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Abstrakt
Nedávné studie předpovídají nár̊ust pasažér̊u využívajících leteckou dopravu. Tento trend
bude vyžadovat zavedení nových leteckých linek, d̊usledkem čeho bude zhuštěn letový
provoz s dopadem hlavně na nápor letišť v metropolitních oblastech. Automatizované řízení
pojíždení letounu umožní menší rozestupy mezi jednotlivými linkami a zvýšení príletové a
odletové kapacity letišť. Tato práce se zabývá návrhem modelu pohybu dopravního letounu
po zemi s ohledem na r̊uzné provozní podmínky jako např.: stav povrchu vzletové a přistá-
vací dráhy za r̊uzného počasí a lišící se provozní parametry letounu (tlak v pneumatikách,
zatížení podvozk̊u a pod.). Validace modelu byla založena na sledování poloměru zatáčky
pro r̊uzne uhly natočení přední podvozkové nohy. Výsledky simulace byly validovany vzhle-
dem k analytickému modelu Ackermanovy geometrie a na specifikační dokument od Boeingu
určený pro plánovaní pohybu letounu na letišti [6]. Výsledky prokázaly přesnost modelu a
potvrdily jeho možné nasazení pro simulace v reálnem čase.

Abstract
Recent studies focused on the global airline industry predict a continuous growth of passen-
ger numbers, which will stimulate an increased demand for modern sophisticated aircraft
capable of precise operations at reduced separation minima. Automation systems, such as
AutoTaxi, will allow for decreased ground separation standards and a subsequent increase
of throughput at airports in metropolitan areas. This thesis deals with an AutoTaxi con-
trol system for a single-aisle passenger aircraft, such as Boeing 737 series, under different
operational conditions. The implemented model considers varying runway characteristics
due to the atmospheric conditions and different aircraft configurations. Detailed force and
momentum equilibria analysis are presented in a form of equations of motion, which is
essential in order to achieve high-precision simulation. The validation of the model was
based on the turn radii comparison for multiple steering angles. Simulation results were
subjected to a comparison with the analytical solution of the Ackerman drive for a tricycle
vehicle and with turn radii specified in Airplane Characteristics for Airport Planning [6]
issued by Boeing. Obtained results confirm high-precision real-time simulation.
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1. Introduction

Fascination by flying has long lasting roots in the history of the human-kind. The origin of
mankind’s desire to fly is lost in the distant past. We only know from the earliest legends
there have been men strapping birdlike wings or other devices to themselves and attempting
to fly. The kite may have been the first form of man-made aircraft [12]. It was invented
in China possibly as far back as the 5th century BC and is thought to be first man-made
flight. It was used for navigation tasks and thus enabling people to discover new horizons.
As the improvements of technology continued through the centuries, we were able to rise
from the Earth’s surface and become dominant species not only on the ground but also in
the air.

The first human walk on the Moon was a major demonstration of the possibilities that
mastering of the flight can bring to us. If we consider that the resources of our planet
are very limited and the humans’ demand in order to survive is exponentially growing it
is true that no civilization can last long in this Universe if it stays confined to a single
planet. And that’s not the only problem we need to face. Our mighty star, the ball of
fusing hydrogen that anchors Earth and powers all of its life, will one day grow so large
that its outer atmosphere will singe and sterilise our planet, and maybe even engulf it [3].
In this sense, the question if we ever reach the distant stars and colonise new planets, has
been already answered. If we want to survive as a species we have no other choice.

We will need to find the courage and spirit that moved our own species to step into new
continents, so that our recent ancestors could reach out to islands and archipelagos, before
crossing whole oceans, on their way to the distant corners of this Earth. We will need to
set out for new planets and eventually, new stars. In order to reach these goals we need to
master elementary tasks first.

1.1 State of the Art

From the human nature we are highly unreliable and error-prone controllers. Human abil-
ity to control various flight tasks depends on multitude of factors and only the slightest
misinterpretation of the situation by the pilot may result into a catastrophic scenario. Over
80% of pilot-caused runway incursions occur during taxi to the departure runway [15]. The
automation of the flight and the taxi phase is therefore needed.

Automation tasks become even more pertinent when one looks at the General Market
Forecast for aircraft published periodically by Airbus. It shows that the passenger numbers
will double within next 15 years, with a consequent increased demand for new airframes
[32]. NASA has also published a similar document in the form of the National Plan for
Aeronautics Research and Development and Related Infrastructure [23]. Both reports high-
light similar challenges and identify the automation of aircraft movements, on the ground
and in the air, as means of meeting the objectives such as the quality and affordability of
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aircraft, the effect on the environment, safety, security and the efficiency of the air transport
system. Reduced aircraft separation due to increased demand will require a transition to
the trajectory-based operations, novel approaches in navigation, and a paradigm shift in
control with new allocation of responsibilities between humans and automation [9].

The need for maximising arrivals and departures capacities at airports in metropolitan
areas will become critical. Procedures designed around now-antiquated technology lead to
inefficient use of terminal area airspace. Airlines and airport ramp operators typically only
track gate occupancy based on predicted gate-in and out times reflected by the schedule
and updates to flight times. The decision of which aircraft is entering or exiting the ramp
area, and at what time, is done manually and oftentimes with limited information that
inadvertently leads to delays. The efficiency of technologies to reduce separations and
improve flight paths for high-density arrival and departure traffic flows, will be highly
dependent on automation and precision positioning, navigation, and timing. Automation
will allow for decreased separation standards, taxi times reduction and subsequent increased
throughput for single and multiple runways [23].

Aircraft manufacturers are also constantly striving to improve the efficiency of all aspects
surrounding the operation of their aircraft. Fuel savings can be made by decreasing the
drag of the aircraft during the cruise phase. However, less obvious savings can be made
by improving the way aircraft are operated on the ground. Using aircraft’s main engines
during taxiing phase results in a huge consumption of fuel. It was forecasted to cost around
5.5bn euros by 2012, produce huge amounts of CO2 (approximately 18 million tons per
year) and is significant source of foreign object damage (costing around 280 million Euro
annually) [31].

New operational procedures are directed towards the reduction of noise and developing
environmentally friendly systems. Taxing thus impacts both domains, in terms of noise and
air pollution. Projects such as CleanSky [10] and NextGen [2] have set their challenges to
protect the environment and energy supply by improving air operations and traffic man-
agement. Their goal is the optimisation of each flight phase of the entire flight at a unitary
aircraft level. NextGen proposes to transform air traffic control system from a ground-based
system to a satellite-based system. GPS technology will be used to shorten routes, save
time and fuel, reduce traffic delays, increase capacity, and permit controllers to monitor
and manage aircraft with greater safety margins. Planes will be able to fly closer together,
take more direct routes and avoid delays caused by airport stacking as planes wait for an
open runway [2, 10]. CleanSky focuses its effort into development of breakthrough tech-
nologies integrated to significantly increase the environmental performances of airplanes
and air transport, resulting in quieter and more fuel efficient aircraft.

An alternative approach to aircraft taxiing phase has been proposed by the research
project TaxiBot [31]. This concept aims to remove the need to start the aircraft’s main
engines during taxi phase. Aircraft are moved on the ground by a partially automated tug
while pilots are still in control. Taxibot lifts the aircraft’s nose-wheel, which then rests on
a rotating platform translating nose-gear deflections into directional changes for the tug.
Thus, pilots steer the tractor via the nose-gear tiller in the cockpit. The aircraft wheel
brakes are used for deceleration. Forward speed is also controlled by braking. The tractor
starts to move as the flight crew releases the brakes. The maximum speed is digitally
limited depending on the aircraft’s position at the airport. Service entry of the TaxiBot is
scheduled for 2016 as it is currently going through the test phase.
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1.2 Thesis Overview

This thesis covers the task of aircraft ground motion simulation. Chapter 2 provides def-
initions of the reference frames used for description of the aircraft position, orientation
and motion during the flight and ground maneuvers. The frames used to define force and
moment components acting on the aircraft body are also provided. It is often required to
use different frames for the description of different aspects of the simulation, therefore we
also discuss the transformations between the reference frames.

Chapter 2 presents the ground motion model of a single aisle passenger aircraft, similar
to a Boeing 737-400. The described model contains individual modules - propulsion char-
acteristics, tire forces, brakes efficiency, aerodynamics and more. The partial models are
then assembled together using the Newtonian physics, building the equations of motion.
Implemented equations of motion provide a tool to model the aircraft ground motion.

Chapter 3 describes the implementation of the model in the Matlab/Simulinkr en-
vironment. This chapter covers the aspects of the numeric simulation and provides the
description of the designed simulation model. Simulinkr supports block-modular system
development, therefore this thesis provides description of the blocks corresponding to the
individual equations of motion and its composition into blocks with higher level of abstrac-
tion. On the most abstract level, the simulation model is a single block with its defined
interface.

In chapter 4, a single-box abstraction of ground motion model is introduced. On top
of this model, controller module is developed. It is designed to be able to automatically
steer the aircraft along a pre-defined trajectory. This thesis provides the basis of control
theory and presents the design of individual controller modules, namely steering control,
propulsion and braking control.

The last chapter 5 contains the description of a simulation model verification and ex-
periments to verify the ability of the controller to automatically steer the aircraft along the
predefined trajectory. The simulation model verification is based on an analytical model
of a Ackerman tri-cycle drive and the specification of Boeing turn radii for given aircraft
model. The auto-taxiing trials are simulated at major airports at Czech Republic - Praha,
Brno and Ostrava.
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2. Aircraft Ground Operations Simulation

In order to describe the nature of aircraft’s ground maneuvers and to deploy its automa-
tion, mathematical model needs to be developed. The model will predict the behavior of
the aircraft based on the input forces resulting from the engine thrust, landing gear brake
forces or wheels and runway characteristics. The model is therefore derived via the force
and momentum equilibrium considering the Newtonian physical model of the classical me-
chanics. A general description of the runway surface conditions influencing the tire-ground
friction performance is also provided in this chapter, as well as the forces resulting from
the interaction of the aircraft wheel and the runway surface. Likewise the model for engine
forces, braking and aerodynamics is introduced. The forces are composed into the equations
of motion, describing the behavior of the aircraft’s ground motion.

2.1 Reference Frames

To describe the position and the behavior of an aircraft, a reference frame in contex of
which one defines the positional and behavioral aspects (force and momentum components)
is needed. On-board sensors measure force components with respect to an inertial frame
which is resolved in the host body frame. These are the forces and moments acting on
the aircraft during the ground motion, expressed using Body Fixed Frame (B) notation.
However, to describe the trajectory of the ground motion, variables such as velocity need
to be transformed to an appropriate Earth-fixed frame, e.g. coordinate system used by the
GPS standard - WGS84. This allows us to successfuly manage the navigation tasks, such
as specifying location of a moving aircraft with respect to the Earth’s surface. Most of the
widely-used coordinate frames relevant to the definition of acting forces on an aircraft and
navigation purposes are discussed in this chapter, likewise their mutual transformations.

2.1.1 Geometry of the Earth

First, the abstraction of the Earth’s shape is explained as it is used in the discussed nav-
igation frames. The Earth’s surface is extremely irregular with a very complex shape, it
is therefore approximated by an ellipsoid for the computational convenience. The ellipsoid
and various surfaces that are useful for understanding the geometry of the Earth’s shape
are shown in Figure 2.1.

Terrain is defined as an interface between the solid and fluid masses of the Earth and
its atmosphere [24].
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Geoid

Ellipsoid

Terr
ain

Figure 2.1: A depiction of various surfaces of the Earth

Geoid is an equipotential surface (surface of constant gravity) best fitting the average
sea level in the least squares sense (ignoring tides and other dynamical effects in the oceans).
It can be thought of as an idealized mean sea level extended over the land portion of the
globe. The geoid is a smooth surface but its shape is irregular and it does not provide the
simple analytic expression needed for navigational computations [24].

Reference Ellipsoid is a mathematically defined surface approximating the geoid.
Ellipsoid is made by rotating an ellipse about its minor axis, which is coincident with
the mean rotational axis of the Earth. The center of the ellipsoid is coincident with the
Earth’s center of mass. The ellipsoid is the most analytically convenient surface to work
with for the navigational purposes. Its shape is defined by two geometric parameters called
the semimajor axis and the semiminor axis. These are typically represented by a and
b respectively (see Figure 2.2). The geoid height N is the distance along the ellipsoidal
normal from the surface of the ellipsoid to the geoid. The orthometric height H is the
distance from the geoid to the point of interest P . The geodetic height (also known as
altitude) is the sum of the geoid and the orthometric heights h = N +H [24].

P

h
H

N

Geoid

Ellipsoid

Terrain

a

b
µ

Figure 2.2: The relationship between various Earth surfaces (highly exaggerated).

