
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

APPLICATION FOR VIDEO TRACKING

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN BOREK
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

APLIKACE PRO SLEDOVÁNÍ OBJEKTŮ VE VIDEU
APPLICATION FOR VIDEO TRACKING

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN BOREK
AUTHOR

VEDOUCÍ PRÁCE Ing. FILIP ORSÁG, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt
Předložená bakalářská práce pojednává o implementaci aplikace Video Anonymizer. Tato
aplikace sleduje objekty ve videu a upravuje jejich vzhled. Práce se zabývá zpracováním
videa s použitím knihovny FFmpeg, kde se zaměřuje především na vyhledávání snímků.
Soustřeďuje se také na sledování více objektů, úpravu jejich trajektorií a na jejich anonymizaci;
upřednostňovaný způsob anonymizace je rozmazání objektu. Dále je zde rozebráno vytváření
vícejazyčného uživatelsky přívětivého grafického uživatelského rozhraní s pomocí knihovny
QT. Při testování uživatelské přívětivosti tohoto grafického uživatelského rozhraní bylo
zjištěno, že aplikace je snadno ovladatelná již při jejím prvním použití. Také bylo ověřeno,
že uživatelská nápověda obsahuje všechny potřebné informace a je snadno dostupná přímo
z aplikace.

Abstract
This thesis focuses on an implementation of an application Video Anonymizer. The ap-
plication tracks objects in a video and changes their appearance. The thesis deals with
processing videos when using the FFmpeg library. It covers especially issues of frames
seeking. It also covers tracking multiple objects, manually correcting their trajectories and
anonymizing them. The preferred way of anonymization is defocusing objects. Further-
more, the thesis describes creating a multilingual user-friendly graphical user interface with
the QT framework. A usability testing was performed and revealed that the graphical user
interface is easy to use even when used for the first time. Besides, it proved that a user’s
guide is comprehensive and easily accessible right in the application.

Klíčová slova
Video Anonymizer, anonymizace, sledování objektů ve videu, úprava videa, sledování částic,
QT, FFmpeg

Keywords
Video Anonymizer, anonymization, video tracking, video editing, QT, FFmpeg, particle
tracking

Citace
Martin Borek: Application for Video Tracking, bakalářská práce, Brno, FIT VUT v Brně,
2015

Application for Video Tracking

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Filipa Orsága, Ph.D.

. .
Martin Borek
May 20, 2015

Poděkování
Na tomto místě bych rád poděkoval vedoucímu mé práce panu Ing. Filipu Orságovi, Ph.D.
za zajímavé téma, trpělivost a věnovaný čas. Také bych chtěl velmi poděkovat rodičům,
celé mé rodině i přátelům za podporu během studia i psaní této práce.

c© Martin Borek, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 5
1.1 Project description . 5
1.2 Project structure and its modules . 5

2 Media player (FFmpegPlayer) 7
2.1 Module description . 7
2.2 Selecting a multimedia library . 7

2.2.1 OpenCV is not sufficient . 7
2.2.2 FFmpeg . 8
2.2.3 FFmpeg in the AVWriter . 8

2.3 Media opening . 8
2.3.1 Streams searching . 8
2.3.2 Decoder and video context . 8

2.4 Compressed videos, different types of frames 9
2.4.1 Key frames and non-key frames . 9
2.4.2 Types of non-key frames . 9
2.4.3 Presentation and decoding timestamps 9

2.5 Reading frames . 10
2.5.1 Reading correct packets and decoding 10
2.5.2 Buffers . 10

2.6 Seeking frames . 10
2.6.1 FFmpeg functions for seeking . 10
2.6.2 Seeking key frames . 11
2.6.3 Non-key frames cannot be sought directly 12
2.6.4 Seeking all frames (key frames and non-key frames) 13
2.6.5 Inaccurate seeking needs to be checked 13
2.6.6 Final seeking algorithm . 14

2.7 Obtaining number of frames . 15
2.7.1 Incorrect information . 15
2.7.2 Considered solution 1: Continuous updating 15
2.7.3 Considered solution 2: Seeking last frame 15
2.7.4 Selected solution: Analysing video upon opening 15

2.8 Video analysis . 15
2.9 Audio packets . 16

1

3 Media writer (AVWriter) 17
3.1 Module description . 17
3.2 Output file format and contexts . 17
3.3 Writing video frames . 17
3.4 Writing audio packets . 18

4 Video tracker (VideoTracker) 19
4.1 Module description . 19
4.2 Frames conversions (VideoFrame) . 19

4.2.1 Different frame formats . 19
4.2.2 New module . 20
4.2.3 Converting AVFrame to cv::Mat . 20
4.2.4 Converting cv::Mat to AVFrame . 20
4.2.5 Other stored data . 21

4.3 Displaying frames . 21
4.3.1 Processing frames . 21
4.3.2 Converting cv::Mat to QImage . 21

4.4 Tracking algorithm . 21
4.4.1 Particle tracking algorithms . 21
4.4.2 TrackingAlgorithm . 21

4.5 Tracked objects (TrackedObject) . 22
4.5.1 Module description . 22
4.5.2 Storing objects’ trajectories . 22
4.5.3 Sections . 22
4.5.4 Trajectory correction . 23
4.5.5 Removing and modifying sections . 23

4.6 Anonymizing / highlighting objects . 23
4.6.1 Drawing an object . 23
4.6.2 Object shapes and colors . 23
4.6.3 Anonymizing by defocusing . 24

5 Graphical user interface (MainWindow) 25
5.1 Module description . 25
5.2 QT framework . 25

5.2.1 Reasons for choosing QT . 25
5.2.2 Signals and slots . 26

5.3 GUI structure . 26
5.3.1 Main parts . 26
5.3.2 Application resolution . 27
5.3.3 Video player . 27

5.4 Position slider . 27
5.4.1 Purposes . 27
5.4.2 Frames’ indices . 27
5.4.3 Seeking a position . 28

5.5 Progress bar . 28
5.5.1 Informing users . 28
5.5.2 Process cancellation . 29
5.5.3 Progress bars in the application . 29

2

5.6 Showing a video . 29
5.6.1 Drawing images . 29
5.6.2 Playback speed . 30
5.6.3 Original video . 30

5.7 Object selection . 30
5.7.1 Selecting an area . 30
5.7.2 Converting mouse coordinates . 30

5.8 Tracked objects’ settings . 31
5.8.1 Key points . 31
5.8.2 Enabling settings . 31

5.9 Object’s appearance . 31
5.9.1 Setting object’s appearance . 31
5.9.2 Discard / Save changes . 32
5.9.3 Ask to save changes . 32
5.9.4 Custom colours . 33

5.10 Displaying time positions or frame numbers 33
5.10.1 Frames identification . 33
5.10.2 Switching between types of identification 34

5.11 Saving a project . 34
5.11.1 Project or video file . 34
5.11.2 Serialization . 34
5.11.3 Stored data . 34
5.11.4 Asking to save a project . 35

5.12 Multilanguage support . 35
5.12.1 Translation . 35
5.12.2 Setting a language . 35

5.13 Settings . 35
5.13.1 Options of the interface . 35
5.13.2 Remembering settings . 35

5.14 User-friendliness . 36
5.14.1 Ease of use . 36
5.14.2 Help . 36
5.14.3 Menu . 37
5.14.4 Tooltips . 37
5.14.5 Keyboard shortcuts . 37

6 Usability testing 38
6.1 Performed tests . 38
6.2 Results . 38

7 Conclusion 39

A Manual 41

B Usability testing - steps 47

3

List of Figures

1.1 Relations among main modules . 6

2.1 FFmpegPlayer in relations with other main modules 7
2.2 Marks that are used for describing seeking situations 11
2.3 Seeking a key frame . 11
2.4 Seeking a non key frame with flags set for seeking only key frames 12
2.5 Seeking a non key frame with flags set for seeking all frames results in an

incomplete frame . 12
2.6 An algorithm used for seeking all frames . 13
2.7 Correction of seeking inaccuracies . 14

3.1 AVWriter in relations with other main modules 17

4.1 VideoTracker in relations with other main modules 19
4.2 VideoFrame in relations with main modules 20
4.3 TrackedObject in relations with other modules 22

5.1 GUI in relations with other main modules 25
5.2 An application window where one object is being tracked and its appearance

is set to be defocused . 26
5.3 An infinite progress bar indicating that positions are being computed 29
5.4 Detailed progress bar indicating that an output file is being created 29
5.5 Key points tab . 31
5.6 Setting object’s appearance . 32
5.7 An alert for saving appearance changes . 33
5.8 Colour picker for selecting a custom colour 33
5.9 Help displayed in the application . 36

4

Chapter 1

Introduction

1.1 Project description

Sometimes it is required to publish a video where a certain object shall not be visible.
A possible situation is when a video of a crime’s witness’ testimony is made and the video
is supposed to be published. The face of the witness shall be hidden for safety reasons.
Hiding (anonymizing) does not concern only people and their faces. For example, when a
car appears in a video, its plate number shall not be visible when the video is published.
A plate number is a private information and it shall not be disclosed. In other cases it
might be desired to highlight an object in a video. For example, when a car chase is
recorder from a helicopter, the chased car can be highlighted in the video for a better
view. All these features could be handled by an application that tracks selected objects
in a video and changes their appearance to suit a given purpose. An issue, however, is
that tracking algorithms might be inaccurate and objects’ trajectories need to be manually
corrected. Also, there may be more objects that appear in a video at same frames as well
as at different ones. Therefore, it is necessary to count also with these options. Most video
tracking systems and applications are used only for a real-time tracking [1]. They are not
equipped with tools for trajectory corrections and video editing. Thus, they cannot be
used for the purposes mentioned above. This is the reason why a new application shall be
created. A design and an implementation of such an application is described further in this
thesis. The application is called Video Anonymizer.

