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Abstrakt
Zapisovač letových údajů je zařízení určené pro zaznamenávání letových dat z různých
senzorů v letadlech. Analýza letových údajů hraje důležitou roli ve vývoji a testování
avioniky. Testování a hodnocení charakteristik letadla se často provádí pomocí testovacích
manévrů. Naměřená data z jednoho letu jsou uložena v jednom letovém záznamu, který
může obsahovat několik testovacích manévrů. Cílem této práce je identifikovat základní
testovací manévry s pomocí naměřených letových dat. Teoretická část popisuje letové
manévry a formát měřených letových dat. Analytická část popisuje výzkum v oblasti klasi-
fikace založené na statistice a teorii pravděpodobnosti potřebnou pro pochopení složitých
Gaussovských směšovacích modelů. Práce uvádí implementaci, kde jsou Gaussovy směšo-
vací modely použité pro klasifikaci testovacích manévrů. Navržené řešení bylo testováno
pro data získána z letového simulátoru a ze skutečného letadla. Ukázalo se, že Gaussovy
směšovací modely poskytují vhodné řešení pro tento úkol. Další možný vývoj práce je
popsán v závěrečné kapitole.

Abstract
A flight data recorder is a device dedicated for recording flight data from a wide range of
aircraft sensors. The analysis of the flight data has an important role in the development
and testing of avionics. The testing and evaluation of the aircraft responses is often per-
formed using the testing maneuvers. The sensor data from one flight are stored within one
flight record, which may contain several testing maneuvers. The goal of this thesis is to
identify basic testing maneuvers using measured flight data. The theoretical part describes
the flight maneuvers and a related format of the flight data. A research in the field of statis-
tics driven data classification and the probability theory, necessary to understand complex
Gaussian Mixture Models, is covered in the analytical part. The thesis also introduces an
implementation where the Gaussian Mixture Models are used for the classification of the
testing maneuvers in the flight data. The testing of the proposed solution for the data from
a flight simulator and a real aircraft showed that the Gaussian Mixture Models provide a
suitable solution for this task. A possible future research direction is described in the final
chapter.
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1 Introduction

The main principles of the flight instruments have remained the same over a long period
of time. The flight instruments are displays or sensors and they help the pilot to observe
the state of an aircraft. There are six basic flight instruments in the cockpit, the airspeed
indicator, the attitude indicator, the altimeter, the vertical speed indicator, the heading
indicator and the turn coordinator. These flight instruments offer the observation of the
aircraft state in real time. They are based on the mechanical, analogue and barometric
devices which offer low failure rates. Besides the flight instruments, modern aircraft often
use a Flight Data Recorder (FDR), which is connected to the Inertial Measurement Unit
(IMU).

The Flight Data Recorder (FDR) gathers the flight parameters such as the static pres-
sure and the dynamic pressure, angular rates, Global Positioning System (GPS) coordi-
nates, Angle of Attack or Angle of Sideslip. The measuring instruments are the gyroscopes,
accelerometers and others.

We could assume gathering of flight parameters as a simple task. The challenging task
comes afterwards. The analysis and the correction of the measured data is a very difficult
task, due to a great deal of potential errors in the measuring instruments. Noise, insufficient
calibration or inappropriate location of a sensor, could lead to inaccurate measurements of
flight data. However, there is always a way to perform the correction of the measurement
to achieve a better accuracy.

Measured flight parameters give us the possibility to evaluate the flight in many different
ways. For example, if we consider a deflection of the rudder and the smoothness of motion
of an aircraft during a flight maneuver, then we could evaluate the quality of the pilot’s
ability to control the aircraft. Measurement of the flight parameters is to be applied in
case of failure prevention, pilot capabilities observation and monitoring of the physical
condition of the aircraft body or in a case of an accident, it helps in providing evidence for
the estimation of the cause of a failure.

There are many reasons to use the identification of the testing maneuvers. For example,
if we want to analyse or examine the characteristics or the aerodynamic coefficients of
the aircraft, such as lift or drag coefficients. The feedback of the aircraft to the testing
maneuvers can be evaluated using an impulse response of a system, when we examine
reaction of some system to the unit step. The common test flight maneuvers include, for
example, the doublets and pulses in the elevator, aileron or rudder. These testing maneuvers
are characterized by a significant change in the deflection of the elevator, aileron or rudder.
Only an experienced pilot can perform testing maneuvers without any major shortcomings.
A pilot must hold the aircraft in constant airspeed and constant altitude before executing
the testing maneuvers. These are the basic conditions to be met.

The aim of this work is to process measured data from a flight data recorder and
then identify the testing maneuvers as a result of the classification process. The final
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framework for the classification should provide an option to the configuration settings and
the visualization of the classification results. Results should be available in the form of
plots with highlighted time segments with the testing maneuvers for each flight record.
Another approach to the visualization task should provide an option to analyse selected
flight parameters during the identified testing maneuvers.

1.1 Structure of thesis

The text of this thesis is divided into six chapters. Chapter 2 deals with the required
theoretical basis such as the aircraft reference frames, the format of measured data from
a FDR, description of the flight maneuvers and the error characteristics of the inertial
sensors used to measure the flight data. Chapter 3 covers the research and analysis in
the field of the classification. The main part of this chapter is formed by the probability
theory, which is necessary to introduce complex Gaussian Mixture Models. The fourth
chapter demonstrates the application of the Gaussian Mixture Models in practice and a
description of the implementation part of the proposed system. The experiments and testing
of the implemented classifier on the data coming from the simulation and real aircraft are
covered in Chapter 5. Lastly, Chapter 6 sums up the work and discusses its potential future
development.
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2 Theoretical basis

The automation in the process of the identification of the flight events involves an ad-
vanced knowledge built on the comprehension of the basics of the aircraft dynamics. The
explanation of the aircraft frames of reference includes an introduction to the flight dynam-
ics. Furthermore, the format of the measured data, their meaning and physical units are
introduced. This is followed by a list of basic flight maneuvers.

This chapter describes the theory as listed above. The last section of this chapter
contains an overview of the error characteristics of the inertial sensors.

The description of the coordinate systems, flight data and flight maneuvers is intended
to give the reader a broader view of the issue of flight data analysis. Detailed description of
the flight data and flight maneuvers prepares the ground for more complicated task of the
identification of all flight maneuvers during whole flight. It could be a direction for future
research.

2.1 Coordinate systems and reference frames

We use the coordinate system [5] to keep the track of an aircraft orientation and motion
in space. A coordinate system determines the position variable and the way one describes
or observes motion in a specific reference frame. The reference frame serves for an effective
description and observation of motion. Reference frames are divided into ground reference
frames and vehicle-carried reference frames. Standard convention in the description of the
attitude requires axes of the reference system and the axis of rigid aircraft body. The
transformation between different reference frames has an important role in the description
of an aircraft’s motion and position.

2.1.1 ECEF coordinate system (Earth Centred Earth Fixed)

The ECEF coordinate system is a Cartesian coordinate system. Its origin Oe is located
in the centre of the Earth (Earth Centred) and its axes are fixed to the Earth surface
(Earth fixed) and are aligned with an International Reference Pole (IRP) and International
Reference Meridian (IRM) as illustrated in the Figure 2.1. The ECEF coordinates are the
ones used by most satellite system to designate an Earth position. The Xe axis lies in
the equatorial plane and points through the Greenwich Meridian. The Ye axis lies in the
equatorial plane to form a right hand system with the Xe axis and Ze axis. Ze axis is the
rotation axis of the Earth [8].
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X axis

Y axis

Z axis

P(x, y, z)

Equator Prime Meridian

Figure 2.1: ECEF Coordinate system

2.1.2 WGS-84 Reference Frame

The Global Positioning System (GPS) uses World Geodetic System reference frame from
1984 (WGS-84). There are three angular or curvilinear coordinates that are in everyday use
in maps. First coordinate is the latitude φ; it is the angle up from the Equator. Zero value
of the angle is on the Equator and we distinguish South latitude and North latitude. Usual
range for the latitude is from 0 degrees to 90 as we go from the Equator towards the Poles.
The longitude λ is the second coordinate and it represents the angle on the equatorial plane.
Zero value of the angle is on the Prime Meridian (Greenwich, England) and we distinguish
West and East longitude. The Figure 2.2 represents the use of the coordinates in WGS-84
reference frame. Rotational effects cause flattening of the Earth and the cross-section of
a Meridian is an ellipse, not a circle. The WGS-84 uses the geodetic latitude, the angle
that makes the equatorial plane with the line perpendicular to the ellipsoid. The height
determination requires the application of reference surface of the Earth [21].

XE

YE

ZE

P(, φ, h)


φ

Equator Prime Meridian

WGS Ellipsoid

Figure 2.2: WGS84 Reference frame

The ellipsoid is used by the WGS-84 frame as a reference surface [21] and the result-
ing height is called the geodetic height or ellipsoidal height. The height used on maps is
called the orthometric height or Mean Sea Level (MSL) height. The geoid is the best fit

6



approximation of the Earth’s real surface. The geoid approximates the surface at the mean
sea level and it can be below or above the ellipsoid. Still, we need to approximate geoid
by mathematically simpler reference surface. An ellipsoid is more accurate than sphere
and it has the variation from the real Earth surface less than 100 meters. An ellipsoid is
defined by the semi-major axis (on the equatorial plane) and the semi-minor axis (on the
North-South pole axis). The flattening is the amount by which the ellipsoid deviates from
an ideal sphere. The Figure 2.3 demonstrates the difference between the geoid, the ellipsoid
and the Earth surface.

Topographic
Surface of Earth

Reference
Geoid Surface

Reference
Ellipsoid Surface

h - ellipsoidal height
H - orthometric height

Figure 2.3: Difference between the Geoid, the Ellipsoid and the Earth surface

There are several important parameters in WGS-84 [21]:

• the semi-major axis REa = 6378137.0m,

• the flattening factor f = 1/298, 257223436,

• the semi-minor axis REb = REa(1− f) = 6356752.0m,

• the first eccentricity e =

√
R2

Ea−R
2
Eb

REa
= 0.08181919,

• the prime vertical radius of curvature N(φ) = REa√
1−e2sin2(φ)

.

