allow_inside: false, this part will be in the
WHERE clause as well

−− WHERE c lau s e −−
and not (@start2 <= @end1
and @end2 >= @start1)

47

side variables allow_inside = 1 allow_inside = 0
left @startBorder2 @start2 - @distance @start2 - @distance
left @endBorder2 @end2 @start2
right @startBorder2 @start2 @end2
right @endBorder2 @end2 + @distance @end2 + @distance
both @startBorder2 @start2 - @distance @start2 - @distance
both @endBorder2 @end2 + @distance @end2 + @distance

Table 5.5: Near parameters: values of start and end variables

48

Chapter 6

Implementation

The application is implemented in Vaadin, an open source Web application framework fea-
turing a server-side architecture. Client-side uses Ajax technology and is build on top of
Google Web Toolkit. Application in Vaadin can be developed in very similar way to Java
Swing application without need to separately program server side, client side and commu-
nication between them. Because of this it was chosen for development of our application.

6.1 Web Interface

We considered letting the user type the sentence in ChQL. This approach could lead to
typos or syntax errors, which could lead to confusion and frustration of user and go against
our goal of making the language user-friendly for biologists.

Instead, we decided to implement our application as a web interface (see figure 6.1), that
would navigate the user through assembling a sentence in ChQL language. User creates
sentence in ChQL by choosing words from drop down menu.

When user chooses word from drop down menu, additional drop down menus or text
fields appear to allow user set values of parameters. For most parameters there are already
pre-entered default values that user can keep, if they do not wish to use their own values.

After parameters are filled (or left at default values), user clicks ”Confirm selection“
button, which adds word to sentence in ChQL Level 2 along with chosen parameters. The
content of the main drop down menu then changes. The application uses deterministic
finite state machine accepting language ChQL Level 1 (see figure 5.1) to determine which
group of words to offer next. This way user is unable to assemble sentence that would have
incorrect syntax. The state machine also checks if current state is an accepting state. If
yes, the user can click ”Show query“ button to see message box with generated SQL query,
click ”Run query“ button to send generated SQL query to server and get results, or continue
assembling the sentence. If current state is not an accepting state, ”Show query“ and ”Run
query“ buttons are disabled and user has to finish sentence before being able to use them.

6.2 Core Implementation

Class T0_ChadoQueryBuilder

Class T0_ChadoQueryBuilder implements user interface as well as logic of the application.
When user inserts a word into sentence, an object of class Word representing word with
parameters is inserted into list wordList. After user clicks ”Show query“ or ”Run query“ ,

49

Figure 6.1: Web interface for creating sentence in ChQL language

Figure 6.2: Query results in web interface

query translation starts. The list of commands in ChQL language is looped through and
new objects are created and added to list wordObjectList. Based on value of variable
command in the list, different objects can be created. Object of class Word representing
gene is grouped with objects representing secondary functions (promoter of, intron of,
exon of) and tertiary functions (nth) to create object of class Gene. For values of command
element, feature and transcription factor new objects will have class Element, Word
and TranscriptionFactor respectively.

The initial parts of SELECT, FROM and WHERE clause are created and list of objects
is looped through. If object is of class extending class Operator, its methods setLeft and
setRight are called to prepare prerequisities for positional comparison based on class of
objects that is in the list before (left) and after (right) the operator object. For each
object its methods for filling its part of query are called. At the end, SELECT, FROM and
WHERE clauses of query are joined to one string representing the finished SQL query. In
case user had clicked the button ”Run query“ , class DatabaseHelper will send the generated
SQL query to database and results will be displayed (see figure 6.2).

Class DatabaseHelper

Class DatabaseHelper manages connection to PostgreSQL server running Chado database
and sends generated SQL queries to database.

50

Class Word

Class Word is used to store words of ChSQL language that user has added to the sentence
along with parameters. String command stores name of function in ChQL language. Hash
map parameters stores pairs of parameter and value (for example <length, 100>).

Class Operator

Class Operator is used for all operators (see figure 6.3). It has String wherePart, stroring
generated WHERE clause for SQL query. Its has variables left and right of type Operand
pointing to features (objects of class Operand left and right from the Operator). Method
setQueryPart is used to determine what string to use for location comparison based on type
of feature (see ”Operators in general“ in 5.3.3).

Class Inside

Class Inside extends class Operator. Its method setQuery generates part of WHERE clause
that checks if feature pointed to by left is located inside feature pointed to by right.

Class Intersect

Class Intersect extends class Operator. Its variable overlap represents minimal required
overlap. Method setQuery generates part of WHERE clause that checks if feature pointed
to by left overlaps feature pointed to by right. If overlap is greater than 1, it also adds
part that checks if overlap of features is at least the value of variable overlap.

Class Near

Class Near extends class Operator. Its method createQuery generates part of WHERE
clause that checks if feature pointed to by left overlaps defined reagion around feature
pointed to by right. Variables distance, isAllowedInside and side determine region
that will be used for comparison (check table 5.5 for details).

Class Operand

Class Operand is used by class Operator to create appropriate positional comparison. Its
variables localMin and localMax store strings that would be used in comparison (see

”Operators in general“ in 5.3.3). Variable op points to object of class GeneralFeature.

Class GeneralFeature

Class GeneralFeature extends class Operand and is used for all features. Variable index rep-
resents the feature’s wid (word id, as described in 5.3.3). Variables selectPart, fromPart
and wherePart store query’s SELECT clause, FROM clause and WHERE clause respec-
tively. Variable interval stores string for check on minimum and maximum values of all
feature locations.

51

Class Feature

Class Feature extends class GeneralFeature. Its method createQuery generates SELECT,
FROM and WHERE clause for feature. If variable type is not null, check for particular
feature type will be also incorporaed into WHERE clause.

Class Element

Class Element extends class GeneralFeature. Its method createQuery generates SELECT,
FROM and WHERE clause. The WHERE clause also contains check on specific type of
element based on value of variable type.

Class TranscriptionFactor

Class TranscriptionFactor extends class GeneralFeature. Its method createQuery generates
SELECT, FROM and WHERE clause. If variable name is not null, check for name of
transcription factor will also be incorporated into WHERE clause.

