
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

DEEP LEARNING FOR OBJECT DETECTION
DETEKCE OBJEKTŮ POMOCÍ HLUBOKÝCH NEURONOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR RADOSLAV PITOŇÁK
AUTOR PRÁCE
SUPERVISOR Ing. LUKÁŠ TEUER
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2018/2019
Zadání bakalářské práce

Student: Pitoňák Radoslav
Program: Informační technologie
Název: Deep Learning for Object Detection
 Deep Learning for Object Detection
Kategorie: Zpracování obrazu
Zadání:

1. Study the basics of deep neural networks and backpropagation.
2. Learn about the current methods for creating deep neural networks, especially convolutional neural

networks.
3. Choose a method suitable for object detection.
4. Obtain a dataset suitable for experiments.
5. Implement the chosen method and perform experiments on the chosen dataset.
6. Compare achieved results and discuss the potential continuation of your work.
7. Create a poster representing your work and results.

Literatura:
Krizhevsky, A., Sutskever, I. and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural
Networks, NIPS 2012
Grishick et. al.: Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR
2014.

Pro udělení zápočtu za první semestr je požadováno:
Points 1 to 3.

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Teuer Lukáš, Ing.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 14. května 2019

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/17159/2018/xpiton00 Strana 1 z 1

Abstract
This thesis analyzes different object detection methods which are based on deep neural
networks. In the beginning, the convolutional neural networks are described and commonly
used object detection methods are compared. In the following parts, the proposal and
implementation of the object detection model trained on the specific dataset are described.
In conclusion, the achieved results of this model are discussed and compared with the results
of other methods.

Abstrakt
Táto práca sa zaoberá metódami použivanými na detekciu objektov ktoré používajú hlboké
neurónové siete. Na začiatku sú popísané konvolučné neurónové siete a porovnané bežne
používané metódy na detekciu objektov. V dalšej časti sa venuje návrhu a implementácii
vybranej metódy natrénovanej na špecifickom datasete. Na konci tejto práce sú výsledky,
ktoré tento model dosiahol diskutované a porovnané s výsledkami iných metód.

Keywords
Object detection, deep neural networks, convolutional neural networks, computer vision,
BDD, YOLO

Kľúčové slová
Detekcia objektov, hlboké neurónové siete, konvolučné neurónové siete, počítačové videnie,
BDD, YOLO

Reference
PITOŇÁK, Radoslav. Deep Learning for Object Detection. Brno, 2019. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Lukáš
Teuer

Rozšírený abstrakt
V posledných rokoch zažívame rýchly vývoj v oblasti hlbokých neurónových sietí. Tieto
siete prekonali tradičné algoritmy používané v mnohých oblastiach strojového učenia. Jed-
nou z týchto oblastí je aj počítačové videnie. Táto bakalárska práca sa zaoberá problémom
detekcie objektov. Detekcia objektov je problém, ktorý okrem klasifikovania objektov v
obraze identifikuje aj ich presné umiestnenie. Toto je jednoduchá úloha pre ľudí, pretože
náš zrakový systém je presný a rýchly, ale neurónové siete potrebujú veľa dát a výpočetného
výkonu na dosiahnutie dobrých výsledkov. V dnešnej dobe však týchto dát vieme nazbierať
pomerne veľké množstvo a tak tieto systémy dosahujú kvalitné výsledky, ktoré sú už využí-
vané v mnohých oblastiach priemyslu, ako napríklad autonómne autá alebo diagnostika
chorôb v medicíne.

V prvej časti tejto práce sú stručne vysvetlené neurónové siete a proces učenia neurónových
sietí, ktoré sú inšpirované spôsobom, akým funguje ľudský mozog. V ďalšej časti sú detail-
nejšie opísané konvolučné nurónové siete a vrstvy, používané v týchto sieťach. Konvolučné
siete sú najviac využívane pri práci so signálmi ako obraz a zvuk. Okrem základných vrstiev
ako konvolučná a plne prepojená vrstva sú popísané vrstvy ktoré zlepšujú generalizovanie
siete na testovacie dáta a zabraňujú problému pretrénovania siete. Ďalej sú opísané súčasné
metódy využívané na detekciu objektov a to hlavne tzv. region proposal metódy a one-stage
metódy.

Súčasťou práce je aj návrh a implementácia jedného modelu. V návrhu je opísaná vy-
braná dátová sada ktorá obsahuje obrázky z mestského prostredia, zachytené počas rôznych
častí dňa a poveternostných podmienok. Zároveň sú v návrhu detailnejšie popísané architek-
túry sietí použitých na experimenty. Implementovaný model využíva metódu YOLO, ktorá
je vhodná na detekciu v reálnom čase. Na implementáciu bola využitá knižnica PyTorch.
PyTorch je knižnica na prácu s tenzormi, ktorá okrem toho poskytuje množstvo ďalšej
funkcionality na prácu s neurónovými sieťami. Výsledný model je dostupný ako Python
balík a konfigurovateľná aplikácia ovládaná z príkazového riadku.

V poslednej časti boli vykonané experimenty nad dátovou sadou. Prvý experiment bol
zameraný na metódu YOLO, ktorá bola najprv natrénovaná bez použitia predtrénovanej si-
ete na extrakciu príznakových vektorov. V druhom experimente bola použitá predtrénovaná
sieť na extrakciu vektorov čo urýchlilo proces trénovania. Ďalej bol vykonaný experiment
s modelom Tiny YOLOv3, natrénovaným v prostredí Darknet, na rovnakej dátovej sade.
Výsledkom je model s nižšou presnosťou ale veľmi dobrou rýchlosťou detekcie. Posledný
experiment bol vykonaný s modelom YOLOv3, taktiež natrénovaným v prostredí Darknet.
Tento model dosiahol najlepšie výsledky na testovacej dátovej sade. Na záver sú všetky
výsledky experimentov porovnané podľa dosiahnutej presnosti.

Deep Learning for Object Detection

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mr. Ing. Lukáš Teuer. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Radoslav Pitoňák

May 15, 2019

Acknowledgements
I would like to thank to my supervisior Lukáš Teuer for provided help and guidance. Ac-
cess to computing and storage facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum provided under the programme "Projects of
Large Research, Development, and Innovations Infrastructures" (CESNET LM2015042), is
greatly appreciated.

Contents

1 Introduction 2

2 Neural networks 3
2.1 Convolutional neural networks . 8
2.2 Layers in neural networks . 9

2.2.1 Fully connected layer . 10
2.2.2 Convolutional layer . 10
2.2.3 Pooling layer . 11
2.2.4 Dropout layer . 11
2.2.5 Batch normalization layer . 11

3 Object detection methods 13
3.1 History . 13
3.2 Region proposals methods . 14
3.3 One-stage detectors . 16

3.3.1 YOLO (You only look once) . 16
3.3.2 YOLOv2 and YOLOv3 . 19
3.3.3 Single Shot MultiBox Detector (SSD) 19

4 Proposal 21
4.1 Network architectures . 21
4.2 Dataset . 24
4.3 Object detection metrics . 26
4.4 Metacentrum . 27

5 Experiments and implementation 28
5.1 Implementation . 28
5.2 Results of the experiments . 29

5.2.1 Experiments using YOLOv1 . 29
5.2.2 Experiment using Tiny YOLOv3 . 31
5.2.3 Experiment using YOLOv3 . 33
5.2.4 Experiments summary . 34

6 Conclusion 35

Bibliography 36

A The contents of the attached storage media 40

1

Chapter 1

Introduction

In recent years there has been a rapid development in deep neural networks. Deep neural
networks outperform traditional algorithms used in many fields of machine learning. One
of these fields is computer vision. Object detection is an interesting problem in computer
vision. The definition of the problem is to determine where are the objects located in the
image and also classify them to appropriate categories. It is an easy task for a human,
as our visual system is accurate and fast, but computers need a big amount of data and
computational power to be able to perform object detection tasks with good accuracy.
Object detection models have been already proven to work for various use-cases such as
autonomous vehicles or diagnosis of diseases in the medicine.

This thesis analyzes the different techniques used for object detection. The main goal is
to create an object detection model which is able to predict objects on the street. Models
like this are nowadays already used in autonomous vehicle systems. In these systems,
besides the accuracy, we aim also on the real-time speed of detection. Because of this
reason, YOLO object detection method is used for our experiments. Results are compared
using mean average precision object detection metric.