2.1.3 NED Frame (North-East-Down System)

The NED frame is used to define the position of the aircraft. It’s origin is located in a
reference point of the aircraft. The Xo axis points towards the geographic North Pole
and it’s parallel to the local geoid surface. The Yo axis is pointing East to form a right
hand system with Xo axis and it’s parallel to the local geoid surface, too. The Zo axis is
perpendicular to the local geoid surface and it points downwards. Generally speaking, the
movement of an aircraft influences the axis directions in the NED frame.
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North Pole

ZO axis is perpendicular
to reference surface

XO YO

E

D

N

ZO

Figure 2.4: NED frame

2.1.4 BFF frame (Body fixed frame)

The body fixed frame is a vehicle-carried frame and it is exactly defined on the body of
an aircraft. This reference frame is often used to describe the forces and moments acting
within the body of an aircraft. The origin Ob is located in the aircraft centre of gravity.
The Xb axis points towards the aircraft front in the symmetry plane. The Yb axis points to
the right wing and forms an orthogonal right hand system. The Zb axis is perpendicular
to Xb and Yb axis and points downwards in the symmetry plane of the aircraft [8].

ZB

XBpq
r

YB

Figure 2.5: Body fixed frame

2.1.5 Body structural frame

The Body structural frame is used to define positions of parts within the aircraft. The
origin Obs is situated at the front of an aircraft. The Xbs axis points backward from the
front of an aircraft in the symmetry plane. The Ybs axis points towards the right wing to
form an orthogonal right hand system. The Zbs axis points upward.
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ZBSFXBSF

YBSF

Figure 2.6: Body structural frame

2.1.6 Transformation between reference frames

Transformations between reference frames can be very useful in dealing with the description
of an aircraft motion. There are two main methods how to do this transformation [5]. The
Euler angles φ, ψ, Θ denote rotations around the XO axis, YO axis and ZO axis, respec-
tively. The final position after transformation depends on the order of the transformations.
Changing the order will give a different final position.

Transformation from WGS-84 coordinates to Cartesian ECEF coordinates
Cartesian ECEF coordinates are results of following equations:

• x = (N(φ) + h)cos(φ)cos(λ)

• y = (N(φ) + h)cos(φ)sin(λ)

• z = [N(φ)(1− e2) + h]sin(φ)

The transformation from ECEF coordinates to WGS-84 coordinates is more difficult
and possible by using iterative methods.

Transformation between NED and ECEF frame
When transforming from NED reference frame to ECEF reference frame two rotations are
needed. First, we make rotation around the axis Ze with an angle of geodetic longitude λ.
This single rotation is represented by a transformation matrix:

MOE,1(λ) =

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 (2.1)

Second, there is a rotation around the axis y0 with a negative angle of geodetic latitude
φ− π

2 represented by the transformation matrix:

MOE,2(φ) =

 cos(−φ− π
2 ) 0 sin(−φ− π

2 )
0 1 0

− sin(−φ− π
2 ) 0 cos(−φ− π

2 )

 (2.2)
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Final transformation matrix MOE is a result of following multiplication

MOE = MOE,2(λ) ·MOE,1(φ) =

− sinφ cosλ − sinφ sinλ cosφ
− sinλ cosλ 0

− cosφ cosλ − cosφ sinλ − sinφ

 (2.3)

By using transformation matrix, which is orthogonal, we take the advantage of a reduced
effort with backward transformation. The transformation from ECEF reference frame to
NED reference frame needs simple transposition of the transformation matrix [5].

MEO = MT
OE (2.4)

Transformation between BFF and NED frame
A transformation matrix is represented by an Euler angle and hence a sequence of matrix
multiplications denotes sequence of rotations by an Euler angle. Rotation of a vector from
the NED reference frame to the Body Fixed Frame can be performed by multiplying the
vector by the transformation matrix MBO. First rotation around the z0 axis (Z axis in NED
reference frame) by the azimuth angle Ψ (or the yaw Euler angle) produces new reference
frame, where the Z axis is aligned with NED reference frame and the X axis and Y axis
are rotated by the azimuth angle Ψ.

MBO,1(Ψ) =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1

 (2.5)

Second rotation around the k2 axis (Y axis in Body fixed frame) by a pitch angle θ
(or a inclination angle) produces new reference frame, where the X axis and the Z axis
are rotated by a pitch angle θ. The transformation matrix from the second step is shown
below.

MBO,2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.6)

Lastly, third step includes rotation around the XB axis (in Body Fixed Frame) by the
roll angle Φ (or the bank angle). This step leads to the creation of the third transformation
matrix MBO,3.

MBO,3(Φ) =

1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ

 (2.7)

Resulting transform matrix is given by the multiplication of partial transformation
matrices, MB0 = MBO,3(Φ) ·MBO,2(θ) ·MBO,1(Ψ). The order of the multiplication is very
important.

MBO =

 cos Ψ cos θ sin Ψ cos θ − sin θ
cos Ψ sin θ sin Φ− sin Ψ cos Φ sin Ψ sin θ sin Φ + cos Ψ cos Φ cos θ sin Φ
cos Ψ sin θ cos Φ + sin Ψ sin Φ sin Ψ sin θ cos Φ− cos Ψ sin Φ cos θ cos Φ

 (2.8)

An advantage of reduced effort with backward transformation remains the same. The
transformation matrix is orthogonal, and so simple transposition is sufficient.
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2.2 Flight data

Flight data are indispensable in the process of flight evaluation or flight event identification.
Data can be obtained from real measurements during flight tests on a flight simulator, too.
The data are recorded using various aircraft sensors. Flight data in civil aviation are
recorded by a Flight Data Recorder (FDR). The FDR is often referred to the “black box”
and it is built to withstand high temperatures, pressure and other extreme conditions which
occur during an aircraft crash. Improvements of the avionic systems such as the incidence
avoidance were developed mainly because of aircraft crash investigations based on the flight
data from the FDR [15].

There are several important issues to deal with, e.g. the way how the flight data are
being recorded, the content of the flight data set or the flight data sampling frequency. The
list of a signals in measured flight data is contained in the Appendix A. Probably the most
important problem connected with the flight data analysis is the corruption of this data
with noise and errors. Therefore Section 2.5 is dedicated to the calibration of sensors and
contains a list of typical errors that affect sensors used in an aircraft.

First, the list of flight data is being divided into particular groups, followed by the
discussion over the meaning and significance of each group.

2.2.1 Acceleration

The acceleration along the axes of a Body fixed frame is measured by accelerometers in
meters per second (m · s−2). An accelerometer is a compact instrument, which measures
non-gravitational linear acceleration [19]. The accelerometers are widely used for example
in the inertial navigation.

The location of an accelerometer is very important when measuring the acceleration in
BFF. The exact location of the accelerometer is needed and then the measured acceleration
is being compensated due to the off Centre of Gravity (C.G.) location. The required
compensation will be discussed later.

2.2.2 Angular velocity

The angular velocity denotes the axis and angular speed of rotating object. The unit of
the angular velocity is radian per second. The angular velocity of aircraft in body fixed
reference frame is measured in three spatial dimensions by a gyroscope. A gyroscope is a
device which measures or maintains the rotational motion of an object [19].

2.2.3 Euler angles

Three Euler angles are Φ(Phi) - representing roll angle, θ(Theta) - representing pitch angle
and Ψ(Psi) - representing yaw angle [5]. The angles are measured in radians.

Measurements are performed by a gyroscope, as well. The gyroscopes are included in
the Attitude and Heading Reference System (AHRS). This system measures position angles
and angular velocities in all three axes. The attitude heading reference system provides roll,
pitch and yaw information, that are necessary for guidance, state estimation, control and
navigation in military, spacecraft, commercial or civil applications. Traditional gimballed
inertial navigation systems based on mechanical gyroscopes were replaced by Microelec-
tromechanical System (MEMS) technology. The MEMS technology has the advantage of
lower size, complexity, weight and price. Hardware structure of a MEMS attitude heading
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YBFF

ZBFF

XBFF

Y0 (East) Azimuth angle (around Z axis)
Pitch angle (around Y axis)
Bank angle (around X axis)

Z0 (Normal to the tangent plane of aircraft body)

X0 (North)

Figure 2.7: Illustration of Euler angles

reference system contains magnetic and inertial sensors, or rather MEMS integrated circuits
of rate gyroscopes, magnetometers and accelerometers for all three Cartesian axes. Rota-
tion rates are measured directly by rate gyroscopes and then integrated to get the rotation
Euler angles. The MEMS sensors compared with fibre-optic or mechanical gyroscopes are
affected by drifts and measurement errors.

The Euler angles and angular velocities are the required fundamentals when defining
the position of an aircraft. With a given attitude and acceleration we can determine the
trajectory of an aircraft.

2.2.4 Aerodynamic angles

The Angle of Attack (denoted as α) and the Angle of Sideslip (denoted as β) are the
aerodynamic angles measured in radians [5]. The Angle of Attack is defined as the angle
measured between the longitudinal axis of an aircraft and the relative motion of the air
(measured in the Y −Z plane of Body Fixed Frame). Measurement of the Angle of Attack
is performed by the Angle of Attack probe.

trajectory of the aircraft

relative wind

longitudinal ax
is of 

the airc
raft

AoA (Angle of Attack)

Figure 2.8: Angle of Attack

The Angle of Sideslip is defined as the angle measured between the longitudinal axis of
an aircraft and the relative motion of the air (measured in the X − Z plane of body fixed
frame). The Angle of Sideslip probe is used to measure the angle.
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Figure 2.9: Angle of Sideslip

Both probes are not usually located at the Centre of Gravity of an aircraft. Common
location is at the front of an aircraft or under the wing of an aircraft. The compensation
of the aerodynamic angles has to be taken into consideration, too.

2.2.5 Force controls

The group of force control parameters in flight data includes elevator control force, aileron
control force, right pedal control force and left pedal control force. All are measured in
Newtons. These control parameters give us the option to trace back the actions of the pilot
during maneuvering.

2.2.6 Deflection of control surfaces

The deflection of the rudder, aileron and elevator belong into the group of deflections of
aerodynamic control surfaces, which are represented by the angles measured in radians [2].
Light, sport category aircraft still use mechanical flight control systems because aerody-
namic forces acting on the aircraft body are not excessive. More sophisticated approaches
use hydro-mechanical designs with mechanical and hydraulic circuits or

”
fly-by-wire“ sys-

tem where the physical connection between the pilot and the control surfaces is replaced
by an electrical interface.