1.2 Project structure and its modules

The project can be divided into four main modules the program consists of. These mod-
ules are referred to with their class names in the implementation. The first one – the
FFmpegPlayer – is a media player that allows reading any requested frame. The name
should emphasize that the class uses the FFmpeg library for reading video frames. This
feature is crucial for the second module, a tracker, referenced to as theVideoTracker. The
VideoTracker would not be able to work correctly unless the FFmpegPlayer provided the
functionality to jump to any frame. The VideoTracker receives requested video frames and
computes positions of tracked objects. Therefore, information about objects to be tracked
shall be a part of the VideoTracker as it represents the main functionality of the project.
The third module is a media writer, named AVWriter. It shall contain all the logic for
creating an output video file. The AVWriter is called and controlled by the VideoTracker.

5

The fourth main module is a graphical user interface. A class that holds all graphical
elements, and thus presents the user interface, is named the MainWindow. The Main-
Window communicates with and controls behaviour of the VideoTracker. That means it
shall not communicate either with the FFmpegPlayer, or with the AVWriter directly but
it shall do it always via the VideoTracker. The four modules are described in details in

GUI VideoTracker

AVWriter

FFmpegPlayer

Figure 1.1: Relations among main modules

sections below in the order: the FFmpegPlayer in chapter 2, the AVWriter in chapter 3,
the VideoTracker in chapter 4 and the Graphical user interface in chapter 5. This is the
order in which the modules were designed and implemented as the latter uses the former.
Relations among main modules are depicted in Figure 1.1. An arrow points to an object
that is controlled by the object the arrow goes from.

6

Chapter 2

Media player (FFmpegPlayer)

2.1 Module description

The media player is a base module the functionality of which is essential for correct ap-
plication behaviour. It has to support some functions more accurately than simple media
players that are used only for media presentation. The ability of the media player to jump
to any exactly specified frame as well as reading previous and following frames is crucial.
The media player shall support various video formats. That made the design and imple-
mentation much more complicated since different video formats mean different information
representation and not all methods for frames reading are valid for all video formats.

GUI VideoTracker

AVWriter

FFmpegPlayer

Figure 2.1: FFmpegPlayer in relations with other main modules

2.2 Selecting a multimedia library

2.2.1 OpenCV is not sufficient

The media player was initially implemented in OpenCV [2] since the particle tracking algo-
rithm uses this library and less conversions would be needed. However, class VideoCapture,
which is used in OpenCV for reading video files, does not allow jumping to any desired
frame. VideoCapture works correctly only with key frames (key frames are explained in
subsection 2.4.1). Frames which are not key frames are read poorly. Another reason for
replacing OpenCV in the media player is that OpenCV works only with video streams.
It means that OpenCV cannot either read any audio track, or can it be used for creating
any output media file with an audio track. Since an audio track, if present, needs to be
processed and stored in the output as well, another media library must be used. It has

7

to be a library that works on a lower level than OpenCV. The FFmpeg library meets this
condition; OpenCV’s VideoCapture class uses FFmpeg.

2.2.2 FFmpeg

FFmpeg [3] supports various video and audio formats and enables their encoding as well as
decoding. Moreover, a strong advantage is that FFmpeg is a cross-platform library1. That is
the reason why the OpenCV media player was replaced with a player using FFmpeg library,
referred as the FFmpegPlayer from now on. Using FFmpeg provides the possibility to
adjust the FFmpegPlayer to the needs of the project. On the other hand, working directly
with FFmpeg poses other difficulties. Things that were done automatically when using
OpenCV (such as selecting the right stream, opening codecs, using video contexts, etc.),
are left up to programmers in FFmpeg as it is a low-level library.

2.2.3 FFmpeg in the AVWriter

FFmpeg shall be used also in the AVWriter because it needs to obtain data from the FFm-
pegPlayer and all superflous conversions shall be avoided. FFmpeg provides all required
functionality for media encoding. Thus, FFmpeg seems appropriate for the AVWriter.

2.3 Media opening

2.3.1 Streams searching

When a media is being opened in the program it is firstly searched for a video and for an
audio stream. Audio stream is optional as it is not used for tracking. Still, an audio stream
should be included when creating an output media file if it was present in the input file.
Contrarily to an audio stream being optional, a video stream is required. If the media file
did not include any video stream, it would not be correctly loaded. There is always found
at the most one video and one audio stream. They are always the first ones present in the
media file. If the media file contained more video or audio streams, the others would be
skipped.

2.3.2 Decoder and video context

After examining media tracks, a decoder is found with FFmpeg’s function avcodec_find_
decoder(). When the decoder is found, a video context is copied and its corresponding
codec is opened. The video context needs to be copied as the original one must not be
used directly. The created video context will keep information about the current position
in the video. This is the way the video track is prepared to be correctly decoded and read.
The audio track is not handled as the video track because decoding is not needed for it.
This is explained in section 2.9. The last step of media opening is a video analysis that is
described in section 2.8.

1Cross-platform means that the library can opearate on multiple computer platforms.

8

2.4 Compressed videos, different types of frames

2.4.1 Key frames and non-key frames

As videos are usually memory demanding, most video formats (e.g. MPEG) use a compres-
sion technique [4] that does not store full frame’s data for each frame. It uses frames that
are called key frames (referred also as Intra frames) and frames that are non-key frames.
While key frames contain full image (all data for the frame being displayed), frames that are
not key frames consist only of a difference between the particular frame and the preceding
frame. This is the way the actual frame’s data can be computed while the amount of data
that must be stored is greatly reduced. The reduction is the higher the less changes occur
between adjacent frames. Whenever a substantial change has been made, a new key frame
needs to be produced. In such a situation an incrementally represented frame would not
be of any benefit. This occurs, for example, when a scene is switched.

2.4.2 Types of non-key frames

Non-key frames constitute of two kinds of frames. The first one, called predicted frames,
represents frames that depend on the previous frame. The second kind is bidirectional
frames. Bidirectional frames depend not only on the previous frame but also on the following
frame. That way the amount of information to be stored is reduced even more. Typically,
videos have a group of pictures (GOP). GOP is a structure that specifies what types of
frames and in which order are present in a video. Length of such a structure says what the
distance between two key frames is. This value is called GOP size.

2.4.3 Presentation and decoding timestamps

However, with non-key frames (especially bidirectional frames) present, video decoding be-
comes more complicated. A timestamp saying when a particular frame should be displayed
is not sufficient as some frames need to be decoded at different time than they are dis-
played. In that case, frames cannot be presented immediately after reading. Instead, they
are stored in a buffer so that other frames can use their data when needed. That means
the order of presentation and decoding is for frames different when bidirectional frames
are used. In order to know when a frame should be presented and when decoded, two
timestamps exist for each frame [5]. The first one is called presentation timestamp (PTS).
It says in what order the frames should be displayed. The second timestamp – decoding
timestamp (DTS) says in which order the frames need to be decoded. These timestamps
vary only when bidirectional frames are used. This does not become evident when a video
is being played, however, it introduces difficulties when seeking requested frames. Seeking
issue is described in section 2.6.

Type: K B P P P K B
DTS: 1 2 3 4 5 6 7
PTS: 2 1 3 4 5 7 6

Table 2.1: Difference between presentation and decoding timestamps with bidirectional
frames

Example in Table 2.1 shows the difference between PTS and DTS when all three men-
tioned kinds of frames are present. Key frames are marked as K, Predicted frames as P

9

and bidirectional frames as B. The key frame with presentation timestamp 2 needs to be
decoded before the bidirectional frame with presentation timestamp 1 because the bidirec-
tional frame needs the following key frame for its own decoding. The same happens with
the key frame at PTS 7 and the bidirectional frame at PTS 6. GOP size of the structure
is 5 (distance between two key frames).

2.5 Reading frames

2.5.1 Reading correct packets and decoding

av_read_frame() is an FFmpeg function that reads the next packet from an opened me-
dia [6]. This packet contains information to which stream it belongs. Since an index of
the video stream was discovered when opening the media, packets belonging to streams
with different indices can be skipped. Correct packets (packets from the video stream) are
then decoded with avcodec_decode_video2(). This is a function provided by FFmpeg
for decoding video frames. The frame returned by the function does not necessarily corre-
spond to the packet that was currently passed as an argument to the function. Packets are
read by av_read_frame() in the order in which they are stored in the video track. The
returning order might be different. avcodec_decode_video2() internally decodes frames
according their timestamps for decoding so that frames have all information from other
already decoded frames needed for their decoding available. Returned frames are ordered
by their presentation timestamps. That means the returned frame is the one that should
be currently presented. Reasons for these two kinds of timestamps are described in subsec-
tion 2.4.3

2.5.2 Buffers

Given the fact that some frames that are supposed to be presented later than others are
decoded earlier, avcoded_decode_video2() might not return any frame when first pack-
ets are passed to this function. Only when it has all information that were needed for
decoding the frame that should be presented, it returns this first frame. Thus, it takes
several video packets to be read before the first video frame is displayed. After this ini-
tial procedure, avcoded_decode_video2() returns a frame with every passed new packet.
Moreover, when all packets were read with av_read_frame(), it does not mean that all
frames were displayed. It is important to call avcoded_decode_video2() even without
passing new packets because it still contains decoded frames. The amount of the remained
frames equals the number of packets that had to be passed to avcoded_decode_video2()
before it started returning decoded frames. This ensures that the number of displayed
frames corresponds with the number of read frames.