In the next chapter, the basic concepts used within neural networks are described, how
they work and how the training of a neural network is performed. In the same chapter
also convolutional neural networks, which are mainly used for computer vision problems
nowadays are described. Then in Chapter 3 an overview of existing methods used for object
detection and history of this area is presented. Specifically, region proposal methods and
one-stage detectors are described and compared in detail. In Chapter 4, the dataset and
architectures of implemented neural networks are described. In Chapter 5, the implemen-
tation details and results of the experiments are presented. In conclusion, the achieved
results are summarized and future development is discussed.

2

Chapter 2

Neural networks

From its earliest days, work on artificial neural networks was motivated by the observation
that the human brain computes in a completely different way from the standard digital
computer [11]. This is especially needed for tasks like image recognition where the standard
way of programming is not effective, because of complexity to define all scenarios. A
standard neural network is composed of many simple, connected processors called neurons,
each producing a sequence of non-linear activations.

Biological neuron

A biological neuron is composed of cell body a tubular axon and a lot of hair-like dendrites
[29]. A scheme of a biological neuron is shown in Figure 2.1. Information is propagated
through synapsies which are the small gaps between the end of a bulb and a dendrite. Axon
of a neuron is connected with many other neurons through synapsis. A neuron will send an
output if impulse signals from other neurons which fall upon its dendrites exceed a certain
threshold.

BodyAxon

Dendrites

Nucleus

Synapses (from other neurons)

Synapses (to other neurons)Dendrites (from other neurons)

Figure 2.1: Human brain neuron. Adapted from: [29].

Artificial neuron

An artificial neuron is an essential unit for the operation of neural networks [12]. It is
inspired by human brain neuron shown in Figure 2.1. The neural model consists of three

3

elements: synapses, adder, and activation function. Synapses are characterized by their
weight. The signal 𝑎𝑖 that comes to the input of synapse 𝑖, which is connected to neuron 𝑗
is multiplied by input weight 𝑤𝑖𝑗 of that synapse. There is one extra input 𝑎0 which is called
bias and it equals to a constant. An adder produces a sum of input signals multiplied by the
weights of the corresponding synapses of the neuron. And finally, an activation function 𝑔 is
usually a non-linear function controlling the output of the neuron. A simple mathematical
model of neuron introduced by McCulloch and Pitts (1943) [28] is shown in Figure 2.2.

a0

a1
a2

am

Bias

Inputs

wk0

wk1

wk2

wkm

Synaptic weights (including bias)

Σ
Summing function

Activation
 function

g yjk

Figure 2.2: Mathematical model of the neuron. Adapted from: [12].

Neural network structure
Once we understand how artificial neuron works, the next step is to show how can we
form them to build a network. There are two ways how to do this A feed-forward network
and Recurrent network [35]. In this chapter just feed-forward network is explained, if you
want to know more about recurrent neural networks please refer to book Deep learning [10]
(Chapter 10).

A feed-forward neural network forms a directed acyclic graph which means it has con-
nections just in one direction [35]. Every node receives input from previous nodes and
sends output to the next nodes. A feed-forward network has no internal state other than
the weights themselves. They are built from layers such that each unit receives input only
from units in the immediately preceding layer. There are cases when this is not true, i.e
Residual neural networks [15]. In practice, these networks are usually a multilayer which
means they have one or more layers of hidden units, that are not connected to the outputs
of the network. On Figure 2.3 a multilayer feed-forward network is shown.

4

Hidden layers Output layerInput layer

Figure 2.3: Multilayer feed-forward network has one or more layers of hidden units.

Activation functions
The activation function is usually either a hard threshold, called perceptron or logistic
function in which case we called it sigmoid perceptron [35]. These activation functions
provide the important property that the whole neural network can represent a nonlinear
function. The logistic activation function also brings the advantage of being differentiable.
Basically activation function decides the output of the neuron. In this section, two popular
activation functions are described: ReLU and Leaky ReLU. You can find out more about
activation functions in the book Deeplearing book [10] (Chapter 6).

ReLU

A rectified linear unit (ReLU) is an activation function recommended being used by default
in most of the neural networks [10]. It is defined as:

𝑔(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.1)

Applying this function for linear transformation output produces non-linear transfor-
mation. Because the function is almost linear, a lot of properties that make linear models
generalize well and easy to optimize using gradient-based methods are preserved. The graph
of ReLU function is shown in Figure 2.4.

5

0 x

y

Figure 2.4: ReLU is an activation function which has a lot of properties that make linear models
easy to optimize.

Leaky ReLU

A potential disadvantage of ReLU during the optimization is that whenever the unit is not
active, the gradient is zero [27]. This could lead to cases, where a unit is never activated
because a gradient-based optimization algorithm will not adjust the weights of a unit that
never activates initially. This problem is called vanishing gradient problem. Besides van-
ishing gradient problems we might expect training to be very slow. Leaky rectified linear
unit (Leaky ReLU) (see Figure 2.5) is nearly similar to ReLU but allows for small non-zero
gradient when the unit is not active. It is defined as:

𝑔(𝑥) =

{︃
0.1𝑥 𝑥 < 0

𝑥𝑓𝑜𝑟 𝑥 >= 0
(2.2)

0 x

y

Figure 2.5: Leaky ReLU is an activation function which help to solve the vanishing gradient problem.

6

Learning in neural networks
In this section a learning process of the neural networks is described. We will describe
what is a loss function and briefly mention two commonly used loss functions. Then we
will explain how this function can be minimized using gradient-descent algorithm and how
error is back-propagated through all layers in the network.

Loss function

In the learning process of neural networks, our goal is to minimize a loss function. The
loss function is used to measure the difference between the output of the network from
the desired output. During the optimization of the loss function, the learning parameters
are tuned. One of the commonly used loss functions for regression is mean squared error
(MSE), defined as:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (2.3)

MSE is a sum of squared distances between the target variable and the predicted values.
It is commonly used to measure error for linear regression. Say that there is linear function
with input 𝑥 and real-valued coefficients 𝑤0 and 𝑤1:

ℎ𝑤(𝑥) = 𝑤1𝑥+ 𝑤0 (2.4)

If we have training set of 𝑛 values in the 𝑥,𝑦 plane, then task of finding ℎ𝑤 that best fits
these data is called linear regression [35]. To fit this line we need to find values of the
weights 𝑤0 and 𝑤1 that minimize the MSE loss.

For classification i.e when output is probability distribution, there is a commonly used
loss function called cross entropy loss. It is defined as:

𝐶𝐸 = −(𝑦𝑖 log (𝑦𝑖) + (1− 𝑦𝑖) log (1− 𝑦𝑖)) (2.5)

where 𝑦𝑖 is the ground truth vector and 𝑦𝑖 is predicted vector of probabilities. Neural
networks which use cross-entropy as a loss function usually has softmax activation layer [2]
as an output layer.

Optimization

Gradient descent algorithm is essential for the training of neural networks. The idea behind
it is to calculate how each parameter needs to be changed to decrease the loss function [37].
Because the loss function can be differentiated with regard to each parameter, the gradient
vector can be calculated. The parameters that locally minimize the lost function can be
found by moving along the negative gradient for each parameter. The size of a step is defined
by hyper-parameter called learning rate. Optimization of a loss function on the training
data does not guarantee the good accuracy of prediction on the testing data. Optimization
algorithms commonly used nowadays are Stochastic gradient descent (SGD) [19] or Adam
[20].

7

w* Parameterwu w
Δw

dE/dwE

Loss function

Figure 2.6: Optimization using gradient descent. Adapted from: [37]

Backpropagation

Backpropagation algorithm was introduced by [34] (Rumalhart et al. 1986). It solves the
problem that comes with the addition of the hidden layers into the neural network. We are
able to calculate the error of the network output and compare it with the desired output
from training data. But we need not know how we need to update every weight in the
network. We can do this by back-propagating the error.

Say that unit has a real-valued output 𝑦𝑗 and we are trying to optimize loss function 𝐸.
Then we start backward pass by computing the 𝜕𝐸/𝜕𝑦 for each of the output units. Then
we can apply the chain rule to compute a 𝜕𝐸/𝜕𝑥𝑗 .