An elevator and an horizontal stabilizer are for the majority of aircraft located at the
rear of the fuselage. Stability of the aircraft is provided by the horizontal stabilizer. It
prevents the pitching motion (up-and-down) of the aircraft nose. The elevator is a hinged
section located at the rear of the horizontal stabilizer. There are usually two elevators
situated at each side of the horizontal stabilizer. Both elevators work together, so when the
left elevator goes up, the right elevator also goes up as well. The movement of the elevator
influences the amount of force generated by the tail surface of the fuselage. The elevators
are used during a banked turn to perform tighter turn by increasing the lift force. Moreover
the elevators are useful during a take off when they are necessary to initiate a climb.

The ailerons are hinged sections located at the trailing edge of each wing. A rolling
motion of an aircraft is generated by the ailerons. The ailerons usually operate in difference
mode, i.e. if one aileron is deflected up the other aileron is deflected down by the different
amount. When lift on one wing decreases, the lift on the opposite wing increases. The
torque about the Center of Gravity is created by the lift forces, which are not equal. The
ailerons are used to rotate about the roll axis of the aircraft and so perform the turns. The
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resultant rolling moment is a function of aileron deflection, aileron size, and its distance
from the centerline of aircraft fuselage.

The rudder and vertical stabilizer are located at the rear end of the fuselage. The vertical
stabilizer provides lateral directional stability of the aircraft by preventing yawing motion
of the aircraft nose. The rudder is a movable surface section located at the rear of the
vertical stabilizer. Movement of the rudder influences the amount of the force generated by
tail surface. The rudder is used to generate and control yawing motion of the aircraft. Main
function of the rudder is not turning but compensating unbalanced side force component
created by the banking of the aircraft.

The Figure 2.10 illustrates the location of the aerodynamic control surfaces.

Figure 2.10: Aerodynamic control surfaces of the aircraft.

2.2.7 Barometric data

The static pressure and dynamic pressure measured in Pascals belong to barometric data.
Among the barometric data, we can find the outside air temperature and the engine inlet
air temperature measured in Kelvins as well.

The Pitot static tube [10] is a pressure measurement instrument widely used to deter-
mine the airspeed of an aircraft. The Pitot static tube is shown in the Figure 2.11.

Pt - Total Pressure
Ps - Static Pressure

Airflow

Pressure Transducer

Figure 2.11: Pitot static tube
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The centre hole is located in the axis of a tube and several holes are drilled around the
outer tube surface. The central hole is pointing in the direction of the flow and outside
holes are perpendicular to the centre tube. The outside holes are connected to one pressure
chamber; the centre hole is kept separate from outer holes and connected to another pressure
chamber. In between these pressure chambers is a pressure transducer. The transducer
measures the difference between pressures in chambers by measuring the strain on a thin
element. The pressure in the outside holes is the static pressure (denoted as Ps) because of
the position of these holes. They are perpendicular to the direction of the flow. The centre
tube is pressurized by both components of the air velocity, the random and the ordered and
so the centre tube measures the total pressure (denoted as Pt) [10].

2.2.8 Magnetic field parameters

The magnetic field is measured in three axes by magnetometers. The output of the mag-
netometers is the magnetic heading information and in a combination with the output
from the inertial sensors we can estimate a 3D position of the aircraft. In order to obtain
the assumed position of an aircraft magnetometers have to be calibrated for the magnetic
distortions and sensor errors.

2.2.9 GPS data

The data received from the Global Positioning System belong to this group. Global Naviga-
tion Satellite System (GNSS) is used in Satellite Navigation to determine the position and
the time anywhere on Earth precisely. The Global Position System (GPS) was developed
and operated by the United States Department of Defence (DoD). Apart from the GPS,
there are some other alternatives; in Europe, there is system GALILEO and in Russia, there
is GLONASS system. These alternatives have been developed, because the GPS system is
dependent on one country, the United States.

The full name of the GPS is NAVSTAR-GPS (NAVigation System with Timing and
Ranging Global Position System). The three main goals while creating the GPS [21] were:

1. provision of the capability of determining the position, speed and time, whether in
motion or at rest,

2. global, continuous and all-weather three dimensional positioning with a high degree
of accuracy,

3. potential for civilian use.

To determine the coordinates in a three dimensional space (longitude, latitude, altitude)
and an exact time we need signal from four satellites (time-signal transmitters). The
distance in GPS is computed from the travel time between satellite and our position and
the fourth satellite assist with the clock synchronization.

The format of GPS coordinates and the complication of the altitude specification is
described in Section 2.1.2.

2.2.10 Engine parameters

The engine parameters are engine revolutions per second, fuel flow to engine and manifold
pressure. The engine revolutions help us to estimate the thrust generated by the propulsion
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system. There is also an efficiency factor related to fuel flow to engine, called the thrust
specific fuel consumption which characterizes the fuel efficiency of an engine. The absolute
pressure in the engine intake manifold is indicated by the manifold pressure gauge. The
torque produced by the aircraft engine and the value of the intake manifold pressure are in
correlation, when the engine operates at normal conditions.

2.3 Forces acting on the aircraft

This section describes the forces that act upon aircraft during flight. Comprehension of
how these forces work is essential to understanding flight maneuvers.

Airmass flowing past an aircraft must be diverted from its original path, and such
deflections lead to changes in the speed of the air [16]. There are only two ways that
the airmass and an aircraft can exert upon each other. While aircraft moves forward the
molecules of the air slide over its surface. The molecules that are closest to the surface of
the aircraft fuselage act as they are stuck to the surface and they move with the aircraft.
There is a slip between non-moving molecules away from the aircraft and the molecules
closest to the aircraft, which are moving with it. The viscosity is the tendency of air to
resist shear deformation and so additional air near the surface of aircraft is dragged along
the flightpath. An aircraft experiences a resultant aerodynamic forces and moments as a
result of these processes.

The Figure 2.12 illustrates the forces acting on an aircraft.

Weight

Propulsive force

Drag

Lift

Figure 2.12: Forces acting on the aircraft.

2.3.1 Thrust

The trust is the forward propulsive force that is invariably obtained by increasing the
rearward momentum of gas quantity. Usually it acts in parallel with longitudinal axis of
an aircraft. Forward movement of aircraft is caused by thrust force that is larger than drag
force. If thrust force and drag force are equal, the aircraft moves with constant airspeed. If
the engine power is decreased during the level flight, the aircraft slows down. The aircraft
decelerates as long as the thrust is less than the drag until the moment when its airspeed
is insufficient to support it in the air. There are various types of straight-and-level flight
conditions according to airspeed of an aircraft. For example, one type of straight-and-level
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flight is possible at low airspeed, but the Angle of Attack (AOA) must be relatively high to
sustain balance between lift and Gravitational force. If there is no compensation on AOA
with an increase of thrust force, the aircraft starts to climb. It is important to coordinate
the AOA when we want to perform straight- and-level flight.

2.3.2 Drag

The drag is a force that exerts in opposite direction than trust. The airspeed of an aircraft
is reduced by the drag. There are many types of drag and we can define these types based
upon the origin of the drag force. Drag force, which is not strongly related to lift, is usually
denoted as parasite drag [10].

Parasite drag includes the turbulence generate in airmass, hindrance of air that moves
over the surface of aircraft fuselage or displacement of the air by an aircraft. The parasite
drag has three forms: skin friction drag, interference drag and form drag.

Skin friction drag is formed by the aerodynamic resistance of the surface of an aircraft.
The air molecules that flow in the air around the surface of an aircraft have free-stream
velocity. The boundary layer is located closer to the surface of an aircraft in between
the wing and free-stream velocity level. An effective shape of an object is created by the
boundary layer and it can be different from the real physical shape. Aircraft designers
try to remove any irregularities from the surface of the wings of an aircraft to reduce skin
friction drag.

Interference drag arises in the intersections of airmass, for example in the intersection
of the fuselage with the wing. Perpendicular angles create the most of interference drag.

Form drag is also denoted as viscous separation drag and depends on the location of
the separation point of the aircraft fuselage. When the separation point is located nearer
to the front of fuselage the drag is much higher as this point is located at the rear of the
fuselage.

Induced drag is rearward component of the lift and it is related with effectiveness of
system. Required work of system is always supplemented with some additional work which
is lost or dissipated.

2.3.3 Gravitational Force

Gravitational force is caused by gravity and it is concentrated in the Center of Gravity
(CG). The gravitational force follows the direction of gravitational acceleration. When an
aircraft is in a state of equilibrium and flies in straight-and-level flight the lift force is equal
to the gravitational force and there is no change of altitude.

2.3.4 Lift

Lift force is controlled by a pilot and is related to the Angle of Attack (AOA). The aerofoil
shape of wings is effective when an aircraft is moving. The lift force is proportional to the
spare of velocity of an aircraft, so when the velocity is increased the lift force is increased,
too. Lift and drag are dependent on the density of the air. The pressure, humidity and
temperature affect density of the air and there is less air density in higher altitude than it is
in a lower altitude. If pilots want to maintain same lift force on aircraft in a higher altitude,
they must fly at greater airspeed. The amount of the lift force and the velocity of an aircraft
are two main aerodynamics factors, which are to be controlled by pilots. Typical situation
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arises in straight-and-level flight when pilot maintains constant altitude by adjusting lift to
sustain required velocity.

2.3.5 Aerodynamic Forces in Flight Maneuvers

Aerodynamic forces change during the flight maneuvers. The Newton First Law of Motion
states that an object at rest stays at rest and an object in motion stays in motion with the
same speed and in the same direction unless acted upon by an external force [10]. If we
apply this law to the steady motion (straight-level flight) of the aircraft we can expect that
some additional side force is required for the aircraft to execute the turn maneuver. The
lift force can be for clarity divided into two components during the turn, the horizontal and
the vertical component of the lift force. The horizontal component of the lift force exerts
in horizontal direction towards the center of the turn. The aircraft is in yawing motion
and executes the turn maneuver. The centrifugal force acts in opposite direction to the
horizontal component of the lift force. This force is created as a reaction to the change
of the aircraft flight direction and it pushes the aircraft out of the turn. The vertical
component of the lift force acts in opposite direction to the Gravitational force.

In the well coordinated turn, the horizontal and the centrifugal force are equal. The
nose and the tail of an aircraft follow the same path. If there is unbalance between forces,
that act on an aircraft during the turn, then a skidding or a slipping motion is present.
Skidding and slipping turns are described below in Subsection 2.4.2.

2.4 Flight events

In this section we introduce two types of flight events, the events suitable for tests and the
events represented as a phase of flight. The following paragraphs are intended to give the
reader brief concept about flight test and the typical testing maneuvers.