7



2.1.2 ECEF Frame (E)

The ECEF frame (Earth Centered Earth Fixed, Figure 2.3) is used to specify position of
the aircraft (or any point on Earth in general) for navigational purposes. The coordinates
are given with respect to the reference point, origin of the frame, which is fixed to the
mass center of the Earth. xE axis lies in equatorial plane at intersection with Greenwich
Meridian. zE axis is aligned with Earth’s rotational axis and positive direction is oriented
to Earth’s North Pole. Axis yE is oriented so that it creates a right-hand system. As a
consequence of such definition, ECEF frame rotates and moves together with Earth so that
the axes are oriented as defined above at all moments and the coordinates of a point fixed
on the surface of the Earth do not change.

2.1.3 WGS 84 System

WGS 84 is an alternative definition of ECEF. Axes are defined with the same origin and
orientation, however the position coordinates are specified in a different way. While in
ECEF the position of any given point is denoted by the cartesian coordinates [x, y, z],
WGS 84 gives this information in a form of two angles, longitude λ and latitude µ and the
height above the ellipsoid h (Figure 2.5).

Geodetic longitude λ is the angle measured in the equatorial plane between zero
meridian plane (xz-plane of ECEF system) and the meridian plane of the point. Range of
longitude is defined as: −π ≤ λ ≤ π .

Geodetic latitude µ is the angle measured in the meridian plane of the point P
between the equatorial plane and (xy-plane of ECEF) and the surface normal of the point
P. Surface is not an ideal sphere so the normal does not necessarily have to pass through
the Earth’s center (as shown on Figure 2.5). Latitude range is −π/2 ≤ µ ≤ π/2.

Geodetic height h is the height above the WGS-84 ellipsoid measured along the surface
normal. The GPS system uses this geodetic height as a reference altitude information.
However, for practical purposes ellipsoid approximation of the Earth surface is too coarse-
grained and needs to be refined using local data of the Geoid height stored in the lookup
tables. The refined GPS height is the approximation of the height above the mean sea level
at a given location [33].

2.1.4 Navigational Frame (N)

In order to describe the position of the aircraft as it moves over the ground surface, it is
necessary to do so with reference to a point with a fixed position and orientation in space.
Navigational reference frame (Figure 2.3) is defined with respect to a given fixed point on
Earth’s surface, specified either in ECEF or WGS 84 system. As the reference point is
fixed with respect to the Earth as well as the reference axes are, the navigational frame
moves and rotates together with the Earth, however it remains stationary with respect to
any given point on its surface. Axis xN is parallel to the local geoid surface and is oriented
to North. Axis zN points downwards and is perpendicular to local geoid surface (does not
necessary pass through the Earth’s center as can be seen in Figure 2.5).

2.1.5 NED Frame (O)

NED Frame (North-East-Down System) purpose is to specify the attitude of the plane
by the means of the rotation angles of BFF about the NED frame, which does not rotate
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xE

yE

zE

zN

yN

xN

λ

µ

Figure 2.3: Navigational frame (denoted with N subscript) and its relation to Earth Cen-
tered Earth Fixed frame (indexed with E). Geodetic angles λ, µ are highlighted to illustrate
alternative notation of WGS 84 system.

together with the aircraft. NED origin is a reference point of the aircraft, usually the center
of gravity (C.G.). The system moves with the aircraft together with its reference point.
The orientation of axes is the same as in the Navigational Frame; xO is parallel to the local
geoid surface pointing to the geographic north pole, yO is parallel to the local geoid surface
pointing east to form a right hand system with x-axis and z-axis. zO is pointing downwards
and is perpendicular to the local geoid surface.

2.1.6 Body Fixed Frame (B)

Body Fixed Frame (see Figure 2.4) is used to define forces and corresponding moments
acting on the aircraft. The origin of BFF is defined as a reference point of the aircraft,
usually at the C.G. BFF frame moves and rotates with the rigid body aircraft. Axis xB
points in the direction of aircraft’s nose, yB points to the right from pilot’s view and zb axis
points downwards to form right-hand orthogonal system.

yB

zB

xB

C.G.

Figure 2.4: Body Fixed Frame.
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2.1.7 Transformation between NED Frame (O) and ECEF (E)

To align the ECEF Frame with the NED, several transformations need to be performed.
First, rotate the ECEF system around the zE axis with the angle of the geodetic length λ.
For illustration see Figure 2.5.

MOE1(λ) =

 cos(λ) sin(λ) 0
− sin(λ) cos(λ) 0

0 0 1

 (2.1)

Second, rotate ECEF system around yO with the negative angle of geodetic latitude
(−µ− π/2).

MOE2(µ) =

 cos(−µ− π/2) 0 sin(−µ− π/2)
0 1 0

− sin(−µ− π/2) 0 cos(−µ− π/2)

 (2.2)

The transformation matrix ECEF to NED has a form [7]:

MOE = MOE2(µ)MOE1(λ). (2.3)

MOE =

− sin(µ) cos(λ) − sin(µ) sin(λ) cos(µ)
− sin(λ) cos(λ) 0

− cos(µ) cos(λ) − cos(µ) sin(λ) − sin(µ)

 (2.4)

Reverse transformation matrix can be expressed as:

MEO = MT
OE . (2.5)

2.1.8 Transformation between BFF (B) and NED Frame (O)

Apart from an aircraft’s position that is described by the navigational frames, we are also
interested in its orientation. It is described by heading and tilt angles. For this reason
one needs to specify its position of the BFF axes with respect to NED. These angles are
referred to as Euler angles, that are also used to describe the orientation of a reference
frame relative to another frame.

Euler angles represent sequence of basic rotations about the axes of reference frame [17].
Any orientation of a rigid body can be expressed by series of rotations. The rotations can
be performed about the axes of fixed coordinate system or about the axes of a rotating
coordinate system, initially aligned with the fixed system (ECEF), and modifying its ori-
entation with each rotation. The rotating reference frame can be represented as a rigidly
attached to a rigid body, it is also referred to as a local system (e.g. BFF). Euler angles
between NED and BFF are (also see Figure 2.6):

• Pitch angle Θ specifies the tilt of the aircraft’s nose from the xOyO plane.

• Roll angle Φ specifies rotation about the xB axis of the BFF frame.

• Yaw angle Ψ describes the rotation about the vertical axis zN of the NED system
[17].
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xE

yE

zE
zO

yO

xO

λ

µ

P

h

P ′

Figure 2.5: Relation between ECEF (E) and NED frame (O). The line zO lies in the
meridian plane of the point P, which is deflected from Prime meridian plane by an angle
λ. Axis zO is also normal to the local meridian, so as a consequence it does not have to
pass through Earth’s center. P ′ is the intersection of zO axis with the ellipsoid, defining
geodetic height h = |PP ′|.

To transform NED (O) system to BFF (B), three rotations need to be performed in
specific order [7]. First rotation compensates azimuth angle Ψ about rotation axis zO:

MBO1 =

 cos(Ψ) sin(Ψ) 0
− sin(Ψ) cos(Ψ) 0

0 0 1

 (2.6)

Second, we compensate pitch angle Θ about auxiliary axis k2

MBO2 =

cos(Θ) 0 − sin(Θ)
0 1 0

sin(Θ) 0 cos(Θ)

 (2.7)

Finally, roll (bank) angle Φ is compensated by rotation about axis xB:

MBO3 =

1 0 0
0 cos(Φ) sin(Φ)
0 − sin(Φ) cos(Φ)

 (2.8)

Whole transformation of NED to BFF is expressed by series of the three rotations:

MBO = MBO3MBO2MBO1 . (2.9)

MBO =

 cos(Ψ) cos(Θ) sin(Ψ) cos(Θ) − sin(Θ)
cos(Ψ) sin(Θ) sin(Φ)− sin(Ψ) cos(Φ) sin(Ψ) sin(Θ) sin(Φ) + cos(Ψ) cos(Φ) cos(Θ) sin(Φ)
cos(Ψ) sin(Θ) cos(Φ) + sin(Ψ) sin(Φ) sin(Ψ) sin(Θ) cos(Φ)− cos(Ψ) sin(Φ) cos(Θ) cos(Φ)


(2.10)

Reverse transformation matrix can be expressed as:

MOB = MT
BO. (2.11)
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Figure 2.6: Relation between BFF (B) and NED frame (O) and Euler angles (Φ,Θ,Ψ).

2.2 Ground Motion Model

Assuming the reference frames discussed in previous section, force and momentum compo-
nents acting on the aircraft can be defined. These forces and moments are put together to
form the mathematical model in a form of the equations of motion. The model is designed
for a use in dynamic analysis and real-time simulation. It therefore uses mathematical ex-
pressions for real-time computation, and is an alternative to earlier methods, which require
storage of large amounts of data in look-up tables containing discrete values, which are
then retrieved and interpolated. Ground motion model is based on previous work of [5],
[28], [29] and the engine model characteristics are based on [19].

2.2.1 General Assumptions

The aircraft is modeled as a single rigid body with 3 degrees of freedom (DOF). It assumes
two translational DOF (motion on the plane) and rotational motion about the vertical
axis. The infrastructure of the all major airports is designed so that all the runways and
the taxiways are flat so that danger in ground maneuvers is minimized. This allows us to
abstract the surface to a flat plane and motion of the aircraft over it in two dimensions (no
vertical motion). Since the aircraft is moving over almost ideal flat surface, one can assume
there is no rotational motion about the x and y axis of the BFF reference frame (no roll
and pitch).

The landing gear is a tricycle configuration (Figure 2.7) in which nose gear is used for
steering. Pilot controls the deflection of the nose wheel via the rudder pedals that are
primarily used for the control of the rudder influencing the aircraft’s yaw while in the air.
However, during the ground motion, the velocity remains relatively small therefore the
rudder does not provide adequate response of direction change. The front wheel could be
deflected up to 70◦ in both directions to provide sufficient maneuverability. To achieve even
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Figure 2.7: Tricycle configuration of the aircraft landing gear.

greater maneuverability the differential braking and engine thrust could be used. These
techniques can be especially useful during U-turns on narrow taxiways.

There are usually two wheels per landing gear on an aircraft due to high loads that
landing gear has to withstand. Since the spatial separation of the tires is very small the
implemented model is simplified in a sense which assumes the two tires acting in unison.

The speed during the taxiing phase is not strictly limited by FAA, but in the document
Runway Safety - Pilots Best Practices [15] it is stated:

”
maintain an appropriate taxi

speed“. We might understand taxi speed limited to approximately 30 knots during motion
on long straight line with no close obstacles, 20 knots with obstacles (other aircraft, ground
vehicles, ground stands) and 10 knots during turns and entering ramp area [11]. A roll
caused by a rapid cornering can be therefore neglected. Rapid braking and acceleration can
result in a change of the pitch angle, but since we assume the aircraft to be a rigid body,
the pitching effect (motion of the aircraft’s nose up and down) can be neglected. However,
the tire load will be influenced in such situations, affecting the performance of the brakes
and steering abilities - during rapid braking more load is shifted to the nose wheel, reducing
the maximum effective load of the main gear that can be used for braking and reversed
effect during rapid acceleration when load is shifted from the nose to the main gear and
the ability to steer is reduced. The load on each tire can dynamically change in the model
depending on the acting forces, so that the simulation reflects the reality in high detail.

2.2.2 Equations of Motion

The forces acting on an aircraft are defined in Body Fixed reference frame, a conventionally
accepted coordinate system in avionics. Forces are illustrated in Figure 2.8. The equations
of motion for the velocities in the body coordinate system of the aircraft are given in a form
of ordinary differential equations (ODEs) [28]:

m(V̇x − Vyωz) = FxTL + FxTR − FxR − FxL − FxN cos(δ)− FyN sin(δ)− FxA, (2.12)

m(V̇y + Vxωz) = FyR + FyL + FyN cos(δ)− FxN sin(δ), (2.13)

Izzω̇z = lyRFxR − lyLFxL − lxRFyR − lxLFyL + (2.14)

+ lxNFyN cos(δ)− lxNFxN sin(δ).

Equations (2.12) and (2.13) are derived from the Newtonian law of motion, that says the
vector sum of the forces acting on an object is equal to the mass of that object multiplied by
the acceleration vector a = [V̇x, V̇y] of that object [17]. The mass of the aircraft is denoted
by m and the components of the acceleration vector in xB and yB axis expressed via the
velocity derivate are denoted as V̇x and V̇y respectively. Rotational motion of the aircraft
is depicted by the projection of the perpendicular component of the acceleration vector
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Figure 2.8: Schematic diagram illustrating force components acting on rigid aircraft body.

proportional to the angular velocity expressed via the V∗ωz term (where ∗ represents either
x or y component).

Equation (2.14) is formed by balancing the moments about the vertical axis zB. The
torque arms l∗ are defined with respect to the the center of gravity. The dimensions l∗ and
principal moments of inertia are given in table 2.1. Parameter δ denotes the steer angle,
i.e. the deflection of the nose wheel from axis xB as illustrated in Figure 2.7.

The force components consists of longitudinal Fx∗ and lateral components Fy∗ for each
tire (∗ represents either right (R), left (L) or nose wheel (N)) resulting from interaction of
tire and runway surface. The tire-ground interaction model is described in section 2.2.4.
The thrust vector is represented by FxT (section 2.2.5) and the aerodynamics is modeled
as FxA force, discussed in more detail at the end of this chapter.