Class Gene

Class Gene extends class GeneralFeature. Variable predecessor determines in which con-
text the word gene was used. If its value is null, gene was used as a standalone word. If
it’s ”promoter of“ , all logic will be the same from point of view of class Gene with only
exception of adding extra column for promoter position to SELECT clause. Otherwise it
only influences positional comparison, which is taken care of by class Operator using vari-
able promoterLength. For values ”exon of“ and ”intron of“ it means the word gene was
used as ”exon of gene“ and ”intron of gene“ respectively. If also variable N is not null, then
gene was used as ”nth intron of gene“ or ”nth exon of gene“ . Based on value of variable
predecessor, method createQuery runs method createQueryIntron (for ”intron of“ , create-
QueryExon (for ”exon of“) or createQueryGene (for ”promoter of“ or null value). These
methods will construct SELECT, FROM and WHERE clause for intron, exon and gene.
In any of these methods of variable name is not null, condition checking name of gene will
be added to WHERE clause. Same applies to variable function and check for function of
gene.

Class SourceFeature

Class SourceFeature adds condition to WHERE clause of query (variable wherePart) to
look only for source feature with name specified by variable name. In case at least one of
variables min, max is not null, it will also add condition for each feature that it has to be in
boundaries defined by either min, max or both. This condition is stored in variable interval
in class GeneralFeature.

Class Query

Class Query adds line at the end of query (variable endPart) that will limit number of
returned rows based on value of variable limit.

52

Figure 6.3: UML diagram for ChQL Query Builder

53

Chapter 7

Evaluation and Results

The application and database ran on Orcale VM VirtualBox virtual machine with 4500 MB
RAM. This machine was running operating system Ubuntu 14.04 LTS (Trusty Tahr). For
database we used PostgreSQL 9.1 with Chado database schema. The web application was
running on Tomcat 8.0 server.

7.1 Data

Before testing any SQL queries on Chado database, we filled the database with data. Instead
of using dummy test data, we used authentic data from various sources.

Data sources

All data was imported to database using GFF3 files. We imported annotation data for
human genome, triplexes, quadruplexes, palindromes and transcription factors.

• GFF3 file for human genome (hg19 version) was downloaded from website of ensembl
project [2]. This file did not contain features for chromosomes.

• For chromosomes in human genome we made and imported custom GFF3 file based
on infromation from NCBI website.

• GFF3 files for transcription factors were downloaded from MotifMap website [3].

• GFF3 file for triplexes was generated using R/Bioconductor package Triplex [5].

• GFF3 file for quadruplexes was created based on [7].

• GFF3 file for palindromes was generated by R script provided by supervisor of this
work.

Data Import and Fixes

The GFF3 files were imported into Chado database using script gmod_bulk_load_gff3.pl
(Chado bulk loader script), which is part of standard Chado installation.

Most of the GFF3 files (see section 2.3 for details on columns and attributes of GFF3
file) contained some problems preventing the bulk loader script from successful import into

54

database. Because of huge size of some files (over 1 GB) it would be impossible to fix these
errors manually. We created shell scripts to fix these errors.

Below is description of various errors and problems that occured during data import
using the bulk loader script and solutions to these problems.

Problems with directives using double hash This problem happened because GFF3
file used double hash for some entries instead of single hash. It can be solved by replacing
the double hash with single hash (can be done manually as problem is only once at the
beginning of a GFF3 file).

Error don’t know what do do with directive: ’##species’

Bad reference to source feature This problem occured, because GFF 3 file used direc-
tive ##sequence-region to define source feature. Bulk loader script does not support such
way of declaring a reference sequence for a GFF3 file. The ##sequence-region directive is
not expressive enough to define what type of feature the sequence is. If GFF3 file uses a
##sequence-region directive in this way, it must be converted to a full GFF3 line (see C.2
fro details).

Error Unable to find srcfeature <feature> in the database

Inconsistent sequence ids Another problem is when sequence definition has different
value of seqid (first column) and attribute ID. Sequence definition should have same values
of seqif and attribute ID. In some GFF3 files attribute ID used some automatically generated
value that was different than seqid. A script was made to fix this problem. (see appendix
C.1 for details).

Splitting data into multiple chunks

Importing big files was inefficient, because it took considerable amount of time (importing
entire human genome into database took several days). Bulk loader script often found
error in the imported file after it had already imported considerable part of file and had to
rollback entire import. Such situations lead to losing even the part of import that contained
no errors. To prevent this, we created shell script to split GFF3 files into smaller chunks.
These chunks could then be imported individually.

7.2 Experiments

7.2.1 Recreating 4 template queries in ChQL language

We tested our web application by recreating the 4 template queries in ChQL language and
translating them to SQL.

Element inside promoter of gene

There are more possible variants of this query based on specific element (triplex, quadruplex,
palindrome), strictness of word inside (Does entire element have to be inside promoter or is a
certain overlap enough?) and parameters of word gene (Are we looking for gene with specific

55

Source Element id El. start El. end Gene id Gene name G. start G. end
chr1 4660802 910482 910559 3172968 C1orf170 910478 910578
chr1 4660803 910508 910554 3172968 C1orf170 910478 910578

Table 7.1: Triplexes in promoter of gene ”C1orf170“

name, specific function or just any gene?). We can also include specific source feature and
query options. In this example we’ll be looking for triplex that lies strictly inside promoter
(with length 100) of gene named C1orf170. Below is the query written in ChQL language.
Each function is in its own row for better readability:

element (type : t r i p l e x)
i n s i d e
promoter o f (l ength : 100)
gene (name : C1orf170)

Below are instructions for assembling this sentence in ChQL language using the appli-
cation web interface.