2.6 Seeking frames

2.6.1 FFmpeg functions for seeking

Frame seeking is in FFmpeg provided by a function av_seek_frame(). This function
seeks a frame in a video based on the frame’s timestamp. If the timestamp is not known,
an approximate timestamp can be computed by av_rescale_q(). It takes a time value
and converts it to the video stream’s time base. After a frame is sought, it can be read

10

by a function av_read_frame(). This function reads the next frame. Without calling
av_seek_frame() it always reads the frame following to the current one. When av_seek_
frame() is used, av_read_frame() reads the sought frame. However, it is necessary to
flush buffers with avcodec_flush_buffers() before reading in this situation because they
contain frames stored before seeking was executed. Buffers are used because of video
compression. This is explained in section 2.4.

2.6.2 Seeking key frames

Frames should not be difficult to seek if we know either their timestamp or their time
position and do not forget to flush buffers. However, a problem occurs if the frame we
want to seek is not a key frame. Seeking situations are explained on graphical examples.
Symbols used in these examples are shown shown in Figure 2.2 and their meanings are: 1)
key frame, 2) non-key frame, 3) returned key frame, 4) returned non-key frame, 5) sought
key frame 6) sought non-key frame 7) Returned incomplete frame, 8) Reading a next frame
with av_read_frame().

1 11) 1 1

1 1 2

2) 3) 4)

5) 16) 7) 1 8)

Figure 2.2: Marks that are used for describing seeking situations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.3: Seeking a key frame

av_seek_frame() can be set to seek either all frames or only frames that are key frames.
The latter is shown in Figure 2.3 and Figure 2.4. If the sought timestamp belongs to a
key frame like in Figure 2.3, where the sought timestamp is 11, the returned frame has a
timestamp 11 as well. However, if the sought timestamp does not belong to a key frame,
the closest key frame is returned. The Figure 2.4 shows seeking a non-key frame with a
timestamp 9 while a key frame with its timestamp 6 is returned (when seeking backward).
Still, this is usually sufficient because av_seek_frame() is mostly used for jumping to a
certain time position where a media player continues playing a video. In such a situation
exact position is not required as a position that differs maximally a few seconds from the
asked time position is acceptable and is barely visible to users. The maximal difference
depends on the GOP size of a video. For example, if a video has a key frame each 12th

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.4: Seeking a non key frame with flags set for seeking only key frames

frame (GOP size is 12) and 24 frames should be displayed per second (fps value is 24),
the difference between requested and actual frame is always lower than 0.5 second (12/24
s). Since seeking frames at exact positions is essential for this project, this behaviour is
not acceptable; seeking frames that are not key frames must work as well. Even when
av_seek_frame() is set to seek any frame (not just key frames), obtained frame is not
complete unless it is a key frame. Non-key frames need to be computed from the other
frames. Seeking in FFmpeg is simple and does not cope with this situation. FFmpeg
returns complete images when reading with av_read_frame() providing it started reading
from a key frame. Thus, if av_seek_frame() is used only for seeking key frames, frames
are always complete.

2.6.3 Non-key frames cannot be sought directly

Even when av_seek_frame() is set to seek any frame (not just key frames), obtained frame
is not complete unless it is a key frame. Non-key frames need to be computed from the
other frames. Seeking in FFmpeg is simple and does not cope with this situation. FFmpeg
returns complete images when reading with av_read_frame() providing it started reading
from a key frame. Thus, if av_seek_frame() is used only for seeking key frames, frames are
always complete. If a non-key frame was seeked directly like the frame with a timestamp
9 in Figure 2.5, it would be returned but such a frame is incomplete and thus cannot be
shown.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Incomplete frame

Figure 2.5: Seeking a non key frame with flags set for seeking all frames results in an
incomplete frame

12

2.6.4 Seeking all frames (key frames and non-key frames)

For a sought non-key frame to be complete, the previous key frame needs to be sought and
by reading next frames with av_read_frame() and decoding them with avcodec_decode_
video2() the requested frame is reached with its data being valid. It is now possible to get
any frame when having its previous key frame. av_seek_frame() can be set to seek either
forward or backward with relation to a given timestamp. Setting flags to seeking backward
and seeking only key frames results in finding a key frame that is either at the requested
position or time position before. This is the way the previous key frame is found when
the requested frame is not a key frame. And the requested frame is reached as described
above. Reading non-key frames is described in Figure 2.6. In the first step a frame with a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1)

2)

3)

4)

5)

Figure 2.6: An algorithm used for seeking all frames

timestamp 9 is sought but flags are set to be seeking only key frames and seeking backward.
A key frame with a timestamp 6 is returned. After that av_read_frame() is used as many
times till the frame with its timestamp 9 is reached.

2.6.5 Inaccurate seeking needs to be checked

Yet, seeking in FFmpeg is inaccurate for some videos. Even when seeking backward, the
sought frame has sometimes a timestamp higher than requested. It is necessary to check
for this situation and try seeking lower when this occurs. This means that the video has to
be analysed upon opening to have information about timestamps of all frames. The video
analysis is described in section 2.8. Procedure for handling seeking inaccuracy is shown in
Figure 2.7. Frame with its timestamp 9 was sought. Despite seeking backward a key frame
with its timestamp 11 is returned. That is the reason why a frame with a lower timestamp
(9) was sought. Again, the returned frame’s timestamp is higher than expected and seeking
lower must be made. This is done until the returned frame’s timestamp is lower; in this
example seeking a frame with its timestamp 7 returned a key frame with its timestamp 6.

13

This is correct and an algorithm in the Figure 2.6 can be executed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1)

2)

3)

Figure 2.7: Correction of seeking inaccuracies

2.6.6 Final seeking algorithm

When knowing timestamps of all frames, reading a certain frame goes as follows:

1. Timestamp of the frame is determined if its index is provided, otherwise the provided
timestamp is used.

2. Frame is sought by its timestamp with the function av_seek_frame() with flags set
for seeking only key frames and seeking backward.

3. The returned frame is read and its timestamp is checked. If the timestamp is higher
than the requested timestamp, seeking is not successful and must be made again
with a lower timestamp. That means seeking with the previous timestamp to the
requested timestamp. This needs to be done as many times until the condition (re-
turned timestamp is lower than or equal to the originally requested timestamp) is
true.

4. If the returned frame’s timestamp is equal to the requested one, the frame is success-
fully read and can be returned.

5. Otherwise (if the returned frame’s timestamp is lower than the requested one), av_
read_frame() is called as many times until a frame with the requested timestamp is
reached. This frame is then returned.

Step 3 is needed only because of av_seek_frame() not behaving correctly. It is not sup-
posed to return a frame with timestamp higher than requested when seeking backward.

Given the fact the seeking issue is now solved, it is possible to jump to any frame by its
timestamp, index as well as by its time position (a time position is rescaled to a timestamp
by av_rescale_q()). Seeking is used also when jumping to the beginning of the video;
it simply seeks the first frame in the video stream. FFmpeg does not provide a function

14

for a step back either. That is the reason why stepping back is implemented as seeking
the previous frame. Yet, stepping forward does not use seeking. When frames are read
consecutively, standard FFmpeg function av_read_frame() is used without any seeking.
Thus, stepping forward is the most efficient way of reading a frame.

2.7 Obtaining number of frames

2.7.1 Incorrect information

Despite the fact that videos provide an information about their number of frames, this
information is not always accurate. For example, some video files might be incomplete.
Such files would claim to have a certain number of frames when the actual number is lower.
FFmpeg simply returns the number of frames a video file provides without verifying it.

2.7.2 Considered solution 1: Continuous updating

The solution would be to use the claimed number of frames and update such an information
when inaccuracy was found while working with the video. For example, if the claimed
number of frames was 250, the video was being played and stopped at the frame number
230 with the information that there were no more frames to read, the FFmpegPlayer would
remember this information as the actual number of frames. This should be sufficient for the
VideoTracker, however, if displaying the number of frames to users, they might be getting
inaccurate information before the FFmpegPlayer reaches the actual end of the video.

2.7.3 Considered solution 2: Seeking last frame

Another considered option is to seek the last frame and read its index. However, frames
are distinguished by their timestamps, not indices. In some video formats, timestamps
are considered to be indices whereas in some formats not. Therefore, it is not possible to
use timestamps for obtaining the number of frames in a video. Moreover, since seeking
in FFmpeg is done by frames’ timestamps, it is not possible to read the last frame when
not knowing its timestamp or its time position (a time position might be used for counting
timestamp).

2.7.4 Selected solution: Analysing video upon opening

Finally, an accurate option is to go through all frames when opening a video and count their
number. Even though opening would take longer in such a case, it would be outweighed
by knowing the actual number of frames. Given the fact that the previous options were
not sufficient, this is the selected one. A video analysis is required for this solution. The
analysis is described later in section 2.8.

2.8 Video analysis

A video analysis is performed not only for obtaining a correct number of frames but also
for preparing a video to be seekable. The analysis means reading next frames from the
first frame of the video till the end and storing timestamps of all frames. Knowing frames’
indices would also be beneficial if stored with timestamps. It would enable seeking frames
by their index. Since no decoding is done during the analysis, as it would make the video

15

opening much slower, frames are not in the presentation order but in the order in which
they should be decoded. This is explained in subsection 2.4.3. This means there might
be frames with lower presentation timestamps that were not yet read while a frame with
higher timestamp has already been analysed. That is the reason why their indices cannot
be determined immediately. Therefore, timestamps (presentation timestamps) are in the
program stored in a C++ std::set that sorts the values. After reading all frames a C++
std::vector with timestamps is also created. This is the way timestamps can be determined
by frames’ indices and vice versa.

