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FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

POKRYTELNOST PRO PARALELNÍ PROGRAMY
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AUTOR PRÁCE Bc. LENKA TUROŇOVÁ
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SUPERVISOR

BRNO 2015



Abstrakt
Tato diplomová práce se zabývá automatickou verifikací systémů s paralelně běžícími pro-
cesy. Práce diskutuje existující metody a možnosti jejich optimalizace. Stávající techniky
jsou založeny na hledání induktivního invariantu (například pomocí techniky zjemňování
abstrakce řízené protipříklady (CEGAR)). Efektivnost metod závisí na velikosti nalezeného
invariantu. V rámci této diplomové práce jsme nalezli možnost zlepšení metod díky zaměření
se na hledání invariantů minimální velikosti. Naimplementovali jsme nástroj, který zajišťuje
prohledávání prostoru invariantů systému. Naše experimentální výsledky ukazují, že mnoho
existujících systémů užívaných v praxi má skutečně mnohem menší invarianty než ty, které
lze nalézt stávajícími metodami. Závěry a výsledky této práce budou sloužit jako základ
budoucího výzkumu, jehož cílem bude navržení optimální metody pro vypočítání malých
invariantů paralelních systémů.

Abstract
This work is focusing on automatic verification of systems with parallel running processes.
We discuss the existing methods and certain possibilities of optimizing them. Existing
techniques are essentially based on finding an inductive invariant (for instance using a
variant of counterexample-guided abstract refinement (CEGAR)). The effectiveness of these
methods depends on the size of the invariant. In this thesis, we explored the possibility of
improving the methods by focusing on finding invariants of minimal size. We implemented
a tool that facilitates exploring the space of invariants of the system under scrutiny. Our
experimental results show that many practical existing systems indeed have invariants that
are much smaller than what can be found by the existing methods. The conjectures and
the results of the work will serve as a basis of future research of an efficient method for
finding small invariants of parallel systems.
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Kapitola 1

Introduction

The pace of the entire world is speeding up. World population grows and thereby hungers
for new and faster machines, connections and technologies in general that would bring more
comfort, spare money and especially time. Time is actually the most valuable commodity.
You cannot buy it and therefore you should use every single second. One of the approach
how to reduce the amount of time is parallelizing of tasks.

Let us look at the every day’s problem. Consider a situation where you want to build a
house. Would you hire only a single worker to build the entire house? No. You would hire a
few workers that could be able to work simultaneously and thus the house would be built
in less time. And this is the same for the world of technologies.

The idea of parallelization of tasks was first discussed in the year 1958 by Stanley
Gill who presented in his article Parallel Programming [16] the idea of controlling two or
more operations which are executed virtually simultaneously. It led to the development of
multiple-core processors and the parallel programming software.

On one hand, the systems are constantly getting more complex, powerful and faster. On
the other, the software engineers have to deal with higher possibility of an error occurrence
associated with simultaneous data access and modification requests which are extremely
difficult tasks in the case of parallel systems. However, it is an important step in the
software development. The developers spend excessive amount of time and money verifying
their codes by testing debugging. According to recent Cambridge University research, the
global cost of debugging software has risen to $312 billion per year. Hence any technique
that can automatically check the correctness of these systems is appreciated.

In some cases, a small error can lead to a massive problems. A bright example in history
could be considered the Therac-25 medical radiation therapy device where a side effect of
the buggy software powering the device was the overdose of radiation that several patients
received [12].

1.1 Approaches to verifications

One of the approaches proving that system works correctly is formal verification. Formal
verification denotes methods based on formal, mathematical roots and (at least potentially)
capable of proving error freeness of a system with respect to correctness specification. One
of the technique of formal verification is systematically searching the state space of the
system. The aim of formal verification is to check whether a given concurrent program is
deadlock-free, or how many elements can appear in a buffer. Formal verification is expected
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to be fully automated (no human help needed), sound (if it claims that a system is correct
wrt. a given specification, it is indeed correct), complete (if it announces that a system
is not correct, there is indeed an error in the system i.e., no false alarms (false positives)
are possible) and always terminate [17]. The main disadvantage of formal verification is
that it is not suitable for large-scale systems unless a high level of abstraction is used. The
most common approaches used in computer-aided formal analysis and verification are the
following.