1. From main drop down menu choose ”element“ .

2. From drop down menu ”type“ choose ”triplex“ .

3. Click ”Confirm selection“ . Sentence below now shows:
element (type:triplex)

4. Choose ”inside“ from main drop down menu.

5. Click ”Confirm selection“ . Following part is now added to the sentence:
inside.

6. Choose ”promoter of“ from main drop down menu.

7. Keep the default value of ”100“ in text field labeled ”length“

8. Click ”Confirm selection“ . Following part is now added to the sentence:
promoter of (length:100)

9. Choose ”gene“ from main drop down menu.

10. Type ”C1orf170“ inside text field labeled ”name“

11. Click ”Confirm selection“ . Following part is now added to the sentence:
gene (name:C1orf170)

12. Click ”Show query“ to see generated SQL or ”Run query“ to send query to SQL server
and get results.

Generated SQL query (see appendix B.3.1) will return results listed in table 7.1. Only
some columns from returned data set were chosen for better readability.

56

Element near transcription factor

There are more possible variants of this query based on specific element (triplex, quadruplex,
palindrome), parameters of word near (From which side? Is overlap with transcription factor
allowed? What is maximum distance considered?) and parameters of word transcription
factor (Are we looking for transcription factor with specific name or just any transcription
factor?). We can also include specific source feature and query options. In this example
we’ll be looking for quadruplex that overlaps distance of 500 bases around the transcription
factor from left or right side and could (but doesn’t have to) overlap the transcription factor
itself. Each function is in its own row for better readability:

element (type : t r i p l e x)
near (s i d e : both , a l l ow_ins ide : true , d i s t anc e : 500)
t r a n s c r i p t i o n f a c t o r
query (l im i t : 10)

Below are instructions for assembling this sentence in ChQL language using the appli-
cation web Interface.

1. From main drop down menu choose ”element“ .

2. From drop down menu labeled ”type“ choose ”quadruplex“ .

3. Click ”Confirm selection“ . Sentence below now shows:
element (type:quadruplex)

4. Choose ”near“ from main drop down menu.

5. In drop down menu labeled ”side“ keep the default value of ”both“

6. In drop down menu labeled ”allowed_inside“ keep the default value of ”true“

7. Type ”500“ into text field labeled ”distance“

8. Click ”Confirm selection“ . Following part is now added to the sentence:
near (side:both, distance:500, allow_inside:true)

9. Choose ”transcription factor“ from main drop down menu.

10. Click ”Confirm selection“ . Following part is now added to the sentence:
transcription factor

11. Click ”Show query“ to see generated SQL or ”Run query“ to send query to SQL server
and get results.

Generated SQL query (see appendix B.3.2) will return results listed in table 7.2. Only
some columns from returned data set were chosen for better readability.

57

Source El. start El. end TF feature_id TF name TF start TF end
chr1 6418793 6418813 6202255 LM1_RFX1 6419106 6419125
chr1 6418793 6418813 6203052 LM1_RFX1 6419106 6419125
chr1 6419501 6419543 6202255 LM1_RFX1 6419106 6419125
chr1 6419501 6419543 6203052 LM1_RFX1 6419106 6419125
chr1 6550198 6550239 6203291 LM2_CTCF 6550096 6550116
chr1 6550578 6550618 6203291 LM2_CTCF 6550096 6550116
chr1 6673144 6673172 6204306 LM4_M2 6673619 6673642
chr1 6673314 6673339 6204306 LM4_M2 6673619 6673642
chr1 6673314 6673339 6203989 LM4_M2 6673678 6673701
chr1 6673778 6673802 6204306 LM4_M2 6673619 6673642

Table 7.2: Quadruplexes near transcription factors

Element inside nth intron of gene

There are more possible variants of this query based on specific element (triplex, quadruplex,
palindrome), parameters of word nth and parameters of word gene (are we looking for gene
with specific name, specific function or just any gene?). We can also include specific source
feature and query options. In this example we’ll be looking for quadruplex that overlaps
(any overlap is enough) the first intron of any gene. We’ll limit the results to 10 rows. Each
function is in its own row for better readability:

element (type : quadruplex)
i n s i d e
nth (n : 1)
in t ron o f
gene
query (l im i t : 1 0)

Below are instructions for assembling this sentence in ChQL language using the appli-
cation web Interface.

1. From main drop down menu choose ”element“ .

2. From drop down menu ”type“ choose ”quadruplex“ .

3. Click ”Confirm selection“ . Sentence below now shows:
element (type:quadruplex)

4. Choose ”intersect“ from main drop down menu.

5. Keep the default value of ”1“ in text field labeled ”overlap“

6. Click ”Confirm selection“ . Following part is now added to the sentence:
intersect (overlap:1)

7. Choose ”nth“ from main drop down menu.

8. Keep the default value of ”1“ in text field labeled ”n“

9. Click ”Confirm selection“ . Following part is now added to the sentence:
nth (n:1)

58

Source Gene name Int. start Int. end El. start El. end
chr1 LOC101927589 133748 129054 131383 131410
chr1 LOC101927589 133748 129054 132967 132992
chr1 LOC101927589 133748 129054 133326 133348
chr1 LOC101060126 11822378 11821435 11822206 11822230
chr1 LOC101928566 16302700 16316365 16304445 16304479
chr1 LOC101928566 16302700 16316365 16312786 16312834
chr1 LOC101928566 16302700 16316365 16315749 16315784
chr1 LOC101928566 16302700 16316365 16315919 16315937
chr1 LOC101928566 16302700 16316365 16316028 16316048
chr1 ACTN4P2 38232179 38242339 38237916 38237938

Table 7.3: Quadruplexes in first intron of gene

10. Choose ”intron of“ from main drop down menu.

11. Click ”Confirm selection“ . Following part is now added to the sentence:
intron of

12. Choose ”gene“ from main drop down menu. Leave the text fields ”name“ and ”function“
empty

13. Click ”Confirm selection“ . Following part is now added to the sentence:
gene

14. Choose ”query“ from main drop down menu.

15. Type ”10“ inside text field labeled ”limit“ .

16. Click ”Confirm selection“ . Following part is now added to the sentence:
query(limit:10)

17. Click ”Show query“ to see generated SQL or ”Run query“ to send query to SQL server
and get results.

Generated SQL query (see appendix B.3.3) will return results listed in table 7.3. Only
some columns from returned data set were chosen for better readability.