2.9 Audio packets

The VideoTracker does not need audio packets for tracking objects in a video. Because of
that only video frames are processed. The audio packets are thus skipped by the FFmpeg-
Player with one exception; if an output video is being created, the audio track should be
present in the output as well. Therefore, the function for reading frames in the FFmpeg-
Player can be set to reading either only a video track or the video track as well as an audio
track. Read video packets are always decoded since the VideoTracker works with frames,
not packets. For audio packets this does not apply. There is no need for decoding them
as they are used only for creating the output. Output creating is in detail described in
chapter 3.

16

Chapter 3

Media writer (AVWriter)

3.1 Module description

The AVWriter is a module containing logics for creating an output media file. It is controlled
by the VideoTracker that receives frames and packets from the FFmpegPlayer, processed
them and gives them to the AVWriter to write them to the output media file. The AVWriter
uses the FFmpeg library just like the FFmpegPlayer.

GUI VideoTracker

AVWriter

FFmpegPlayer

Figure 3.1: AVWriter in relations with other main modules

3.2 Output file format and contexts

The format of an output video file is chosen by the input video format. If the format is
not supported by FFmpeg for creating a media file, MPEG is used instead. Afterwards, an
encoder has to be found so that output streams (a video stream and an audio stream) could
be created. When the streams are created, their contexts have to be prepared. Information
from input contexts are used for settings the output contexts. When this is done, streams
are ready for writing packets.

3.3 Writing video frames

The VideoTracker receives frames from the FFmpegPlayer that are already decoded so
they can be processed. When these frames are being written in the output media file, they
need to be encoded back. This is done by a function avcodec_encode_video2() that is
provided by FFmpeg. It takes a raw frame and encodes it into a packet. This function

17

is a reverse function to the function avcodec_decode_video2() that was described in
subsection 2.5.1. The buffers work also very similarly. When raw frames are being passed
to avcodec_encode_video2(), it does not return any encoded packet at the beginning.
The buffer needs to be filled first. When the buffer is filled, it returns an encoded packet
for each passed raw frame. It is very important to empty the buffer after all the frames
were passed because the buffer still contains encoded packets.

3.4 Writing audio packets

Audio packets were not decoded in the FFmpegPlayer because no processing was required.
Therefore, the VideoTracker passes them to the AVWriter exactly the same as they were
read by the FFmpegPlayer. The AVWriter does not do any encoding because the packets are
already encoded. Simple adding to the audio stream is performed. This makes the output
creation much faster because decoding and encoding are the most demaning processes when
creating an output.

18

Chapter 4

Video tracker (VideoTracker)

4.1 Module description

The core of the application is a module called a VideoTracker. This module shall control
opening videos and reading frames by the FFmpegPlayer (chapter 2) as well as creating an
output video file with the AVWriter (chapter 3). The VideoTracker includes all the logic
for tracking and anonymizing objects. It is controlled directly by the MainWindow module
(chapter 5) that is not allowed to communicate with the FFmpegPlayer and the AVWriter.

GUI VideoTracker

AVWriter

FFmpegPlayer

Figure 4.1: VideoTracker in relations with other main modules

4.2 Frames conversions (VideoFrame)

4.2.1 Different frame formats

FFmpeg works with frames in its AVFrame format. However, this format cannot be used
for tracking as the VideoTracker works with OpenCV library. OpenCV supports its own
cv::Mat and IplImage formats. IplImage should be used only in cases when cv::Mat is not
supported since cv::Mat is a newer and preferred format. Conversions between cv::Mat and
IplImage are handled automatically by OpenCV. Conversions from AVFrame to cv::Mat
and back are more complicated. Converting from AVFrame to cv::Mat is needed when a
frame that is read by the FFmpegPlayer is used by the VideoTracker. Conversion back to
AVFrame is used only when an output video file is being created.

19

4.2.2 New module

Since the FFmpegPlayer is implemented in FFmpeg and the VideoTracker in OpenCV, the
conversions should be made outside both this modules. That is the reason why another class
should be created that could be used by both the FFmpegPlayer as well as the VideoTracker.
This class would include a frame and would be able to provide it in a requested format;
either AVFrame or cv::Mat. This class is in the project called a VideoFrame.

VideoFrameVideoTracker

AVWriter

FFmpegPlayer

Figure 4.2: VideoFrame in relations with main modules

4.2.3 Converting AVFrame to cv::Mat

A VideoFrame is always set by a frame in AVFrame format. The VideoFrame converts
this frame to cv::Mat and stores it. The conversion is done by calling sws_scale() that
converts the AVFrame from one format to another. The source format is the one of the
original frame (e.g. YUV420P). The destination format is the format used by OpenCV;
BGR24. Since sws_scale() cannot convert directly from AVFrame to cv::Mat, an auxiliary
destination AVFrame is created. Its data pointer is set to be the pointer to the cv::Mat’s
data. sws_scale() this way works with the cv::Mat while seeing it as an AVFrame. Before
the actual conversion a conversion context needs to be prepared with sws_getContext().
Beside setting source and output formats, picture’s size is in the context defined to be
preserved. When the conversion is finished, the VideoFrame contains a cv::Mat picture
that can be used for tracking.

4.2.4 Converting cv::Mat to AVFrame

Conversion back to AVFrame happens only when a VideoFrame is asked to return this
format. This occurs when the frame is being encoded to be added to an output video
stream in the AVWriter. Conversion from cv::Mat to AVFrame is similar to the inverse
one. An auxiliary AVFrame source is created and set to point to the cv::Mat source.
Correct conversion context is set and sws_scale() is called.

20

4.2.5 Other stored data

Since cv::Mat does not include any information apart from a picture itself, other data need to
be stored directly in a VideoFrame and provided on demand. Data that are needed together
with a picture are frame’s timestamp, frame’s number (index) and its time position. The
FFmpegPlayer gives the VideoFrame all this information. The frame’s number is discovered
from the data obtained when analysing the video at its opening and the time position is
computed from the frame’s timestamp based on a time base of a video.

4.3 Displaying frames

4.3.1 Processing frames

When a frame shall be displayed, the VideoTracker asks the FFmpegPlayer for this frame.
Once received, the VideoTracker handles frame’s editing with respect to tracked objects.
All FFmpeg functions for reading frames are wrapped in VideoTracker’s functions that take
care of drawing tracked objects when present.

4.3.2 Converting cv::Mat to QImage

A frame in cv::Mat format has to be converted to QImage so that it can be displayed in
the graphical user interface that uses QT framework. First step of the conversion is to
transform a BGR1 format, that is used in OpenCV, to RGB2 format that is used in QT.
After this transformation, a new QImage structure is set to be prepared for the frame data
from the cv::Mat. The last step is making a deep copy of the cv::Mat data and filling the
QImage.

4.4 Tracking algorithm

4.4.1 Particle tracking algorithms

Particle tracking algorithms are algorithms that use particles for objects tracking [7]. One
method that uses particles is called a Kalman filter. A problem with this method is that
only one candidate for a tracked object can be selected at a time. A reason for this is
that the distribution is Gaussian. A method that solves this issue is called a Particle filter.
Unlike the Kalman filter, the Particle filter uses the Monte Carlo method that enables
modelling cases that are not Gaussian. This method is used in this application.

4.4.2 TrackingAlgorithm

The application uses a provided particle tracking algorithm for tracking objects in a video [8].
The algorithm was divided into an initialization part and a part for tracking the next frame
for purposes of this application. The initialization was adjusted to be done according an
initial frame’s data and the initial position of the tracked object. The second part, tracking
the next frame, takes only frame’s data and returns the object’s position. The algorithm
is located in a module called a TrackingAlgorithm. The module expects to be provided

1Blue, Green, Red
2Red, Green, Blue

21

with following frames when no frame is skipped. The module’s interface does not depend
on this particular algorithm so the algorithm might be easily replaced by a different one.

4.5 Tracked objects (TrackedObject)

4.5.1 Module description

Since multiple objects tracking shall be enabled, it is necessary to create a new module,
that holds information about and logic for maintaining each object. This module is called
TrackedObject. It is controlled by the VideoTracker and for passing frames uses the Vide-
oFrame. Each object consists of sections called a TrajectorySection. They are described
in subsection 4.5.3. These sections use the TrackingAlgorithm, described in section 4.4.

VideoFrame

TrackedObject

TrajectorySection

TrackingAlgorithm

VideoTracker

Figure 4.3: TrackedObject in relations with other modules

4.5.2 Storing objects’ trajectories

When an object is added for tracking, the only necessary information is the frame where the
tracking shall begin and the object’s position in this frame. The tracking algorithm is able
to compute the object’s trajectory from this initial information. To reduce the computation,
the computed trajectory is continuously being stored so that computing of the same frames
did not have to be done again. When a frame with already computed objets’ positions is
read, the positions are found in saved trajectories. If a trajectory correction was made, only
position at the particular frame would be changed. Since it is desired that the correction
applies till the end of the object’s lifetime, the trajectory has to be cut into sections.

4.5.3 Sections

Each section represents a part of an object’s trajectory with a fixed initial position. This
means that the section is defined by a frame’s timestamp where the section begins and by the

22

object’s position in this frame. Each section has its own instance of the TrackingAlgorithm
since the TrackingAlgorithm has to be initialized by the first frame’s data and coordinates
of the tracked object. The end of a section is not defined but it is discovered by examining
initial frame’s timestamp of the next section. A section is always valid until the beginning
of the following section. If no following section exists, the section is valid till the end of
the object’s lifetime. When a new object is being tracked and no trajectory corrections
are made, only one section exists for this object. Each trajectory correction results in a
new section. Only one section is active in a TrackedObject at a time. The TrackedObject
takes care of switching the activity when another section is reached. However, all previous
sections need to be computed before switching to the next section. Thus, the computed
trajectory is always continuous.