Theorem proving is usually a semi-automated approach using some inference system for
deducing theorems about the examined system from the facts known about the system and
from general theorems and axioms of various logical theories.

Model checking is an approach of automated checking whether a system (or its model)
satisfy a certain correctness specification based on a systematic exploration of the state
space of the system. Model checking is sound, complete and automatic but its basic variant
requires the closed system i.e., the system together with its environment and the bounded
states space.

Static analysis is usually characterized as the analysis that collects some information
about the behavior of a system based on rather syntactical criteria without regard to its
original semantics [4].

There is also testing which is widely used for checking correctness of systems, but its
disadvantages are that it cannot be used to prove the system is safe, and is not suitable
for covering corner cases. The systems with a bounded number of processes has a problem
that there are many variants of interleaving of instructions among processes and that an
error can occur only in the certain interleaving that may not be checked during testing.

1.2 Formal verification of parallel programs

The system with parallel running processes even if a state space of the single process is
small can generate a huge number of interleavings. This case is called a state explosion (the
size of the state space is exponentially to the number of the processes). The state explosion
problem is a demanding technical challenge. On top of that, some systems has the number
of parallel running processes described by a parameter that can be unbounded and thus,
their state space is infinite. So it is even more important to use a technique that reduces
the state space.

A number of state reduction approaches have been proposed. Among these techniques,
abstraction is considered the most general and flexible for handling the state explosion
problem. Generally, abstraction interpretation is a special case of static analysis where a
program is run within an abstract domain. The abstraction is used in the most recent
approaches of model checking as well and thus the line between these two fields is not so
clear.

Intuitively, abstraction amounts to removing or simplifying details as well as removing
entire components of the original design that are irrelevant to the property under conside-
ration. The evident rationale is that verifying the simplified (“abstract”) model is more
efficient than verifying the original one. However, the information loss incurred by simpli-
fying the model has a price: verifying an abstract model potentially leads to wrong results
[5].

The technique called counterexample-guided abstraction refinement (CEGAR) is a tech-
nique that iteratively refines an abstract model using counterexamples. A counterexample
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is a witness of a property violation. In software verification, the counterexamples are error
paths, i.e., paths through the program that violate the property [15].

We focus on parallel systems with infinite many threads that have infinite state space.
This area has attracted the attention of a large number of people from various research
communities. Due to the unbounded number of processes, the systems have infinite number
of possible configurations. There is a relation on configurations which is monotonic and the
system of configurations is a well quasi ordered system (WSTS ). These two properties help
to decide the coverability problem of incorrect configurations for parallel programs.

The WSTS include Petri nets, broadcast protocols, and lossy channel systems. Petri
nets offer a mathematical concept for modeling such systems and are used in a process of
verification of the correctness of programs. They help practitioners to make their models
more methodical, and theoreticians to make their models more realistic. Using Petri net we
can simulate the behavior of the system and check analytically their properties concerning
safety, coverability or liveness. Moreover, they offer a possibility to describe systems in a
graphical way. Petri net abstracts away from the time consumption of any action and the
data dependencies among conflict decisions.

We discuss the existing research approaches in the field of verification parallel programs,
especially we focus on the coverability property of Petri nets. The existing algorithms inspect
state space in order to find a safe inductive invariant that would be used for proving
correctness of systems. The aim of this work is the proof of existence of smaller invariants
than those that have been already found by the existing methods since the smaller invariant
can speed up the overall verification process.