Element inside gene

There are more possible variants of this query based on specific element (triplex, quadruplex,
palindrome), strictness of word inside (Does entire element have to be inside gene or is a
certain or any overlap enough?) and parameters of word gene (Are we looking for gene
with specific name, specific function or just any gene?). We can also include specific source
feature and query options. In this example we’ll be looking for triplex that lies strictly
inside gene named ”RERE“ :

element (type : t r i p l e x) i n s i d e gene (name :RERE) query (l im i t : 1 0)

Below are instructions for assembling this sentence in ChQL language using the appli-
cation web interface.

59

Source Element start Element end Gene name G. start G. end
chr1 8426921 8427000 RERE 8412463 8877699
chr1 8426963 8427016 RERE 8412463 8877699
chr1 8429531 8429596 RERE 8412463 8877699
chr1 8429538 8429605 RERE 8412463 8877699
chr1 8429568 8429610 RERE 8412463 8877699
chr1 8446028 8446091 RERE 8412463 8877699
chr1 8446045 8446108 RERE 8412463 8877699
chr1 8461077 8461127 RERE 8412463 8877699
chr1 8540147 8540217 RERE 8412463 8877699
chr1 8542742 8542791 RERE 8412463 8877699

Table 7.4: Triplexes in gene ”RERE“

1. From main drop down menu choose ”element“ .

2. From drop down menu ”type“ choose ”triplex“ .

3. Click ”Confirm selection“ . Sentence below now shows:
element (type:triplex)

4. Choose ”inside“ from main drop down menu.

5. Click ”Confirm selection“ . Following part is now added to the sentence:
inside

6. Choose ”gene“ from main drop down menu.

7. Type ”RERE“ inside text field labeled ”name“

8. Click ”Confirm selection“ . Following part is now added to the sentence:
gene (name:RERE)

9. Choose ”query“ from main drop down menu.

10. Type ”10“ inside text field labeled ”limit“ .

11. Click ”Confirm selection“ . Following part is now added to the sentence:
query(limit:10)

12. Click ”Show query“ to see generated SQL or ”Run query“ to send query to SQL server
and get results.

Generated SQL query (see apendix B.3.4) returned results listed in table 7.4. Only some
columns from returned data set were chosen for better readability.

7.2.2 Manual vs automatic queries

We verified that queries created manually (see subsection 5.2.1) have same performance and
give same output as queries created by application. Only difference is in aliases for tables
and order of joins and conditions. These things do not affect result or performance of the
query. Queries created manually can have joins and conditions in a way that makes sense

60

Entry Type Count Query runtime
Feature (Any) 2 636 040 263 s
Gene 39 867 3 s
Promoter of gene (*) 39 867 4 s
Exon 879 841 72 s
Exon of gene 3 854 4 s
Intron of gene (*) 1 798 5 s
Transcription factor 3 422 1 s
Triplex 380 346 49 s
Quadruplex 429 491 42 s
Palindrome 714 960 76 s

Table 7.5: Types of features in database. Query runtime states how long does it take to
list all items of that type. Asterisk symbol (*) marks items that are calculated ad-hoc from
other items in database.

to person who created the query. Also aliases made by person can be more readable than
aliases created by application. Those created by application have to comply with established
naming convention, while those manually created can be named differently based on context.

7.2.3 Data statistics

It’s good to have an idea of how much data there is in the database. This is especially im-
portant when making complicated queries with lots of joined tables. The most performance
heavy are comparisons of locations, which are used often since our language is based on
positional relationships of features. In our database we have over 2 million features. The
counts and query run times of specific feature types are in table 7.5.

In some situations it’s good to limit query by choosing only a certain part of specific
chromosome defined by number of base pairs. We checked each chromosome by 10Mb
chunks and counted how many features each chunk contains (see figure 7.1). Each number
represents amount of 10 Mb at which the chunk ends. For example number 3 represents
chunk on interval (20 Mb, 30 Mb>.

From database point of view size of chunk in base pairs is not as important as how many
features it contains. For example chromosome chrY contains only 259 features on chunk 6,
while chromosome chr19 contains more than 23 thousand features on chunk 1. Even though
these chunks have same length in base pairs, searching on the first one could be 85 times
faster than on second one. It’s good to keep this in mind when creating queries for specific
chunks.

7.2.4 Performance

When creating queries in ChQL language, it’s important to have an idea of how long could
each query take. Some queries take less than second, some take several minutes and others
are bound to run for hours. Counting any type of feature without an operator usually takes
at most few seconds. Actually listing the items (instead of just returning count) creates
certain performance overhead, but even then, listing one type of feature is fairly quick (see
table 7.5). Listing all genes (or promoters of genes), exons of genes, introns of genes, or
transcription factors takes at most 5 seconds. Listing elements (triplexes, quadruplexes,

61

Figure 7.1: Number of features on chromosomes (per 10 Mb chunks)

palindromes) or exons (not necessarily in relationship with gene) takes around 1 minute.
Situation is different for queries using operators. These queries take longer time than

queries only listing certain type of feature. To test this, we looked for triplex inside different
types of features (see table 7.6). If these queries are run for entire genome, the runtime
is usually at least 1 hour (or significantly more depending on type of query). Because of
that it is worth considering checking only a certain chunk on chosen chromosome. In our
tests we used first 10Mb chunk on chromosome chr1. This chunk contains more than 14
thousand features. Run time for such queries ranges from under 1 second to approximately
1 minute. For example looking for triplex inside gene, promoter of gene or exon of gene
takes around 1 second, while looking for triplex in intron of gene takes around 1 minute.
Looking for triplex is fastest in gene. In promoter of gene it’s slightly slower. For exon of
gene it’s approximately 4 times slower than for gene. For intron of gene it’s 50 times slower
than for exon of gene.

Searching entire genome by non-overlapping chunks would neglect results that lie on
multiple chunks. Regardless of that, this method is useful for estimating runtime of different
queries. If we use time measured for first 10Mb chunk of chromosome chr1, we can estimate
how much time would checking entire genome by 10Mb chunks take. Around one minute
for gene (or promoter of gene), 4 minutes for exon of gene and around 3 hours for intron of
gene.