4.5.4 Trajectory correction

Correcting a trajectory means adding a new section. When a new section is added, the tra-
jectory that has already been computed for the object has to be checked. If the timestamp
of the last computed frame is lower than the timestamp of the new section’s initial frame,
the TrackedObject’s state can be preserved. Otherwise, a part of the computed trajectory
is not valid because it is interfered by the new section. This part of the trajectory has to
be erased and computed again. The currently active section also has to be changed.

4.5.5 Removing and modifying sections

When a section is being removed, the already computed trajectory and a TrackedObject’s
state has to be checked and updated because the previous section has to be expanded to
cover the removed section’s interval. If the removed section is the first one, no previous
section exists so no section is changed. The removal causes that the following section
becomes the first section in the TrackedObject. If a section is modified, the procedure is
similar to removing a section followed by adding a new one.

4.6 Anonymizing / highlighting objects

4.6.1 Drawing an object

The purpose of this application is to anonymize or highlight tracked objects. Each object
shall have its own appearance. This is the reason why objects are drawn in a frame in the
TrackedObject module. The TrackedObject includes settings of the drawn object appear-
ance. The appearance shall support various options to suit different application purposes.
That is the reason why various shapes and colours can be set.

4.6.2 Object shapes and colors

Two object shapes are supported in the application; a rectangle and an ellipse. Both these
shapes can be set to be either filled with a color, marked with a border or to use both these
options. Colors of filling and of a border can be set separately. Objects are drawn with the
OpenCV library.

23

4.6.3 Anonymizing by defocusing

Usually, it is not necessary to fill the object with a color for hiding it. It seems unnatural
in a video. Instead of filling the object with a color, defocusing it would do the effect
of anonymization and would be less disruptive. The defocusing is also implemented in
OpenCV. The object’s area is divided into blocks. Each block is filled with its mean color.
The size of blocks can be adjusted to make the object more or less visible. The process
of defocusing must use two pictures. The first one is the original frame and it is used for
computing mean color values of blocks. The second one is an altered frame containing
drawn objects. The second picture cannot be used for computing mean values because it
could be already altered by other objects.

24

Chapter 5

Graphical user interface
(MainWindow)

5.1 Module description

The graphical user interface shall be implemented separately from the rest of the appli-
cation. This is the way the application could be easily rewritten if a different framework
for GUIs should be used. It also makes maintaining the GUI easier since this module con-
tains all the graphics and information that are shown to users. It shall include the least
application logic possible so the programme is not much dependent on the GUI. That is
the reason why the GUI module communicates only with the VideoTracker, the core of the
application.

GUI VideoTracker

AVWriter

FFmpegPlayer

Figure 5.1: GUI in relations with other main modules

5.2 QT framework

5.2.1 Reasons for choosing QT

The GUI is implemented with support of the QT library [9]. QT is a cross-platform library
for graphical user interfaces that is widely used with C++ applications. The application
shall run on various range of platforms. Thus, QT is suitable for the GUI module of this
application. QT provides very good support that would be of a good use when developing
this application. As mentioned earlier, QT shall be used only in the GUI module so that
the rest of the application shall not dependent on it.

25

5.2.2 Signals and slots

QT uses its signals and slots for connecting events with actions. This handles user’s inputs
even when the application is busy without any need for a separate thread. All buttons and
widgets have signals that are sent whenever these items change their state (e.g. a button
is clicked). These signals are then connected with slots (procedures) that are carried out
whenever a corresponding signal is sent. This technique is in the application used also when
playing a video for showing next frames. This is handled by a timer and it is described in
subsection 5.6.2.

5.3 GUI structure

5.3.1 Main parts

As already mentioned, the FFmpegPlayer (chapter 2) is a fundamental part of the pro-
gramme and the other modules were built upon it. Even an appearance of the graphical
user interface (GUI) is based on a video player. The reason is as follows; when no object is
being tracked, the program should behave as a common video player. Most video players
look alike and this one should not differentiate much. If the program is similar to video

Figure 5.2: An application window where one object is being tracked and its appearance is
set to be defocused

players that users usually work with, they do not need to focus on the player’s behaviour

26

and they are able to control it without major difficulties. This makes the transition from
a video player to this video tracker smoother. That is the reason why the GUI consists of
three main parts; the player, an application menu and a tracked objects’ panel. All these
parts are visible no matter in what state the GUI currently is. All of them have their own
place and do not cover the others. Still, not all features for setting tracked objects’ are
visible at the same time as they are placed in tabs that can be switched.

5.3.2 Application resolution

The application shall support various resolutions. Even application resizing needs to be
handled. QT provides widgets called Spacers. These spacers can be described as springs
that are stretched when there is an empty space. They are used in the application for
maintaining application’s appearance regardless different resolutions while using the most
of the available space.

5.3.3 Video player

The video player consists of a video frame, controls, position slider and a speed indicator.
The video frame displays a current video frame according to a state of the FFmpegPlayer.
If a tracked object has been added and affects this frame, the original frame is altered to
be displayed with the object. However, this is handled by the VideoTracker so the GUI
player displays an original frame the same way as an altered one. The only situation when
a video frame needs to be altered by the GUI player is when a selection of a tracked object
is being made. This is explained in section 5.7. State of the FFmpegPlayer and thus the
displayed video picture is controlled by controls and a position slider that are placed next
to the video frame to create a compact player.

5.4 Position slider

5.4.1 Purposes

The position slider has two purposes. The first one is an indicator what the current frame’s
position in the video track is. The second purpose is for users to select a position in
the video track to jump to. Initially, when the FFmpegPlayer was implemented without
returning the exact number of frames, positions of the slider represented time values. This
was not very accurate because the number of values of the slider did not correspond to
the number of frames. An information about a length of a video is available, however, this
value would need to be used with an information about fps1. Computed values would be
approximate and together with the fact that some video formats support video frames of
various duration, this method would not be convenient for the purpose of this application as
it would not allow jumping to exact positions in videos where each frame matters. Besides,
the information about a length of a video provided by videos might be as inaccurate as the
information about the number of frames as explained in section 2.7.

5.4.2 Frames’ indices

Instead of time positions, timestamps could be used. The FFmpegPlayer has an information
about all frames’ timestamps. If timestamps are used as values of the slider it is possible

1Frames per second

27

to determine each frame. Still, timestamps are not the best choice. Slider values should be
continuous; each two neighbouring values shall have the same distance, i.e. one. Frames’
indices comply with this condition. The first frame has an index with value 1 and the last
frame’s index equals the number of all frames in the video. Thus, frames’ indices pose
an ideal candidate for slider’s values. The FFmpegPlayer is designed to be able to obtain
frames by their indices so there is nothing to prevent the indices from being used. After
implementing the slider with frames’ indices, there emerged another benefits of this choice
– it enables to display a number of the currently showed frame. This is explained in section
section 5.10.

5.4.3 Seeking a position

The slider should support selecting a frame by clicking at the desired slider position as well
as by dragging the pointer and moving it. At first, the dragging option was implemented
to display all frames when moving with the pointer. Therefore, when users dragged the
pointer by pressing a mouse button, they could see frames at current slider positions before
releasing the mouse button. Despite the fact that this made seeking a specific frame more
convenient for users, there was a flaw that frame reading was too slow when objects without
computed trajectories were present in the video. The more objects like these, the slower
moving with the pointer was. It was caused by counting positions of all objects for all
frames that were present in the video stream from the initial till the desired position. This
made the slider usage almost impossible, especially with longer jumps. Finally, this feature
was removed and only the last (desired) frame is displayed and positions of objects at this
frame are computed. Computing positions for a desired frame might take too long. Thus,
users should be allowed to cancel the computing and stay at the current position. This is
analysed in section 5.5.

5.5 Progress bar

5.5.1 Informing users

When some operations take long time to be processed, users should be informed about
such a situation. They should be also enabled to cancel the processing. QT provides a
progress bar that is either infinite or detailed that displays an actual progress. The detailed
one is more convenient because users can see a percentage of the work that has already
been done. This gives them a hint how long the operation will approximately take. The
infinite progress bar displays only an information what is being computed so that users
know that the application is not stuck. Despite the fact that the detailed progress bar is
better, it cannot be used when approximate information about the amount of work done is
not available. The detailed progress bar is created based on a number that represents the
total number of operations that need to be done for a process to be finished. The progress
bar is updated by providing a number of operations that have already been finished. For
example, number of frames to be written to an output file is an ideal candidate since this
information is available before the process is initiated and an information about the amount
of frames already processed is available from their timestamps. The progress bar should be
updated continuously.

28

5.5.2 Process cancellation

Even when users know an approximate remaining time for a process to be finished, it does
not mean they are willing to wait. In this case, an option for cancelling the process needs
to be available. All progress bars are therefore displayed in progress dialogs together with
a Cancel option.

5.5.3 Progress bars in the application

An infinite progress bar is used when an object is being tracked and a new position is
being computed. Since the computation is done in the VideoTracker module, the progress

Figure 5.3: An infinite progress bar indicating that positions are being computed

bar cannot be updated directly in the GUI module as it has no possibility to receive any
information about completeness of the process, neither can user’s cancellation be received
when a process is carried out in a different module. Therefore, the progress bar is updated
from the VideoTracker module while checking for a user cancellation. This is an exceptional
situation where QT had to be used outside of the GUI module. When an output file is
being created, a detailed progress bar indicates a percentage how many frames have already
been processed.