1.3 Thesis outline

The work is divided into several chapters. Chapter 2 explains a notion of well-quasi-ordered
transition system. The chapter also presents a general scheme for checking the coverability
problem. Chapter 3 presents an introduction to Petri nets and thread transition systems.
In chapter 4, the existing algorithms for coverability checking are discussed, namely the
algorithms presented in articles [9], [14] and [3]. Chapter 5 describes a representation of
the invariant and opportunities for improvement of existing approaches. In chapter 6, the
algorithm of the abstract forward run and the backward analysis is introduced. The im-
plementation of the algorithm is described in chapter 7. The chapter 8 is presented the
experimental results. The conjectures and the results are summarized in chapter 9.
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Kapitola 2

Well-quasi-ordered Transition
Systems

The well-quasi-ordered transition systems, WSTS for short, are systems with infinitely
many states with a well-quasi-ordering (wqo), and whose transitions satisfy a monotonicity
property. A general decidability result shows that the coverability problem (reachability in
an upward-closed set) is decidable for WSTS .

Formally, according to [9], WSTS is a tuple (Σ, I,→,�) where Σ stands for a set of
states, a finite set I ⊂ Σ is a set of initial states, → ⊂ Σ × Σ is a transition on Σ, and a
� ⊂ Σ× Σ is a well-quasi ordering which satisfies the two following properties.

The transition relation → between states is monotonic wrt. to the relation � if for
each two configurations s0 and s1 such that s0 � s1 and a relation s0 → s′0 there is a
configuration s′1 such that s1 → s′1 (see Figure 2.1).

The pre-order � is defined over a set S such that for any infinite sequence s0, s1, s1, . . .,
there are i, j with i < j and si � sj . If � is an equivalence relation, then the condition of
� being a wqo amounts to the equivalence relation having a finite index [11].

Given a set of states S and a pre-order � defined over a set S and let T ⊆ S be a set
of states its upward-closure T↑ is defined as a set:

T↑ def= {s ∈ S | ∃t ∈ T : t � s}. (2.1)

While a downward-closure of T is defined as:

T↓ def= {s ∈ S | ∃t ∈ T : s � t}. (2.2)

We define a set T to be an upward closed set (UCS ), respectively a downward closed
set (DCS ), iff T↓ = T , respectively T↑ = T . If T is an UCS its complement S\T is a DCS ,
and, conversely, if T is a DCS , its complement is an UCS [1].

Based on the monotocity of →, for any UCS , the set of its predecessors is an UCS .
According to [11], if the system is wqo, then it can be proved that the reachability of
an UCS of configurations (wrt. �) can be checked automatically. Every UCS U can be
characterized by its finite set of minimal elements min(U) consisting of states that are
pairwise incomparable. Starting with the empty set U , the iterative computation of the
reachable configurations from U eventually terminates since only a finite number of steps
are necessary to capture all minimal elements min(U).

Let x, y ∈ Σ. If x→ y we call x a predecessor of y and y a successor of x. We write

pre(x) := {y | y → x} (2.3)
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Obrázek 2.1: Monotonicity, pre(T), and upward closedness

for the set of predecessors of x, and

post(x) := {y | x→ y} (2.4)

for the set of successors of x. For X ⊂ Σ, pre(X) and post(X) are defined as natural
extensions, i.e.

pre(X) =
⋃
x∈X

pre(x) (2.5)

and
post(X) =

⋃
x∈X

post(x). (2.6)

According to [11], we write x→y to denote that (x, y) ∈ →. For sets X and Y of states,
we use X→Y to denote that there are x ∈ X and y ∈ Y such that x→ y. If there are states
x0, . . . , xk ∈ Σ such that x0 = x, xk = y and xi→xk+1 for 0 ≤ i < k, then we write x

k→ y.

Furtheremore,
*→ represents the reflexive transitive closure of →. A set X of states is

said to be reachable if Xinit
*→ X. The set of k-reachable states, reachable in at most k

steps, is defined as:

Reachk := {y ∈ Σ | ∃k′ ≤ k,∃x ∈ I, x k’→ y}. (2.7)

Additionally, a set of reachable states is formally defined as:

Reach :=
⋃
k≥0

Reachk = {y ∈ Σ | ∃x ∈ I, x k→ y}. (2.8)

Given a WSTS S = (Σ, I,→,�), we denote by Cover the covering set of S consisting
of all states covered by some of the reachable states as:

Cover(S)
def
= post∗(I)↓. (2.9)

Using DCS , we can define the k-th cover Coverk and the cover Cover of the WSTS as
Coverk := Reachk↓ and Cover := Reach↓.
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2.1 Coverability Problem

Let us given a WSTS S0 = (Σ, I,→,�) and a finite set of minimal incorrect configurations
minBad . The coverability problem means to decide whether a configuration from the set
bad , bad = minBad↑, is reachable from the set of initial states I or not. A system where
bad is not reachable is called safe. Formally, we say that the set minBad is coverable if
Cover(S0) ∩ bad 6= ∅.