2.4.1 Flight tests

This section of thesis describes flight tests and testing maneuvers performed during flight
tests. The main objective of the flight test is to obtain or record the response of the aircraft
during and after a control system induced pulses or doublets [17]. This approach could be
compared with performing of step response test on a system under investigation. Pulses
and doublets of the elevator, aileron or rudder are indicated as testing maneuvers. It is
important to examine flight data during and after the test to receive specific and complete
response of an investigated aircraft. It is difficult to perform suitable testing maneuvers
that meet required conditions. The testing maneuver can be initiated only during a steady
level flight, where the airspeed, height, vertical speed are constant and there is no pitching,
yawing, or rolling motion. Another condition that must be met is the speed and the shape
of the intended pulse or doublet. It is important to perform a pulse or a doublet only
through one control effector. For example, when performing a testing maneuver using the
elevator, the pilot can not command the aileron or rudder during the flight test. When
considering all above mentioned conditions, one must agree with the fact that performing
the test events is very difficult task, requiring an experienced pilot.

The flight test are performed under certain airspeed and altitude. Usually, there are
several tests performed at different altitude and different airspeed conditions during one
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flight. The flight test can take place in the aircraft under real flight conditions, in flight
simulator or using a scaled aircraft in the wind-tunnel.

Pulses

Figure 2.13 illustrates an idealised pulse in the deflection of a elevator, aileron or rudder.
Actual part of the flight data with pulse in the deflection of the elevator is shown on the
right side of the figure for comparison. Real flight tests usually examine the behaviour for
a complex set of observed signals. For example, the object of the examination could be a
roll rate response to an aileron pulse.

Figure 2.13: Pulse in the deflection of the elevator.

Doublets

Figure 2.14 illustrates an idealised doublet in the deflection of the elevator, aileron or rudder.
Part of the flight data with doublet in elevator is shown for comparison on the right side of
the figure. We can observe differences between the idealised and the actual records in the
shape and the duration of the impulse.

Figure 2.14: Doublet in the deflection of the elevator.
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2.4.2 Phases of flight

Before starting the analysis and identification of testing maneuvers, we have a specification
of the main phases of flight and basic flight maneuvers. Basic maneuvers include the climb
and descent, which represent the change in the longitudinal motion of an aircraft. There
are also the turns, which represent the change in the lateral motion of an aircraft. The
following description is divided to paragraphs according to the main phases of flight. The
list containing all phases of a flight could be the output of a flight data analysis tool. The
identification of particular flight maneuvers can be supplemented with continuous list of
the flight phases and the flight maneuvers. In this thesis we focus on the identification of
the testing maneuvers and following list of the flight phases is attended to give the reader
an overall picture of the flight course.

The en route phase of the flight includes the specification of basic flight maneuvers. For
each phase of flight there is a brief description based on [12] and presumable estimation of
flight parameters.

Standing

This is the initial or terminal phase of a flight. The engine of an aircraft is not in operation.
Standing phase occurs after the arrival at the parking area and it could be prior to taxi
or pushback phase. The body of an aircraft is stationary during this phase. We examine
engine and acceleration flight parameters to identify this phase of flight.

Pushback / Towing

An aircraft is moving from the runway to the parking area, or gate, assisted by a tow
vehicle, the pushback tractor or tug. There is also an option for the aircraft to move on
the ground by using reverse thrust, but the resulting jet blast may cause damage to the
surrounding objects and buildings.

Taxi

This phase refers to movement of an aircraft on the ground, under its own power. The
power back subphase takes place when the aircraft reverses from the parking position. The
following is taxi to runway (when the aircraft is moving on its own power); leaving the gate
and finish at the runway. Taxi to take-off position starts with entering the runway and lasts
until reaching the take-off position. The final taxi phase takes place after landing, when
the aircraft goes back from the runway to the parking area. The speed of an aircraft when
moving on the ground is limited to approximately 18, 5 kilometres per hour.

Take-off

The take-off phase starts upon taxiing onto the runway and ends when climb-out on the
runway is being established. During the take-off phase the engine operates at its full
performance. The end of the take-off phase is determined to an altitude of 35 feet above
the runway elevation [2]. Two important speed measurements are made on the runway.
First is the highest ground speed at which an aborted take-off is possible, second is the
airspeed at which the front of an aircraft is being lifted. Moreover, the barometric altitude
rate or GPS-derived altitude rate is monitored and measured.
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Initial Climb

The takeoff phase is followed by the initial climb until the specific altitude is being reached.
The lift force on the wings of an aircraft exceeds weight of aircraft and allows a climb. The
important parameters that induce a climb are the angle of attack and the engine thrust.

En route

The en route phase leads from initial airport to the destination airport. In case of com-
mercial flight, this phase usually takes the majority of the travel and it is the fuel most
efficient phase of the flight. Some of the basic flight maneuvers that occur during the flight
are listed below. We can classify flight maneuvers in terms of speed, climbs, descents and
turns. Important parameters to specify particular flight maneuver are the yaw rate, the
vertical speed, the angle of sideslip and the airspeed.

• Shallow turns are those in which the roll angle is less than 20 degrees and the aileron
has to be applied to maintain the roll angle.

• Medium turns results from a roll angle in range from 20 degrees to 45 degrees. An
aircraft remains at same roll angle during medium turns.

• Steep turns are those resulting from a roll angle equal to 45 degrees or more. At the
steep turn the roll angle disrupt stability and the aileron is applied to prevent it.

• In a coordinated turn there is no skidding or slipping [1]. The skidding turn is
characterized by excess of yaw in the direction of turn. The nose of an aircraft heads
to the middle of the turn and the air flows crosswise over the fuselage. There is an
excess of the centrifugal force over the horizontal lift component and the aircraft is
pulled out of the turn. The pilot has to apply the rudder to correct a skidding turn.

Actual tr
ajecto

ry
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Angle of Sideslip (AoS)
        Radius of turn

Figure 2.15: Illustration of skidding turn

• In a slipping turn the aircraft falls to the inside of the turn. This effect is induced
by a horizontal lift component which is larger than the centrifugal force. The aircraft
is banked too much for the rate of the turn and thus the slipping turn is not a
coordinated turn.
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Figure 2.16: Illustration of slipping turn

Approach

The approach phase begins, when the specific altitude (typically 15 metres above the
ground) is reached, the flaps are fully extended and the landing gear is down. During
this phase of flight, the constant airspeed and constant angle of descent are ensured. The
angle of descent is controlled by the pilot varying the engine power and pitch angle to keep
the constant airspeed. The meteorological conditions are important during the approach
phase, there is the crosswind limitation (from 25 to 35 knots) and its value could be even
reduced by low visibility or runway conditions (wet, dry).

Landing

At the landing, one of the last phases of flight, the aircraft lands on the runway. This phase
begins when the runway is in sight and ends when the aircraft leaves the runway. The
airspeed and the rate of descent have to allow smooth landing. The reduction of thrust
and increase of drag using flaps cause that the aircraft constantly slows down. Wheel
braking, reverse thrust and ground spoilers are used immediately after touching the runway
to decelerate the desired speed and leave the runway. The reverse thrust is applied in higher
speeds and the wheel brakes are used at low speeds.

2.5 Data Analysis

The goal of this thesis is to develop system for identification of testing maneuvers. In
previous sections we have defined theoretical basis that we can use to design the proposed
system. The complexity of proposed system has to deal with the fact, that system is
proposed for research and prevention purposes. Input of the system, the flight data will
be available to analysis only after the flight. Resulting system should offer the user quick
and brief overview of the testing maneuvers. Before we move to the classification process
there is the stage of the data analysis. This section includes the error characteristics of the
inertial sensors.
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2.5.1 Error Characteristics of Inertial Sensors

The inertial navigation is a technique for determining an aircraft velocity and position by
measuring its acceleration and processing this measured value in a computer [7].

The basis of the inertial navigation are the accelerometers and angular rate sensors
which can be found in different physical construction to measure specific angular rate or
force. All types of gyroscopes and accelerometers are exposed to cross-coupling, biases,
scale factor errors and random noise to a certain extent [8]. Each systematic error has
four components: a fixed contribution, a temperature- dependent variation, a run-to-run
variation and in-run variation. The fixed contribution error is present with every use of the
sensor and it could be corrected by the Inertial Measurement Unit (IMU) using laboratory
calibration data. The temperature-dependent error component can be corrected by the
IMU. The run-to-run variation error component is different each time the sensor is used
but remains constant within any run. It is possible to correct the run-to- ran variation
using integration algorithms. The in-run variation contribution to the error source changes
slowly during the flight and to correct it, the integration with other navigation sensors is
used. Besides contribution errors listed above, there are also residual fixed contributions
left from the sensor calibration process.

Constant Bias

The bias is a constant error exhibited by all gyroscopes and accelerometers. In most cases,
the bias produces dominant contribution to the overall error of an inertial sensor. Vectors
ba = (ba,x, ba,y, ba,z) and bg = (bg,x, bg,y, bg,z) denote the accelerometer and gyroscopes bi-
ases, respectively. The errors of the inertial sensors are expressed in the axes of the Body
Fixed Frame. It is useful to split the biases into dynamic and static components. The
dynamic component of bias comprises in- run variation and the static component of bias
comprise run-to-run variation. Bias of the accelerometer is quoted in terms of the acceler-
ation due to gravity (denoted as g). Gravitational acceleration [3]: 1g = 9.80665m.s−2 is
usually expressed in units of mili-g (mg) or micro-g (µg). Gyroscope biases are expressed
in degrees per hour (deg/hr or ◦hr−1), where 1◦hr−1 = 4.848× 10−6rads−1

Cross-Coupling and Scale Factor Errors

The scale factor is a calibration error which causes the variation of the input-output gra-
dient of the instrument from a unity following unit conversion by the IMU. The gyroscope
output error due to the scale factor is proportional to the angular rate around the sensitive
axis, while the acceleration output error is proportional to the specific force along the sen-
sitive axis. Vectors sa = (sa,x, sa,y, sa,z) and sg = (sg,x, sg,y, sg,z) denote the accelerometer
and the gyroscopes scale factor errors, respectively. The cross coupling errors arise from
the misalignment of the sensitive axis of the inertial sensors with axes of the Body Fixed
Frame. Scale factor and cross coupling errors are between 10−4 and 10−3 (100-1000 parts
per milion - ppm).