Figure 5.4: Detailed progress bar indicating that an output file is being created

5.6 Showing a video

5.6.1 Drawing images

Showing a video is achieved by drawing images to a label. Since OpenCV uses its cv::Mat
type for storing a video frame and QT uses QImage for holding an image, the former has to
be converted to the latter so it can be displayed. The conversion takes place already in the
VideoTracker. It is described in subsection 5.6.1 as the GUI module does not use OpenCV.

29

5.6.2 Playback speed

Video images are showed according to a timer for a smooth video playback. The timer is
set to send a signal saying a new frame shall be displayed. The interval used for a correct
video playback is computed from the video’s fps. It would be convenient if a playback speed
could be adjusted. This is accomplished by increasing and decreasing the timer’s interval.
However, the speed has its limit despite the application setting. The limitation is caused
by high computation demands for reading, converting and displaying video frames. This
means that there is a certain speed that cannot be exceeded and setting speed faster does
not have any effect from this point. This could be improved by using OpenGL for images
rendering. It would make showing a frame faster and the limit for a maximum speed would
be increased, however, not removed.

5.6.3 Original video

The application always shows a video with all its objects. This is the way users can see
how the output video would look like and any changes to objects are immediately reflected
in displayed frames. In spite of this feature, users do not know how the original video looks
like. Since added objects usually cover parts of the original video, it is not visible what
exactly is covered. For this reason, an option for showing the original video beside the
altered one was added. This option can be switched off due to the reason that it makes
showing a frame slower and desired playback speed might not be reached. Moreover, users
might want to see the altered video in details and are not interested in the original video.
Switching the original video off adds more space for the altered one.

5.7 Object selection

5.7.1 Selecting an area

When a new object is being added for tracking, its area has to be selected. This is done
by pressing a mouse button in a video frame at a position where the object begins, moving
the cursor to the end of the object and releasing the button. The selection can be changed
before it is confirmed the same way as the first selection was made. When users are expected
to select an area, an initial selected rectangle is placed to the middle of the video frame to
give a hint that selecting an area is expected. The selected area is displayed as a rectangle
placed over the frame. This rectangle is drawn with QT since the object selection belongs
to the GUI module and not to the VideoTracker that draws tracked objects with OpenCV.
OpenCV is not used in the GUI module at all.

5.7.2 Converting mouse coordinates

When a selection is being made, mouse coordinates are used for determining a position
of the selected area. The displayed picture does not necessarily have the same size as the
video frame because the size of the displayed picture depends on the size of the application
window to which the video frame is resized. This is the reason why mouse coordinates need
to be converted to the original video frame’s size. An advantage of this approach is also
that when a selection is being made and the application window is resized, the selection
remains valid. Upon selection confirmation, these coordinates are sent to the VideoTracker
to track the new object.

30

5.8 Tracked objects’ settings

5.8.1 Key points

Trajectory changes have to be easy to be made and maintained. For each object they are
listed in a tab Key points. This list holds all information about points where a trajectory
is changed. It includes also the object’s first position and the last frame where it should
occur. All these points have a context menu that gives options for its editing.

Figure 5.5: Key points tab

5.8.2 Enabling settings

The section for setting tracked objects shall be disabled until any object is added. This
hints the user what the currently available possibilities are and avoids any distractions. The
tracked objects section is disabled also when a certain operation is required (e.g. selecting
a new object’s area).

5.9 Object’s appearance

5.9.1 Setting object’s appearance

When a tracked object is selected for editing, its current appearance settings shall be visible
so it can be easily changed. Any change to its appearance is immediately reflected in the

31

showed video frame provided the object is present in the frame.

Figure 5.6: Setting object’s appearance

5.9.2 Discard / Save changes

Even though appearance changes are immediately visible, they are not permanent until
they are confirmed. When a change has been made, two buttons appear. One is for
confirming the changes and the other one is for discarding them. When the confirmation
button is clicked, the changes are accepted and they cannot be reverted. When discarding
the changes, the previous appearance is restored. This is implemented by remembering the
previous (original) appearance settings. For displaying changes immediately, they have to
be sent to the VideoTracker to alter the currently displayed frame and send it back to the
GUI module. If the changes are later confirmed, GUI module removes the saved previous
settings and replaces them with the current ones as they are now the original settings. If
changes are discarded, the VideoTracker is sent the previous (original) settings, the GUI
module keeps the original settings and removes the altered ones.

5.9.3 Ask to save changes

The appearance changes need to be either saved or discarded before certain operations.
These operations include editing another object, adding a new object, saving an output

32

video and saving a project. This is required for users to know what exactly the object’s
state is so there is no misunderstanding.

Figure 5.7: An alert for saving appearance changes

5.9.4 Custom colours

Beside predefined colours, custom colours shall be enabled to be selected for filling an
object or for its border. This is implemented by opening a colour picker that begins at the
previously selected colour and enables picking any desired colour. The selected colour is
saved upon confirmation and set as the current one. List of colours are the same for the
object’s filling as well as for its border. This means any added custom colour is added to
both these combo boxes. When a project is saved, all the custom colours are included. See
section 5.11

Figure 5.8: Colour picker for selecting a custom colour

5.10 Displaying time positions or frame numbers

5.10.1 Frames identification

Frames need to be somehow identified. Typical video players display the time position of
a currently displayed frame and the total length of a video for an easier orientation in a

33

video. This option has to be available in the application for an easier transition from a video
player to the video anonymizer. However, this application is used for video editing and an
option for precise frame identification is desired. Even though timestamps can be used for
distinguishing frames, they are difficult to read by users. Frames’ numbers (indices) are a
better option as users exactly know what the number of the previous frame and the number
of the next frame are. The total number of frames is also available (section 2.7). Thus, the
application can be set to either display time positions or frame numbers.

5.10.2 Switching between types of identification

Both types of identifications can be switched in the application settings. Beside displaying
the identification beneath the showed video frame, it is present also in tabs Trajectory and
Key points as well as in some application’s alerts. This means when a type of identification
is switched, all displayed values need to be changed. That is the reason why all the widgets
include both kinds of information while only one of them is displayed. When a change
occurs, the displayed information is replaced by the hidden one.

5.11 Saving a project

5.11.1 Project or video file

The application enables creating an output video file that consists of an input video file and
objects that were added. Even when the output video file is mostly the desired product of
the application, it does not enable further editing once the application is closed. Therefore,
there needs to be an option to save the state of the application. This state shall include the
opened video as well as all tracked objects and their settings. The state of the application
is from now on referenced as a project.

5.11.2 Serialization

For saving a project, serialization is used. Data shall be stored in JSON or XML format so
information can be extracted even outside of the application. This is possible when using
the cereal library [10]. It enables serialization and deserialization of C++ data types while
storing the data in JSON and XML. Both these options are implemented in the application
so users can decide which is more convenient for them. Each class that would be serialized
needs to specify what members shall be stored. These members are then loaded when
deserializing while all other members have their default values.

5.11.3 Stored data

Data that are stored in a project include an input video path, custom colours and objects
with their settings. Objects’ trajectories are stored as well, however, sometimes not all the
trajectory is then loaded. Each object consists of sections that are described in subsec-
tion 4.5.3. A trajectory can be loaded only for sections where the trajectory is computed
from the section’s beginning to its end. A reason for this is that the tracking algorithm is
initialized at a key point (beginning of a section) and needs to be gradually fed with all
frames till the end of the section. If only a part of the section’s trajectory was computed,
the tracking algorithm would not be able to continue from this point. To solve this issue,

34

each object’s trajectory is checked upon loading a project and all computed positions of the
last processed section are erased provided the section was not processed till its last frame.

5.11.4 Asking to save a project

Users can save and load a project whenever they like. In spite of that, they may forget
about that when a project is being closed. That is the reason why they are reminded when
closing the application or opening a new project if they wish to save the current project.
However, they are reminded only if a project was changed from its last saving.

5.12 Multilanguage support

5.12.1 Translation

The application shall support two languages; Czech and English. This means a multi-
language support needs to be implemented. QT provides a possibility of translating an
application by marking all the text that shall be translated. This text is extracted by a QT
tool lupdate. An output of lupdate is an XML file that holds original text strings together
with their locations and a place for adding their translated equivalents. After all translated
strings are added, QT tool lrelease is used for creating a language file that is later attached
to the application.

5.12.2 Setting a language

Language of the interface is at first chosen by environment’s locale. Since only two lan-
guage versions are available (Czech and English), the English version is set whenever the
environment’s locale is not Czech. The language can be changed explicitly, however, the
change will take effect only after restarting the application. The reason is that the graph-
ical user interface needs to be reloaded and so do all widgets added to the interface. For
some widgets there are known issues of incorrect behaviour with changing the interface’s
language without restarting the application. The language choice is stored in settings that
is described in section 5.13. Thus, it is always used when the application is run.

5.13 Settings

5.13.1 Options of the interface

Users shall be enabled to set the interface to suit their needs. Beside setting a language
(subsection 5.12.2), there are other options they can change. They can set if an original
video is displayed (subsection 5.6.3) and whether frame numbers or time values are used
for determining positions in a video. (section 5.10).

5.13.2 Remembering settings

Settings shall be saved so that it is loaded when the application is run the next time.
Otherwise, users would need to change settings of the application every time the application
is run. Beside explicit settings, some other information is saved as well. It is a path to the
folder from which the last video was opened or to which the last video was saved. Thus,
when running the application and opening a video, the default path is set to the previous

35

one. Also an option whether to save a project in XML or in JSON is remembered. The
same applies for loading a project.

5.14 User-friendliness

5.14.1 Ease of use

Even when an application has lots of features, they might be difficult to find and use if
they are not easily accessible or if it is not clear what their purpose is. This is the reason
why the application is equipped with an application menu, tooltips, keyboard shortcuts and
an application help. All these elements should make working with the application easier,
especially when using it for the first time.