According to [11], the coverability problem can be solved for WSTS by Algorithm 1.
The algorithm can effectively compute the predecessors of an UCS since any UCS can be
represented by its finite set of minimal elements (due to wqo of �), the monotonicity of →
wrt. � applies that the set of predecessors of any UCS is an UCS , and the algorithm can
be computed symbolically on the representatives using:

minpre(T )
def
= min((pre(T↑))↑) (2.10)

.

Algorithm 1 Backward Reachability

Input:

• S = (Σ, I,→,�): WSTS

• bad : UCS of configurations.

Output:
Is bad reachable?

i← 0
U0 := bad
repeat

Ui+1 ← Ui ∪ Pre(Ui)
i← i+ 1

until Ui = Ui−1
if I ∩ Ui 6= ∅ then

return true
else

return false
end if

The input of the algorithm is given as the transition system S = (Σ, I,→,�) and the
upward closed set bad of configurations. Its aim is to check whether bad is reachable.

The algorithm applies the function Pre repeatedly starting with an initial set U0 gene-
rating a sequence U0, U1, U2, . . . of sets of configurations such that Ui+1 := Ui ∪Pre(Ui) for
i ≥ 0 and a set Ui containing states that can be reached within i steps from the set bad .

The algorithm terminates if for some i > 0: Ui = Ui−1. Then Ui contains all the states
that are reachable from the set of bad configurations. We say that minBad is coverable if
and only if the intersection I ∩ Ui is not empty.

8



Kapitola 3

Examples of Well-quasi-ordered
Transition Systems

WSTS capture many important infinite-state models. In this section, we will introduce the
models that will be considered later during the discussion of articles.

3.1 Petri Nets

Petri nets are a powerful, simple and natural model for concurrent systems and programs
with an unbounded number of threads or thread creation. They are used in process of
verification whether the systems satisfy required correctness criteria. Examples of such
criteria are, according to [10]:

• boundedness - the number of tokens in any place cannot grow indefinitely,

• liveness - from any marking any transition can become fireable,

• reachability - marking M is reachable from marking M0 if there exists a sequence
of firing σ = t1t2t3 . . . tn, that transforms M0 to M or

• coverability (see Section 2.1) which is the problem we will discuss.

A Petri net (PN) is a tuple (S, T,W ) where

• S = {s1, s2, . . . , sm} is a finite set of places,

• T = {t1, t2, . . . , tn} is a finite set of transitions disjoint from S and

• W : (S×T ) ∩ (T×S)→ N is the arc multiplicity function.

For each transition t ∈ T and for each place s ∈ S we define, according to [7], sets:

t• = {s ∈ S |W (t, s) > 0}

•t = {s ∈ S |W (s, t) > 0}

s• = {t ∈ T |W (s, t) > 0}
•s = {t ∈ T |W (t, s) > 0}

9



In other words, for place s ∈ S, s• is informally a set of transitions from which place can
take a token while •s is a set of transitions where a place can give a token.

A marking is used to describe an actual state of PN. It is a function m : S → N that
indicates how many tokens are at place s ∈ S. If m(s) ≥W (s, t) for all s ∈ S, the transition
t ∈ T is enabled at marking m. The transition from m to m′ on firing t is denoted as m|t〉m′
where m′(s) = m(s)−W (s, t) +W (t, s).

In a certain work, presented lately in Section 4.3, a set of places of PN S = s0, . . . , sn
is assumed to be ordered, a marking m is a vector (m(s0), . . . ,m(sn)) and each transition
t is defined as a pair

(g, d) ∈ Nn×Zn, (3.1)

where
g = (W (s1, t), . . . ,W (sn, t)) (3.2)

represents enabling condition and

d = (W (t, s1)−W (s1, t), . . . ,W (t, sn)−W (sn, t)) (3.3)

represents the difference between the number of tokens in a place if the transition fires and
the current number of tokens [9].