Random Noise

Random noise from a number of sources influences all inertial sensors. The resolution of
an inertial sensor is limited by the electrical noise. Vectors ra = (ra,x, ra,y, ra,z) and rg =
(rg,x, rg,y, rg,z) denote the accelerometer and the gyroscopes random noise errors, respec-
tively. The noise of an inertial sensor is usually expressed in terms of the root Power Spectral
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Density (PSD). Accelerometer random noise units is µg/
√
Hz, where 1µg/

√
Hz = 9.80665×

10−5ms−1.5. Gyroscope random noise unit is ◦/
√
hr or ◦/hr/

√
Hz where 1◦/

√
hr =

2.909 × 10−4rad s−0.5 and 1◦/hr/
√
Hz = 4.848 × 10−6rad s−0.5. We obtain standard

deviation of the random noise samples (denoted as SD or σ) by multiplying the sampling
rate with corresponding root PSDs.

Error effects caused by the environment [18]

• Temperature - An accelerometer is designated to give the highest accuracy factor
in a specific given range of temperature. Otherwise if environment does not satisfy
the temperature conditions the accelerometers should work with a lower accuracy.
Special treatment is necessary when situating the accelerometer on board of aircraft.
The heat required to maintain the accelerometer operating temperature has to be
supplied in symmetrical manner, if not then improper application can cause temper-
ature changes leading to errors. Typical example of described situation occurs when
aircraft starts and sensors including accelerometers are warmed up rapidly to its oper-
ating temperature and just after a few minutes a stable output suitable for navigator
alignment is necessary.

• Vibration. When dealing with an aircraft, a vibration is oscillating or any other
periodic motion of an aircraft body forced from a state of equilibrium. The harmonic
vibration has constant frequency and magnitude. The accelerometers are often used
in environment where the vibration conditions may be severe, circular and angular
vibration may be present in aircraft. It is difficult to calculate the exact effects of
such vibrations.

24



3 Data classification

We meet the process of classification in everyday life. In [14] Michi, Spiegelhalter and Taylor
proposed, that the term of classification could cover any context in which some decision or
forecast is made on the basis of currently available information. The classification procedure
is then some formal method for repeatedly making such judgements in new situations.
More specific definition of classification from [14] says:

”
Classification is the problem that

concerns the construction of a procedure that will be applied to a continuing sequence of
cases, in which each new case must be assigned to one of a set of predefined classes on the
basis of observed attributes or features.“

We distinguish two different approaches to the task of classification. First, the pattern
recognition or supervised learning, where a set of training data and its classes are known
and available before a classification procedure. A classification procedure is build above
provided training data and classes. Second, there is clustering or unsupervised learning,
when a classification procedure is derived from the data.

The concept of supervised flight data classification is shown in the Figure 3.1. There
are two databases of flight events which provide data to classifier. The classifier assign
label to new flight data. The result of classification is used in further application and also
to update the databases of flight events. Further application represents, for example, the
visualization of the classification results or further study of an aircraft behaviour during
the flight events.

Figure 3.1: The concept of supervised flight data classification.
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The conceptual scheme for unsupervised learning would be similar to the one for super-
vised learning except for the databases for flight events. Usually, the classifier estimates the
parameters of probability density function of the data being classified and make a decision
based on the estimated parameters.

In this thesis, the objective is to design a classifier that will assign appropriate classes
to measured flight data. Three major issues have to be solved, the approach to the classi-
fication, the definition of classes for classification and the selection of features with highest
discriminative power for the classification. Nowadays, the most favoured approach would
be one of these two: statistical or neural- network. The thesis focuses mainly on statistical
analysis and leaves the other approach to the possible future research. This work requires
approach with unsupervised learning due to the format of flight data, when it is difficult
task to prepare training data set for the classification of the test maneuvers. Gaussian Mix-
ture Models (GMMs) with EM algorithm are among the most statistically mature method
used for unsupervised learning. Our decision to choose GMM to classify the flight data
was approved by statistical analysis of flight data performed in Matlab. Statistical anal-
ysis proved that measured flight data has the normal distribution. Besides that, density
estimation with GMMs is a popular approach which often produces good results and it is
computationally manageable.

Next sections provide the fundamental basis in terminology used within the process of
classification, the overview of probability theory and then introduce the Gaussian Mixture
Models with all definitions required to understand this concept.

3.1 Pattern Recognition

The pattern recognition has application in classification of geometric figures or in waveform
classification [6]. In our case we want to classify a flight data into two classes, normal flight
and testing maneuver. Simple approach reduces this task to discrimination of flight data
from normal flight and testing maneuvers. We also need the observation of flight data over
a period of time.

At the beginning, we have time-sampled values of waveform x(t1), . . . , x(tn). A vector
X consist of n measurements. The value of each measurement x(ti) is random variable and
so X is random vector. Many waveforms form a distribution of X in the n-dimensional
space. If the distributions of two classes of X are known from past experience, we can find
a boundary g(x1, x2) = 0 between two classes. This boundary divides the two dimensional
space into two regions. New samples without a class label could be classified on the ba-
sis of selected boundary. The decision is dependent on the sign of discriminant function
g(x1, x2). A network that detects a sign of discriminant function is denoted as pattern
recognition network or a classifier. The process of training or learning includes study of
the characteristics of the distribution of X for each class. Hence, the pattern recognition
is a process of estimating density function in a n-dimensional space and then dividing that
space into smaller regions of classes.

3.1.1 Terminology

In this section we introduce terminology of pattern recognition in more detail:

• The term pattern denotes the n-dimensional data vector x(t1), . . . , x(tn) of measure-
ments or time-sampled values. Each component x(ti) is measurements of features of
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an object.

• Classes or groups are denoted as ω1, . . . , ωC , where C is number of classes. Each
pattern has associated class and categorical variable z denotes this class so, if z = i,
then the pattern belong to ωi, i ∈ {1, . . . , C}.

• Training set is large set of N patterns and it is used to determine the parameters
of an adaptive model.

• Target vector represents the class of corresponding pattern and it could be created
by hand-labelling the data in training set. There is one target vector for each pattern.

• Test set contains new data that will be used after training of the classifier. The term
generalization refers to the ability of the classifier to categorize correctly new data
that differs from data in the training set. Generalization is usually the main objective
of pattern recognition.

• Feature extraction is a method of preprocessing that is applied to training data.
The goal of feature extraction is to reduce the variability and size complexity of the
training data while maintaining its discriminatory information.

• Supervised learning or machine learning takes a known set of training data and
corresponding classes to the training data, and then design an adaptive model that
will correctly classify new data.

• One goal of unsupervised learning is to discover the classes (similarities) of training
data without any corresponding classes. This approach is called clustering. Another
approach is known as density estimation and it determines probability distribution of
the training data.

3.2 Probability Theory

This section presents a fundamental basis required for pattern recognition. Probability has
significant impact in the field of pattern recognition due to finite set of training data and
noise present in the measurements as well. [4] The section starts with definition of basic
concepts in the probability theory and then move further to advanced theory. Extra em-
phasis is placed on definition of Gaussian Distribution and Mixture of Gaussian

At the beginning we start with definition of the sum and product rules for two random
variables, X and Y . X takes values {xi} where i = 1, . . . ,M and Y takes values {yj} where
j = 1, . . . , L. The Figure 2.12 illustrates the table with 4 columns and 3 rows, hence M = 4
and L = 3. N is the total number of values of variables X and Y . The number of values in
particular cell where X = xi and Y = yj is denoted as nij . Similarly ci denotes the number
of values in column i where X = xi and rj denotes the number of values in row j where
Y = yj .

The probability that random variable X will take the value xi and Y will take the value
yj is defined as p(X = xi, Y = yj) and denoted as joint probability of X = xi and Y = yj .
The following formula define joint probability as a fraction where in numerator is number
of values in cell i, j and in denominator is total number of values N .
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p(X = xi, Y = yj) =
nij
N

(3.1)

The probability that X will take value xi independently from value of Y is denoted as
p(X = xi).

p(X = xi) =
ci
N

(3.2)

This probability is given by fraction of the total number of values to number of values
in column i, which can be represented by the sum ci =

∑
j nij . From Equations 3.1 and

3.2 we can derive sum rule of probability:

p(X = xi) =
L∑
j=1

p(X = xi, Y = yj) (3.3)

The conditional probability logically follows foregoing definition, where we take only
such values that X = xi and Y = yj . This probability is denoted as p(Y = yj |X = xi) and
is called the conditional probability of Y = yj given X = xi.

p(Y = yj |X = xi) =
nij
ci

(3.4)

We can derive the product rule of probability from Equations 3.4, 3.2 and 3.4:

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi) (3.5)

Bayes’ theorem could be derived from the Product Rule 3.5 using symmetry property
p(X = xi, Y = yj) = p(Y = yj , X = xi):

p(Y = yj |X = xi) =
p(X = xi|Y = yj)p(Y = yj)

p(X = xi)
(3.6)

Denominator in Bayes’ theorem 3.6 has function as the normalization constant which
ensures that sum of the conditional probability over all values of Y = yj will be equal to
one. With application the Sum Rule to 3.6 we get:

p(X = xi) =
∑
yj

p(X = xi|Y = yj)p(Y = yj) (3.7)

At this point the we should define prior probability and posterior probability as the
interpretation of Bayes’ theorem is. A prior probability is available before some measure-
ments or observation are taken into account. It is a description of what is known a priori
about the parameter to be estimated. After estimation of parameter we can use Bayes’
theorem to compute the posterior probability.

3.2.1 Probability densities

The probability that continuous random variable x will lie in an interval (a, b) is called
probability density and it is defined as:

p(x ∈ (a, b)) =

∫ b

a
p(x)dx (3.8)

The probability density must satisfy two conditions:
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p(x) ≥ 0 (3.9)

∫ ∞
−∞

p(x)dx = 1. (3.10)

First conditions arises because of probabilities are non-negative and second is connected
with the fact that value of continuous random variable x must lie on the real axis.

Figure 3.2: Probability density function for Gaussian distribution.

The probability density can be expressed as the derivative of a cumulative distribution
function P ′(x) = p(x).