𝜕𝐸/𝜕𝑥𝑗 = 𝜕𝐸/𝜕𝑦 · 𝑑𝑦𝑗/𝑑𝑥𝑗 (2.6)

This means that we know how the loss will be affected by the change of the total input
𝑥. We also know that total input is a linear function of states of the lower level units and
also a linear function of the weights on the connections so it is possible to compute how the
change of these states and weights will affect the loss [34].

2.1 Convolutional neural networks
A convolutional neural network (CNN) is an architecture proven to be useful in computer
vision applications. The motivation behind this is that it is useful to represent image regions
with filter outputs [7]. Convolution operation takes advantage of three ideas that can help
improve a machine learning system [10]. The first one is sparse interactions. This means
that when the image of specific size is processed, neurons can extract elementary visual
features such as oriented edges, endpoints, corners or similar features with kernels that
occupy dramatically fewer pixels than original image [23]. This means that we have to store
fewer parameters which reduces memory requirements and increasing statistical efficiency
[10]. The second one is parameter sharing. This means that one parameter is used in more
than one function in a model. And finally, parameter sharing has the consequence that the
layer has a property called equivariance to translation which means that if the input changes,
the output changes in the same way. In this section, a discrete convolution is explained. To

8

learn more about the motivation behind the usage of convolution in convolutional neural
networks, refer to book Deep learning [10] (Chapter 9).

Discrete convolutions

A discrete convolution is a linear transformation. A discrete convolution of two discrete
signals 𝑥[𝑛] and ℎ[𝑛] is defined as:

𝑦[𝑛] =

+∞∑︁
𝑘:−∞

𝑥[𝑘]ℎ[𝑛− 𝑘] (2.7)

In Figure 2.7 the example of discrete convolution is provided. The blue grid is called
input feature map. It is common to have multiple feature maps stacked one onto another
[4]. An example can be channels when we speak about images. The grey grid is called
kernel of value slides across the feature map. At each location, the product is calculated
between each element of the kernel and the input element it overlaps, and the results are
summed up to obtain the output in the current location. The final output of this procedure
is called output feature map. If there are multiple kernels, this procedure is repeated for
each of them to form the same number of output feature maps. Example of the discrete
convolution in Figure 2.7 is an instance of 2𝐷 convolution but it can be generalized to 𝑁 -D
convolutions.

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

12 12 17

10 17 19

9 6 14

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

3 3 2 1 0

0 1 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

3 1 2

2 0 0

2 0 0

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

12 12 17

10 17 19

9 6 14

Figure 2.7: Example of convolution with one kernel. Adapted from: [4]

2.2 Layers in neural networks
In this section we will describe a layers commonly used in neural networks. Besides the
basic layers we will touch also layers which helps neural networks to generalize better on
testing data.

9

2.2.1 Fully connected layer

A fully connected layer is the layer where all neurons from adjoining layers are pairwise
connected but there are no connections between neurons within the same layer. The output
value is calculated as a dot product of the input vector and row of weight matrix [21]. Name
fully connected is used because the output is calculated using all input elements (see Figure
2.8).

Figure 2.8: Fully connected layers.

2.2.2 Convolutional layer

Typical convolutional layer in neural networks is composed of three stages [10]. In the
first stage, the layer performs several convolutions in parallel to produce a set of linear
activations. In the second stage, a non-linear function such as ReLU is applied to each of
the linear activations. And finally, in the third stage, a pooling function is used to modify
the output layer in addition.

Input to layer

Convolution stage:
Affine transform

Detector stage:
Nonlinearity
e.g ReLU

Pooling stage

Next layer

Convolutional layer

Figure 2.9: Convolutional layer. Adapted from: [10]

10

2.2.3 Pooling layer

A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs [10]. The function of pooling layer is to gradually reduce
the spatial size of the representation in order to reduce the number of parameters and the
network computation [18]. Most commonly used form of pooling is max pooling (see Figure
2.10 (a)) and in past also average pooling (see Figure 2.10 (b)) but it was recently replaced
by max-pooling which was proven to works better in practice. The most common form is
a pooling layer with filters of size 2x2 applied with a stride of 2 downsamples every depth
slice in the input by 2 along both width and height, discarding 75% of the activations [18].

20 34

12 2

34

11 18

22 43

1289870

11 21 3 5

43

1298

(a) Max pooling

17 21

750

20 34

12 2

11 18

22 43

1289870

11 21 3 5

(b) Average pooling

Figure 2.10: Different types of 2×2 𝑝𝑜𝑜𝑙𝑖𝑛𝑔.

2.2.4 Dropout layer

Dropout layer introduced by [36] is a technique that tries to solve two issues related to
neural networks. First one is a problem called overfitting when the network producing
good results on training data but poor results on testing data. The second one is training
using several different network architectures which also helps to generalize better. Dropout
is referring to dropping of hidden units in neural networks [36]. Each unit is retained with
certain probability 𝑝. Dropping of units with certain probability is used just during the
training time. During the testing, the Dropout layer is ignored. On figure 2.11 the idea
behind the dropout layer is shown.

2.2.5 Batch normalization layer

Batch normalization is a technique that dramatically reduces the training time of the deep
neural networks [17]. By adding this layer to network architecture normalization is per-
formed for each training mini-batch. This allows using of higher learning rates and less
attention for weight initialization. Batch normalization also provides regularization and in
some cases eliminating the need for Dropout [36].

11

(a) Standard multi-layer neural
network.

(b) After applying dropout.

Figure 2.11: Neural network with dropout.

12

Chapter 3

Object detection methods

Object detection builds upon the success of object recognition classifiers. Object detection
methods besides the classification of objects in the image, predicts also their position inside
the image. This is usually done by predicting coordinates of bounding boxes surrounding
the object and confidence of this prediction. Object detection is a more complex task than
object recognition because objects inside the image are usually of various sizes and ratios.

3.1 History
Before the deep neural networks become popular, the most effective object detection method
was Deformable Part Model (DPM) [5]. It uses deformable part models and detects objects
across all possible locations and scales. This approach after integration with post-processing
techniques, i.e bounding box predictions, non-maximum suppression (see Figure 3.1) and
rescoring of detections using contextual information achieved state-of-the-art results on
object detection tasks.

(a) Before non-maximum supression (b) After non-maximum supression

Figure 3.1: In many of the object detection methods it is possible that one object is detected
more than once. Non-maximum supression algorithm is addressing this issue. It first remove all
predictions with confidence score lower than certain threshold. Then it takes a prediction with
highest confidence score and remove all predictions that have intersection over union with this
prediction higher than certain threshold (usually 0.5). Images are taken from BDD dataset [41].

One of the first deep learning approaches to object detection was DetectorNet [39].
DetectorNet replaced last softmax layer of AlexNet [22] with regression layer which predicts
fixed sized object binary mask. After being resized to the image size, this binary mask
represents one or several objects. If the particular pixel lies within the bounding box of an
object of a given class it should have value 1, otherwise, it should have value 0.

13

3.2 Region proposals methods
Current successful object detection methods build on the idea to generate a large number
of candidate boxes and use CNN as a feature extractor.

This approach was successfully used by R-CNN method [9]. R-CNN object detection
system is composed of three modules. The first generates category-independent region
proposals using selective search algorithm [40]. These proposals define a set of candidates
boxes for the detector. The second module is large CNN that extracts fixed-size feature
vectors from each candidate box. This CNN has the architecture of AlexNet [22]. As CNN
expects input image of fixed size (227×227 pixels), for each region all pixels are warped in a
tight bounding box around it to the required size. The third module is a set of class-specific
linear SVMs 1.

Figure 3.2: R-CNN. Taken from: [9]

Besides solid accuracy, R-CNN is slow because it performs forward pass of CNN for
each region proposal without sharing any computations as stated in [8]. This issue was
addressed and solved by the SPP-net introduced in article Spatial Pyramid Pooling in
Deep Convolutional Networks for Visual Recognition [14]. SPP-net is built upon R-CNN
pipeline. It runs convolutional layers only once on the entire image regardless of a number
of proposed regions. Then classifies each object proposal using a feature vector extracted
from the shared feature map. This approach speeds up the R-CNN by maximum 100x
during test time.

Fast R-CNN
Fast R-CNN [8] proposes a new approach that fixes the issues with R-CNN and SPP-
net while improving speed and accuracy. First, it processes the entire image through
convolutional and max-pooling layers to produce a convolutional feature map. Then for
each object proposal, a region of interest (RoI) pooling layer extracts a fixed length feature
vector. These vectors are then processed through fully connected layers. At the end of the
network, there are two branches running in parallel: softmax branch predicting the class
probability of an object and bounding box regression branch which predicts coordinates of
a bounding box.