5.14.2 Help

The application has to be equipped with a documentation that helps a user when needed.
QT offers a QT Help Framework that works with a help documentation written in HTML.
After creating configuration files that describe the help structure that includes HTML help
documentations, a QT help file can be generated. This file includes compressed help files as
well as their structure and keywords. The application loads this file and displays the help
right in the application when asked [11] The help in the application can be searched by its

Figure 5.9: Help displayed in the application

36

content as well as by its keywords.

5.14.3 Menu

The main application menu shall include all important options and settings even if those
options are accessible from another place in the application. The reason being that it is
easier to search the menu for a certain option than searching all the application. The main
application menu is divided into sections that make searching the application menu easier.
Options that are not accessible in the current application state are disabled so that users are
always aware what options they currently have. For example, after running the application,
the only available options are to open a video and to open a project. This is the way users
are not distracted by other options since they cannot use them and a video or a project
opening is needed for further work. Options that are present also outside the application
menu are always in the same state as their application menu’s equivalents.

5.14.4 Tooltips

Tooltips help understanding what a certain option is used for. When a mouse is hovered
above a mouse widget, a bubble with a short description appears to tell a user what this
widget does. It shall give a hint, not explain the widget’s behaviour in details. More
information about application options are available in the application’s help described in
subsection 5.14.2.

5.14.5 Keyboard shortcuts

Options that are expected to be used the most were assigned keyboard shortcuts. This
should enable controlling the application much faster for users who use it regularly. Key-
board shortcuts are mentioned in the application menu as well as in the application help.

37

Chapter 6

Usability testing

6.1 Performed tests

The created application was tested by users to find out how user-friendly the graphical user
interface is. The usability testing [12] was performed by giving users a basic information
about the application together with steps that users shall carry out while measuring the
time it took them to complete each of the steps. Beside measuring time intervals, users
were observed when working with the application and they were also asked for a feedback.
Users were also instructed to search the user’s guide for a certain information. Testing was
performed by 11 participants with various levels of computer literacy. Participants were
divided into two groups by the language version they used; Czech and English. There were
no differences between results of testing Czech and English graphical user interfaces with
user’s guides in respective languages. Operating systems used for testing were Microsoft
Windows 7, Microsoft Windows 8.1 and Fedora 21.

6.2 Results

Results of the testing are very pleasing. Each step took users in average just a couple of
seconds to be complete. Suggested improvements include placing a button for a trajectory
correction among video player’s controls and adding a possibility to correct the trajectory
right in the list of trajectory items under the tab Trajectory. An observed issue was that
users were not certain what they can find under the Key points tab and under the Trajectory
tab. As concerns the user’s guide, users had no troubles finding and using it. All users
agreed on the fact that the user’s guide is comprehensive and easy to use when needed.

38

Chapter 7

Conclusion

In this bachelor’s project, I have developed an application for tracking and anonymizing
objects in videos, called Video Anonymizer. This thesis describes its design and implemen-
tation. The application was developed as a part of a project Tools and Methods for Video
and Image Processing for the Fight against Terrorism1.

Firstly, I created a media player with an ability to jump to any desired frame (chapter 2).
This ability raised issues of video compression and frames seeking that had to be solved.
These issues are displayed graphically in section 2.6. The media player is used by the core
of the application, a video tracker (chapter 4). I have developed the video tracker to contain
all the logic for operating the media player, tracking objects and anonymizing them. For
the application to be user-friendly, I have created a graphical user interface that controls the
video tracker (chapter 5). The graphical user interface is based on a typical video player’s
appearance so that the transition from using a media player to using the Video Anonymizer
was the easiest possible.

Usability testing of the final application revealed that the graphical user interface and
the application’s guide are easy to use even with no prior experience with the application
(chapter 6). Each tested procedure took just a couple of seconds to be complete. The
application works on various platforms. It was tested on Microsoft Windows 7, Microsoft
Windows 8.1 and Fedora 21.

Used particle tracking algorithm for objects tracking is a weak point of the application.
It could be replaced by a different one that is more accurate as a part of further development.
The current algorithm supports only a rectangle shape. This results in tracking a bigger
area than it is needed because not all shapes are rectangles. If the algorithm supported
precise object’s definition, the results would improve. With a better algorithm, objects’
selection would have to be updated in the graphical user interface as well. The selection is
currently made by placing a rectangle over a video frame. A better option would be to enable
users to select points that create a polygon. Other possible improvements include adding
bookmarks with objects’ key points to the player’s position slider and using the OpenGL
library for displaying a video so that the video could be played faster when desired.

1http://www.fit.vutbr.cz/research/grants/index.php.en?id=498

39

http://www.fit.vutbr.cz/research/grants/index.php.en?id=498

Bibliography

[1] L.P.J.J. Noldus, A.J. Spink, and R.A.J. Tegelenbosch. Ethovision: A versatile video
tracking system for automation of behavioral experiments. Behavior Research
Methods, Instruments, & Computers, 33(3):398–414, 2001. ISSN 0743-3808.

[2] O.D. Suarez, M.M.F. Carrobles, N.V. Enano, G.B. García, I.S. Gracia, J.A.P.
Incertis, and J.S. Tercero. OpenCV Essentials. Packt Publishing, 2014.
ISBN 9781783984251.

[3] F. Korbel. FFmpeg Basics: Multimedia Handling with a Fast Audio and Video
Encoder. CreateSpace Independent Publishing Platform, 2012. ISBN 9781479327836.

[4] J. Mukhopadhyay. Image and Video Processing in the Compressed Domain. CRC
Press, 2011. ISBN 9781439829363.

[5] J. Watkinson. The MPEG Handbook. Taylor & Francis, 2012. ISBN 9781136028977.

[6] M. Bohme. An ffmpeg and sdl tutorial.
http: // dranger. com/ ffmpeg/ tutorial01. html , 2003.

[7] N. Seo. Object tracking using particle filtering.
https: // code. google. com/ p/ opencvx/ wiki/ ParticleFilter , 2010.

[8] P. Betko. Object tracking in video.
https: // www. vutbr. cz/ en/ studies/ final-thesis? zp_ id= 34625 , 2010.

[9] J. Blanchette and M. Summerfield. C++ GUI Programming with Qt4. Pearson
Education, 2008. ISBN 9780132703000.

[10] S. Grant and R. Voorhies. cereal - a c++11 library for serialization.
http: // uscilab. github. io/ cereal/ index. html , 2015.

[11] How to implement help for a qt application using qhelpengine.
http: // www. walletfox. com/ course/ qhelpengineexample. php , 2014.

[12] J. Rubin, D. Chisnell, and J. Spool. Handbook of Usability Testing: How to Plan,
Design, and Conduct Effective Tests. Wiley, 2011. ISBN 9781118080405.

40

http://dranger.com/ffmpeg/tutorial01.html
https://code.google.com/p/opencvx/wiki/ParticleFilter
https://www.vutbr.cz/en/studies/final-thesis?zp_id=34625
http://uscilab.github.io/cereal/index.html
http://www.walletfox.com/course/qhelpengineexample.php

Appendix A

Manual

41

User’s guide
Open video
For opening a video, go to the main menu: File > Open video and find its path. You can use
a shortcut Ctrl+O.

Save video
For saving an output video, go to the main menu: File > Save output video file. The output
video contains all tracked objects. However, it is not possible to change these objects later.
For saving a video, you can use a shortcut Ctrl+U. If you want to save a project for later
editing, use: Save project.

Open project
Projects created by Video Anonymizer can be loaded in the main menu: File > Load project.
Projects can be loaded in formats JSON and XML. For opening a project, shortcut Ctrl+L can
be used. If you want to open a new video, use: Open video.

Save project
If you want to edit a project later, you can save it in JSON or XML. Such a project is later
loaded with all its objects and settings. For saving a project, go to the main menu: File >
Save project or use a shortcut Ctrl+S. However, saved projects are not media files. If you
want to create an output video file, use: Save video.

Play / Pause video
For playing or pausing a video, go to the main menu: Player > Play / Pause. Alternatively,
you can use a shortcut Ctrl+P or a button Play (Pause) from the video player controls located
beneath the video frame. If you want to stop a video (go to its first frame), use: Stop video.

Stop video
For stopping a video, go to the main menu: Player > Stop. Alternatively, you can use a
shortcut Ctrl+Z or a button Stop located in the video player controls beneath the video frame.
If you want to pause a video, use: Play / Pause.

Video stepping
A video can be moved forward and back by one frame.

Step forward
For stepping forward, go to the main menu: Player > Step forward. Alternatively, you can
use a shortcut Ctrl+Right or a button ">" located in the video player controls beneath the video

1

frame.

Step back
For stepping back, go to the main menu: Player > Step back. Alternatively, you can use a
shortcut Ctrl+Left or a button "<" located in the video player controls beneath the video frame.

Change playback speed

The video player enables changing a playback speed. The current playback speed is
displayed on the video player controls' right.
Faster
For increasing the playback speed, go to the main menu: Player > Speed > Play faster.
Alternatively, you can use a shortcut Ctrl+Up or a button "+", located next to the current
playback speed.

Slower
For decreasing the playback speed, go to the main menu: Player > Speed > Play slower.
Alternatively, you can use a shortcut Ctrl+Down or a button "", located next to the current
playback speed.

Original speed
For restoring the original video speed, go to the main menu: Player > Speed > Original
speed.

Track a new object
To track a new object go to the main menu: Object > Track object. Alternatively, you can
use a shortcut Ctrl+Alt+A or a button Track object, located in the video player controls
beneath the video frame. You are asked to enter the object's name and to select the object's
initial position. When selecting the initial position, you can use the video player to find the
desired frame. Select an area of the object to be tracked by Object selection.