The cumulative distribution function express probability that x lies in the interval
(−∞, z):

P (z) =

∫ z

−∞
p(x)dx (3.11)

Figure 3.3: Cumulative distribution function for Gaussian distribution.
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3.2.2 Expectations and covariances

The expectation, denoted as E[f ] represents the average value of function f(x) under prob-
ability distribution p(x). The average value is weighted by relative probabilities of the
different values of random variable x. For a discrete random distribution the expectation
is defined by:

E[f ] =
∑
x

p(x)f(x) (3.12)

The expectation of continuous variable includes integration and it is given by:

E[f ] =

∫
p(x)f(x)dx (3.13)

If we know just N values of probability density (N is finite number), the expectation
can be defined by a sum:

E[f ] ' 1

N

N∑
n=1

f(xn). (3.14)

Conditional expectation is related to a conditional distribution and given by:

Ex[f |y] =
∑
x

p(x|y)f(x) (3.15)

The variance represents a measure of how much the values of f(x) varies from its
expectation E[f ] and is defined by:

var[f ] = E[(f(x)− E[f(x)])2] (3.16)

The covariance for two variables x and y is defined by:

cov[x, y] = Ex,y[{x− E[x]}{y − E[y]}]
= Ex,y[xy]− E[x]E[y]

(3.17)

The extent in which x and y are different is represented by the covariance. If x and y
are vectors of random variables, then the covariance is matrix such:

cov[x,y] = Ex,y[{x− E[x]}{yT − E[yT ]}]
= Ex,y[xyT ]− E[x]E[yT ]

(3.18)

3.2.3 Bayesian probabilities

Bayesian interpretation of probability allows us to make revisions of uncertain probability
using new observations and then make optimal decisions. Bayes’ theorem is defined by:

p(w|D) =
p(D|w)p(w)

p(D)
(3.19)

where D = {t1, . . . , tN} stands for data observed with the conditional probability
p(D|w). This probability is a function of parameter vector w and is denoted as likeli-
hood function. Likelihood function describes how probable the observed data set is for
different values of the vector w. Posterior probability is p(w|D).
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3.2.4 Gaussian Distribution

The Gaussian or normal distribution is very important in statistics, which is confirmed by
the Central Limit Theorem. The Central Limit Theorem states that the sum of a set of
multiple random variables, which is a random variable itself, has a probability distribution
that becomes Gaussian as the number of terms in the sum increases [6]. It means that
the distribution of random sampled data will be normal or close to normal, if the size of
random data set is large enough.

The Gaussian distribution for single variable x is defined by two parameters, the mean
denoted as µ and the variance denoted as σ2. The standard deviation is square root of the
variance denoted as σ. The formula for Gaussian is given by:

N (x|µ, σ2) =
1

(2πσ2)
1
2

exp

{
− 1

2σ2
(x− µ)2

}
(3.20)

Which satisfy the required conditions for a valid probability density function:

N (x|µ, σ2) > 0 (3.21)

∫ ∞
−∞
N (x|µ, σ2)dx = 1 (3.22)

The expectation for a Gaussian distribution is defined by:

E[x] =

∫ ∞
−∞
N (x|µ, σ2)xdx = µ (3.23)

The definition of second order central moment follows:

E[x2] =

∫ ∞
−∞
N (x|µ, σ2)x2dx = µ2 + σ2 (3.24)

The variance is derived from 3.23 and 3.24:

var[x] = E[x2]− E[x2] = σ2 (3.25)

The Gaussian distribution can be defined over a P -dimensional vector x. The mean µ
is P -dimensional vector and the covariance Σ is P × P matrix. Symbol |Σ| denotes the
determinant of Σ.

N (x|µ,Σ) =
1

(2π)
P
2

1

|Σ|
1
2

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(3.26)

Likelihood function for Gaussian distribution is given by:

p(x|µ, σ2) =
P∏
p=1

N (x|µ, σ2) (3.27)

It is usual to find the parameters that maximize the likelihood function when deter-
mining the parameters of probability density. There is a problem called underflow of the
numerical precision of the computer when dealing with maximization of likelihood function
in practice. This problem arises in connection with multiplication of large number of small
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probabilities. This is the reason to use the log likelihood function derived from 3.20 and
3.27.

ln p(x|µ, σ2) = − 1

2σ2

N∑
n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π) (3.28)

If we maximize 3.28 with the respect to µ we receive sample mean or the mean of
observed values {xn}:

µML =
1

N

N∑
n=1

xn (3.29)

Furthermore if we maximize 3.28 with the respect to σ2 we receive sample variance
expressed with respect to the µML:

σ2ML =
1

N

N∑
n=1

(xn − µML)2 (3.30)

3.2.5 Mixture of Gaussian

The data obtained from real measurements typically cannot be described by one simple
Gaussian distribution. It is appropriate to define Mixture of Gaussians if we want to apply
the Gaussian distribution in practice. We can take the advantage and define required num-
ber of Gaussians with corresponding means and covariances. Mixture of required amount
of Gaussians could describe almost any continuous random distribution with sufficient ac-
curacy. Mixture of K Gaussians is defined by:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.31)

A component of the mixture is one Gaussian density distribution N (x|µk,Σk) with
mean µk and covariance Σk. The parameters πk are denoted as mixing coefficients.

In the Figure 3.4 we see an example of a Gaussian mixture distribution, where are two
Gaussians (blue and green) combined into one mixture distribution (red).

Figure 3.4: Example of Gaussian mixture distribution.
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3.3 Gaussian Mixture Models

There are two basic limitations of the Gaussian distribution. First, it is not possible to
define too many parameters of this distribution and second, there is limited range of dis-
tributions that could be represented sufficiently. [9] These issues are addressed by hidden
or latent variables which allows us to create mixture of Gaussians or multimodal distribu-
tions. Multimodal distribution has multiple modes or maximum values. Hidden variables
improve quality of model proposed to probability density estimation. These models add
possibility to control number of free parameters independently from dimensionality of the
training data while concede capture of correlations in the training data.

This section begins with a definition of K-means algorithm which is suitable to split the
data into clusters. K-means algorithm gives us good starting point to introduce expectation-
maximization algorithm (EM). Latent variables that were mentioned above are used for
assigning values from training data to particular components of the Gaussian mixture.

3.3.1 K-Means

The objective of clustering algorithm is to split the observations into clusters and thus
reduce dissimilarities between samples assigned to one cluster and samples which are in
different clusters [9]. There is one important assumption to satisfy, the observed data must
be independent and identically distributed (i.i.d.) which means that each random variable
has the same density distribution as the others and all are mutually independent. Clustering
algorithms applied in Mixture modelling design a parametrized model that characterize the
density function of random variable. This model describes a mixture of component density
functions where each component define one of the cluster.

The result of K-Means algorithm for randomly generated data coming from two Gaus-
sian distribution is illustrated in the Figure 3.5.

Figure 3.5: Exemplary result of K-Means algorithm.

The K -means algorithm is popular iterative descent clustering method. Letter K stands
for K clusters. The objective is to group data values in multidimensional space. The data
belong to data set x1, . . . , xN where N represents number of observations of a random D-
dimensional variable x. We start with a set of D-dimensional vector µk for k = 1, . . . ,K.
Centres of cluster are described with µk. The goal of K- means algorithm is to find set of
vectors {µk} and allocation of data values to clusters, such that there is minimal Euclidean
distance of each data value to its closest vector µk.
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Formal description of K-means starts with definition of binary variable which indi-
cates assignment of data values to cluster. Each data value has its set of binary variables
rnk ∈ {0, 1}, k = 1, . . . ,K, that determine cluster where is the data value xn assigned to.
Distortion measure is objective function that illustrates the distance between each data
value and its assign vector µk:

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3.32)

The aim is to discover values of {rnk} and {µk} which will minimize value of J . Iterative
algorithm with two successive optimizations of the rnk and the µk is suitable for this task.
There are two phases, where we once minimize J with respect to rnk (in second phase to
µk), while keeping the µk fixed (in second phase rnk). These optimizations are iterated
until convergence. Minimization of J with respect to rnk while keeping µk fixed is done by
assigning the n-th data point to the nearest centre of cluster:

rnk =

{
1 if k = arg minj ||xn − µj ||2

0 otherwise
(3.33)

Minimization of J with respect to µk while keeping rnk fixed is done by setting derivative
of quadratic function of µk to zero:

2
N∑
n=1

rnk(xn − µk) = 0 (3.34)

The Equation 3.34 solved for µk:

µk =

∑
n rnkxn∑
n rnk

(3.35)

As result of K-means algorithm we set µk equal to the mean of all data values xn
assigned to cluster k. The algorithms ends after maximum number of iterations or in
moment when there is no change in assignments to K clusters. Each iteration decreases
value of J so that convergence is guaranteed. The problem may arise when this algorithm
converges to local rather than to global minimum of J . K-means algorithm is widely used
to initialize parameters of Gaussian mixture model before application of EM Algorithm.

3.3.2 Expectation-maximization Algorithm (EM)

Mixture models have received wide application because they provide more adaptability to
the density distribution of random variable than the simpler normal-based models [20]. It
is appropriate to consider several issues connected to mixture models. Principal question
concerns about the parameter estimation of mixture model. There is also question related
to number of mixture components and question whether there are some kind of bindings
or groupings in the data.

The EM algorithm applies a probabilistic approach rather than hard assignments as for
K-means algorithm. Probabilistic approach allows us to make soft assignments and gives
us more suitable way to reflect uncertainty in these assignments.

We start with a K-dimensional binary variable z that use 1-hot encoding when only
one value zk is set to 1 and all other elements are equal to 0. The marginal distribution
over z is connected to mixing coefficients πk:
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p(zk = 1) = πk (3.36)

In order to be valid probabilities, the parameters πk must satisfy two conditions:

0 ≤ πk ≤ 1 (3.37)

K∑
k=1

πk = 1 (3.38)

Distribution of z that use 1-hot encoding can be written in form:

p(z) =

K∏
k=1

πzkk (3.39)

The conditional distribution of random variable x given z is defined by Gaussian dis-
tribution:

p(x|z) =

K∏
k=1

N (x|µk,Σk)
zk (3.40)

Marginal distribution of x is obtained from 3.39 and 3.40 and calculated by summing
the joint distribution p(z)p(x|z) over all potential values of z:

p(x) =
∑
z

p(z)p(x|z) =

K∑
k=1

πkN (x|µk,Σk) (3.41)

After above listed definitions we can use joint distribution p(x, z) rather than marginal
distribution p(x) which leads to simplifications. With use of Bayes’ theorem we can define
the conditional probability of z given x as:

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(3.42)

where γ(zk) denotes p(zk = 1|x). Parameter vector πk represents the prior probability
and the quantity γ(zk) corresponding posterior probability after observation of x. It is
often to denote γ(zk) as the responsibility that mixture component k takes for ’describing’
the observed value x.