1SVM – Support vector machine, see [16] for more information

14

Figure 3.3: Fast R-CNN architecture. Taken from: [8]

Faster R-CNN
Faster R-CNN [33] replaces generating of region proposals boxes with a selective search
algorithm, by Region Proposal Network (RPN). It has been shown that Selective search is
a bottleneck of Fast R-CNN as it takes 2s per image on CPU. RPN is a fully convolutional
neural network that shares full-image convolutional features with the detection network.
This provides nearly cost-free region proposals. The input of RPN is an image and output
is a set of region proposals each with a confidence score.

sliding window

convolutional feature map

256-d

4k coordinates2k scores k anchor boxes

Figure 3.4: Region proposal network. Adpated from: [33]

15

Mask R-CNN
Mask R-CNN [13] is a method that extends the Faster R-CNN [33] by adding a branch for
object mask prediction on each RoI in parallel with the classification and bounding box
regression branch. This method is providing an object instance segmentation. This means
that besides predicting the bounding box for every object in the image, it classifies every
pixel to a fixed set of categories. The Mask R-CNN branch is a small fully convolutional
layer [26] which give just small computational overhead to Fast RCNN framework. The
key role in mask predictions has the introduction of RoIAlign layer. It is an improvement
of RoIPool which is aligning the extracted features properly with the input.

(a) Object detection (b) Semantic segmentation (c) Instance segmentation

Figure 3.5: Mask R-CNN is providing instance segmentation (c) which is combination of object
detection (a) and semantic segmentation (b). Taken from: [1]

3.3 One-stage detectors
One-stage detectors are generally faster and simpler than region proposals methods but
sometimes in a tradeoff for best accuracy of detection. In this chapter, we will describe the
most popular one-stage detector methods used for real-world use-cases mainly because of
the real-time speed of detection.

3.3.1 YOLO (You only look once)

In this section YOLO object detection method introduced in article You Only Look Once:
Unified, Real-Time Object Detection [30] is described. YOLO comes with a different ap-
proach to object detection. Instead of repurposing the object recognition classifiers for
object detection it proposes a system that unifies object detection to a single neural net-
work. This means that in one evaluation of an image it predicts a set of bounding boxes
as well as class probabilities. Yolo reasons about image globally and it is extremely fast at
the test time while keeping accuracy comparable with region proposal methods.

This system split an image equally into 𝑆 × 𝑆 grid. For each grid cell, it predicts 𝐵
number of bounding boxes with confidence scores and 𝐶 number of class probabilities. The
cell is responsible for the detection of an object if the center of an object is present in this
cell.

16

Figure 3.6: Yolo system. It first split the image into 𝑆 × 𝑆 grid. Then it predicts two bounding
boxes with confidence score for each cell. It predicts also a class probability for each cell. Taken
from: [30]

Network architecture

YOLO network is built from 24 convolutional layers followed by two fully connected lay-
ers. Convolutional layers are responsible for feature extraction from the image and fully
connected layers for making the prediction of bounding box coordinates, confidence scores,
and class probabilities. The final layer produces output tensor of size (𝑆 ×𝑆 × (𝐵 · 5+𝐶))
YOLO uses custom feature extractor which is inspired by GoogLeNet [38] model for image
classification, but instead of inception modules used by GoogLeNet, it uses 1× 1 reduction
layers followed by 3 × 3 convolutional layers. YOLO also comes with a fast version which
consists of 9 convolutional layers instead of 24 and fewer filters in those layers.

Bounding box predictions

There are five predictions for each bounding box: 𝑥, 𝑦, 𝑤, ℎ, 𝑐, where (𝑥, 𝑦) are the
coordinates of the center of a detected object relative to a grid cell, (𝑤, ℎ) are width and
height relative to image size and 𝑐 is the confidence score which represents Intersection over
union (IOU) between the ground truth and predicted bounding box. The confidence score
is formally defined as:

𝑃 (𝑂𝑏𝑗𝑒𝑐𝑡) * 𝐼𝑂𝑈 𝑡𝑟𝑢𝑡ℎ
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (3.1)

If there is no object present in the cell, the confidence score should be zero.

Class probabilities

One set of class probabilities is predicted for each cell. These probabilities are conditioned
for a grid cell containing an object. Conditional class probabilities are at test time multiplied
by confidence score:

𝑃 (𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) * 𝑃 (𝑂𝑏𝑗𝑒𝑐𝑡) * 𝐼𝑂𝑈 𝑡𝑟𝑢𝑡ℎ
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑃 (𝐶𝑙𝑎𝑠𝑠𝑖) * 𝐼𝑂𝑈 𝑡𝑟𝑢𝑡ℎ

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (3.2)

This encodes both the class probability and also how predicted bounding box fits the object

17

(a)

Intersection over union =

Area of overlap

Area of union

(b)

Figure 3.7: IOU is used to measure how much predicted bouning box overlaps with the ground
truth bounding box. On Figure (a) ground truth rectangle (blue) overlaps predicted bounding box
(green). Image is taken from BDD dataset [41]. On figure (b) is shown how IOU of two bounding
boxes is computed.

Loss function

YOLO optimizes for sum-squared error in the output of the model because it is easy to
optimize even though it does not maximize average precision. It treats localization error
equally with classification error which might not be flawless. There is also a problem that
in most of the images, there are many cells that do not contain the object. This pushes
these cells confidence scores to zero, often overwhelming the gradient from cells containing
objects. This can lead to model instability, leading to the early divergence of training.

To solve this problem of model instability, YOLO uses two hyperparameters in the
loss function. The first is 𝜆𝑐𝑜𝑜𝑟𝑑 which increases the loss from bounding box coordinate
prediction and second is 𝜆𝑛𝑜𝑜𝑏𝑗 which reduces the loss of confidence predictions for boxes
that do not contain objects. Authors of YOLO suggested to set them as 𝜆𝑐𝑜𝑜𝑟𝑑 = 5 and
𝜆𝑛𝑜𝑜𝑏𝑗 = 0.5.

YOLO predicts several bounding boxes per grid cell. Only one bounding box predictor is
responsible for each object during the training. This predictor is assigned according to which
predictor has the highest current IOU with the ground truth. This leads to specialization
among bounding box predictors - each predictor gets better to predict certain sizes, aspect
ratios, or object classes.

Limitations

YOLO struggles with detection of small objects since every cell is predicting just two
bounding boxes and one class probability per cell [30]. This means that if there are many
objects in one cell YOLO will not detect all of them.

Since YOLO model learns to predict bounding boxes from training data it may strug-
gle with generalizing predictions to new objects with different aspect ratios. Also YOLO
model uses relatively rough features for predicting bounding boxes since the neural network
architecture consists of many pooling layers.

The main source of error is incorrect localization. During the training loss function
weights error in small bounding boxes equally, as in large bounding boxes, a however small

18

error in small bounding box has a much higher impact on 𝐼𝑂𝑈 than a small error in a large
bounding box.

3.3.2 YOLOv2 and YOLOv3

The limitations mentioned in the previous section are addressed in the next versions of
YOLO. The first set of improvements were proposed in the paper YOLO9000: Better,
Faster, Stronger [31]. There was batch normalization added after every convolutional layer,
which led to more than 2% increase in model mAP and removed the need for dropout
in order to prevent overfitting. In YOLOv2 there is fine-tuned classification network at
resolution 448 × 448, instead of original 224 × 224 used by ImageNet[22]. This increased
mAP by more than 4% because filters are better adjusted for detection which is performed
on higher resolution.

A significant change is removing fully connected layers and replacing them with anchor
boxes. With the introduction of anchor boxes, there is also resize of input image resolution
into 416 × 416. An odd number is chosen because of one cell in the center of the image.
Large objects are usually in the center of the image so it is better to have just one cell in
the center compared to four. In YOLOv2, class predictions are made for every anchor box
rather than just for every cell as it is in YOLOv1. To help model learn sizes and aspect
ratios of anchor boxes faster, YOLOv2 uses k-means clustering on training set bounding
boxes to find good priors. You can read more about k-means clustering algorithm in [25].