Transformation to Navigational Frame To transform the effects of forces acting
on aircraft into motion over spatial coordinates, the velocity vector needs to be transformed
from BFF into navigational frame and then integrated over time domain. The transfor-
mation into world coordinates is performed using 2D transformation matrix as defined in
equation (2.6). [

Vx
Vy

]
N

=

[
cos(Ψ) sin(Ψ)
− sin(Ψ) cos(Ψ)

] [
Vx
Vy

]
B

(2.15)

The rate of rotation is specified by the heading angle derivate Ψ̇, that is angular velocity
ωz of the aircraft body around zB axis of the BFF. Heading is a term used in navigation
that refers to the direction where aircraft is pointing. If we neglect the effects of the wind,
heading matches the direction that the vehicle actually travels, which is known as course.
Heading is then determined by integrating angular velocity ωz for given time interval and
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Table 2.1: Aircraft parameters and their values [28].

Parameter Description Value
lxN Nose gear x-distance relative to C.G. 11.235 m
lxR,L Main gear x-distance relative to C.G. 1.450 m
lxA Aerodynamic force x-distance relative to C.G. 0 m
lxT Engine x-distance relative to C.G. 0 m
lyR,L Main gear y-distance relative to C.G. 3.795 m
lyTR,L

Engines y-distance relative to C.G. 5.755 m

lzN Nose gear z-distance relative to C.G. 2.932 m
lzR,L Main gear z-distance relative to C.G. 2.932 m
lzA Aerodynamic force z-distance relative to C.G. 0.988 m
lzT Engine z-distance relative to C.G. 1.229 m

m Mass of the aircraft 45420 kg
Izz Moment of inertia about z-axis 3335000 kgm2

initial condition:

Ψ =

∫ t2

t1

ωz =

∫ t2

t1

Ψ̇. (2.16)

The actual world coordinates of the aircraft are given by integrating the velocity com-
ponents over entire time domain. [

Ẋ

Ẏ

]
=

[
Vx
Vy

]
N

(2.17)

2.2.3 Load Balancing

Longitudinal Fx∗ and lateral Fy∗ forces are both function of the vertical force Fz∗. The
mass of the aircraft engenders gravitational force Fg acting at the center of gravity, which
in consequence produces the vertical forces Fz∗ acting against the gravitational force at the
point of contact between the tire and the runway surface (see Figure 2.9). According to the
Newton’s third law of motion, the body exerts a force equal in magnitude and opposite in
the direction on the another body when such body exerts a force on it [17]. Therefore we
can derive following relation between vertical and gravitational forces:

FzN + FzR + FzL = Fg. (2.18)

By balancing the moments about axis yB, while considering the rolling friction, braking
and thrust force we obtain:

(lxN − µRlzN )FzN + (lxR − (µR + kBµBeff
)lzR)2FzR = −lzTFxT . (2.19)

When assuming that pitch and roll angle will remain small, since the taxiway speed of
the aircraft is limited, we can assume that FzR = FzL. The relation for the vertical forces
defining the load balance can be expressed as:[

1 1
lxN − µRlzN lxR − (µR + kBµBeff

)lzR

] [
FzN
2FzR

]
=

[
Fg

−lzTFxT

]
(2.20)

Implications resulting from such definition of load balancing imply that the balance on
a given tire will dynamically change depending on the amount of braking or thrust being
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Figure 2.9: Forces generated at a nose tire strut.

applied. More load is shifted to nose wheel in case of braking and more load is shifted to
main gear in case of acceleration, resulting in a slightly different motion characteristics of
the aircraft.

2.2.4 Tire-Ground Interaction Model

The tire-ground interaction model has an essential impact on the ground motion model.
Most of the forces influencing the behavior of an aircraft on ground originate at this contact
point as a result of interaction between the wheel and the runway surface. These forces are
a product of the vertical load (weight) on the tire Fz, and a coefficient of friction µ. The
value of the friction coefficient is dependent upon many factors, including: type, texture
and roughness of the runway surface; type and amount of pavement contaminant, e.g.
snow, ice, water; tire construction, tread design and inflation pressure; type and efficiency
of Automatic Brake System (ABS) and aircraft ground speed.

The ground forces may be decomposed into longitudinal and lateral components. Lon-
gitudinal forces act as a retarding forces incurred by the friction or by application of the
wheel brakes. Longitudinal force acts in the direction opposite to the wheel motion. Lateral
force is generated when the plane of a rolling wheel is yawed relative to its direction of a
motion by an angle ψ. Lateral force acts in the direction perpendicular to the longitudinal
force. The definition of tire-ground interface model is based on the source [5].

Longitudinal Force

Longitudinal force Fx acting on wheel is composed of two components - rolling friction FxR
and braking FxB .

Fx = FxR + kbFxb , (2.21)

Fx = FzµR + kbFzµBeff
. (2.22)

where kb is the proportion of brakes being used kb ∈ (0, 1); µR is rolling resistance constant
and µBeff

is a braking effectiveness coefficient.
The rolling friction FxR is the resistance which one body offers to another when rolling

along its surface [27]. It arises from the inequalities of the interfering surfaces. On micro-
scopic level there are other processes at work, including chemical bonding and electrical
interactions. However, the dominant factor of rolling friction are non-elastic effects. That
is, not all energy used for deformation is recovered after the pressure is removed. Two forms
of this energy dissipation are hysteresis losses and permanent (plastic) deformation of the
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surface (e.g. soil). It is the rubber compound in a tire that exhibits hysteresis. As the
tire rotates under the weight of the aircraft, it experiences repeated cycles of deformation
and recovery, and it dissipates the hysteresis energy loss known as the heat. Suggested
value for the rolling resistance coefficient is µR = 0.02 [28] for an typical mid-sized single
aisle passenger aircraft such as Boeing 737-400. The coefficient of the rolling resistance is
generally much smaller than the coefficient of sliding friction, which determines the braking
performance.

The retarding force produced by the tire on a braked wheel, FxB , is a product of the
vertical load on the tire Fz, and a coefficient of friction µBeff

, which varies upon many
factors. A definition of the friction coefficients for all operating conditions is needed not
only for braking performance prediction, but also to assess directional stability and control
on the ground.

Two friction coefficients influence the braking performance. They are the maximum
braking coefficient µbmax , which is available just before slipping of the rolling wheel occurs,
and the tire skid coefficient µskid, the friction coefficient of a locked wheel (fully developed
skid). In a fully developed skid, the available retarding force is greatly reduced, and brakes
should be operated to avoid this condition. Manual operation in critical conditions requires
skill; consequently, most aircraft are fitted with an ABS, to prevent skidding. An ABS
reduces the maximum available deceleration by about 10% on dry and wet surfaces and by
about 20% on flooded, icy, and snow-covered runways [5]. A third braking coefficient, the
braking effectiveness coefficient, µBeff

, is used to take account of the ABS efficiency. These
braking coefficients are used to calculate the forces acting on the tire, in the plane of the
wheel rotation.

Dry Runway Surface Conditions Following relationships between the friction co-
efficients, tire pressure p[Pa] and velocity v[m/s] are assuming dry surface of a wire-brushed
concrete runway. Equations are valid for v < 50m/s [5].

µbmax = 0.912(1− 7.5842p)− 4.0641 · 10−4v, (2.23)

µBeff
= −0.03 + 0.94µbmax , (2.24)

µskid =
48.1

50.2 + 0.5144v
µbmax . (2.25)

Wet Runway Surface Conditions Following equations are assuming wet surface of
a wire-brushed concrete runway. Equations are valid for v < 70m/s [5].

µbmax = (0.91− 6.8947p)(1− 2.6751 ∗ 106−3v), (2.26)

µBeff
= −0.03 + 0.94µbmax , (2.27)

µskid =
23.2− 213.737p

26.5 + 0.5144v
. (2.28)
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Snow Covered Runway Surface When the runway is severely contaminated, the
influences of the type of runway surface and tire pressure are small, and can be neglected
for this type of model. The relationships below assume approximately 15cm snow layer on
the runway [5].

µbmax = 0.185 + 5.144 · 10−4v, (2.29)

µBeff
= 0.8µbmax , (2.30)

µskid = µbmax(0.8− 2.0576 · 10−4v), v < 25m/s, (2.31)

µskid = 0.6µbmax , v ≥ 25m/s. (2.32)

Figure 2.10: Braking effectiveness coefficient, µBeff
in various conditions.

Lateral Force

The lateral side-force Fy is created when the plane of a rolling wheel is yawed relative to the
direction of the motion by an angle ψ∗ (∗ could be either R,L or N) according to a given
tire of an aircraft. Two additional friction coefficients are needed to describe the lateral
forces. The maximum lateral friction coefficient µψmax , and the limiting lateral friction
coefficient, µψlim

. Coefficients differ in dependence on whether the brakes are applied. First
mentioned characterizes the unbraked yawed rolling tire, the later considers the application
of brakes. The model must include the effect of braking, because it can considerably reduce
the maximum side-force generated by a yawed wheel. In such situations, total friction is
shared between the side-force generation and the longitudinal deceleration.

Same conditions as mentioned above apply for various surface conditions. The kb rep-
resents proportion of brakes being applied relative to maximal braking forcekb ∈ (0, 1).

Dry Runway Surface Conditions Following equations are assuming dry surface of
a wire-brushed concrete runway [5].

µψmax = µbmax , (2.33)
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µψlim
= µbmax

√
1−

(
kb ·

µBeff

µbmax

)2

. (2.34)

Wet and Snow Covered Runway Surface Conditions Equations for the maxi-
mum and limiting lateral friction coefficients are defined in the same way for wet and snow
covered runway conditions. The difference is in the value of µbmax and µeff that differs
with altering runway surface conditions (see relations for wet surface in equations (2.26)
and (2.27), for snow cowered runway see equations (2.29) and (2.30)) [5].

µψmax = 0.64µbmax + 0.15µ2
bmax

, (2.35)

µψlim
= µbmax

√
1−

(
kb ·

µBeff

µbmax

)2

. (2.36)

The lateral force model represents the contact conditions between the tire and the
ground as speed, tire yaw angle and load on the tire vary. It takes into account variation
in ground surface conditions (contamination) and is valid over a large range of speeds and
tire yaw angles. An adaptive braking system (ABS) is assumed (to avoid the complications
of modeling wheel slip when braking).

To avoid an over-complex model, the effects of a non-vertical wheel, of self-aligning
torque, and of pneumatic castor are neglected in the following cornering force model. In
general, these effects have little influence on the performance and the dynamic stability of
a modern aircraft during ground roll.

From definition [5], lateral force Fy is:

Fy = Fzµψ, (2.37)

where lateral friction coefficient µψ is

µψ = µsya |ψ| < ψlim,

µψ = µlya |ψ| ≥ ψlim, (2.38)

where ψlim ≈ 20◦ is the tire yaw angle beyond which the lateral friction coefficient decreases.
A tire yaw angle ψ is defined as an angle between the longitudinal tire axis and the

velocity vector of a given tire (see Figure 2.11). When the plane of a rolling wheel is yawed
relative to the direction of motion, lateral force Fy acting perpendicular to tire axis, is
produced as a result of the tire deformation.

For small yaw angles (sya), coefficient of lateral friction µsya is a function of tire yaw
angle ψ, tire pressure p (including maximal attainable tire pressure, rated pressure pr)
and its parameters: undeflected tire diameter d and width w. The tire parameters are
assumed to be constant in the model, which does not fully corresponds with the reality.
These parameters might dynamically change under different aircraft settings and ground
roll situations but since the effect of such changes has minor effect on final model, one can
assume theses numbers to be constant without any noticeable loss of information.

Maximum µψmax and limiting µψlim
lateral friction coefficients are influencing lateral

friction coefficient depending on whether the brakes are applied. In case no brakes are
applied the maximum lateral friction coefficient µψmax is used, otherwise the limiting lateral
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Figure 2.11: Tire yaw angle ψ. Axis of local tire coordinate system is denoted as xt.

friction coefficient µψlim
is used. Formulas in following sections are presented assuming no

brakes being applied [5].

µsya = µψmax |φ−
4

27
φ3|, for |φ| < 1.5,

µsya = µψmax , for |φ| ≥ 1.5. (2.39)

Function φ of tire yaw angle ψ is defined as:

φ =
Nψ

µψmaxFz
, (2.40)

and function N of tire characteristics is defined as:

N = 31.3w2(p+ 0.44pr)(1− 3.17x)x, (2.41)

x =
Fz

pd
√
wd

. (2.42)

For large yaw angles (lya) beyond the ψlim, lateral friction coefficient decreases. Good
approximation for the ψlim is given by

ψlim =
2µψmax(
∂µψ
∂ψ

)
ψ=0

≈ 2µψmax

Fz
N
. (2.43)

It is the value of ψ at the intersection of the µψ vs. ψ curve with a line from the origin
at half the initial slope of the curve.