Data set of N observed values {x1, . . . , xN} is represented as N ×D matrix where n-th
row is formed by xTn . The set of hidden variables is represented as N ×K matrix with zTn
in rows. The function to be maximized is the log likelihood function defined by:

ln p(X|π, µ,Σ) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.43)
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The expectation-maximization algorithm (EM) provides possibility for finding maximum
likelihood solutions for Gaussian Mixture Models (GMM) with hidden variables. If the
derivatives ln p(X|π, µ,Σ) from 3.43 are set to 0 and from 3.26 we obtain:

0 = −
N∑
n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

Σk(xn − µk) (3.44)

The minus on the right side of equation appears because the value of probability density
function is constrained to being positive and summing up to one. We can see that the
denominator is equal to γ(znk). After multiplying by Σ−1k and rearranging we retrieve:

µk =
1

Nk

N∑
n=1

γ(znk)xn (3.45)

while Nk, the number of data values allocated to cluster k is defined by:

Nk =
N∑
n=1

γ(znk) (3.46)

Maximum likelihood solution for covariance of a single Gaussian is defined after setting
the derivative ln p(X|π, µ,Σ) = 0 (with respect to Σk):

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T (3.47)

We can see that the denominator is defined by the effective number of data values in
specific component and each data value is weighed by the corresponding posterior proba-
bility. Lastly, we can maximize ln p(X|π, µ,Σ) with regard to the mixing coefficients πk.
Mixing coefficients must satisfy the condition 3.38. This condition is satisfied if we apply
Langrange multiplier and maximize the subsequent quantity:

ln p(X|π, µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(3.48)

which gives

0 =
N∑
n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (3.49)

Now we multiply both sides by πk and sum over k, we obtain λ = −N . We can apply
this to remove λ and after rearranging remains:

πk =
Nk

N
(3.50)

It should be appointed that mixing coefficient for k-th component is obtained from the
average responsibility which that component takes for definition of the data values.
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EM Algorithm for Gaussian Mixtures

The EM algorithm starts with choosing initial values for the means, covariances and mixing
coefficients [13]. Initialization is followed by iterative approach with two main update steps.
First is the expectation step, where present values of parameters are used to compute the
posterior probabilities on the basis of 3.42. These probabilities are applied in the second
step called maximization step to re-estimate the means, covariances and mixture coefficients
according to 3.45, 3.47 and 3.50.

The connection between K-means algorithm and EM algorithm is, that we use K-means
to find an appropriate initialization for a Gaussian mixture model that is adapted by EM
algorithm. It is practical use of K-means which reduces the complexity of EM algorithm.
Recapitulation of EM algorithm is shown below:

1. Initialize the means µk, covariances Σk and mixing coefficients πk, then calculate the
initial value of the log likelihood.

2. Expectation step. With the current parameter values use:

γ(znk) =
N (xn|µk,Σk)∑K

j=1 πjN (xn|µj ,Σj)
(3.51)

to evaluate the responsibilities.

3. Maximization step. Re-estimate the parameters using the present responsibilities:

µnewk =
1

Nk

N∑
n=1

γ(znk)xn (3.52)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnewk )(xn − µnewk )T (3.53)

πnewk =
Nk

N
(3.54)

where

Nk =
N∑
n=1

γ(znk). (3.55)

4. Compute the log likelihood:

ln p(X|µ,Σ, π) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.56)

Perform the check for the convergence criterion after step 4. The convergence criterion
is represented by a minimal value of the difference between the estimated values of
the parameters between two successive steps of EM algorithm. If the convergence
criterion is not satisfied then return to step 2.
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4 Implementation details

This chapter describes implementation of flight data classification based on Gaussian Mix-
ture Model that was described in previous chapter. The design and structure of implemen-
tation part is introduced step by step. The main part of the implementation is programmed
in Python programming language. First part of this section introduces basic structure of
modules contained in the implementation part. Second part explains the function of par-
ticular modules and contribution of library modules being used. In the end of this section,
there is to be found pseudo-code and flow diagram of main script, which can be controlled
by configuration file.

The diagram, which describes main structure of implementation, is illustrated in the
Figure 4.1. There are modules and connections between them visualized in logical order.

Figure 4.1: Comprehensive structure of implementation part.

The Load Data module prepares input data for classifier. It takes the flight data from
flight database and then extracts selected features. The list of input files is saved in .scp
files which represent standard way to store the training data and possible corresponding
label files. The most important module of implementation is the GMMmodule that is intended
to create Gaussian Mixture Model and train it with Expectation-Maximization algorithm
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to classify flight data. The Main Script initiates the process of classification and calls
all required functions included in the modules. The Plot module visualizes the results of
classification process.

4.1 Modules

The implementation part of this thesis is divided into modules according to distinct func-
tions of particular modules. This division allows to make easier comprehension of whole
implementation part and it prepares the ground for possible future extension.

4.1.1 Data preprocessing

Since we are processing flight data, the classification process is attended by data prepro-
cessing according to study provided by Section 2.5. Module Load Data processes database
of flight records. Main objective of this module is to prepare training files that contain fea-
tures for classification process. This module is written in Matlab programming language.
Main script process db.m creates flight database from flight records. This script calls
functions for calculation of derived parameters such as height instrument or true airspeed
(TAS). Basic compensations due to sensor off C.G. location are performed by functions
compensation acc.m and compensation hi.m. Load Data module allows user to visualize
input flight data and flight parameters before and after compensation, or for example the
visualization of the difference between height derived from static pressure and GPS height,
as was described in Section 2.1.2. Besides the data processing, there is also possibility to
perform statics analysis of flight data. Function stastics analysis uses Matlab function
fitdist which fits the distribution of input random data to get parameter values. This
could be a preliminary step before application of Gaussian Mixture Model to sampled train-
ing data, because it can make clear an idea about probability density function of training
data.

4.1.2 GMM

The task of GMMmodule is to prepare and iteratively update Gaussian Mixture Model that is
most appropriate for estimation of density function for the training data. Gaussian Mixture
Models are estimated from data using Expectation Maximization algorithm.

This module uses two known libraries for scientific and mathematical calculations. The
NumPy library for storing data in N-dimensional arrays and SciPy library for scientific
calculations.

Key functions in GMM module

The GMM module offers required functionality to build and estimate Gaussian Mixture
Models 3.3 with EM algorithm which was described in 3.3.2.

• Function gmm eval prep is responsible for initial configuration or set-up of the Gaus-
sian Mixture Model. It takes three arguments, the weights, the means and the covari-
ances, which were set to the initial values. This function sets GMM properties on the
basis of proposed parameters. For full covariance matrix it sets corresponding vectors
for gconst, invCovs, invCovMeans and utr with utc, where gconst is precomputed
constant for log probability of a Gaussian, invCovs is vector of invariant covariance
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and invCovMeans is invariant covariance multiplied by value of mean. Values utr
and utc represents indices into upper triangular part of covariance matrix.

• The vector of log-likelihoods is computed in function gmm eval. Log-likelihoods are
evaluated with parameters stored in GMM dictionary object for each frame of data
matrix. This function must follow after call of gmm eval prep function that initializes
GMM dictionary object. Depending on specified parameters, the statistics of zero,
first and second order are returned in additional variables from this function. The data
are expanded quadratically and then log-likelihoods for each frame and each Gaussian
component of the mixture are calculated. New value of responsibility denoted as
gamma is calculated from parameters of GMM object and then zero order statistics
are sum of gamma values in each frame, first order statics are result of dot product
of responsibilities and the data, and finally second order statistics are result of dot
product of responsibilities and squared data. Call of this function is equivalent to
Expectation step in EM algorithm.

• Maximization step from EM algorithm is represented by function gmm update. Basic
parameters of GMM are results of GMM update. New values of parameters are
recalculated with new return values from function gmm eval. Weights, means and
covariances are re-estimated according to Maximization step of EM algorithm given
in 3.3.2. To finish one complete iteration of EM algorithm another one call of function
gmm eval prep is required. This function update GMM model with new parameters.

• After number of iterations in EM algorithm function gmm llhs computes final vector
of log-likelihoods. The vector of log-likelihoods is evaluated for each frame of data
matrix and for all components of Gaussian mixture. The GMM object that were
recently updated with gmm eval prep function is used to compute final value of log-
likelihoods vector. Values of log-likelihoods are used later to determine the class of
the data.

4.1.3 Plot module

The Plot module uses library Matplotlib to visualize results of classification process. Core
function of this module is to mark data classified as flight events and visualize it together
with the source data. Additional functionality gathered in plot module allows user to choose
flight parameters that will be included in the set of resultant plots. These plots are selected
only from time intervals where the flight maneuvers were performed. Time intervals are
chosen on the basis of the classification process.

Matplotlib
The matplotlib is a 2D plotting library which produces high quality plots in a various
formats. This library has its origin in emulation of MATLAB graphics commands but is
programmed in Python programming language. It is connected with NumPy library and so
it allows users to plot and visualize large arrays of data. [11]

4.2 Main script

Main script called main.py controls the process of classification. It calls function from
included modules that were described above. Diagram illustrated in 4.2 shows the control
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flow in the main script.

Figure 4.2: Control flow in main script that runs estimation of the GMM parameters.

For better illustration, we attach below the pseudo-code which contains list of commands
and function calls in the main script.

load flight_database

for flight_record in flight_database

data_file = load_flight_record

data = extract_features

apply_running_mean(data)

framing(data)

get_energy(data)

normalize_energy(data)

initialize_parameters(w,m,c) // weights, means, covariances

GMM = gmm_eval_prep(w,m,c)

for i in num_iterations

llh, statistics = gmm_eval(data, GMM) // computation of log-likelihoods

w, m, c = gmm_update(statistics) // update of parameters

GMM = gmm_eval_prep(w,m,c) // update of GMM

gmm_llhs(data, GMM) // evaluate log-likelihoods

for llh in llhs:

if (llh < flight_event_threshold):

data_out=flight_event_marker // classify data

visualize_results(data_out)

Above listed pseudo-code shows that main script loads the flight data prepared by load
module and extracts the features for each flight record from the flight database. Then
applies EM algorithm for Gaussian Mixture Models from gmm module to obtain maximum
log-likelihoods. According to resultant log-likelihoods it classifies the data and then calls
function from plot module to visualize the results.
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5 Testing and experiments

This chapter describes results and experiments achieved during classification process of the
flight data. Theory that was introduced in Chapter 3 created the basis for the implementa-
tion part and in next sections we will demonstrate the application of the implementation for
measured flight data. In first part of experiments we will try to apply classification based
on Gaussian Mixture Models to flight data from flight simulator. Next part of experiments
includes utilization of implemented classifier to real flight data as they were described in
Section 2.2. For the first experiment there is the plot of resultant Gaussian components
and most important, the plots of classified data with corresponding description.