Another improvement is the usage of fine-grained features. YOLOv2 is performing
detection on 13 × 13 feature map. This can cause problems with detecting small objects.
To solve this, a passthrough layer is added to bring 26× 26 feature map from earlier layers.
This layer concatenates high resolution features with low-resolution features by stacking
outlaying features into different channels similar to the identity mappings in ResNet [15].
The detector runs on top of this expanded feature map. In order to predict on variety
input dimensions, instead of fixed image size, every 10 batches it randomly changes input
dimensions. Since YOLOv2 model downsamples by a factor 32, randomly chose dimensions
are multiples of 32 ranging from 320 to 608. This model achieved state-of-the-art results
on higher resolution while maintaining real-time speed. YOLOv2 also comes with new
network classifier called Darknet-19 (See Figure 3.8) which has 19 convolutional layers and
5 max-pooling layers.

In the so far last article from this series YOLOv3: An Incremental Improvement [32],
feature extractor is changed to Darknet-53 (See Figure 3.8). It is inspired by Darknet-
19 and by Residual Networks [15]. Besides the change of architecture YOLOv3 perform
detection on 3 scales of the extracted feature map.

3.3.3 Single Shot MultiBox Detector (SSD)

SSD was introduced in the article SSD: Single Shot MultiBox Detector [24] and it is a
method for detecting images using a single deep neural network. SSD model predicts a
fixed number of bounding boxes and scores for those boxes. Scores are representing the
probability of object class instances presence. This is followed by non-maximum suppression
to produce the final detections.

19

Type Filters Size/Stride Output
Convolutional 32 3 × 3 224 × 224

Maxpool 3 × 3/2 112 × 112
Convolutional 64 3 × 3 112 × 112

Maxpool 3 × 3 56 × 56
Convolutional 128 3 × 3 56 × 56
Convolutional 64 3 × 3 56 × 56
Convolutional 128 3 × 3 56 × 56

Maxpool 3 × 3/2 28 × 28
Convolutional 256 3 × 3 28 × 28
Convolutional 128 3 × 3 28 × 28
Convolutional 256 3 × 3 28 × 28

Maxpool 3 × 3/2 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 3 × 3 14 × 14
Convolutional 512 3 × 3 14 × 14
Convolutional 256 3 × 3 14 × 14
Convolutional 512 3 × 3 14 × 14

Maxpool 3 × 3/2 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 3 × 3 7 × 7
Convolutional 1024 3 × 3 7 × 7
Convolutional 512 3 × 3 7 × 7
Convolutional 1024 3 × 3 7 × 7

Convolutional 1000 1 × 1 7 × 7
Avgpool Global 1000
Softmax

(a)

Type Filters Size/Stride Output
Convolutional 32 3 × 3 256 × 256
Convolutional 64 3 × 3/2 128 × 128

1×
Convolutional 32 1 × 1
Convolutional 64 3 × 3

Residual 128 × 128
Convolutional 128 3 × 3/2 64 × 64

2×
Convolutional 64 1 × 1
Convolutional 128 3 × 3

Residual 64 × 64
Convolutional 256 3 × 3/2 32 × 32

8×
Convolutional 128 1 × 1
Convolutional 256 3 × 3

Residual 32 × 32
Convolutional 512 3 × 3/2 16 × 16

8×
Convolutional 256 1 × 1
Convolutional 512 3 × 3

Residual 16 × 16
Convolutional 1024 3 × 3/2 8 × 8

4×
Convolutional 512 1 × 1
Convolutional 1024 3 × 3

Residual 8 × 8

Avgpool Global
Connected 1000

Softmax

(b)

Figure 3.8: Darknet-19 (a) architecture introduced in YOLOv2 and Darknet-53 (b) architecture
introduced in YOLOv3 article with usage of residual connections. Adapted from [31] and [32]

Network architecture

Initial layers of the network are based on standard architecture used for image classification.
Those are followed by convolutional feature layers, which decrease in size progressively and
allow to perform detection on multiple scales in comparison with YOLOv1 [30]. There are
multiple default bounding boxes associated with each feature map cell for multiple feature
maps. At each feature map cell, the offsets are predicted relative to the default box shapes
in the cell, as well as the per-class scores that indicate the presence of a class instance in
each of those boxes. The network architecture is shown in Figure 3.9.

Figure 3.9: Single shot detector network architecture. Taken from: [24]

20

Chapter 4

Proposal

Training of object detection models consists of several steps. The first step is to prepare
a dataset with annotated objects for training and testing. Our goal is to create and train
detector of objects in the street (e.g cars, trucks or persons). A detector like this can
be useful specifically for use cases like autonomous vehicles. Because of this, the training
dataset should contain images taken at a different time of the day and with different weather
conditions. Next step is to train a detector. This can be done in several ways, we can first
train initial layers on a big annotated dataset like ImageNet [3] and then add more layers
on top of the network to train detection on dataset annotated for detection. Some methods
allow to skip this step and train classification and object detection from ground up. In this
thesis we experimented with both of these approaches and results are presented in the next
chapter.

In the systems for autonomous vehicles, besides the accuracy, the focus is also on achiev-
ing the real-time speed. This is the key aspect for these systems, since car needs to react
very quickly for the events on the road. Because of this, we chose YOLO object detec-
tion method for our experiments, instead of the more accurate, but slower region proposals
methods.

4.1 Network architectures
YOLOv1. First network architecture is inspired by YOLOv1. It is composed of 24 con-
volutional layers with Leaky ReLU as an activation function. Convolutional layers are
followed by two fully connected layers with dropout after the first fully connected layer.
Batch normalization is applied after every convolutional block. Convolutional blocks are
displayed in Table 4.1. The input image size is 448 × 448. The output of the network
is tensor 7 × 7 × (2 · 5 + 10) as it predicts two bounding boxes per cell in a total of five
predictions (x, y, w, h, c) and objects are classified into 10 classes.

21

Type Filters Size/Stride
Convolutional 64 7 × 7/2
Maxpool 2 × 2/2
Convolutional 192 3 × 3
Maxpool 2 × 2/2
Convolutional 128 1 × 1
Convolutional 256 3 × 3
Convolutional 256 1 × 1
Convolutional 512 3 × 3
Maxpool 2 × 2/2

4× Convolutional 256 1 × 1
Convolutional 512 3 × 3
Convolutional 512 1 × 1
Convolutional 1024 3 × 3
Maxpool 2 × 2/2

2× Convolutional 512 1 × 1
Convolutional 1024 3 × 3
Convolutional 1024 3 × 3
Convolutional 1024 3 × 3/2
Convolutional 1024 3 × 3
Convolutional 1024 3 × 3
Connected
Connected

Table 4.1: YOLOv1 architecture. There is a batch normalization layer after every convolutional
block and Leaky ReLU is used as the activation function.

During the training, the following loss function (4.1) is optimized. Loss function only
penalizes classification error if there is an object in the cell and also penalizes localization
error just if the predictor is responsible for the detection of that object [30].

𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑︁
𝑖=0

𝐵∑︁
𝑗=0

1
𝑜𝑏𝑗
𝑖𝑗 [(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − 𝑦𝑖)
2]

+𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑︁
𝑖=0

𝐵∑︁
𝑗=0

1
𝑜𝑏𝑗
𝑖𝑗 [(

√
𝑤𝑖 −

√︀
�̂�𝑖)

2 + (
√︀
ℎ𝑖 −

√︁
ℎ̂𝑖)

2]

+𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑︁
𝑖=0

𝐵∑︁
𝑗=0

1
𝑜𝑏𝑗
𝑖𝑗 (𝐶𝑖 − 𝐶𝑖)

2

+𝜆𝑛𝑜𝑜𝑏𝑗

𝑆2∑︁
𝑖=0

𝐵∑︁
𝑗=0

1
𝑛𝑜𝑜𝑏𝑗
𝑖𝑗 (𝐶𝑖 − 𝐶𝑖)

2

+

𝑆2∑︁
𝑖=0

∑︁
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

1
𝑜𝑏𝑗
𝑖 (𝑝𝑖(𝑐)− 𝑝𝑖(𝑐))

2

(4.1)

Where 1𝑜𝑏𝑗𝑖 represents if an object is present in the cell 𝑖 and 1𝑜𝑏𝑗𝑖𝑗 represent that 𝑗-th
bounding box predictor in cell 𝑖 is responsible for the prediction of this object. Responsible
means that bounding box predictor has the highest IOU with the ground truth among other
predictors in the cell 𝑖 [30].