Lateral friction coefficient µlya at large yaw angles is then defined as:

µlya = µskid + j(µψmax − µskid), for µψmax > µskid,

µlya = µψmax , for µψmax ≤ µskid. (2.44)

Subsidiary function j used to define the lateral friction coefficient at large yaw angles is
defined as:

j = 1− 1.93i, for i < 0.3,

j = 0.58− 0.575i, for i ≥ 0.3. (2.45)

Subsidiary function i is defined as:

i =
ψ − ψlim
π/2− ψlim

. (2.46)
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Allowing for positive and negative values of ψ and allowing values of ψ up to 180◦ we obtain
following definition:

i = 0, for 0 ≤ |ψ| < ψlim, (2.47)

i =
|ψ| − ψlim
π/2− ψlim

, for ψlim ≤ |ψ| < π/2, (2.48)

i = 2 +
ψlim − |ψ|
pi/2− ψlim

, for π/2 ≤ |ψ| < π − ψlim, (2.49)

i = 0, for π − ψlim ≤ |ψ|. (2.50)

Because of the definition of function i we need to adjust formula (2.37) in order to allow
for negative tire yaw angles ψ:

Fy = Fzµψ, for ψ > 0, (2.51)

Fy = −Fzµψ, for ψ < 0. (2.52)

Figure 2.12: Lateral friction coefficient µψ as a function of the tire yaw angle ψ.

Figure 2.13: Lateral friction coefficient µψ as a function of the tire velocity.
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Figure 2.14: Lateral friction coefficient µψ as a function of braking force ratio kB applied.

2.2.5 Engine Model

A single aisle passenger aircraft (Boeing 737-400) equipped with two two high-bypass tur-
bofan engines providing maximum thrust power of approximately 110 kN each is considered
in this study.

The principle of how such engine works is that the incoming air is captured by the engine
inlet and is accelerated inside the engine. Some of the incoming air passes through the fan,
which is basically a large diameter propeller and continues into the core compressor with
multiple stages gradually increasing the air pressure. Then the air gets into the burner,
where it is mixed with jet fuel and the combustion occurs. The hot exhaust gases (reaching
temperatures up to 1700◦) pass through the core and multiple-stage turbines, where the
high pressure gas is reduced as it drives the compressor and the fan. Finally, the air mixed
with exhaust gases then leaves the nozzle. The rest of the incoming air passes through the
fan and bypasses, or goes around the engine, just like the air through a propeller. The air
that goes through the fan has a velocity that is slightly increased from free stream. So a
turbofan gets some of its thrust from the core and some of its thrust from the fan. The
ratio of the air that goes around the engine to the air that goes through the core is called
the bypass ratio. In case of the high-bypass turbofan engine considered in this thesis, most
of the incoming air bypasses the core (≈ 80%) providing most of the thrust power [19].

The propulsion efficiency is a function of the relative airspeed of the exhaust to the
surrounding air, therefore classical propeller engines are most efficient at low speed, pure
jet engines at high (supersonic) speed and turbofan are most efficient at some point be-
tween these two at speeds reaching 500-1000 km/h which is the operational speed of most
commercial aircrafts.

The model of a typical high by-pass ratio two-shaft gas turbine for civil aircraft engine
contains high dimensional parameter space. Multiple input signal are identified, including
fuel flow, inlet guide vanes position and bleed flow. Most relevant output signals include
low pressure rotor (fan) and high pressure rotor (compressor) speeds, low pressure turbine
pressure and temperature of gas at high pressure turbine [19]. During normal operation, an
aircraft turbofan engine experiences large changes in ambient temperature, pressure, Mach
number, and power output level. Consequently, the engine dynamics change in a significant
nonlinear manner, therefore for authentic simulation these factors need to be considered.
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Figure 2.15: A schematic diagram illustrating the operation of a 2-spool, high-bypass tur-
bofan engine [1].

However, in the case of ground motion model a lot of parameters are fixed or limited
to very small operational range so that one can avoid an over-complex model definition.
Under these assumptions, equivalent second-order model can be easily derived from the
original high-dimensional description. The main control variables can be simplified to two
signals that are fuel flow and fan speed. The dynamics of the engine are then defined by a
second order transfer function fuel of flow to fan speed, which is of a key relevance in the
engine control. Fuel flow is controlled by a throttle and engine output thrust is directly
proportional to the fan speed.

H(s) =
FxTmax

s2 + 2s+ 1
+ FxT const. (2.53)

Figure 2.16: The unit step response of the engine model. Unit step signal is amplified by a
factor of 104 for better readibility.
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3. Design and Implementation of Aircraft
Taxi Simulation Model

In the previous chapter, a mathematical model of the aircraft ground motion was defined.
The mathematical model is an abstraction of reality, making various assumptions and lim-
iting the boundaries of acceptable values of system variables. However the most important
aspects of reality are present in a mathematical model in a form of a mathematical relations
approximating the observed reality. The mathematical relations describe the behavior of
an aircraft in ground operations under various environmental conditions so that the sim-
ulation result is as close as possible to real behavior of the system. The evolution of the
system strictly obeys the physical laws that govern the real physical processes in the sim-
ulation region. Then the result of such simulation can have a good representation of the
real environment.

Next step is transforming the mathematical model into a simulation model in form of
a software product that is executable on appropriate computer platform. With such model
one can perform simulations of the aircraft movement. Simulation allows us to experiment
with the model and evaluate experiments that would be too expensive to perform in reality
or not even possible to perform at all. From the result of such simulation one can safely
draw conclusions and have a better understanding of the system and reality. Based on
observation and experimentation with modeled system, knowledge can be obtained. This
knowledge is then described in a form of mathematical equations and physical laws that
form the mathematical model (also known as abstract model). Representing the abstract
model by programming language makes executable simulation model that one can use to
learn more about reality and modeled environment (see Figure 3.1).

Knowledge Modelling

Knowledge

Figure 3.1: The principle of modelling and simulation.

Numerical simulations need vast computer resources. Simulating complex problems
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requires usage of supercomputers and a large amount of computer resources, such as com-
pute time or compute cores. It is more expensive than theoretical study but it is still
much cheaper than experiments using real aircrafts. The rapid development of the com-
puter industry is providing more and more powerful computing resources for a numerical
simulation, which also makes numerical simulation more applicable to a wider area and
more complex problems. Unlike observation which has time and space limitations, as long
as there is enough observation basis, numerical techniques can simulate a very large scale
regions and run almost unlimited long periods of time. Unlike theoretical study, which can
not treat complex problems, numerical simulation can deal with many physical processes
at the same time. Even nonlinear processes pose no difficulty to numerical simulation [30].

Figure 3.2: Aircraft ground motion simulation.

3.1 Numerical Methods

Presented system is modeled by a set of ordinary differential equations (ODE) - equations of
motion ((2.12), (2.13) and (2.14)) based on Newtonian physics. The overwhelming majority
of ODE do not have exact solution, which can be expressed in terms of simple functions.
For this reason, one must rely on numerical methods that produce approximations to the
desired solutions [18]. A first-order differential equation is an Initial value problem (IVP)
of the form:

y′(t) = f(t, y(t)), y(t0) = y0, (3.1)

where f is a function that maps < t0,∞)×Rd to Rd, and the initial condition y0 ∈ Rd is a
given vector. First-order means that only the first derivative of y appears in the equation,
and higher order derivatives are not included. In fact, first order equations are present only
in case where the velocity derivate is expressed as sum of forces and moments. In order
to obtain position of the aircraft, the second derivate appears in the equations. Without
loss of generality, higher-order ODE can be converted into a larger system of first-order
equations by introducing extra variables [18].
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3.1.1 Euler Method

Euler method is a numerical procedure for solving ODE with a given initial value. From
any point on a curve, you can find an approximation of a nearby point on the curve by
moving a short distance along a line tangent to the curve. Starting with the differential
equation (3.1), the derivative y′ is replaced by the finite difference approximation

y′(t) ≈ y(t+ h)− y(t)

h
, (3.2)

which when re-arranged yields the following formula

y(t+ h) ≈ y(t) + hy′(t). (3.3)

Substituting y′ from (3.1) gives:

y(t+ h) ≈ y(t) + hf(t, y(t)). (3.4)

This formula is usually applied in a way that reasonable step size h is chosen to compute
the sequence t0, t1 = t0 +h, t2 = t0 + 2h and so on. We denote by yn a numerical estimate
of the exact solution y(tn). Motivated by (3.4), we compute these estimates by following
recursive scheme:

yn+1 = yn + hf(tn, yn). (3.5)

The Euler method is an an explicit method, which means that the new value yn+1 is
defined in terms of values that are already known, like yn. The backward Euler method is
an implicit method, meaning that an equation must be solved in order to find yn+1:

yn+1 = yn + hf(tn+1, yn+1). (3.6)

It costs more time to solve this equation than explicit method and this cost must be taken
into consideration when one selects the method to use. The advantage of implicit methods
such as backward Euler is that they are usually more stable for solving a stiff equation,
meaning that a larger step size h can be used. Another advantage of implicit methods is
the increased stability and accuracy, which is limited in standard Euler method [14].

Stiffness is often caused by the presence of different time scales in the underlying prob-
lem. Stiff problems are ubiquitous in control theory that deals with the behavior of dynam-
ical systems with inputs, and describes how their behavior is modified by feedback. Control
theory for the presented model will be described in later sections of this text.

3.1.2 Runge-Kutta Methods

Runge-Kutta methods are procedures of numerically integrating ordinary differential equa-
tions by using a trial step. They are known to be very accurate and well-behaved for a
wide range of problems.
The second order RK2 takes a form:

k1 = hf(t, y(t)), (3.7a)

k2 = hf(t+
h

2
, y(t) +

k1

2
), (3.7b)

y(t+ h) = y(t) + k2. (3.7c)
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Fourth order RK4 takes a form:

k1 = hf(t, y(t)), (3.8a)

k2 = hf(t+
h

2
, y(t) +

k1

2
), (3.8b)

k3 = hf(t+
h

2
, y(t) +

k2

2
), (3.8c)

k4 = hf(t+ h, y(t) + k3), (3.8d)

y(t+ h) = y(t) +
k1

6
+
k2

3
+
k3

3
+
k4

6
. (3.8e)

This method is reasonably simple and robust and is a good general candidate for numeri-
cal solution of differential equations when combined with an intelligent adaptive step-size
routine.

3.1.3 Multistep Adams’ Methods

Up to now, all studied methods were single step methods. As opposed to single-step meth-
ods, which only utilize one previous value of the numerical solution to approximate the
subsequent value, multistep methods approximate numerical values of the solution by re-
ferring to more than one previous value. Accordingly, multistep methods may often achieve
greater accuracy than one-step methods that use the same number of function evaluations,
since they utilize more information about the known portion of the solution than one-step
methods do [13].

Consider the first order ODE as defined in (3.1). If we want to integrate from tn+1 to
tn+2 we have:

y(tn+2)− y(tn+1) =

∫ tn+2

tn+1

f(t, y(t))dt. (3.9)

This motivates the second-order Adams-Bashforth method:

yn+2 = yn+1 +
h

2
[3f(tn+1, yn+1)− f(tn, yn)] . (3.10)

Since formula (3.10) involves two previously computed solution values, this method is
known as a two-step method. Note that this method requires two initial conditions. Since
the IVP will give us only one initial condition in practice one often precedes the Adams-
Bashforth method by one step of, e.g., a second-order Runge-Kutta method to obtain
remaining starting values of the multi-step method.

In general, a nth-order Adams method is obtained by replacing the integrand f in (3.9)
by a polynomial of degree p−1. However, the Adams-Bashforth (AB) method is an explicit
method that uses the most recent information as well as p − 1 previous points to fit the
polynomial. The pth-order Adams-Moulton method (AM) is an implicit method that fits
the polynomial to the point to be determined next, the current point, and p − 2 previous
points [14]. Adams-Moulton methods have smaller error constants, use less steps, and
have larger stability regions than their Adams-Bashforth counterparts (of the same order).
However, AM methods using more than one step tend to have smaller regions of absolute
stability than other implicit methods such as Runge-Kutta methods [13].

Combining Adams-Bashforth and Adams-Moulton methods we get predictor-corrector
methods. First, the prediction step calculates a rough approximation of the desired quan-
tity, typically using an explicit AB method. Second, the corrector step refines the initial
approximation using another means, typically an implicit AM method.
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3.1.4 Variable Step Solvers

All of the above methods involved fixed step size implementations of various algorithms.
That is, step size h have to be specified explicitly. It is possible to have the algorithm itself
select, for each step, the step size that it thinks will most efficiently give a specified accuracy.
That means step size varies from step to step, depending on model dynamics [16]. Step size
is reduced when model states change rapidly, to maintain accuracy and on the other hand,
step size is increased when model states change slowly, to avoid unnecessary steps which
consume precious compute time and resources. Variable-step is recommended for models in
which states change rapidly or that contain discontinuities. In these cases, a variable-step
solver requires fewer time steps than a fixed-step solver to achieve a comparable level of
accuracy. This can significantly shorten simulation time.