Searching entrire genome at once does not take the same time as searching it by chunks.
We found out that checking the entire genome is 40-65 times slower depending on specific
query. It took 63 minutes for gene, only 7 more minutes for promoter of gene and around 4
hours for exon of gene. For intron the query consumed all space left on VM’s drive (around
80 GB) and crashed because of insufficient space. If there would be enough resources for
this query, we estimate it would run for more than 8 days.

All tested queries confirmed that queries searching in promoter of gene are only slightly
slower than in gene. This is understandable, as promoters are calculated ad-hoc from
gene position during query execution, which creates only a slight performance overhead.
Searching in exon takes approximately 4 times more than gene. This is probably, because
exon has to be connected to gene through feature_relationship table and even though
there are only 3k exons connected to gene, there are more than 800k exons. Search in

62

Triplex inside chunk (14.6k fts.) genome (by chunks) genome (whole)
gene 394 ms 70 s (*) 63 min
promoter (100) 539 ms 96 s (*) 67 min
exon 1341 ms 4 min (*) 4 h 20 min
intron 64 s 3 h 11 min (*) 8 d 15 h (*)

Table 7.6: Runtimes of queries searching for triplex in different feature types. Asterisk
symbol (*) marks values that were only estimated.

intron of gene runs approximately 50 times longer than in exon of gene. One could ask
why do intron related queries with operator have such bad performance, while only listing
introns doesn’t take much longer than other types of features. When introns are listed by
themselves, they are calculated based on pairs of exons of the same gene with consecutive
exons numbers. Locations are only listed, but not used for any kind of comparison. However,
when intron is used with operator, locations are used also for comparison. To determine if a
feature is in some kind of positional relationship with intron, we need to check its positional
relationship for first exon and then for second exon in exon pair. Performance-wise this is
the equivalent of comparing not two, but three features with positional operators. When we
take this into account, it’s understandable that queries using intron of gene with operator
have significantly worse performance than other queries.

On the other hand, some things have negligible effect on performance. For example,
same queries with different operators (inside, intersect, near) have very similar runtimes.
Specific type of element (triplex, quadruplex, palindrome) didn’t have noticeable effect on
query runtime. Changing promoter length had almost no effect on runtime of queries.

Performance Improvements

When manually constructing queries in the beginning, we noticed poor performance in those
containing word element. These queries used both feature type and feature property to
determine exact type of element. We tried to check only one of these options and found
out that checking only feature property is much faster. Additionally, custom defined feature
property is more specific than terms available in Chado database. We chose to use this
faster method of determining the element type in the implementation of our application.

In Chado there is an alternative way of comparing feature intervals. Instead of doing
standard comparisons like ((loc1.fmin >= loc2.fmin) and (loc1.fmax <= loc2.fmin)), one can
use boxrange. Boxrange is a built-in function that converts featureloc entry to a rectangle
in two dimensional space. This rectangle ranges on y-axis from value in fmin column to
value in fmax column. On x-axis, rectangle begins and ends on same value, represented by
srcfeature_id column (sfid for short). So coordinates of this rectange are ((sfid, fmin),
(sfid, fmax)). For example if a feature is located on feature with id 1 and has values of fmin
and fmax of 100 and 200 respectively, it is defined by a rectangle starting at point (1,100)
and ending at (1,200). Since features with different source feature lie in different ”columns“
(different value of x), they cannot overlap, which makes sense. When locations of features
are converted into rectangles in two dimensional space, geometric operators of PostgreSQL
can be used to check their positional relationships (for example overlap or containment).
This solution utilizes index binloc_boxrange_src on feaureloc table. In our tests it made
queries up 2x faster than original approach, but in some cases could be also more than 10x
slower. For this reason we decided to use the standard method of comparison.

63

Sometimes queries can be slow because SQL server does not have enough resources.
PostgreSQL is preconfigured with very low values for some of these resources. We tried
to configure PostgreSQL server to use more resources (for example 650MB shared mem-
ory instead of default 24 MB). This however did not bring any noticable improvement in
performance of queries.

64

Chapter 8

Conclusion

Chado is a very useful database schema for storing genome annotation data. Constructing
queries for Chado is no easy task even for person familiar with SQL and Chado database
schema and is not an option for a biologist without this knowledge. We designed a language
that uses biological terms and words referring to positional relationships between features.

Writing queries in this language would probably have been intuitive enough, but we
decided to go further. We implemented a web interface, which guides user through the
process of assembling a sentence in ChQL. This way instead of wondering what to type
next, the user is always given choice of words, which can be used in current context. It also
prevents the user from making typos or syntax errors.

There are improvements, that could be made. For example option of typing the com-
mands for experienced users, more feature types and operators (not just for position, but
different types of relationships), feature grouping with option of applying the operator to
the entire group. Queries could be programmed to automatically run on overlapping chunks
to improve performance. ChQL could also use more tables as it currently uses only 6 ta-
bles. However, it’s debatable if there would be enough annotation data using these highly
specialized tables to make such addition worthwhile.

Even in its current form, ChQL can be used to create some interesting queries, especially
for positional comparison of features. ChQL doesn’t offer same level of freedom as SQL,
but it could be useful for biologists without SQL knowledge working with Chado.

65

Bibliography

[1] M. Ashburner. Gene ontology: Tool for the unification of biology. Nature Genetics,
25:25–29, 2000.

[2] Fiona Cunningham, M. Ridwan Amode, Daniel Barrell, et al. Ensembl 2015. Nucleic
Acids Research, 43(D1):D662–D669, 2015.

[3] Kenneth Daily, Vishal R. Patel, Paul Rigor, Xiaohui Xie, and Pierre Baldi. Motifmap:
integrative genome-wide maps of regulatory motif sites for model species. BMC
Bioinformatics, 12:495, 2011.

[4] Karen Eilbeck, Suzanna Lewis, Christopher Mungall, Mark Yandell, Lincoln Stein,
Richard Durbin, and Michael Ashburner. The sequence ontology: a tool for the
unification of genome annotations. Genome Biology, 6(5):R44, 2005.

[5] Jiří Hon, Tomáš Martínek, Kamil Rajdl, and Matej Lexa. Triplex: an r/bioconductor
package for identification and visualization of potential intramolecular triplex
patterns in dna sequences. Bioinformatics, 29, 2013.