In the second experiment with this network, we took advantage of the transfer learning.
Transfer learning is a process when we take a model trained for a different task (in this case
object classification) then freeze initial layers and train top layers for the new purpose. In
this experiment, we used pretrained ResNet-50 from PyTorch model zoo 1. In the official
PyTorch documentation is reported that this model achieved accuracy 23.85 in Top-1 error
in ImageNet classification challenge.

1PyTorch model zoo - https://pytorch.org/docs/stable/torchvision/models.html

22

To compare results of this network two more models were trained. First of them is
a model based on Tiny YOLOv3 architecture and the other one is based on YOLOv3
architecture.

Tiny YOLOv3. Tiny YOLO network was created for extremely fast detection of objects.
It is composed of just 13 convolutional layers. It is fast to train and achieving real-time
detection time during the test time. The network architecture is shown in Figure 4.1.
YOLOv3. Last architecture that was used is YOLOv3. The reference implementation of
the network shown in Figure 3.8 was used for the experiments. It is the most advanced
version of YOLO so the most accurate results are expected.

Conv 3x3/1
Maxpool 2x2/2

Conv 3x3/1
Maxpool 2x2/2

Conv 3x3/1
Maxpool 2x2/2

Conv 3x3/1
Maxpool 2x2/2

Conv 3x3/1
Maxpool 2x2/2

Conv 3x3/1

Conv 1x1/1

Conv 3x3/1

Conv 1x1/1

Conv 1x1/1

Upsample

Concat

Conv 3x3/1

Conv 1x1/1

YOLO

Conv 3x3/1

Maxpool 2x2/2

208x208x16

104x104x32

52x52x64

26x26x128

26x26x256

13x13x256

13x13x512

13x13x1024

13x13x256

13x13x512

13x13x255

13x13x255

Input:
416x416x3

26x26x256

13x13x256

13x13x128

26x26x128

26x26x384

26x26x256

Figure 4.1: Tiny YOLOv3 architecture.

23

4.2 Dataset
For the training of the detector, Berkley Deep Drive (BDD) dataset was used [41]. This
dataset contains images split to training, validation and test categories. Every image is
annotated with bounding boxes around objects of 10 different classes. Images inside the
dataset were taken during various weather conditions (see Figure 4.5) and time of the day
(see Figure 4.6). Because dataset contains many of the scenes from the highway (See Figure
4.4) it contains on average just 1.2 persons per image in comparison there is on average 9.7
cars per image. Supporting toolset for pre-processing of data is available on GitHub 2. The
size of the validation set is 10000 images and the size of the training set is 69863 images.

Figure 4.2: Samples from BDD dataset training data. Taken from: [6]

In [41] authors made experiments using Faster-RCNN on this dataset. Training was
done separatly for three of the domains: daytime, city and clear. For clear domain they
were able to achieve 34.0% mAP on out-domain testing and 36.6% mAP on in-domain
testing. For daytime the results were 25.9% mAP out-domain and 36.6% mAP on in-
domain testing and finally best accuracy was achieved by training on city domain 34.5%
mAP out-domain and 42.0% mAP in-domain. For more detailed report see [41].

2https://github.com/ucbdrive/bdd-data

24

(a) Training dataset class distribution (b) Validation dataset class distribution.

Figure 4.3: Dataset class distribution. Both the training and validation dataset have a similar class
distribution. Classes: bike, rider, motor and train are not very well represented in the training
dataset.

Figure 4.4: Scene diversity of training dataset. The most of the images are from the street or
highway.

25

Figure 4.5: Weather diversity of training dataset. Images are mainly taken during the clear weather.

Figure 4.6: Time of the day diversity of training dataset. Images taken during the day are balanced
with those taken during the night.

4.3 Object detection metrics
In our experiments, average precision metric is used to evaluate the performance of the
resulting models. To be able to understand this metric we need to first explain what
is precision and recall. Precision measures the percentage of correct predictions. Recall
measures how good is the model in finding all true positives.

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(4.2)

26

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(4.3)

Prediction is considered to be true positive if it has 𝐼𝑂𝑈 > 0.5 with ground truth,
otherwise, it is considered to be false positive. Prediction is also classified as false positive
if there is a duplicate prediction of the same object. A predicted bounding box with
𝐼𝑂𝑈 > 0.5, but the wrong classification is a false negative. The average precision is
calculated as the area under the Precision-Recall curve. Mean average precision is the
average of AP calculated for every class.

4.4 Metacentrum
Effective training of convolutional neural networks requires solid hardware. For the training
of the models mentioned above, MetaCentrum GPU clusters were used. MetaCentrum3 is
the activity of CESNET focusing mainly on developing the grid infrastructure in the Czech
Republic. It allows using of GPU clusters for educational and research purposes. For this
thesis mainly clusters konos and doom were used. These clusters consists of four GPUs
Nvidia GeForce GTX 1080 Ti or two Nvidia Tesla K20 5GB respectively.

3https://metavo.metacentrum.cz/

27

Chapter 5

Experiments and implementation

In this chapter, the implementation and results of the experiments are discussed. In total,
we did two experiments with model based on YOLOv1 method, one with Tiny YOLOv3
and one with YOLOv3 based model. The implementation of YOLOv1 model is described
in more details.

5.1 Implementation
The model based on YOLOv1 is implemented using Python programming language and it
is available as Python package which can be installed via pip1 and be used as configurable
command line application. It supports various commands to train, test and validate the
model on BDD dataset. PyTorch2 framework is used for the implementation. PyTorch is
an open-source tensor library which supports multiprocessing for faster data loading and
provides a lot of functionality that comes handy when working with deep neural networks.
It is written in Python and C++ programming languages and supports both GPU and
CPU computing.

The models based on Tiny-YOLOv3 and YOLOv3 were trained using Darknet3 frame-
work implementation by AlexeyAB. Darknet is an open-source neural network framework
written in C/C++ programming language. It is easy to configure for training on a custom
dataset. Since Darknet supports different type of bounding box annotations than Berkley
Deep Drive dataset a simple script for conversion was created and used to transform these
annotations.

Implementation details

Dataset. For implementation of dataset PyTorch utils provides Dataset class. Then the
__get_item__ method is overriden with pre-processing of dataset into YOLOv1 format.
This method returns one sample - tuple image, ground-truth tensor. For working with
dataset there is useful DataLoader class from PyTorch utils which allows to iterate through
dataset and get batches of specific size.

Data augmentation. Training of neural networks sometimes require more data than is
available. One of the possible options for exapanding the dataset is data augmentation.

1https://pypi.org/
2https://pytorch.org/
3https://github.com/AlexeyAB/darknet

28

Dataset can be expanded by creating new images from existing by applying transforma-
tions such as shift rotation, flip, distort, shading or applying hue. PyTorch provides these
transformations in package torchvision. For this model shading, and applying hue data
augmentation was used.

Neural network. Neural Network is represented using PyTorch nn.Module. In constructor
there are layers split into the blocks using nn.Sequential. The forward pass of the network
is implemented in forward method.

Loss function. The loss function implements mathematical formula from equation 4.1.
The loss function is similary as a neural network implemented as nn.Module. In a forward
pass the value of the loss is calculated for the whole mini-batch. Backward pass is done
automatically using PyTorch’s auto grad mechanism.

Training and validation. Training and validation dataset is loaded using DataLoader
class from PyTorch’s utils. Training has configurable parameters like learning rate or batch
size. Trained weights are saved in the file specified by command line argument using
torch.save method. Every 1000 iterations there is backup model saved, which provides
the ability to continue training from the latest checkpoint. The output of the validation
is annotation files for every image in the validation dataset. This .txt files were then
compared with ground-truth files using a python script to calculate mAP4 of the model.

Visualization. For object detection application it important to be able to visualize the
results of the detection. For this purpose Visualization class was created. It uses libraries
like OpenCV5 or Matplotlib6.

5.2 Results of the experiments
In this section the experiments using different network architectures described in Chapter
4 are presented. First the results of experiments with YOLOv1 model are presented and
then experiments with Tiny-YOLOv3 and YOLOv3 models. At the end of this chapter the
results are compared using mAP metric.