5.1 Flight data from flight simulator

Flight data recorded from flight simulator are produced by simulation model of aircraft
which consists of the differential equations called equations of motion. In first experiments
we try to find and classify flight events that occur in the data from simulation. We performed
flight tests with testing maneuver, the doublet in elevator. The segment of 40 seconds from
measured data is shown in the Figure 5.1.
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Figure 5.1: Segment of flight data measured on flight simulator.

In picture shown above, there is a waveform of flight parameter called deflection of
elevator. This flight parameter represents the angle of deflection of elevator and it is
measured in radians. There are two impulses with spacing visible in this segment. The goal
of classification is to find and mark the flight events, in this case testing maneuver called
doublet in the elevator.
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We start the classification process with a definition of the basic parameters. We choose
Gaussian Mixture with 3 components, that could sufficiently describe the measured flight
data. At first, we set initial configuration for the Gaussian Mixture components means,
covariances and weights:

means = [-1.0, 0.0, 1.0]

covariances = [1.0, 1.0, 1.0]

weights = [0.33, 0.33, 0.33]

After several iterations, the change of the parameters of GMM is insignificant and the
text output of the main control script is shown bellow:

means = [-0.4522, 0.0175, 1.4538]

covariances = [ 0.0002212, 0.1388, 1.9407]

weights [ 0.6749, 0.1165, 0.2085]

Components of the GMM with these parameters are illustrated in the Figure 5.2 to
give a clearer picture of the probability density function that describes flight data from the
simulator.

Figure 5.2: Components of GMM with parameters estimated by an EM algorithm.

After explaining the text output of the main script we can proceed to the step of the
results visualization. There are two main options available in the configuration of the
main script. The user can visualize the whole waveform for the flight parameter with
the highlighted segments which are classified as particular flight maneuver. The second
option involves the generation of plots for each occurrence of the flight maneuver in the
flight parameter. In this case it is possible to define intervals (in samples) which indicate the
time period of the flight data shown before and after occurrence of the flight maneuver. The
main advantage of the second approach is an option to define the list of flight parameters
that will be illustrated in the output plots. So this option provides good basis for the
examination of important flight parameters during the flight maneuvers.

The flight data with corresponding markers are illustrated in the Figure 5.3. Each
marked segment represents one classified flight event, in this particular case it is the doublet
in the elevator. This figure is the output of the main control script and its configuration is
located in configuration file.
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Figure 5.3: Deflection of elevator rudder with highlighted flight events.

In the Figure 5.4 we can see one chosen flight maneuver corresponding with the theo-
retical basis given in 2.4.1. The plot is divided into 4 subplots. First subplot shows the
deflection of the elevator, where we can see the testing maneuver called doublet. Second
subplot contains the deflection of the aileron, where we observe small changes caused by
the pilot input on the control stick. The third subplot illustrates the dependency between
the deflection of the elevator and angle rate about YB axis in Body Fixed Frame denoted as
q. In the last subplot we can see the change in the measured height of the aircraft during
the flight maneuver.
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Figure 5.4: Output of the main script for single classified doublet in the elevator rudder.
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5.2 Flight data from aircraft

Flight simulator approximates real aircraft with the model based on differential equations.
The following tests investigate the classification process performed on the flight data from
a real aircraft. We obtain the flight data from flight experiments and in the Figure 5.5 we
can see the segment of 60 seconds from the measured flight data.
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Figure 5.5: Segment of flight data measured on aircraft.

The segment of the flight data comes from the flight parameter deflection of the elevator.
We can observe two impulses in interval of 100 seconds, where the sampling frequency is
100Hz and so 100 samples represent 1 second. Similar to the classification of the flight
data from the flight simulator, the aim of the classification is to separate the flight data
which comes from normal flight, with no occurrence of the flight maneuver and the flight
data which comes from testing maneuvers such as a doublet in the elevator.

As described in Section 2.5, the flight data measured by the inertial sensors in real
aircraft suffers from various kind of errors. In the Figure 5.6 we can see results of a finite
impulse response (FIR) filtering called running mean or moving average. Source data with
mean that is moving up and down is colored blue and the filtered data with mean aligned
to zero are colored green.

Classification process starts with the definition of the basic parameters. We set Gaussian
Mixture with 3 components, that could sufficiently describe measured flight data. We
initialize the configuration for the Gaussian Mixture component means, covariances and
weights:

means = [-1.0, 0.0, 1.0]

covariances = [1.0, 1.0, 1.0]

weights = [0.33, 0.33, 0.33]

After several iterations, the change of the parameters of the GMM is insignificant and
the text output of the main control script is shown bellow:

means = [-0.2457, -0.1416, 2.8296]

covariances = [ 0.0001318, 0.007031, 4.7005]

weights [ 0.7712, 0.1541, 0.0746]
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Figure 5.6: Example of running mean filtering of the flight parameter Deflection of elevator.

The visualization of the results is a key role of Plot module and in the Figure 5.7 we
can see the flight with corresponding markers. Each marked segment of the flight data
represents one performance of testing maneuver called doublet in the elevator.

Figure 5.7: Deflection of the elevator with identified testing maneuvers.

In the Figure 5.8 we can observe one chosen testing maneuver, doublet in elevator.
We can confirm the fact that the classified flight maneuver corresponds with the desired
output, which was shown in the Figure 2.14. The plot is divided into 4 subplots. First
subplot shows parameter deflection of the elevator, which is in this case the feature used for
the classification. Second subplot contains deflection of the aileron, where we can observe
insignificant changes caused by pilot control of the control stick. If these changes were
more significant, this flight maneuver would not be suitable for identification. The term
identification represents the application of the classification results, when we examine plots
of flight maneuvers for different flight parameters and then we try to estimate the values

46



of the coefficients for the differential equations, which describe the aircraft. Third subplot
illustrates the dependency between the deflection of the elevator and pitch rate about YB
axis of the Body Fixed Frame denoted as q. In the last subplot we can see the change
in pitch angle denoted as Theta (θ). We see again, that there is time dependent relation
between the pitch rate q and the pitch angle θ.
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Figure 5.8: Various flight parameters for single classified testing maneuver.

The segment of the measured deflection of the elevator with a length of 60 seconds
is shown in the Figure 5.5. The following Figure 5.9 illustrates the same segment of the
measured flight data with the testing maneuvers being highlighted. We can see identified
testing maneuvers, which meet the requirements according to the specification given in
2.4.1.

Figure 5.9: Segment of flight data with two highlighted testing maneuvers.
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6 Conclusion

The identification of the flight events in the flight data has an important role in prevention,
testing and analysis of the flight data. It is appropriate to prevent a routine when we create
records with large amount of the flight data which will no longer be used. Important use
case of the flight maneuvers identification arises in the field of development and testing of
avionics systems, where the flight data is used in the evaluation and investigation of such
systems. The testing and investigation of the aircraft behaviour and characteristics are
often performed by a testing maneuvers.

The classification of the testing maneuvers was the main objective of this thesis. There
are three main approaches in the classification task, the machine learning, the statistical
and the neural network approach. This work focuses on statistical methods and leaves other
methods to possible future research.

This work is based on the probability theory and theory of the Gaussian Mixture Models
and proposes the implementation written in Python programming language for the classifi-
cation of the testing maneuvers in the flight data. First chapters give an overview required
to understand the format and values of various flight parameters. Current approaches to
the data classification were considered and according to the gained insight the Gaussian
Mixture Models were studied in depth. The Gaussian Mixture Models offer a powerful
way to probability density estimation of random data, in the case of this work, the data
from the flight recorder. The unsupervised learning without the need for training data is
the advantage of the Gaussian Mixture Models. The parameters of the Gaussian Mixture
Model are estimated by the Expectation Maximization algorithm which forms the core of
the implementation part. The classification procedure makes decision on the basis of the
parameters being estimated. The classified data are processed to the further application.
Such application includes the visualization and analysis of the results as shown during the
testing and experiments. The performed experiments confirm that the Gaussian Mixture
Models are suitable tool for the task of the identification of the testing maneuvers in flight
data. A successful application of a classifier on the flight data and flight simulation shows
that the Gaussian Mixture Models have a wider applicability. The results of the classifica-
tion process include plots with identified testing maneuvers and plots with selected flight
parameters during the testing maneuvers.

6.1 Future work

The analysis of the flight data offers wide area to exploration and research. The work
proposed in this thesis focuses on identification of testing maneuvers using classier based
on the Gaussian Mixture Models. There are many other approaches and extension that
can be used in the analysis of the flight data. The unsupervised learning can be replaced
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with the supervised learning based on the training dataset. The training set would contain
marked flight maneuvers which brings us to the next possible improvement. The set of the
classified flight maneuvers can be expanded to include all of the basic flight maneuvers. The
results of classification of all flight maneuvers would give an overview of the whole flight.

Possible future improvement includes application that is deployed in real-time during
the flight. After the end of flight the application should submit the report containing the
list of performed flight maneuvers.
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Appendix A - Flight Data

Table A.1: List of measured flight parameters.

Short name Long name Unit

ax Longitudinal acceleration m.s−2

ay Lateral acceleration m.s−2

az Normal acceleration m.s−2

p Roll speed rad.s−1

q Pitch speed rad.s−1

r Yaw speed rad.s−1

φ Roll angle rad

θ Pitch angle rad

ψ Yaw angle rad

δe Deflection of elevator rad

δf Deflection of flaps rad

δr Deflection of rudder rad

δa Deflection of aileron rad

fe Elevator control force N

fa Aileron control force N

frr Right pedal control force N

frl Left pedal control force N

qbar Differential pressure Pa

pstat Static pressure Pa

temp Outside air temperature K

GPSlon GPS longitude deg

GPSlat GPS latitude deg

GPSh GPS height m
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Appendix B - Content of CD

Root directory

/tech_report.pdf – the text of this thesis in pdf format
/tech_report/ – source files of the text of this thesis
/src/ – source files of the implementation part

Main script:

/src/main.py

Modules:

/src/modules/load/ – Load module
/src/modules/gmm.py – GMM module
/src/modules/plot.py – Plot module

Directory /src/config/ contains the configuration scripts.

Directory /src/lists/ contains the list of input files with the flight data.

There is README.txt file in /src/ directory, which contains detailed instructions required
to run the classification process.
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