[6] Robert M. Kuhn, David Haussler, and W. James Kent. The ucsc genome browser and
associated tools. Briefings in Bioinformatics, 14(2):144–161, 2013.

[7] Matej Lexa, Pavlína Šteflová, Tomáš Martínek, Michaela Vorlíčková, Boris Vyskot,
and Eduard Kejnovský. Guanine quadruplexes are formed by specific regions of
human transposable elements. BMC Genomics, 15(1032):1–12, 2015.

[8] Christopher J. Mungall, David B. Emmert, and The FlyBase Consortium. A chado
case study: an ontology-based modular schema for representing genome-associated
biological information. Bioinformatics, 23(13):i337–i346, 2007.

[9] Susan E. St. Pierre, Laura Ponting, Raymund Stefancsik, Peter McQuilton, and the
FlyBase Consortium. Flybase 102—advanced approaches to interrogating flybase.
Nucleic Acids Research, 42(-):780–788, 2013.

[10] Website. Generic model organism database (gmod). http://gmod.org, [Accessed:
2014-07-07].

[11] Website. Biosql. http://www.biosql.org, [Accessed: 2015-09-01].

66

Appendix A

Contents of USB flash drive

/
doc/ ... Directory containing pdf files and latex source files of this work.

ChadoVM.zip ... Zip file containing virtual machine used for this work. It contains
everything one needs to test/use the application (database filled with
data is included).

README.pdf ... Manual for running the virtual machine and using/testing the
application.

67

Appendix B

SQL queries

B.1 SELECT clause for different feature types

Each query will have source feature in select clause.

−− SELECT c lau s e −−
f t_src . uniquename AS "Source "

Feature

−− SELECT c lau s e −−
f t {wid } . f eature_id AS "Feature ␣ Id ({wid }) " ,
f t {wid } . name AS "Feature ␣Name({wid }) " ,
l o c {wid } . fmin AS "Feature ␣Min({wid }) " ,
l o c {wid } . fmax AS "Feature ␣Max({wid }) "

Element

−− SELECT c lau s e −−
f t {wid } . f eature_id AS "Element␣ Id ({wid }) " ,
f t {wid } . name AS "Element␣Name({wid }) " ,
l o c {wid } . fmin AS "Element␣Min({wid }) " ,
l o c {wid } . fmax AS "Element␣Max({wid }) "

Transcription factor

−− SELECT c lau s e −−
f t {wid } . f eature_id AS "TF␣ Id ({wid }) " ,
f t {wid } . name AS "TF␣Name({wid }) " ,
l o c {wid } . fmin AS "TF␣Min({wid }) " ,
l o c {wid } . fmax AS "TF␣Max({wid }) "

Gene

−− SELECT c lau s e −−
f t {wid } . f eature_id AS "Gene␣ Id ({wid }) " ,
f t {wid } . name AS "Gene␣Name({wid }) " ,
l o c {wid } . fmin AS "Gene␣Min({wid }) " ,
l o c {wid } . fmax AS "Gene␣Max({wid }) "

68

Promoter of gene

Variable @length represents promoter length.

−− SELECT c lau s e −−
f t {wid } . f eature_id AS "Gene␣ Id ({wid }) " ,
f t {wid } . name AS "Gene␣Name({wid }) " ,
l o c {wid } . fmin − @length AS "Promoter␣Min({wid }) " ,
l o c {wid } . fmin AS "Gene␣Min({wid }) " ,
l o c {wid } . fmax AS "Gene␣Max({wid }) "

Exon of gene

−− SELECT c lau s e −−
f t {wid}_gene . f eature_id AS "Gene␣ Id ({wid }) " ,
f t {wid}_gene . name AS "Gene␣Name({wid }) " ,
f t {wid}_exon . name AS "Exon␣Name({wid }) " ,
l o c {wid}_exon . fmin AS "Exon␣Min({wid }) " ,
l o c {wid}_exon . fmax AS "Exon␣Max({wid }) "

Intron of gene

−− SELECT c lau s e −−
f t {wid}_gene . f eature_id AS "Gene␣ Id ({wid }) " ,
f t {wid}_gene . name AS "Gene␣Name({wid }) " ,
l o c {wid}_exon{wid } . fmax AS " Intron ␣Min({wid }) " ,
l o c {wid}_exon2 . fmin AS " Intron ␣Max({wid }) "

B.2 Manually created SQL queries

B.2.1 Element inside promoter of gene

SELECT ∗
FROM f e a t u r e chromosome_feature

join f e a t u r e l o c e lement_locat ion
on e lement_locat ion . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e e lement_feature
on e lement_locat ion . f eature_id = element_feature . f eature_id
join f ea tureprop element_property
on element_property . f eature_id = element_feature . f eature_id
join cvterm element_property_type
on element_property . type_id = element_property_type . cvterm_id
join f e a t u r e l o c gene_locat ion
on gene_locat ion . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e gene_feature
on gene_locat ion . f eature_id = gene_feature . f eature_id
join cvterm gene_type
on gene_feature . type_id = gene_type . cvterm_id
WHERE true
and element_property_type . name = ’ ss_type ’
and element_property . value = ’ t r i p l e x ’
and e lement_locat ion . fmin >= gene_locat ion . fmin − 100
and e lement_locat ion . fmax <= gene_locat ion . fmin
and gene_type . name = ’ gene ’

69

B.2.2 Element near transcription factor

SELECT ∗
FROM f e a t u r e chromosome_feature
join f e a t u r e l o c e lement_locat ion
on e lement_locat ion . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e e lement_feature
on e lement_locat ion . f eature_id = element_feature . f eature_id
join f ea tureprop element_property
on element_property . f eature_id = element_feature . f eature_id
join cvterm element_property_type
on element_property . type_id = element_property_type . cvterm_id
join f e a t u r e l o c TF_location
on TF_location . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e TF_feature
on TF_location . f eature_id = TF_feature . f eature_id
join cvterm TF_type
on TF_feature . type_id = TF_type . cvterm_id
WHERE true
and TF_type . name = ’ TF_binding_site ’
and element_property_type . name = ’ ss_type ’
and element_property . value = ’ t r i p l e x ’
and TF_location . fmin − 100 <= element_locat ion . fmax
and TF_location . fmax + 100 >= element_locat ion . fmin