5.2.1 Experiments using YOLOv1

In the first experiment YOLOv1 model was trained without taking advantage of the transfer
learning. The network was trained for 20 epochs with batch size 64. Adam was used as
the optimizer for YOLOv1 loss function with weight decay equals to 0.0005. The whole
training dataset was used for training. Then the detection was performed on the image
from test set (see Figure 5.1). As there is always two bounding box predictions per cell, we
used non-maximum suppression algorithm to avoid duplicate detections.

4mAP calculation - https://github.com/Cartucho/mAP
5OpenCV - https://opencv.org/
6Matplotlib - https://matplotlib.org/

29

Figure 5.1: YOLOv1: Results after performing detection on the image from test set.

After the training, the validation was performed and model accuracy was computed
using mAP metric. The network was able to learn to detect just 5 classes with accuracy
comparable with the one reported in [41]. This is very likely caused by a high-class im-
balance in training set and limitations of YOLOv1 to predict smaller objects and objects
in flocks as it is mentioned in the section 3.3.1. The prediction time for one frame with
resolution 1280× 720 is 12.33𝑠 on the CPU Intel Core i5 7360U 2,3 GHz.

Figure 5.2: Results achieved using YOLOv1 network.

In the second experiment ResNet-50 architecture is used as a feature extractor. The 7
initial convolutional blocks were freezed. The eighth layer from ResNet was added on top

30

with average pooling and YOLO layer composed from one linear layer and dropout layer.
Model was trained for 20 epochs with batch size 64. Adam is used as an optimizer for
YOLOv1 loss function with weight decay 0.0005. Whole training set is used for the training.
Non-maximum suppresion algorithm is again used for removing the duplicate detections.
After performing validation we can see that the results are just slightly worse than in the
previous experiment. But thanks to pretrained feature extractor and optimization of fewer
parameters the training process was more than 2× faster.

Figure 5.3: Results achieved with YOLOv1 network using ResNet-50 backbone.

5.2.2 Experiment using Tiny YOLOv3

In the third experiment a model based on Tiny-YOLOv3 architecture was trained using
Darknet framework. Pre-trained feature extractor is used and the network was trained for
20000 iterations on the whole training dataset with batch size 64. SGD was used as an
optimizer with momentum equals to 0.9 and 0.0005 weight decay. Validation was performed
every 4 epochs on the validation dataset.

31

Figure 5.4: Results achieved with Tiny-YOLOv3 network.

This model was able to achieve comparable mAP with a much smaller size of the network
and fewer parameters. This is likely because of improvements in YOLO method since
version 1. Besides the good detection accuracy, Tiny-YOLOv3 performed also better in
the speed of detection during the test time. Another thing to point out is that precision
is more equally split among all classes unlike in the first experiment where the trained
model is more imbalanced. The prediction time for one frame with resolution 1280 × 720
is 623.59𝑚𝑠 on the CPU Intel Core i5 7360U 2,3 GHz.

Figure 5.5: Tiny-YOLOv3: Results after performing detection on images from test set.

32

5.2.3 Experiment using YOLOv3

In the third experiment a model based on YOLOv3 architecture was trained using Darknet
framework. Pre-trained feature extractor based on Darknet-53 architecture was used and
the network was trained for 20000 iterations on whole training dataset with batch size 64.
SGD was used as an optimizer with momentum equals to 0.9 and 0.0005 weight decay.
Validation was performed every 4 epochs on the validation dataset.

Figure 5.6: Results achieved with YOLOv3 network.

YOLOv3 with pre-trained weights from Darknet-53 achieved accuracy 41.18% mAP on
the validation dataset which is more than two times better than two previous models. Since
the mAP on the validation dataset was increasing just slightly in the last epochs, there is
an assumption that the model could not learn more with these parameters of the training.
The prediction time for one frame with resolution 1280 × 720 is 7.116𝑠 on the CPU Intel
Core i5 7360U 2,3 GHz.

33

Figure 5.7: YOLOv3: Results after performing detection on images from test set.

5.2.4 Experiments summary

In the Table 5.1 is a summary of all experiments. There is mAP of top 5 classes that model
learned to detect with best average precission and also overall mAP for all classes. There
is a big difference between these two, mainly because of the class imbalance in the training
set so models were able to learn to detect just few classes with a solid accuracy.

Model Top-5 class mAP overall mAP
YOLOv1 37,96 % 19.38 %

YOLOv1 ResNet-50 32,94 % 16.89 %
Tiny YOLOv3 26,03 % 17.35 %

YOLOv3 55,02 % 41.18 %

Table 5.1: Summary of the results aquired after performing testing on the validation dataset of size
10000 images.

34

Chapter 6

Conclusion

This thesis provides brief introduction into neural networks and specifically convolutional
neural networks. Then it describes methods commonly used nowadays for the problem of
object detection. The main goal of this thesis was to implement method for object detection
of objects in the street. For this purpose a model based on YOLOv1 object detection method
is created and trained on the Berkley DeepDrive dataset. The model was able to achieve
good accuracy just on the few object classes which are most represented in the training
dataset. Accuracy is also limited because of the limitations in the YOLOv1 design. To
compare these results with other methods, two more models were trained. The first of
them was based on Tiny-YOLOv3 architecture. This model achieved lowest accuracy from
all of the tested models, but besides that it performs very well in speed of the detection.
Detection of one image took around 600ms on the CPU. Last model which was trained is
based on YOLOv3 architecture and achieved best accuracy from all of the tested models.

The most valuable thing which I have learned is how to implement object detection
model based on a deep neural network from the ground up. This gave me better insight to
how deep neural networks work, than using just existing solutions.

For the future advancement I suggest to expand the training dataset with images of
classes that are under-represented in the current dataset. One of the possible improvements
of the model can be more advanced data augmentation and speed optimization.

35

Bibliography

[1] Arnab, A.; Torr, P. H. S.: Pixelwise Instance Segmentation with a Dynamically
Instantiated Network. CoRR. vol. abs/1704.02386. 2017. 1704.02386.
Retrieved from: http://arxiv.org/abs/1704.02386

[2] Dahal, P.: Classification and Loss Evaluation - Softmax and Cross Entropy Loss.
[Online; visited 15.05.2019].
Retrieved from: https://deepnotes.io/softmax-crossentropy

[3] Deng, J.; Dong, W.; Socher, R.; et al.: Imagenet: A large-scale hierarchical image
database. In In CVPR. 2009.

[4] Dumoulin, V.; Visin, F.: A guide to convolution arithmetic for deep learning. 2016.
cite arxiv:1603.07285.
Retrieved from: http://arxiv.org/abs/1603.07285

[5] Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D. A.; et al.: Object Detection with
Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach.
Intell.. vol. 32, no. 9. 2010: pp. 1627–1645.
Retrieved from:
http://dblp.uni-trier.de/db/journals/pami/pami32.html#FelzenszwalbGMR10

[6] Fisher Yu, Y. C. F. L. M. L. V. M. T. D., Wenqi Xian: Berkeley DeepDrive. [Online;
visited 15.05.2019].
Retrieved from: https://bdd-data.berkeley.edu/

[7] Forsyth, D. A.; Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall.
2003.
Retrieved from: http://www.cs.berkeley.edu/~daf/book.html

[8] Girshick, R.: Fast R-CNN. In Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV). ICCV ’15. Washington, DC, USA: IEEE Computer
Society. 2015. ISBN 978-1-4673-8391-2. pp. 1440–1448. doi:10.1109/ICCV.2015.169.
Retrieved from: http://dx.doi.org/10.1109/ICCV.2015.169

[9] Girshick, R. B.; Donahue, J.; Darrell, T.; et al.: Rich feature hierarchies for accurate
object detection and semantic segmentation. CoRR. vol. abs/1311.2524. 2013.
1311.2524.
Retrieved from: http://arxiv.org/abs/1311.2524

[10] Goodfellow, I.; Bengio, Y.; Courville, A.: Deep Learning. MIT Press. 2016.
http://www.deeplearningbook.org.

36

1704.02386
http://arxiv.org/abs/1704.02386
https://deepnotes.io/softmax-crossentropy
http://arxiv.org/abs/1603.07285
http://dblp.uni-trier.de/db/journals/pami/pami32.html#FelzenszwalbGMR10
https://bdd-data.berkeley.edu/
http://www.cs.berkeley.edu/~daf/book.html
http://dx.doi.org/10.1109/ICCV.2015.169
1311.2524
http://arxiv.org/abs/1311.2524
http://www.deeplearningbook.org

[11] Haykin, S.: Neural Networks: A Comprehensive Foundation (3rd Edition). 01 2007.
ISBN 0131471392.