Object selection
Select an area by pressing a mouse button in a video frame at a position where the object
begins, move the cursor to the end of the object and release the button. If you want to change
the selection, select a new area the same way as the first selection. This way the new area
replaces the previous one.

Rename an object
To rename the object selected in the section "Edit object" go to the main menu: Object >
Change name. You can rename the object also in the section Edit object at the General tab
by clicking on a button Change name. Alternatively, you can use a shortcut Ctrl+Alt+N.

2

Delete an object
To delete the object selected in the section "Edit object" go to the main menu: Object >
Remove. You can delete the object also in the section Edit object at the General tab by
clicking on a button Remove. Alternatively, you can use a shortcut Ctrl+Alt+R.

Change object appearance
An appearance of the object selected in the section "Edit object" can be changed at the
Appearance tab.

Defocus or color
For defocusing (anonymizing) a tracked object, check the option Defocus. If you want to fill
the object with a color or draw a border around the object, check the option Color.

Defocus size
Defocusing can be adjusted by changing the Defocus size. It defines the size of squares
used for defocusing. The lower the value is, the less visible (more defocused) the object is.

Shape selection
The item Shape defines the drawn shape of a tracked object. This option works only when
filling the object with a color or drawing a border (not for defocusing).

Fill an object
When the option Fill is checked in the item Draw, the tracked object is filled with a color
selected in Color. Beside predefined colors, you can Select a custom color.

Draw a border
When the option Border is checked in the item Draw, a border is drawn around the tracked
object. The thickness of the border is set in Border thickness and the color is selected in
Border color. Beside predefined colors, you can Select a custom color.

Select a custom color
For selecting a custom color (when selecting a color for a border or for filling an object), click
on the first item in the list of colors with the text + Add new.

Key points
The tab Key points in the section Edit object contains points (frames) with trajectory
changes defined by a user. There are three kinds of points: Beginning, End and Trajectory
change. Click on a point to change it or to see a frame where it is defined. "Trajectory
change" can be deleted this way.

● Beginning: The initial position of a tracked object.

3

● End: The last frame of a tracked object.
● Trajectory change: Change of a trajectory on a particular frame. It is used for a
correction of a trajectory if the computed one is incorrect.

Change a trajectory
To change the trajectory of the object selected in the section "Edit object" go to the main
menu: Object > Trajectory > Change trajectory. Alternatively, you can use a shortcut
Ctrl+Alt+T or a button Add trajectory change, located in the section Edit object at the Key
points tab. Selecting a new position for an object is the same as adding a new object: Object
selection.

Change the initial position of tracking
To change the initial position of the tracked object selected in the section "Edit object" go to
the main menu: Object > Trajectory > Change beginning. Alternatively, you can use a
shortcut Ctrl+Alt+B or an option Change position at the item Beginning at the Key points
tab in the section Edit object. Selecting a new initial position for an object is the same as
adding a new object: Object selection.

Set the end of tracking
To set (change) the end of tracking for the tracked object selected in the section "Edit object"
go to the main menu: Object > Trajectory > Set end of tracking. Alternatively, you can use
a shortcut Ctrl+Alt+E or an option Change last frame of tracking (or Change last frame of
tracking) at the item End at the Key points tab in the section Edit object. Find the frame by
the video player controls and confirm it.

Set tracking till the end of the video
To set tracking till the end of the video for the tracked object selected in the section "Edit
object" go to the main menu: Object > Trajectory > Set tracking till the end of the video.
Alternatively, you can use an option Set tracking till the end at the item End at the Key
points tab in the section Edit object

Partial trajectory computing
Trajectory is computed automatically when needed. This means when a frame should be
displayed, the trajectory is computed only up to the point so as the position of a tracked object
is known at the frame. If you want to compute all the trajectory for a tracked object, use:
Compute trajectory.

Show a trajectory
For displaying the trajectory of an object selected in the section "Edit object", go to the
Trajectory tab in the section Edit object. "x" and "y" are coordinates of the object for a
particular frame. "w" represents its width and "h" represents its height. To show a particular
frame click on an item.

4

Compute a trajectory
For computing all the trajectory of an object selected in the section "Edit object" go to: Object
> Trajectory > Compute trajectory. Alternatively, you can use a shortcut Ctrl+Alt+O or a
button Compute trajectory, located in the section Edit object at the Trajectory tab. This
way all the object's trajectory is computed and Partial trajectory computing will not be used for
the object. That makes a video playback faster and a complete list of an object's positions
(trajectory) is available at the Trajectory tab.

Show original video
To display the original video next to the altered video (video with tracked objects) go to the
main menu: Settings > Show original video. Alternatively, you can use a shortcut
Ctrl+Shift+H.

Show time values
For displaying time values instead of frame numbers, go to the main menu: Settings > Show
time values. This option changes displayed values in all the application. Alternatively, you
can use a shortcut Ctrl+Shift+T.

Show frame numbers
For displaying frame numbers instead of their time values, go to the main menu: Settings >
Show frame numbers. This option changes displayed values in all the application.
Alternatively, you can use a shortcut Ctrl+Shift+N.

Change language
Application language can be changed in the main menu: Language / Jazyk. Language
change will take effect after restarting the application.

5

Appendix B

Usability testing - steps

47

Usability testing

Application description:
This application is used for selecting objects in a video and hiding (anonymizing) or
highlighting them. This can be used, for example, when a video of a crime’s witness’
testimony is made and the video is supposed to be published with the witness’ face hidden.
This application focuses on selecting these objects, changing their appearance and changing
the object’s trajectory when it is computed incorrectly. The algorithm for tracking objects is not
perfect and neither is it part of this project. It will be later replaced by a better one.

Purpose:

 The purpose of this testing is to find out how easy/difficult it is to use this application by
a person who has never seen this application before

 The application contains a help which you can use whenever you like
 The goal is to measure how much time it took you to perform given procedures as well

as to get your personal opinion
 Please, measure time of each procedure (step) listed below
 If you need any clarification, do not hesitate to ask me. Please, evaluate it frankly.

Negative comments are appreciated the same as positive ones

Preparation:

 Run the application “videoanonymizer.exe”
 If the application is not correctly opened, install “vcredist_x86.exe” and try running the

application again
 If the application is running, follow steps below and fill enclosed evaluation form

Steps:

1) Open video “input03.avi”
2) Use the application as a video player to get familiarized with it
3) Set the application to show frame numbers instead of time values
4) Go to frame number 42
5) Add a new object to be tracked select the face of the person in the video
6) Fill the object with a color
7) Pick your own color (either for the object’s filling or for its border) that is not in the

predefined colors
8) Open the application help and find information about changing object’s trajectory
9) Change position (trajectory) of this object at a frame with number 89
10)Set the last frame where the object is supposed to be tracked to a frame with number

96
11)Delete the object

	Introduction
	Project description
	Project structure and its modules

	Media player (FFmpegPlayer)
	Module description
	Selecting a multimedia library
	OpenCV is not sufficient
	FFmpeg
	FFmpeg in the AVWriter

	Media opening
	Streams searching
	Decoder and video context

	Compressed videos, different types of frames
	Key frames and non-key frames
	Types of non-key frames
	Presentation and decoding timestamps

	Reading frames
	Reading correct packets and decoding
	Buffers

	Seeking frames
	FFmpeg functions for seeking
	Seeking key frames
	Non-key frames cannot be sought directly
	Seeking all frames (key frames and non-key frames)
	Inaccurate seeking needs to be checked
	Final seeking algorithm

	Obtaining number of frames
	Incorrect information
	Considered solution 1: Continuous updating
	Considered solution 2: Seeking last frame
	Selected solution: Analysing video upon opening

	Video analysis
	Audio packets

	Media writer (AVWriter)
	Module description
	Output file format and contexts
	Writing video frames
	Writing audio packets

	Video tracker (VideoTracker)
	Module description
	Frames conversions (VideoFrame)
	Different frame formats
	New module
	Converting AVFrame to cv::Mat
	Converting cv::Mat to AVFrame
	Other stored data

	Displaying frames
	Processing frames
	Converting cv::Mat to QImage

	Tracking algorithm
	Particle tracking algorithms
	TrackingAlgorithm

	Tracked objects (TrackedObject)
	Module description
	Storing objects' trajectories
	Sections
	Trajectory correction
	Removing and modifying sections

	Anonymizing / highlighting objects
	Drawing an object
	Object shapes and colors
	Anonymizing by defocusing

	Graphical user interface (MainWindow)
	Module description
	QT framework
	Reasons for choosing QT
	Signals and slots

	GUI structure
	Main parts
	Application resolution
	Video player

	Position slider
	Purposes
	Frames' indices
	Seeking a position

	Progress bar
	Informing users
	Process cancellation
	Progress bars in the application

	Showing a video
	Drawing images
	Playback speed
	Original video

	Object selection
	Selecting an area
	Converting mouse coordinates

	Tracked objects' settings
	Key points
	Enabling settings

	Object's appearance
	Setting object's appearance
	Discard / Save changes
	Ask to save changes
	Custom colours

	Displaying time positions or frame numbers
	Frames identification
	Switching between types of identification

	Saving a project
	Project or video file
	Serialization
	Stored data
	Asking to save a project

	Multilanguage support
	Translation
	Setting a language

	Settings
	Options of the interface
	Remembering settings

	User-friendliness
	Ease of use
	Help
	Menu
	Tooltips
	Keyboard shortcuts

	Usability testing
	Performed tests
	Results

	Conclusion
	Manual
	Usability testing - steps