Example 1. To clarify the definitions, let us show the following example of PN (see Figure
3.1) defined as:

P = {p1, p2, p3}
T = {t1, t2, t3}
F = {(p1, t1, 1), (p3, t3, 2), (t3, p1, 0), . . .}
F (p1, t2) = 1
F (p3, t2) = 2
F (t3, p1) = 0
{p1, p2}• = {t1, t2}

Obrázek 3.1: Simple Petri net [7]

The expression M
t→M ′ denotes that M enables the transition t and that the marking

reached by firing t is M ′. A finite or infinite sequence M0
t1→ M1

t2→ M2 . . . is called a
firing sequence. The maximal firing sequences of a PN are called runs. Given a sequence
σ = t1t2 . . . tn, M

σ→ M denotes that there exist markings M1, M2, . . ., Mn−1 such that
M

t1→M1 . . .Mn−1
tn→M ′ [8].

10



The PN (S, T,W ) induces a WSTS (Σ, I,→,�) where I is a set of initial markings and
Σ is the set of markings. We define the transition relation between the markings in the
following way. There is an edge m→ m′ if and only if there is a transition t ∈ T such that
m|t〉m′ where m,m′ ∈ Σ. We say that m � m′ if for each s ∈ S, m(s) ≤ m′(s).

3.2 Thread Transition Systems

Thread transition system (TTS ) is a class of WSTS that is used for modeling multi-threaded
asynchronous software. It is an equivalent to Petri nets.

A thread transition system consists of threads which have access to local and shared
variables. Formally, it is defined as a pair (T,∆) where T = S×L where T is a configuration
of the system from a view of a single thread consisting of the state of its local variables and
the shared variables, and ∆ ⊆ T × T is a set of moves of a single thread.

Let us given a set Is ⊆ S of initial shared states and a set Il ⊆ L of initial local states.
The thread transition system induces a WSTS (V, I, 7→,�) where V =

⋃∞
n=0(S × Ln)

contains n-tuples that consist of a shared state S and a vector L of local states of threads
and I is a set of initial states such that I = Is × (

⋃∞
n=0 I

n
l ). Each transition is reflected a

move of a single thread which changes its local and a shared state according to ∆. Formally,
we define a transition as:

(s | l1, . . . , ln) 7→ (s′ | l′1, . . . , l′n), (3.4)

if (s, li, s
′, l′i) ∈ ∆ for some i ∈ 1, . . . , n and lj = li for all j 6= i. The execution of the

transition system M is a finite or infinite sequence of states of V that are pairwise related
by 7→ started from an initial state of I. The states in the execution sequences are consider
to be reachable states.

A relation � over V is defined as:

(s | l1, . . . , ln) � (s′ | l′1, . . . , l′n) (3.5)

where s = s′ and {l′1, . . . , l′n} ⊇ {l1, . . . , ln}. Indeed, � is a wqo and the transition relation
7→ is monotonic wrt. wqo.
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Kapitola 4

Existing Algorithms for
Coverability Checking

The following section is focused on the existing algorithms that are used for checking the
coverability problem of infinite-state systems. The main aim is to present the most relevant
existing works, namely [14], [9] and [3], and discuss their strengths and weaknesses.

4.1 A Complete Abstract Interpretation Framework for Cove-
rability Properties of WSTS

The article [14] presents an approach that runs a program in an abstract domain. The sets
of reachable states in the forward algorithm can be represented by downward-closed sets.
The domain is refined using CEGAR to obtain sufficiently precise overapproximation to
decide the coverability problem. In each iteration of CEGAR, the algorithm performs a
forward search followed by refinement of the domain based on the backward analysis.