B.2.3 Element intersect nth intron of gene

SELECT ∗
FROM f e a t u r e chromosome_feature
join f e a t u r e l o c e lement_locat ion
on e lement_locat ion . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e e lement_feature
on e lement_locat ion . f eature_id = element_feature . f eature_id
join f ea tureprop element_property
on element_property . f eature_id = element_feature . f eature_id
join cvterm element_property_type
on element_property . type_id = element_property_type . cvterm_id
join f e a t u r e l o c exon_1st_location
on exon_1st_location . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e exon_1st_feature
on exon_1st_location . f eature_id = exon_1st_feature . f eature_id
join f e a t u r e_r e l a t i on sh i p rel2_gene_exon1
on rel2_gene_exon1 . subject_id = exon_1st_feature . f eature_id
join f e a t u r e gene_feature
on rel2_gene_exon1 . object_id = gene_feature . f eature_id
join cvterm gene_type
on gene_feature . type_id = gene_type . cvterm_id
join cvterm exon_1st_type
on exon_1st_feature . type_id = exon_1st_type . cvterm_id
join f ea tureprop exon_1st_property
on exon_1st_property . f eature_id = exon_1st_feature . f eature_id
join cvterm exon_1st_property_type
on exon_1st_property_type . cvterm_id = exon_1st_property . type_id
join f e a t u r e_r e l a t i on sh i p rel2_gene_exon2
on rel2_gene_exon2 . object_id = gene_feature . f eature_id

70

join f e a t u r e exon_2nd_feature
on rel2_gene_exon2 . subject_id = exon_2nd_feature . f eature_id
join cvterm exon_2nd_type
on exon_2nd_feature . type_id = exon_1st_type . cvterm_id
join f e a t u r e l o c exon_2nd_location
on exon_2nd_feature . f eature_id = exon_2nd_location . f eature_id
join f ea tureprop exon_2nd_property
on exon_2nd_property . f eature_id = exon_2nd_feature . f eature_id
join cvterm exon_2nd_property_type
on exon_2nd_property_type . cvterm_id = exon_2nd_property . type_id
WHERE true
and element_property_type . name = ’ ss_type ’
and element_property . value = ’ t r i p l e x ’
and gene_type . name = ’ gene ’
and exon_1st_type . name = ’ exon ’
and exon_2nd_type . name = ’ exon ’
and exon_1st_property_type . name = ’ exon_number ’
and exon_1st_property . value = ’ 1 ’
and exon_2nd_property_type . name = ’ exon_number ’
and exon_2nd_property . value = ’ 2 ’
and e lement_locat ion . fmin >= exon_1st_location . fmax
and e lement_locat ion . fmax <= exon_2nd_location . fmin

B.2.4 Element inside gene

SELECT ∗
FROM f e a t u r e chromosome_feature

join f e a t u r e l o c e lement_locat ion
on e lement_locat ion . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e e lement_feature
on e lement_locat ion . f eature_id = element_feature . f eature_id
join f ea tureprop element_property
on element_property . f eature_id = element_feature . f eature_id
join cvterm element_property_type
on element_property . type_id = element_property_type . cvterm_id
join f e a t u r e l o c gene_locat ion
on gene_locat ion . s r c f e a tu r e_ id = chromosome_feature . f eature_id
join f e a t u r e gene_feature
on gene_locat ion . f eature_id = gene_feature . f eature_id
join cvterm gene_type
on gene_feature . type_id = gene_type . cvterm_id
WHERE true
and element_property_type . name = ’ ss_type ’
and element_property . value = ’ t r i p l e x ’
and e lement_locat ion . fmin >= gene_locat ion . fmin
and e lement_locat ion . fmax <= gene_locat ion . fmax
and gene_type . name = ’ gene ’

B.3 ChQL translated to SQL

B.3.1 Element inside promoter of gene

SELECT ∗
FROM f e a t u r e f t_src
join f e a t u r e l o c l o c1

71

on l o c1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 1
on l o c1 . f eature_id = f t 1 . f eature_id
join f ea tureprop prop1
on prop1 . f eature_id = f t 1 . f eature_id
join cvterm cvt_prop1
on prop1 . type_id = cvt_prop1 . cvterm_id
join f e a t u r e l o c l o c2
on l o c2 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 2
on l o c2 . f eature_id = f t 2 . f eature_id
join cvterm cvt2
on f t 2 . type_id = cvt2 . cvterm_id
WHERE true
and cvt_prop1 . name = ’ ss_type ’
and prop1 . value = ’ t r i p l e x ’
and l o c1 . fmin >= loc2 . fmin −100
and l o c1 . fmax <= loc2 . fmin
and cvt2 . name = ’ gene ’
and f t 2 . name = ’ C1orf170 ’

B.3.2 Element near transcription factor

SELECT ∗
FROM f e a t u r e f t_src
join f e a t u r e l o c l o c1
on l o c1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 1
on l o c1 . f eature_id = f t 1 . f eature_id
join cvterm cvt1
on f t 1 . type_id = cvt1 . cvterm_id
join f ea tureprop prop1
on prop1 . f eature_id = f t 1 . f eature_id
join cvterm cvt_prop1
on prop1 . type_id = cvt_prop1 . cvterm_id
join f e a t u r e l o c l o c2
on l o c2 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 2
on l o c2 . f eature_id = f t 2 . f eature_id
join cvterm cvt2
on f t 2 . type_id = cvt2 . cvterm_id
WHERE true
and cvt1 . name = ’G_quartet ’
and cvt_prop1 . name = ’ ss_type ’
and prop1 . value = ’ quadruplex ’
and l o c2 . fmin − 500 <= loc1 . fmax
and l o c2 . fmax + 500 >= loc1 . fmin
and cvt2 . name = ’ TF_binding_site ’
l imit 10