Suppose we want to generate an approximation to the initial value problem as defined
in (3.1) for some range of t’s and we want the error introduced per unit increase of t to be
no more than about ε. Suppose further that we have already produced the approximate
solution as far as tn. The rough strategy is as follows. We do the step from tn to tn + h
twice using two different algorithms, giving two different answers, that we call A1 and A2.
The two algorithms are chosen so that:

• we can use A1 −A2 to compute an approximate local truncation error

• the two algorithms use almost the same evaluations of f .

In case that the local truncation error, divided by h, (i.e. the error per unit increase of t)
is smaller than ε, we set tn+1 = tn +h, accept A2 as the approximate value for y(tn+1) and
move on to the next step. Otherwise we pick, using what we have learned from A1 −A2, a
new trial step size h and start over again at tn.

Let’s assume that φ(t) is the exact solution to IVP y′ = f(t, y(t)) that satisfies the
initial condition φ(tn) = yn. If we apply one step of Euler with step size h, giving

A1 = yn + hf(tn, yn), (3.11)

we know that
A1 = φ(tn + h) +Kh2 +O(h3). (3.12)

The problem of course is that we do not know what the error is, even approximately,
because we do not know what the constant K is. But we can determine K simply by
redoing the step from tn to tn+h using a judiciously chosen second algorithm. There are
a number of different second algorithms that will work. We will use two step Euler. One
step of Euler-2step with step size h just consists of doing two steps of Euler of size h/2:

A2 = yn +
h

2
f(tn, yn) +

h

2
f

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
. (3.13)

The local truncation error introduced in the first half-step is K(h/2)2 + O(h3). That for
the second half-step is K(h/2)2 + O(h3) with the same K, though a different O(h3). All
together

A2 = φ(tn + h) +
1

2
Kh2 +O(h3). (3.14)

The difference is

A1 −A2 = φ(tn + h) +Kh2 +O(h3)− φ(tn + h)− 1

2
Kh2 −O(h3) (3.15)

=
1

2
Kh2 +O(h3). (3.16)
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So if we do one step of both Euler and Euler-2step, we can estimate

1

2
Kh2 = A1 −A2 +O(h3) (3.17)

We now know that in the step just completed Euler-2step introduced an error of about
1
2Kh

2 ≈ A1 − A2. That is, the current error rate is about r = |A1−A2|
h ≈ 1

2Kh per unit
increase of t. If r > ε, we reject A2 and repeat the current step with a new trial step size
h′ chosen so that 1

2 |K|h
′ ≈ r

hh
′ < ε.

If |A1 − A2|/h < ε we could accept A2 as an approximate value for y(tn+1 = tn + h)
and move on to the next step. But φ(tn + h) = A2 − 1

2Kh
2 + O(h3) = 2A2 − A1 + O(h3),

so we do better by setting
yn+1 = 2A2 −A1 (3.18)

For the next step, we would repeat the whole process, starting with a trial step size
h′ = .9 εrh to give ourselves a small safety margin [16].

3.2 Simulink Modeling Tool

Simulinkr is a graphical modelling tool for modeling, simulating and analyzing multido-
main dynamic systems by signal flow graphs. Its primary interface is a graphical block
diagramming tool and a customizable set of block libraries. Simulinkr is widely used in
control theory and digital signal processing for multidomain simulation. It can automat-
ically generate C source code for real-time implementation of systems. As the efficiency
and flexibility of the code improves, this is becoming more widely adopted for production
systems, in addition to being a popular tool for embedded system design work because of
its flexibility and capacity for quick iteration [8].

Figure 3.3: Simulinkr model of the aircraft ground motion model and AutoTaxi controller.

Model in simulink consists of basic elements - blocks, that are characterized by input,
output and its functionality encapsulated inside the block. Various blocks are provided by
simulink block libraries, such as Math library that provides mathematical and trigonometric
functions and arithmetic, logical and relational operators. System programmer can use
these block as basic building elements for his model. The signal routes enable to interconnect
the blocks and feed the output of one block to input of another or feed-back the signal back
to input port in case of closed loop systems. A set of blocks can be grouped into subsystem,
creating new block with its inputs and outputs. Such scheme allows modular development
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by combining blocks of similar function and create hierarchic structures of blocks allowing
to create complex models.

Simulinkr provides rich scale of numerical methods, including those listed above. Sys-
tem programmer can select numerical solver, that computes a dynamic system’s states at
successive time steps over a specified time span and has option of configuring the numerical
simulation, such as specifying the simulation start and stop time, specifying step size in
case of fixed-step solvers or maximum/minimum step size and error tolerance in case of
variable-step solvers [8].

3.2.1 Fixed Step Solvers

Fixed step solvers include [20]:

• ode1 (Euler) - Uses the Euler integration method to compute the model state at
the next time step as an explicit function of the current value of the state and the
state derivatives.

• ode3 (Bogacki-Shampine) - Computes the model’s state at the next time step as an
explicit function of the current value of the state and the state derivatives, using the
Bogacki-Shampine Formula integration technique to compute the state derivatives.

• ode4 (Runge-Kutta) - Uses the fourth-order Runge-Kutta (RK4) formula to com-
pute the model state at the next time step as an explicit function of the current value
of the state and the state derivatives.

• ode8 (Dormand-Prince RK8(7)) - Uses the eighth-order Dormand-Prince formula
to compute the model state at the next time step as an explicit function of the current
value of the state and the state derivatives approximated at intermediate points.

3.2.2 Variable Step Solvers

Variable step solvers include [20]:

• ode45 (Dormand-Prince) - Computes the model’s state at the next time step
using an explicit Runge-Kutta (4,5) formula (the Dormand-Prince pair) for numerical
integration.

• ode23 (Bogacki-Shampine) - Computes the model’s state at the next time step
using an explicit Runge-Kutta (2,3) formula (the Bogacki-Shampine pair) for numer-
ical integration. ode23 is a one-step solver, and therefore only needs the solution at
the preceding time point. ode23 is more efficient than ode45 at crude tolerances and
in the presence of mild stiffness.

• ode113 (Adams) - Computes the model’s state at the next time step using a
variable-order Adams-Bashforth-Moulton predictor/corrector numerical integration
technique. ode113 is a multistep solver, and thus generally needs the solutions at
several preceding time points to compute the current solution. ode113 can be more
efficient than ode45 at stringent tolerances.
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• ode15s (stiff/NDF) - Computes the model’s state at the next time step using
variable-order numerical differentiation formulas. These are related to, but more
efficient than the backward differentiation formulas, also known as Gear’s method.
ode15s is a multistep solver, and thus generally needs the solutions at several preced-
ing time points to compute the current solution. ode15s is efficient for stiff problems.
This solver should be considered if ode45 fails or is inefficient.

• ode23s (stiff/Mod. Rosenbrock) - Computes the model’s state at the next time
step using a modified Rosenbrock formula of order 2. ode23s is a one-step solver, and
therefore only needs the solution at the preceding time point. ode23s is more efficient
than ode15s at crude tolerances, and can solve stiff problems for which ode15s is
ineffective.

• ode23tb (stiff/TR-BDF2) - Computes the model’s state at the next time step using
a multistep implementation of TR-BDF2, an implicit Runge-Kutta formula with a
trapezoidal rule first stage, and a second stage consisting of a backward differentiation
formula of order two. By construction, the same iteration matrix is used in evaluating
both stages. ode23tb is more efficient than ode15s at crude tolerances, and can solve
stiff problems for which ode15s is ineffective.

Identifying the optimal solver for a model requires experimentation. The optimal solver
should balance acceptable accuracy with the shortest simulation time. General rules for
selecting solver properties are that a smaller step size increases accuracy, but also increases
simulation time and the degree of computational complexity increases for oden, as n in-
creases. As a result of increasing the computational complexity, one obtains increased
accuracy of the results [20].

For presented model, fixed step Bogacki-Shampine solver is used. It computes the
model’s state at the next time step as an explicit function of the current value of the
state and the state derivatives, using the Bogacki-Shampine Formula integration technique.
Variable step solver are not efficient for presented model, since there is a large number of
zero crossings. The variable step solvers are trying to hit the exact zero-crossing occurrence
in time. Therefore the step size is reduced to overly fine-grained size. Simulation is then
consuming vast compute resources and compute time is unnecessary long.

3.3 Ground Motion Simulation Model

The core of the presented system is modeled by a system of ordinary differential equations
(ODE) - equations of motion (eqation (2.12), (2.13) and (2.14)) based on the Newtonian
physics. The overwhelming majority of ODE do not have exact solution that can be ex-
pressed in terms of simple functions. For this reason, one must rely on numerical methods
that produce approximations to the desired solutions as described in previous sections.

The numeric integration in Simulinkr is implemented in the Integrator block. The
Integrator block outputs the value of the integral of its input signal with respect to time.
Simulinkr uses numerical approximation methods to evaluate ODE with finite precision.
Simulinkr can use a number of different numerical integration methods to compute the
Integrator block’s output, each with advantages in particular applications. The selected
numerical solver computes the output of the Integrator block at the current time step,
using the current input value and the value of the state at the previous time step. To
support this computational model, the Integrator block saves its output at the current time
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step for use by the solver to compute its output at the next time step. The Integrator block
also provides the solver with an initial condition for use in computing the block’s initial
state at the beginning of a simulation [8].

3.3.1 Equations of Motion

Figure 3.4: Simulinkr model of vx velocity component representing the first Equation of
Motion.

The Figure 3.4 represents implementation of the first Equation of Motion (2.12) with
the Integrator block in the rightmost part of the figure. Input to the Integrator is the sum
of force components in xB axis (BFF reference frame) acting on the aircraft. These force
contributions are integrated over time where the output is component of velocity in xB axis
of BFF reference frame. There is also input port that resets the integrator and the port
with initial condition that is used at the beginning of simulation when no previous value of
integrator state is available. Initial value is defined in Matlab script, that is executed before
the simulation to initialize the whole simulation model by providing values of parameters
such as initial conditions for integrators (position, heading, velocity), characteristics of
aircraft (dimensions, load, tire pressure) and environment conditions influencing the surface
contamination of the runway surface.

Figure 3.5: Simulinkr model of vy velocity component in terms of numerical integration.
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The Integrator block’s state port, labeled as output port v X state (in Figure 3.4),
enables us to avoid an algebraic loop when creating an integrator that resets itself based on
the value of its output. The output of the state port is the same as the output of the block’s
standard output port except for the case when the block is reset in the current time step.
The output of the state port is the value that would have appeared at the block’s standard
output if the block had not been reset. This feature is introduced to the presented model in
order to suppress the velocity of negative amplitudes. The longitudinal forces are defined
as a function of vertical forces that are present at all times, meaning that aircraft would
start moving even if no thrust is being applied. Self-reseting integrator is used in order to
model the static friction, that allows aircraft motion only if forward force reaches certain
threshold. After this point, regular kinetic friction coefficients are used. These coefficients
are described in chapter 2.

Figure 3.6: Simulinkr model of the angular velocity ωz around zB axis.

The remaining two equations of motion are modeled in the same manner, as can be seen
in Figure 3.5 representing integration of force components in in yB axis into the component
vy of velocity vector. Figure 3.6 represents third equation of motion, which models the
angular velocity ωz about vertical axis zB of the BFF reference frame based on the force
moments acting on the aircraft.

Individual force components are connected to the blocks encapsulating Equations of
Motion (see Figure 3.7). The Equations of Motion are implemented in blocks Velocity,
where velocity vector components (vx, vy) are computed and block Angular Velocity that
is computing ωz.

3.3.2 Tire Forces Model

Simulinkr model of the tire forces is decomposed into three sub-models including model of
vertical forces, longitudinal forces and lateral forces. Vertical forces directly influence the
amplitude of longitudinal and lateral forces. After longitudinal and lateral forces are com-
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Figure 3.7: Overall Simulinkr design scheme of the Equations of Motion.

puted at the current time-step, the signals representing forces are then connected to input
ports of blocks modeling previously described equations of motion (Figure 3.7). In other
words, the force interactions are transformed into motion characteristics of the airplane.

Vertical forces are computed at first. Vertical forces are formed as a response to
gravitational force and represents the load distribution of aircraft weight to individual struts
and corresponding wheels and its tires. The distribution of aircraft load is represented by
equation (2.20) and its model is shown in Figure 3.8. The Solver block computes the
algebraic equation derivable from equation (2.20) resulting into the vertical force acting on
the main strut of the aircraft, which is equal for both left and right strut. This force is
than used to compute vertical force acting on aircraft’s front nose-wheel strut.