Initially, the input of the algorithm is given as an WSTS S = (Σ, I,→,�) and a UCS
bad . The aim of the abstract interpretation algorithm is to decide whether the set bad is
reachable from the initial set I or not. The abstract domain is parametrized by a parameter
D. The set D defines the precision of the abstract domain and contains only the elements
that are interesting for the computation. Intuitively, the abstraction function selects from
a given DCS E only the elements contained in the parameter D of the abstract domain.
Formally, it is defined as:

∀E ∈ 2X : α[D](E)
def
= E↓ ∩D. (4.1)

While the concretisation function is defined as:

∀P ∈ 2D : γ[D](P )
def
= {x ∈ X | x↓ ∩D ⊆ P}. (4.2)

The result of the function applied to P is a set of all the elements such that all interesting
elements in its DCS are contained in the set P .

An abstract post operator in the domain parametrized by D is defined in a standard
way as:

post][D]
def
= α[D] ◦ post ◦ γ[D]. (4.3)

12



In particular, an abstract representation of the set P is computed, then a forward step
using the procedure post is carried out and, subsequently, the concretisation function γ is
calculated.

To find out all reachable states from the set P the forward steps are carried out till no
new elements within the abstract domain parametrized by D are found:

post][D]∗(P )
def
=
⋃
i≥0

post][D]i(P ). (4.4)

When the concretisation function γ is applied, a potentially infinitely large set is created.
Therefore, it is necessary to compute post] in a symbolic manner. In particular, it is checked
whether there is an element x in the parameter D of the abstraction domain such that its
predecessor is in the concretization of the elements that have been already found to be in
the set P . Formally defined:

x ∈ post](P )⇔ (x ∈ D ∧ ¬(pre(x↑) ⊆ (D\P )↑)). (4.5)

Thus, the set of reachable states is computed and it is necessary to check whether it
contains any element from the set of incorrect states bad . The set bad is unreachable if

post][D]∗ ∩ bad = ∅. (4.6)

Otherwise, if
post][D]∗ ∩ bad 6= ∅, (4.7)

then the system can reach an incorrect state (the set bad is reachable) or the precision of
the abstract domain parametrized by D is not sufficient and has to be refined. To find out
which elements are necessary to add to the parameter of the abstract domain the backward
computation is performed. It begins from the set of incorrect elements bad and the backward
analysis computes several steps backward (the number of the steps depends on a number of
iteration of CEGAR) such that the domain is enriched by newly discovered elements that
are not yet included.

Let us now present functions that are necessary for the explanation of the backward
algorithm. The set of predecessors forms an UCS . Since any UCS can be represented by a
set of its minimal elements, the transition relation → is monotonic wrt. � and the set of
predecessors of any UCS is an UCS , as it was discussed in Section 2.1, we can compute a
set of predecessors in the following way:

minpre[O](T )
def
= minpre(T ) ∩O (4.8)

where O is a subset X.
The backward analysis is based on the Algorithm 1 with the differences that only a few

steps backward are computed and the backward search is carried out within the set Oi of
elements discovered during the forward search:

Oi = γ[Di](Ri) (4.9)

where i is the iteration number, Di is the parameter of the current abstraction domain
and Ri is a set of all the elements reached in the forward algorithm within the current
abstraction domain parametrized by Di.
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Based on the above mentioned function, the backward algorithm can be defined as:

R′i
def
=

{
min

(
i+1⋃
k=0

minpre[S,Oi]
k (bad)

)}
. (4.10)

The backward algorithm performs i + 1 steps backward within the set Oi from the set of
incorrect states bad .

Finally, the parameter Di of the current abstract domain is refined such that the pa-
rameter Di+1 of the following one is a subset of the union of Di and the set of the new
elements R′i computed during the backward search:

Di+1 ⊇ Di ∪R′i. (4.11)

A number i of iterations of CEGAR is increased and the next iteration of the algorithm is
performed.

The whole algorithm can be summarized in the following way, according to [14]:

Algorithm 2 Refinement loop

Input:

• an IWSTS S0

• a set bad ∈ UCS (X)

Output:
Is bad reachable?