B.3.3 Element intersect nth intron of gene

SELECT ∗
FROM f e a t u r e f t_src
join f e a t u r e l o c l o c1

72

on l o c1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 1
on l o c1 . f eature_id = f t 1 . f eature_id
join f ea tureprop prop1
on prop1 . f eature_id = f t 1 . f eature_id
join cvterm cvt_prop1
on prop1 . type_id = cvt_prop1 . cvterm_id
join f e a t u r e l o c loc2_exon1
on loc2_exon1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e ft2_exon1
on loc2_exon1 . f eature_id = ft2_exon1 . f eature_id
join f e a t u r e_r e l a t i on sh i p rel2_gene_exon1
on rel2_gene_exon1 . subject_id = ft2_exon1 . f eature_id
join f e a t u r e ft2_gene
on rel2_gene_exon1 . object_id = ft2_gene . f eature_id
join cvterm cvt2_gene
on ft2_gene . type_id = cvt2_gene . cvterm_id
join cvterm cvt2_exon1
on ft2_exon1 . type_id = cvt2_exon1 . cvterm_id
join f ea tureprop prop2_exon1
on prop2_exon1 . f eature_id = ft2_exon1 . f eature_id
join cvterm cvt_prop2_exon1
on cvt_prop2_exon1 . cvterm_id = prop2_exon1 . type_id
join f e a t u r e_r e l a t i on sh i p rel2_gene_exon2
on rel2_gene_exon2 . object_id = ft2_gene . f eature_id
join f e a t u r e ft2_exon2
on rel2_gene_exon2 . subject_id = ft2_exon2 . f eature_id
join cvterm cvt2_exon2
on ft2_exon2 . type_id = cvt2_exon1 . cvterm_id
join f e a t u r e l o c loc2_exon2
on ft2_exon2 . f eature_id = loc2_exon2 . f eature_id
join f ea tureprop prop2_exon2
on prop2_exon2 . f eature_id = ft2_exon2 . f eature_id
join cvterm cvt_prop2_exon2
on cvt_prop2_exon2 . cvterm_id = prop2_exon2 . type_id
WHERE true
and cvt_prop1 . name = ’ ss_type ’
and prop1 . value = ’ quadruplex ’
and loc2_exon1 . fmax <= loc1 . fmax
and loc2_exon2 . fmin >= loc1 . fmin
and cvt2_gene . name = ’ gene ’
and cvt2_exon1 . name = ’ exon ’
and cvt2_exon2 . name = ’ exon ’
and cvt_prop2_exon1 . name = ’ exon_number ’
and prop2_exon1 . value = ’ 1 ’
and cvt_prop2_exon2 . name = ’ exon_number ’
and prop2_exon2 . value = ’ 2 ’

B.3.4 Element inside gene

SELECT ∗
FROM f e a t u r e f t_src
join f e a t u r e l o c l o c1
on l o c1 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 1

73

on l o c1 . f eature_id = f t 1 . f eature_id
join cvterm cvt1
on f t 1 . type_id = cvt1 . cvterm_id
join f ea tureprop prop1
on prop1 . f eature_id = f t 1 . f eature_id
join cvterm cvt_prop1
on prop1 . type_id = cvt_prop1 . cvterm_id
join f e a t u r e l o c l o c2
on l o c2 . s r c f e a tu r e_ id = ft_src . f eature_id
join f e a t u r e f t 2
on l o c2 . f eature_id = f t 2 . f eature_id
join cvterm cvt2
on f t 2 . type_id = cvt2 . cvterm_id
WHERE true
and cvt1 . name = ’G_quartet ’
and cvt_prop1 . name = ’ ss_type ’
and prop1 . value = ’ quadruplex ’
and l o c2 . fmin − 500 <= loc1 . fmax
and l o c2 . fmax + 500 >= loc1 . fmin
and cvt2 . name = ’ TF_binding_site ’
l imit 10

74

Appendix C

Data fixes

C.1 Inconsistent sequence ids

Principle of script is to create list with good ids and bad ids. Each occurence of each item
from BadId list will be replaced by item in GoodId list on same position

GoodID=($ (cat ${ f i leName } . g f f 3 | grep "##sequence−r eg i on " −A 2 | grep "
↪→ ID=" | awk ’{ p r i n t $1 } ’))

BadID=($ (cat ${ f i leName } . g f f 3 | grep "##sequence−r eg i on " −A 2 | grep "ID
↪→ =" | awk ’{ p r i n t $9 } ’ | awk −F ’ ; ’ ’{ p r i n t $1 } ’ | awk −F ’= ’ ’{
↪→ pr in t $2 } ’))

cp ${ f i leName } . g f f 3 ${ f i leName}_fixed_id_0 . g f f 3

for ((i =0; i<${#GoodID [@] } ; i++)) ; do
cat ${ f i leName}_fixed_id_$i . g f f 3 | sed " s /${BadID [i] } ; / ${GoodID [i] } ; / g"

↪→ > ${ fi leName}_fixed_id_$ ((i + 1)) . g f f 3
rm −r f ${ f i leName}_fixed_id_$i . g f f 3
done

C.2 Bad reference to source featue

Line replacement example

Problematic line:

##sequence−r eg i on chr1 1 249250621

Fixed line:

chr1 . chromosome 1 249250621 . . . ID=chr I

75

	Introduction
	Genome Annotation
	Gene Ontology
	Sequence Ontology
	GFF3 format

	State of the Art
	Biological databases
	Biological querying tools

	Chado
	Modules
	General Module
	Sequence Module
	CV Module

	Design
	Schema and interface
	Solution proposal
	Creation of queries

	Language Proposal
	Functions and operators
	Language definition
	Translation to SQL

	Implementation
	Web Interface
	Core Implementation

	Evaluation and Results
	Data
	Experiments
	Recreating 4 template queries in ChQL language
	Manual vs automatic queries
	Data statistics
	Performance

	Conclusion
	Contents of USB flash drive
	SQL queries
	SELECT clause for different feature types
	Manually created SQL queries
	Element inside promoter of gene
	Element near transcription factor
	Element intersect nth intron of gene
	Element inside gene

	ChQL translated to SQL
	Element inside promoter of gene
	Element near transcription factor
	Element intersect nth intron of gene
	Element inside gene

	Data fixes
	Inconsistent sequence ids
	Bad reference to source featue