Figure 3.8: Simulinkr model of load balancing defining the vertical forces.
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Model of longitudinal forces consists of the rolling friction and the effective braking
friction in case the brakes are being applied. Braking, of course, applies only to main
wheels. Both rolling friction and effective braking coefficients depend on various factors,
including the aircraft velocity and the environmental conditions. Therefore these coefficients
cannot be static constants defined in the model but rather dynamically changing variables.
These varying coefficients are computed in a different block, as described in section 3.3.4.
According to the modular design concept, one can abstract these coefficients as constants
provided by signal bus coeffs. In fact, the signal bus just encapsulates output of the block
that dynamically computes the varying friction and braking coefficients.

The definitive longitudinal forces are computed by summing the retarding rolling friction
efforts and braking forces (Figure 3.9) as defined by Equation (2.22).

Figure 3.9: Simulinkr model of the longitudinal tire forces Fx∗.

Model of lateral forces with emphasis on high-detailed modeling is an essential
requirement for a high-precision simulation. It represents the maneuvering abilities and
characteristics of an aircraft in various environmental and operational conditions. It de-
termines the forces formed in the tire in situations when the tire is yawed relative to its
velocity vector, which occurs during the aircraft turns.

The model of lateral forces considers and includes various factors, namely the environ-
mental conditions of the runway surface, operational characteristics of an aircraft including
tire load and velocity and reduced lateral friction when wheel brakes are being applied. All
these factors constitute the final value of the lateral friction coefficient µψ, which determines
the lateral force in a given situation. Simulinkr model of computing the lateral friction
coefficient µψ and consecutively lateral force Fy, is shown in Figure 3.10. The underlying
mathematical model is described in section 2.2.4.

The lateral friction coefficients has different characteristics in case of a small and large
tire yaw angle. The model is designed so that it computes lateral friction coefficient for both
situations and selects appropriate alternative based on the actual tire yaw angle according
to equation (2.38). This structure is implemented in Simulinkr by a block evaluating
the equation (2.43) labeled as PSI limit, condition block and the Multiport Switch block
that chooses among two inputs - small yaw angle and large yaw angle. The first input to
Multiport Switch block is the control input, while the others are data inputs. The value of
the control input determines which input data passes to the output port.
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Figure 3.10: Simulinkr model of the lateral friction coefficient µψ and the lateral tire force
Fy.

Figure 3.11: Simulinkr model of the lateral friction coefficient for a small tire yaw angle
µsya.

Lateral friction coefficient in case of a small tire yaw angle is a function of tire charac-
teristics N , vertical tire load Fz, maximum lateral friction µψmax and actual tire yaw angle
µ. There is an introduced nonlinearity based on the value of φ (equation 2.40) which switch
between two values of lateral friction coefficient µsya according to the equation (2.39). The
Simulinkr block scheme is in Figure 3.11.

The value of the lateral friction coefficient is increasing with the increasing tire yaw
angle, up to a certain tipping point ψlim defined by the equation (2.43). After reaching
this point, lateral friction coefficient starts decreasing with an increasing tire yaw angle.
Subsidiary functions i and j (equation 2.46 and 2.45 respectively) are used to model the
lateral friction coefficient for large tire yaw angle. The value of lateral friction coefficient
further depends on relation between µψmax and µskid as defined in equation (2.44). To
provide an correct alternative according to aforementioned equation, we incorporate If
Action Subsystem in the Simulinkr model (Figure 3.12). Action subsystems are subsystems
that execute in response to a conditional output from an If block. In essence, they are
subsystems with an Action port, which allow for block execution based on conditional
inputs from an If block. If action block is not active its output is zero. Therefore, simple
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Figure 3.12: Simulinkr model of the lateral friction coefficient for a large tire yaw angle
µlya.

addition block is used in order to merge two signals from If and Else action blocks into
single continuous signal.

3.3.3 Propulsion Model

Model of an engine is composed of an abstraction of multiple control signals thus allowing
simple second order model. Complex propulsion model is not required since most of the
engine control signals have very limited or fixed operational range in case of a ground
motion. Under these assumptions, one can easily derive an equivalent second-order model,
considering throttle as input signal and engine generated force as an output.

The behavior of the engine is modeled by a second order transfer function (equation
(2.53)) implemented by the Transfer Fcn block in Simulinkr. The Transfer Fcn block
models a linear system by a transfer function of the Laplace-domain variable s. The nu-
merator coefficient represents the maximum force generated by an engine at fully opened
throttle (throttle actuator is at maximal position) and denominator specifies the response
of a engine to change in the throttle position, that is simulating behavior of the engine.
Small constant is added, which represents thrust of the engine generated when the throttle
actuator is in minimal position. The output of transfer function would stabilize at zero
after some settle time, however in reality engine generates some small force even if throttle
is in this minimal position.

Figure 3.13: Simulinkr model of the jet engine.
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3.3.4 Environment Model

The characteristics of the aircraft ground motion are greatly influenced by runway surface
conditions. The tire interacts differently with runway surface in wet, dry or snow contami-
nated conditions. In order to provide model with high-precision modeling capabilities one
needs to consider these environment factors.

In the presented model, three different environment conditions of concrete runway are
considered. Namely: standard dry conditions, wet runway surface and snow/ice contami-
nated runway surface. These conditions provide a wide operational scale for the simulation
and suffice most of the scenarios required for an AutoTaxi simulations. The specific envi-
ronment is selected in a configuration file and does not change throughout the simulation.
The simulation is intended to be used for an individual taxi trials simulations that does not
span long temporal horizons, therefore it is highly probable that the environmental con-
ditions will remain constant. The scheme of environment model is shown in Figure 3.14.
Modular design of the model allows easy implementation with more environmental models,
such as adding natural surfaces including grass, dirt or gravel.

Figure 3.14: Simulinkr model of the environment.

Each environment is implemented as an individual module where the output of each
module is a bus consisting of the environment specific coefficients. Some coefficients are also
influenced by the actual state of the aircraft, such as its speed, tire pressure or application
of brakes. These factors are input signals to the corresponding blocks. The structure of
block representing standard dry environment contains sub-blocks that compute the rolling
friction coefficient; coefficients associated with the braking performance - maximum braking
coefficient and the efficient braking coefficient considering performance of ABS; sliding
friction in case of fully skid wheel; and finally the coefficients associated with the lateral
forces with or without braking.
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4. AutoTaxi Controller Design

In previous chapters we have defined the mathematical model of an aircraft ground mo-
tion and described its transformation to a simulation model implemented using MATLAB
Simulinkr environment with a focus on various aspect of the numerical analysis. This chap-
ter will consider the aircraft ground motion model as a dynamic system (in control theory
often referred to as plant) with its inputs, outputs and feedback loop that will control the
aircraft’s behavior. The controller module will provide steering signals to the aircraft based
on some reference values that describe the desired behavior of the aircraft, namely the
desired velocity and target trajectory and the final destination.

4.1 System Definition

Behavior of the aircraft is modeled as dynamical system. In general, system is any set of ele-
ments connected together by the signal links with defined spatial and temporal boundaries.
System S is formally defined as a pair:

S = (U,R), (4.1)

where:

• universum U is finite set of system elements U = {u1, u2, . . . , un},

• System element u is a pair (X,Y ) where:

– X is set of all input ports (variables),

– Y is set of all output ports (variables),

• system characteristic R is set of all interconnections

R =
n⋃

i,j=1

Rij ,

where Rij ⊆ Yi ×Xj denotes interconnection of element ui with element uj [26].
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Figure 4.1: Illustration of an generic system consisting of four interconnected elements
U = {u1, u2, u3, u4} with two global system inputs x1, x2 and one output y1.

4.2 Control Theory

The control theory deals with the analysis of the dynamic systems and methodologies to
construct controllers. The main objective of the control theory is to control a system, so its
output follows a desired control signal, called the reference signal, which may be fixed or
changing in nature. The controller monitors the output and compares it with the reference
signal. The difference between the actual and the desired output, called the error signal, is
applied as a feedback to the input of the system, in order to bring the actual output closer
to the reference [21].

Reference
signal

Measured
error

Measured output

System

Sensor

SystemController
input

System
output

Figure 4.2: The concept of the feedback loop to control the behavior of the dynamic system.

A dynamic system is a system that changes its states over time. A mathematical model
that describes the swinging of a clock pendulum or the ground motion model of an aircraft
are both examples of a dynamic systems. Secondly, control theory is most interested and
very powerful when dealing with linear systems. A linear system is a model of a system
based on the utlization of a linear operator, that always maps linear subspace onto another
linear subspace, which basically means that the output is proportional to the input. A
major subclass of linear systems are linear time invariant (LTI) systems, which in addition
have parameters which do not change over time [21].

4.2.1 PID Controller

A proportional-integral-derivative controller is a control loop feedback mechanism widely
used in the industrial control systems. A PID controller calculates an error value as a
difference between the measured system output and the desired system output. The con-
troller attempts to minimize the error by adjusting the system behavior through the use of
a system input variable.
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The PID control scheme is named after its three parameters: the proportional, integral,
and derivative terms. These terms are summed to calculate the output of the PID controller.
Defining u(t) as the controller output and e(t) as the input error signal, the final form of
the PID algorithm is:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t). (4.2)

With its three-term functionality covering treatment to both transient and steady-state
responses, PID control offers the simplest and yet most efficient solution to many real-world
control problems. With advances in digital technology, the science of automatic control now
offers a wide spectrum of choices for control schemes. However, more than 90% of industrial
controllers are still implemented based around PID algorithms, particularly at lowest levels
[4].

Plant

Sensor

Controller

Figure 4.3: PID feedback loop controller.

Proportional term produces an output value that is proportional to the current
error value. The proportional response can be adjusted by multiplying the error by a
proportional gain Kp. A high proportional gain results in a large change in the output for
a given change in the error. If the proportional gain is too high, the system can become
unstable, which basically means that output of the controlled process will diverge. In
contrast, a small gain results in a small output response to a large input error, and a less
responsive or less sensitive controller. If the proportional gain is too low, the control action
may be too small when responding to system disturbances.

Integral term contribution to controller output is proportional to both the magni-
tude of the error and the duration of the error. The integral term in a PID controller is
the sum of the instantaneous error over time and gives the accumulated offset that should
have been corrected previously. The accumulated error is then multiplied by the integral
gain Ki and added to the controller output. The integral term accelerates the motion of
the process towards desired target value and eliminates the residual steady-state error that
occurs with a pure proportional controller. However, since the integral term responds to
accumulated errors from the past, it can cause the present value to overshoot the target
value.
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Derivate term of the system error is calculated by determining the slope of the
error over time and multiplying this rate of change by the derivative gain Kd. Derivative
action predicts system behavior and thus improves settling time and stability of the system.
An ideal derivative is not causal, so that implementations of PID controllers include an
additional low pass filtering for the derivative term, to limit the high frequency gain and
noise. In fact, derivative action is seldom used in practice because of its variable impact on
system stability in real-world applications [4].

4.3 Controller Implementation

The design and the implementation of the aircraft ground motion was discussed in the
previous chapters. Now, we can abstract the aircraft model as a dynamic system (in
control theory referred to as plant) with its inputs, outputs and create a feedback loop that
will control the aircraft behavior. The controller module will provide steering signals to
the aircraft based on the reference values that describe the desired behavior of the aircraft,
namely desired velocity and a target trajectory.

The general scheme of the controller module is shown in Figure 4.4. The input signals
to the controller module are the current position and velocity vector. Position vector
Pos = [X,Y,Ψ] contains coordinates of the aircraft on two-dimensional plane and also the
heading angle Ψ. Velocity vector V elo = [vx, vy] contains velocity components in the main
axes of the BFF coordinate system. Velocity vector is specified in BFF reference frame,
while position vector is defined in earth-fixed Navigational reference frame.

The controller module further contains three submodules, where each of theses submod-
ules provides control of the specific aspects of the aircraft ground motion. The Direction
control provides steering signal the for nose-wheel, Velocity control provides control signal
for the throttle and finally Brakes control provides braking signals for each wheel of the
main landing gear.

Figure 4.4: Scheme of the AutoTaxi controller.

4.3.1 Directional Control

The objective for the directional control is to move the aircraft in a direction of the desired
heading. The control variable is a steering angle and the controlled variable is the heading
(yaw), where the control signal is provided by two PID controllers that modify steering angle
based on the error of current heading with respect to desired heading and displacement of
the aircraft from the optimal trajectory. The controllers design is discussed below.

Taxiways on the airports use special marking for the centerlines (Figure 4.5), which are
used as a reference trajectory for the nose-wheel steering by pilots during manual taxiing
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Figure 4.5: Taxi-lines marking on the Vaclav Havel International Airport in Prague.

maneuvers. We use these centerlines as a reference trajectory for the evaluation of the
controller abilities to maneuver the aircraft and to follow the predefined trajectory. We
approximate the taxi-lines by series of GPS waypoints with a spatial separation up to 10
meters. Straight segments are sufficiently approximated by two waypoints, marking the
beginning and the end of the segment, while turns need more fine-grained approximation
(see Figure 4.6). A GPS waypoint is an absolute location of a point on the Earth’s surface,
defined by the latitude and longitude in degrees which, when combined with height specify
its spherical coordinates. In order to simplify geometric calculations of the distances and
angles in the waypoint following algorithm, the waypoints are converted to a Cartesian
system.