[12] Haykin, S. S.: Neural networks and learning machines. Pearson Education. third
edition. 2009.

[13] He, K.; Gkioxari, G.; Dollár, P.; et al.: Mask R-CNN. CoRR. vol. abs/1703.06870.
2017. 1703.06870.
Retrieved from: http://arxiv.org/abs/1703.06870

[14] He, K.; Zhang, X.; Ren, S.; et al.: Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition. CoRR. vol. abs/1406.4729. 2014.
Retrieved from:
http://dblp.uni-trier.de/db/journals/corr/corr1406.html#HeZR014

[15] He, K.; Zhang, X.; Ren, S.; et al.: Deep Residual Learning for Image Recognition.
CoRR. vol. abs/1512.03385. 2015. 1512.03385.
Retrieved from: http://arxiv.org/abs/1512.03385

[16] Hearst, M. A.: Support Vector Machines. IEEE Intelligent Systems. vol. 13, no. 4.
July 1998: pp. 18–28. ISSN 1541-1672. doi:10.1109/5254.708428.
Retrieved from: http://dx.doi.org/10.1109/5254.708428

[17] Ioffe, S.; Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. ArXiv e-prints. 2015.

[18] Karpathy, A.: CS231n Convolutional Neural Networks for Visual Recognition.
[Online; visited 15.05.2019].
Retrieved from: http://cs231n.github.io/convolutional-networks/

[19] Kiefer, J.; Wolfowitz, J.: Stochastic Estimation of the Maximum of a Regression
Function. Ann. Math. Statist.. vol. 23, no. 3. 09 1952: pp. 462–466.
doi:10.1214/aoms/1177729392.
Retrieved from: https://doi.org/10.1214/aoms/1177729392

[20] Kingma, D. P.; Ba, J.: Adam: A Method for Stochastic Optimization. CoRR. vol.
abs/1412.6980. 2015.

[21] Kota Ando, M. I. T. A. M. M., Shinya Takamaeda-Yamazaki: A Multithreaded
CGRA for Convolutional Neural Network Processing. Circuits and Systems. 2017.

[22] Krizhevsky, A.; Sutskever, I.; Hinton, G. E.: Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.
2012. pp. 1097–1105.

[23] LeCun, Y.; Bottou, L.; Bengio, Y.; et al.: Gradient-Based Learning Applied to
Document Recognition. In Proceedings of the IEEE, vol. 86. 1998. pp. 2278–2324.
Retrieved from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665

[24] Liu, W.; Anguelov, D.; Erhan, D.; et al.: SSD: Single Shot MultiBox Detector.
CoRR. vol. abs/1512.02325. 2015. 1512.02325.
Retrieved from: http://arxiv.org/abs/1512.02325

37

1703.06870
http://arxiv.org/abs/1703.06870
http://dblp.uni-trier.de/db/journals/corr/corr1406.html#HeZR014
1512.03385
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1109/5254.708428
http://cs231n.github.io/convolutional-networks/
https://doi.org/10.1214/aoms/1177729392
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
1512.02325
http://arxiv.org/abs/1512.02325

[25] Lloyd, S. P.: Least squares quantization in pcm. IEEE Transactions on Information
Theory. vol. 28. 1982: pp. 129–137.

[26] Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic
segmentation. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015. ISSN 1063-6919. pp. 3431–3440.
doi:10.1109/CVPR.2015.7298965.

[27] Maas, A. L.; Hannun, A. Y.; Ng, A. Y.: Rectifier nonlinearities improve neural
network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing. 2013.

[28] Mcculloch, W.; Pitts, W.: A Logical Calculus of Ideas Immanent in Nervous Activity.
Bulletin of Mathematical Biophysics. vol. 5. 1943: pp. 127–147.

[29] Mehrotra, K.; Mohan, C.; Ranka Preface, S.: Elements of Artificial Neural Nets. 01
1997.

[30] Redmon, J.; Divvala, S. K.; Girshick, R. B.; et al.: You Only Look Once: Unified,
Real-Time Object Detection. CoRR. vol. abs/1506.02640. 2015. 1506.02640.
Retrieved from: http://arxiv.org/abs/1506.02640

[31] Redmon, J.; Farhadi, A.: YOLO9000: Better, Faster, Stronger. CoRR. vol.
abs/1612.08242. 2016. 1612.08242.
Retrieved from: http://arxiv.org/abs/1612.08242

[32] Redmon, J.; Farhadi, A.: YOLOv3: An Incremental Improvement. CoRR. vol.
abs/1804.02767. 2018. 1804.02767.
Retrieved from: http://arxiv.org/abs/1804.02767

[33] Ren, S.; He, K.; Girshick, R. B.; et al.: Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. In NIPS, edited by C. Cortes; N. D.
Lawrence; D. D. Lee; M. Sugiyama; R. Garnett. 2015. pp. 91–99.
Retrieved from:
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#RenHGS15

[34] Rumelhart, D. E.; Hinton, G. E.; Wilson, R. J.: Learning representations by
back-propagating errors. Nature. vol. 323. 1986: pp. 533–536.

[35] Russell, S.; Norvig, P.: Artificial Intelligence: A Modern Approach. Series in Artificial
Intelligence. Prentice Hall. third edition. 2010.
Retrieved from: http://aima.cs.berkeley.edu/

[36] Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; et al.: Dropout: a simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research.
vol. 15, no. 1. 2014: pp. 1929–1958.

[37] Svarer, C.: Neural Networks for Signal Processing. 1995.

[38] Szegedy, C.; Liu, W.; Jia, Y.; et al.: Going Deeper with Convolutions. CoRR. vol.
abs/1409.4842. 2014. 1409.4842.
Retrieved from: http://arxiv.org/abs/1409.4842

38

1506.02640
http://arxiv.org/abs/1506.02640
1612.08242
http://arxiv.org/abs/1612.08242
1804.02767
http://arxiv.org/abs/1804.02767
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#RenHGS15
http://aima.cs.berkeley.edu/
1409.4842
http://arxiv.org/abs/1409.4842

[39] Szegedy, C.; Toshev, A.; Erhan, D.: Deep Neural Networks for Object Detection.
2013.
Retrieved from: http://papers.nips.cc/paper/5207-deep-neural-networks-for-
object-detection.pdf

[40] Uijlings, J. R. R.; van de Sande, K. E. A.; Gevers, T.; et al.: Selective Search for
Object Recognition. International Journal of Computer Vision. vol. 104, no. 2. 2013:
pp. 154–171.
Retrieved from:
http://dblp.uni-trier.de/db/journals/ijcv/ijcv104.html#UijlingsSGS13

[41] Yu, F.; Xian, W.; Chen, Y.; et al.: BDD100K: A Diverse Driving Video Database
with Scalable Annotation Tooling. CoRR. vol. abs/1805.04687. 2018. 1805.04687.
Retrieved from: http://arxiv.org/abs/1805.04687

39

http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
http://dblp.uni-trier.de/db/journals/ijcv/ijcv104.html#UijlingsSGS13
1805.04687
http://arxiv.org/abs/1805.04687

Appendix A

The contents of the attached
storage media

∙ doc - Latex source files and thesis pdf.

∙ models - Trained neural networks.

∙ data - Manual on how to obtain the dataset.

∙ src - All source files used for this thesis.

∙ poster.pdf - Poster from the assignment.

∙ README.md - Setup manual.

40

	Introduction
	Neural networks
	Convolutional neural networks
	Layers in neural networks
	Fully connected layer
	Convolutional layer
	Pooling layer
	Dropout layer
	Batch normalization layer

	Object detection methods
	History
	Region proposals methods
	One-stage detectors
	YOLO (You only look once)
	YOLOv2 and YOLOv3
	Single Shot MultiBox Detector (SSD)

	Proposal
	Network architectures
	Dataset
	Object detection metrics
	Metacentrum

	Experiments and implementation
	Implementation
	Results of the experiments
	Experiments using YOLOv1
	Experiment using Tiny YOLOv3
	Experiment using YOLOv3
	Experiments summary

	Conclusion
	Bibliography
	The contents of the attached storage media