The desired heading Ψdes indicates heading to a target waypoint. It is computed
relative to the current aircraft position as:

Ψdes = tan−1

(
Ywpt − Y
Xwpt −X

)
. (4.3)

The heading error is then defined as a difference between the desired heading and a
current heading of the aircraft:

∆Ψ = Ψdes −Ψ. (4.4)

Under certain circumstances, the magnitude of the heading error can be larger than
180◦. This means that the aircraft will turn the

”
long way“ towards the desired waypoint

which is behind it. To avoid this, 360◦is subtracted from the heading error if it is greater
than 180◦, and 360◦is added to the heading error if it is less than -180◦. A negative heading
error requires a left turn to compensate, and a positive heading error requires a right turn
to compensate.

The direction controller can be easily used to implement the waypoint following algo-
rithm. The goal of the waypoint following algorithm is to control and steer the aircraft
along the trajectory approximated by a series of individual GPS waypoints. As the aircraft
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Figure 4.6: Approximation of the taxi-way centerline at Brno International Airport with
visualized safety margins around waypoints.

Ψ

Ψdes

∆Ψ
WPT

Figure 4.7: Desired heading to the target Ψdes and heading error ∆Ψ.

reaches certain waypoint, the waypoint following algorithm chooses the next waypoint from
the sequence as a destination to reach next.

This approach works well provided that the aircraft always reaches the target with a
perfect precision. However, if the aircraft approaches the waypoint at a slight offset, the
desired heading can quickly change from couple of degrees to 80◦and more. This causes the
aircraft to lurch to the side before reaching the waypoint. This is due primarily to error in
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the GPS receiver. A simple and robust approach to correct this problem involves defining a
circle of specified radius around the waypoint. As soon as the aircraft enters the circle, the
waypoint is considered to be achieved. Determined through experimentation, the radius of
this circle was set to 3 meters (see Figure 4.6).

Lateral displacement can also be minimized by a direction controller. The lateral
displacement of the aircraft is defined as an offset e between the aircraft position P and the
straight line path between two consecutive waypoints P1 and P2 (Figure 4.8). The control
algorithm uses lateral displacement from the optimal path to guide the aircraft back to the
path where the trajectory is assumed to be most desirable. The lateral displacement occurs
mainly because of the reduced capabilities of the aircraft to develop rapid steering response
in case of sharp turns. As a result, the aircraft overshoots the turn. The lateral displacement
is then corrected by navigating the aircraft back to desired centerline trajectory.

P1

P2

P

c

e
a

b

α

Figure 4.8: Geometry of the lateral displacement calculations.

The coordinates of the waypoints are well-known, as is the position of the aircraft.
Therefore one can easily estimate the distances between these points forming a triangle in
Figure 4.8. From law of cosines we can compute α and consecutively the lateral displacement
e:

α = cos−1

(
b2 + c2 − a2

2bc

)
. (4.5)

e = b sin(α). (4.6)

Equations (4.5) and (4.6) gives us error magnitude but no information about the relative
position of aircraft and optimal trajectory - whether the aircraft is on left side or right side.
We use cross product of two vector to determine this information. The vectors are vector
from P1 to P2 and the vector from P1 to aircraft position P . The cross product is given by
equation (4.7).

k = sign((xP2 − xP1)(yP − yP1)− (xP − xP1)(yP2 − yP1)). (4.7)

If the result is positive the aircraft is to the left of the optimal trajectory, the lat-
eral displacement is positive and the aircraft must turn right in order to compensate for
displacement error. The inverse rules applies for negative result of the cross product.

If we want to fuse heading and lateral displacement control signals, we need to address
special situation when the heading error is greater than 90 ◦. If the aircraft is pointed away
from the desired waypoint (heading error is greater than 90◦) the heading error can be of
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the opposite sign than the lateral displacement error. If the errors are similar in magnitude,
they will cancel out and the aircraft will not reach the target because it will continue driving
straight. This situation occurs, for example, when aircraft reaches a waypoint with the next
desire waypoint behind reached one.

To correct this situation, the lateral displacement feedback is multiplied by a scaling
factor to limit its effect when the heading error magnitude is large. The scaling factor is
specified in equation (4.8) [22].

multiplier = 0.72 ∗∆Ψ − 1.13, 10◦ < ∆Ψ < 80◦,

multiplier = 0, ∆Ψ > 80◦,

multiplier = 1, ∆Ψ < 10◦. (4.8)

Fusing heading and lateral displacement control is achieved by multiplying
heading error ∆Ψ and lateral displacement error e by respective PID gains and adding
these two together to determine the steering angle of the aircraft. Because the heading
error is in radians, its maximum value is π. The lateral displacement error value is in
meters, and is typically much higher, thus it requires much lower gains to scale properly.
The formula is expressed by equation (4.9) and the Simulinkr scheme is in Figure 4.9.

Steerangle = ∆Ψ ·KPH
+ ke ·KPP

+
d

dt
∆Ψ ·KDH

+
d

dt
ke ·KDP

+

∫
∆Ψ dt ·KIH +

∫
ke dt ·KIP . (4.9)

The gains are:

KPH
= 1.000 KPP

= 0.030

KDH
= 0.050 KDP

= 0.008

KIH = 0.001 KIP = 0.001.

Figure 4.9: Simulinkr scheme of the direction control.

Controller response determines the behavior of the aircraft motion. Regarding the
comfort and safety of passengers we want out controller to perform a smooth steering
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Figure 4.10: Simulinkr scheme of heading sub-controller module.

Figure 4.11: Simulinkr scheme of lateral displacement control.

changes but still vigorous enough in order to perform certain rapid steering maneuvers,
i.e. small radius turns on narrow taxiways. The response of heading controller is tuned
to inhibit any oscillations of an actual heading with respect to the desired heading. Such
behavior would cause the aircraft to actually never go straight but would perform alternate
left and right turning pattern, which is fairly undesirable. This behavioral pattern is mostly
caused by the integral term of the PID controller. Therefore this term needs to be minimized
to such extent that this behavior does not occur, but controller is still able to eliminate
constant factor errors. The PID controller response basically follows the input error signal
(Figure 4.12) except for the discrete step changes of a desired heading which happens
when destination waypoint is switched to the next one as previous waypoint was reached.
Heading controller in this case reacts with a smooth continuous change of a steering signal
until desired value is reached.

The response of the controller based on the lateral displacement error should be even
smoother. We want to minimize and correct for lateral error over longer time periods.
Immediate correction of the lateral error would introduce oscillatory pattern along the
optimal aircraft trajectory, which is undesirable. Short term lateral error is also introduced
by the waypoint following algorithm. As the waypoints are switched discretely and we
introduce safety offset around individual waypoints, aircraft finds itself off-track from the
approximated trajectory by waypoints in a case when waypoints are not perfectly aligned.
This short term error gets corrected as the aircraft continues its motion, no additional
actions are needed. The response of the lateral displacement controller is therefore tuned
to minimize the displacement error over longer time periods as can be seen on Figure 4.13b
and 4.13a.

4.3.2 Velocity Control

The control system must also modulate the throttle and the brake to achieve a desired
speed. In this case, overshoot is more important than rise time, because the vehicle cannot
be permitted to overshoot a speed limit. We focus on a well damped response in case of
the velocity controller. As seen in Figure 4.15 we achieve almost constant response for the
velocity controller for a constant target velocity. The velocity error oscillates in case of
sharper turns due to the imposed lateral friction and the application of differential braking
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Figure 4.12: Heading controller response.

in case of sharper turns.
The PID scheme of the velocity control is expressed by the equation (4.10). The velocity

error signal ∆v is computed as a difference between the actual and the target velocity.

Throtlle = ∆v ·KPV
+
d

dt
∆v ·KDV

+

∫
∆v dt ·KIV . (4.10)

The gains are:

KPV
= 0.030

KDV
= 0.002

KIV = 0.030.

In the experiment in Figure 4.15 the aircraft starts taxiing from stationary position and
accelerates to 5 m/s. During the first 150 seconds the aircraft performs a series of rapid
turns using differential braking therefore we observe an increased error amplitude. Despite
this behavior of the error signal, the response of the controller is rather smooth during the
whole taxiing trial, which is the desired behavior of the velocity control loop.

4.3.3 Brakes Control

The last submodule of the controller module is the brakes control. Brakes are used to reduce
velocity in case the aircraft needs to decelerate, usually in situations when the aircraft is
about to stop. We also use brakes as means of controlling the aircraft steering. We deploy
differential braking in certain situations, thus enhancing the maneuvering capabilities of the
aircraft in sharper turns. Differential braking basically means activating brakes only on one
wheel of the main landing gear. This slows down corresponding wheel while the opposite
wheel continues moving at faster speed, which results in a rotational motion of the aircraft
around the braked wheel. The general scheme of the brakes control is in Figure 4.16. We
use two input signals, first of which is the steering angle, which determines whether the
differential braking will be activated. The second signal is the difference of the velocity from
the target velocity. In case of the actual velocity exceeding desired velocity, we activate
brakes proportionally to the error magnitude. After computation of brake control signals,
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(a) Aircraft’s trajectory for the spiral test case.

(b) Controller response for lateral offset error.

Figure 4.13: Behavior of the controller for lateral displacement correction in a spiral bench-
mark.
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Figure 4.14: Simulinkr model of the velocity controller.

Figure 4.15: Controller response to the velocity error signal.

signals resulting from differential braking and velocity control are fused to form a single
brake control signal for each wheel.

Figure 4.16: Simulinkr model of the brake controller.

Differential braking and corresponding scheme is shown in Figure 4.17. As the
AutoTaxi is designed to support differential braking, allowing for sharper turns in narrow
areas, the steering angle is also fed to the brake controller. Differential braking is applied
after steering angle reaches certain limit value, experimentally set to δlim = 0.8rad. After
reaching this point, the differential brakes are applied proportionally. The PID uses only
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proportional term KPkb
= 10. Figure 4.18 shows behavior of the differential braking during

taxiing trial. As the steering angle reaches predefined limit value, the brakes are activated
proportionally until steering angle falls below the threshold value.

Figure 4.17: Simulinkr model of differential brakes controller for the right wheel of the
main landing gear.

Figure 4.18: Response of the differential brake controller.

Velocity correction with activated brakes occurs in cases when actual aircraft veloc-
ity exceeds desired velocity over 1m·s−1. Both main wheel brakes are applied proportionally
to the velocity overshoot in order to decelerate the aircraft. The corresponding PID term
is KPkb=0.2. The controller scheme is shown inFigure 4.19.

Figure 4.19: Simulinkr model of brake controller for the velocity correction.
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5. Experiments and Model Verification

This chapter provides the verification of the simulation model presented in chapter 3 based
on the comparison with the analytical model of Ackerman steering. Experiments are also
performed in order to evaluate the AutoTaxi controller module by navigating the aircraft
through the simulated taxi-ways on multiple international airports.

5.1 Analytical Verification of the Turn Radius

The presented model is validated with respect to Ackermann tricycle analytical model.
Ackermann geometry avoids the need for tires to slip sideways when following the path
around a curve. However, in presented model, the tire slip is of primary focus. Therefore
it cannot be expected that the results of the simulation match the exact analytical solution
of Ackermann tricycle drive. Nevertheless, It can still provide nominal guidelines to the
simulation correctness.

Ackermann model assumes that lines perpendicular to the wheel axles meet at one point,
denoted as ICC (instantaneous center of curvature) when the vehicle is turning. As the
rear wheels are fixed and cannot rotate as the fron steering wheel, this center point must
be on a line extended from the rear wheel axles (Figure 5.2). Consequently, if the steering
angle δ is fixed wheels are moving over circular trajectory with common center at ICC but
with different radius. This radius can be analytically evaluated for each wheel, as well as
for the C.G. of the vehicle. The turn radius for nose wheel with given steer angle δ is:

R =
lxR + lxN

sin (δ)
(5.1)

The comparison is given in table 5.1 and error evaluation is given in table 5.2. Results
are as expected, that is close to analytical solution wit relative error under 5%. The model
assumes various non-linear characteristics of the ground motion and tire-runway interac-
tion. Analytical model is solely based on geometrical analysis and does not consider such
complex behavior. The exact match of the turn radii is therefore not expected. The model
assumes various parameters influencing the behavior of aircraft on the ground resulting
into highly non-linear model of the tire lateral forces. Among others, the model variables
influencing the aircraft ground motion are: tire inflation pressure, runway surface contam-
ination and tire velocity that directly influences the maximum lateral friction coefficient
responsible for lateral force and thus the radius of the simulated turn. The experiment was
performed considering dry concrete runway surface, aircraft velocity 5 m · s−1, tire inflated
to recommended pressure 140 psi and 75% of maximum aircraft load.
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Figure 5.1: Ackermann tricycle steering model.

5.2 Boeing’s Specification of Turn Radius

Simulation results and analytical solution of the nose wheel turn radii are also subjected
to Boeing’s guideline Airplane Characteristics for Airport Planning document and shown
in Figure 5.2. Constant offset 0.3 m of turn radii between analytical solution and Boeing’s
specifications can be observed in Table 5.1. This suggests Boeing’s analysis is based on
the analytical solution of the Ackermann steering model with some safety margin included,
considering linear tire slip. The presented model is able to dynamically compute the tire slip
based on various environmental conditions and operational characteristics of the aircraft.

The simulation results suggest that the divergence of the turn radii from the Boeing’s
official document [6] is also below a 5% error, similar as comparison to the analytical
solution. These results partially confirm the ability of the model to perform high-precision
simulations. In order to evaluate the realism of presented simulation model it would be
needed to compare simulation results with real data from the actual taxiing trials of the
real aircraft. Unfortunately, such data are not available at the time of this publication.

Table 5.1: Comparison of simulated turn radius R with analytical solution of Ackermann
steering and Boeing specifications radii.

Steer angle δ [deg] Analytical R [m] Boeing R [m] [6] Simulation R [m]
30 28.5 28.8 30.0
35 24.9 25.2 25.8
40 22.2 22.5 22.6
45 20.2 20.5 20.3
50 18.6 18.9 18.4
55 17.4 17.7 16.9
60 16.5 16.8 16.1
65 15.7 16.1 15.8
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Figure 5.2: Ackermann tricycle steering model and the turn radii for Boeing 737-400. Nose-
wheel radius is denoted by R [6].

Table 5.2: Error evaluation of simulated turn radii R relative to analytical solution of
Ackermann steering and Boeing specifications.

Analytical solution Boeing spec. [6]
Steer angle
δ [deg]

Absolute
Error [m]

Relative
Error [%]

Absolute
Error [m]

Relative
Error [%]

30 1.50 5.00 1.20 4.00
35 0.90 3.49 0.60 2.33
40 0.48 2.12 0.18 0.79
45 0.10 0.49 -0.20 0.99
50 -0.19 1.03 -0.49 2.66
55 -0.47 2.78 -0.77 4.55
60 -0.43 2.68 -0.73 4.54
65 0.12 0.76 -0.28 1.77
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5.3 AutoTaxi Experiments

A further verification should be based on a comparison of the simulated data to the real
data in order to confirm that the model is valid and represents a real aircraft behavior.
The simulation model is assumed to be validated using an actual real aircraft measured
data from the taxiing trials at designated international airport. However, at this stage,
no such data are available. Therefore, subsidiary experiment has been performed. In the
experiment, taxiway guidelines on the airport’s runway were approximated by series of GPX
waypoints. These guidelines mark an ideal trajectory for the aircraft nose wheel during the
taxiing and as such are a good reference for evaluation of the ability of aircraft to steer
and follow predefined trajectory. The density of taxilines approximation depends on its
curvature. Straight segments are approximated by two waypoints, at the beginning and
at the end; turns are approximated with higher waypoint density - up to 10 meter spacial
separation between consecutive marks.

Simulated taxiing trials were performed at international airports in Czech Republic,
namely airports in Brno, Ostrava and Prague. The observed behavior of the aircraft during
the experiments is shown in Figure 5.3, 5.5 and 5.6 respectively. The trajectories were
chosen so that there are sharp turns (small radius turns), regular turns (large radius turns)
and straight segments in order to evaluate the fidelity of the simulation model under various
scenarios. The varying atmospheric conditions are also assumed, as it influences the surface
characteristics of the taxiways and runways. Standard dry conditions of the runway surface
are considered, as well as wet runway surface during rainfalls and snow/ice contaminated
runway surface during freezing temperatures. The standing water pools on the runway in
wet conditions are not assumed since it would require significant changes of the simulation
model and the definition of new friction coefficients in these scenarios. The snow/ice con-
tamination assumes approximately 15 cm snow layer on the runway with underlaying ice
layer [5].

5.3.1 Dry Runway Conditions

In standard operational conditions with a dry runway surface, the aircraft successfully cov-
ered the test trajectory for all three aforementioned international airports. The maximum
trajectory offset from predefined routes was below 1.6 m and a velocity deviation from the
target velocity in negative direction (overshoot) did not exceed 0.6 m·s−1 . Positive velocity
deviation (undershoot) in sharper turns reached deviations with greater amplitude because
of activated differential braking, which slows the aircraft down. In large radii turns, the
absolute error amplitude stayed below 0.2 m · s−1 and 1 m spatial offset from the desired
trajectory.

The offset from predefined trajectory (path-error) reaches its maximal value in sharp
turn segments of the test taxiing trials. This behavior is partially expected, since the
taxiway is approximated only by straight lines represented by series of discrete points but
the aircraft is moving on smooth curve. As the angle between lines approximating the
turn increases (which happens in small radii turns), the path-error increases as well. The
deviation is caused by introducing circle with radius r = 3 m around individual waypoints
(see Figure 4.6). Inside the circle the waypoint is considered reached and next waypoint
is selected as target. However, under such situation the aircraft is still 3 m away from the
given waypoint. And since path-error is evaluated as offset of aircraft’s position between
line connecting target waypoint and previous waypoint (from which aircraft is 3 m away),
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this necessarily introduces path-error in case waypoints are not aligned. Obviously, this
error is most evident if waypoints are approximating perpendicular lines. In the taxiing
experiments, all taxiways are approximated smoothly so that there are no such situations
as perpendicular lines. But as turn radius decreases (turn is sharper), the angles between
individual waypoints increase. As a result, the overshoot error becomes more noticeable.

5.3.2 Wet Runway Conditions

The simulation considering wet runway surface confirmed the ability of AutoTaxi controller
to steer the aircraft along the predefined trajectory with required precision under varying
atmospheric conditions. The AutoTaxi controller steered the aircraft with precision up to
2.7 m trajectory offset from the desired trajectory, which is within the maximal allowed
error. Velocity control restrained overshoots greater than 0.7 m · s−1, which is also in
acceptable safety margins. Similar results are observed for all selected airports (see Figure
5.3d and 5.3e for the Brno airport; Figure 5.5d and 5.5e for the Ostrava airport; Figure
5.6d and 5.6e for the Prague airport).

5.3.3 Snow/Ice Contaminated Runway

The harsh environmental conditions impose several restrictions for the AutoTaxi controller.
First, the taxiing velocity of the aircraft needs to be significantly decreased, up to 1.5 m·s−1,
due to very limited friction of the wheels on the snow and ice contaminated runway. The
tire friction is further decreased with the increased velocity, therefore the velocity needs to
be limited.

Second, the aircraft did not successfully pass the test trajectory in neither of the pre-
pared taxiing experiments. The safety margin of 3 m was violated in sharp turns, as shown
in Figure 5.4, even with the limited aircraft velocity. The AutoTaxi controller is designed
to primarily utilize the nose-wheel steering of the aircraft. However, the efficiency of nose-
wheel steering method is considerably reduced in freezing conditions as the nose-wheel very
easily skids on the slippery runway surface. The approach to the aircraft control in such con-
ditions requires to use smaller nose-wheel steering and utilize the differential engine thrust
in order to assists in maintaining the aircraft momentum through a turn [25]. Differential
braking may also be more effective than nose-wheel steering on slippery or contaminated
surfaces.

For these reasons, the AutoTaxi controller requires different design approach for the
aircraft control during winter freezing temperatures and associated runway conditions. The
resulting controller would include two operational regimes - one for standard dry conditions
and wet runways and second for snow/ice covered runways. The appropriate operational
regime would be selected prior to the aircraft departure from the gates to taxiway, either
by pilot or by submodule responsible for analyzing the weather conditions.
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Start

(a) Trajectory of the aircraft during experiment.

(b) Trajectory offset (dry surface). (c) Velocity characteristic (dry surface).

(d) Trajectory offset (wet surface). (e) Velocity characteristic (wet surface).

Figure 5.3: Evaluation of AutoTaxi on Brno International Airport.

Figure 5.4: Trajectory offset on snow/ice covered runway at Prague airport.
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Start

(a) Trajectory of the aircraft during experiment.

(b) Trajectory offset (dry surface). (c) Velocity characteristic (dry surface).

(d) Trajectory offset (wet surface). (e) Velocity characteristic (wet surface).

Figure 5.5: Evaluation of AutoTaxi on Ostrava-Mošnov International Airport.
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(a) Trajectory of the aircraft during experiment.

(b) Trajectory offset (dry surface). (c) Velocity characteristic (dry surface).

(d) Trajectory offset (wet surface). (e) Velocity characteristic (wet surface).

Figure 5.6: Evaluation of AutoTaxi on Prague International Airport.
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6. Conclusion

This thesis presents a ground motion model of single-aisle passenger aircraft and a AutoTaxi
control algorithm, which is required in order to successfully manage the automation tasks.
Automation will play essential role in increasing throughput of airports in metropolitan
areas that will need to service more flights since passenger numbers continually grow and
such trend is expected to continue also in near future. Presented model is valid under
different operational conditions, such as varying runway characteristics due to the state of
the atmosphere at a particular place and time regarding the temperature and precipitation.
Model is able to represent standard concrete runway surface, water contamination during
rainfalls or icy and snow-covered runway conditions during freezing temperatures. The
simulation model also assumes varying aircraft parameters such as aircraft load and tire
pressure. These parameters influence the interaction of the landing gear with the runway
surface, therefore are essential for a high-precision ground motion modeling.

The MATLAB/Simulinkr implementation of the model is also presented. Furthemore,
ground motion model is used as an underlying component for the AutoTaxi controller
module, which is able to automatically steer aircraft to the predefined target destination
based on following the trajectory defined by the taxi-lines on the airport runways. AutoTaxi
controller establishes feedback loop to control input signals in order to achieve desired
steering, throttle and brakes control of the aircraft.

The model is designed to be used in a dynamic analysis and real-time simulation. Ob-
tained results suggest high-precision simulation, that can be utilized for the automation
of the ground operations at the airports in metropolitan areas. The automation will lead
to decreased separation minima and increased airport throughput, reduced CO2 emissions
and increased safety levels.

The ability of the AutoTaxi to perform realistic simulations was verified based on com-
parison with analytical solution of Ackermann tri-cycle model and turn radii specification
by Boeing. The error of simulated turn radii is below 4.5% for whole operational range.
Evaluation of the AutoTaxi control algorithm at multiple international airports showed
deviation from predefined trajectory below 60% of the maximal allowed error in standard
dry operational conditions and wet runway conditions. The safety margin was violated dur-
ing the simulated snow/ice contaminated runway taxiing trials. The AutoTaxi controller
primarily uses nose-wheel steering as a mean of the aircraft control. However, in such
conditions, the nose wheel steering is no longer efficient as the nose wheel tire skids easily
on the slippery runway surface. Different operational regime is therefore required for this
scenario.

Developed simulation model can be used as a simulation tool for aircraft taxi routines.
Incorporating model into airport planning framework would result into high-precision sim-
ulation of aircraft trajectory with a possibility to adapt to airport’s environmental condi-
tions. Such framework might be deployed to plan optimal trajectories of airport service

60



vehicles and aircrafts. Optimal airport planning would increase airport throughput and
minimize runway incidents and collisions. Future work will be focused on developing model
of selected airports and designing planning algorithm that will select optimal trajectory of
aircraft to its destination within given airport. In addition to the planning algorithm on
individual aircraft level, control algorithm on global level is required, that will avoid spacial
and temporal crossing of trajectories from multiple aircrafts.
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A. Table of Symbols

Symbol Description Unit
FxN Nose gear longitudinal force N
FxR,L Main gear (right, left) longitudinal force N
FxT Thrust force from engines N
FxA Aerodynamic drag force in x dimension N
FyN Nose gear lateral force N
FyR,L Main gear (right, left) lateral force N
FzN Nose gear vertical force N
FzR,L Main gear (right, left) vertical force N
lxN Nose gear x-distance relative to C.G. m
lxR,L Main gear x-distance relative to C.G. m
lxT Engine x-distance relative to C.G. m
lyR,L Main gear y-distance relative to C.G. m
lzN Nose gear z-distance relative to C.G. m
lzR,L Main gear z-distance relative to C.G. m
lzT Engine z-distance relative to C.G. m
δ Nose wheel steer angle rad
ψ Tire yaw angle rad
µR Rolling resistance coefficient 1
kb Proportion of brakes being applied 1
µbmax Maximal braking coefficient 1
µbskid Tire skid coefficient 1
µbeff Braking effectiveness coefficient 1
µψ Lateral friction coefficient 1
µψmax Maximal lateral friction coefficient (no braking) 1
µψlim

Limiting lateral friction coefficient (braking) 1
Vx x-axis component of velocity vector m · s−1

Vy y-axis component of velocity vector m · s−1

ωz Angular velocity about z-axis rad−1

X X coordinate of the aircraft position m
Y Y coordinate of the aircraft position m
Ψ Heading angle rad
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