Let min((bad)) ⊆ D0

for i = 0, 1, 2, . . . do
Compute Ri defined to be ((post][Di])

∗ ◦ α[Di])(x0)
Let Oi denote γ[Di](Ri)
if Oi ∩ bad = ∅ then
return UNREACHABLE

else
Compute R′i defined to be min(

⋃i+1
k=0minpre[Oi]

k(bad))
if {x0} ∩R′i↑ = ∅ then

choose Di+1 ⊇ Di ∪R′i
else

return REACHABLE
end if

end if
end for
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4.2 Incremental, Inductive Coverability

The article [9] describes a procedure based on the IC3 algorithm [1] for checking coverabili-
ty. The algorithm has been originally proposed to finite-state hardware verification. The
article [9] generalizes it to coverability of WSTS .

An input of the algorithms is a WSTS (Σ, I,→,�) and a DCS of correct states P↓.
On the abstract level, the algorithm computes the sequence U = U0↑, U1↑, . . . , UN↑ of UCS
defined as:

U0↑ = Σ\P↓, (4.12)

Ui+1↑ = Ui↑ ∪ pre(Ui↑). (4.13)

The sequence U represents the states from where errors are reachable, and it eventually
stabilizes, i.e. there exists L: UL↑ = UL+i↑ for all i ≥ 0 since � is wqo. The set U0↑
corresponds to a set bad in article [14] which consists of incorrect configurations.

Given an initial set I, the algorithm creates a path from a state in I to a covering set
for P↓ or to a state not in P↓ (if Cover 6⊆ P↓). The set Cover is a set of reachable states
from I.

If the initial set I does not contain any of bad states from a set U↑, I ∩ U↑ = ∅, then
Cover ⊆ P↓. In addition, if the condition of the disjunction of the initial set and the set
of bad configurations is fulfilled, then the complement Σ\U↑ contains the initial set I and
satisfies post(Σ\U↑) ⊆ Σ\U↑.

A set C↓ is considered to be a covering set for P↓ if it has the following properties:

• I ⊆ C↓ (includes the initial set),

• C↓ ⊆ P↓ (is safe) and

• post(C↓) ⊆ C↓ (is inductive).

Let (Σ, I,→,�) be a WSTS and a set R↓ such that I ⊆ R↓. We say that S↓ is inductive
relative to R↓ if I ⊆ S↓ and

post(R↓ ∩ S↓) ⊆ S↓, (4.14)

then also
pre(Σ\S↓) ∩R↓ ∩ S↓ = ∅. (4.15)

On the contrary, an UCS U↑ is inductive relative to R↓ if I ⊆ S↓ and

post(R↓\U↑) ⊆ Σ\U↑, (4.16)

then also
pre(U↑) ∩R↓\U↑ = ∅. (4.17)

A state of the algorithm is described with a pair R | Q where Q is a priority queue
and R is a sequence of DSC R↓0, . . . , R

↓
N such that R↓0 = I↓. Each DCS Ri is an over-

approximation of the set Coveri denoting the set of the states reachable in i or less steps
from the initial set I.

The algorithm works with sets that are not necessarily inductive by themselves, however,
they are inductive relative to some other sets. The algorithm maintains an invariant such
that R↓i+1 is inductive relative to R↓i in each step and R↓i ⊆ P↓ for i < N . If the vector

stabilizes, i.e. R↓N−1 = R↓N , then RN can be considered an inductive covering set for I.
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First, it is checked whether the set RN contains possible counter-example. If a coun-
terexample exists it is stored in the priority queue Q as a pair 〈a,N〉 where a ∈ Σ is a
state and N is the level of the element or also the priority of the element. Subsequently,
the algorithm creates a counterexample trace backward through all the levels of the vector
R searching for predecessors of a such that a0 → . . .→ aN , where ai ∈ R↓i for all i. All the
predecessors ai are also stored in the priority queue Q with the priority i.

If the counter-example cannot be extended backwards within R↓i , the set R↓i is refined
by removing some b↑ from R↓0, . . . , R

↓
i such that a ∈ b↑. However, not only the states from

the counter-example trace are removed. We can also remove the whole set of states that
are valid generalizations of states in Q relative to some set R↓i defined as:

Geni(a) := {b | b � a ∧ b↑ ∩ I = ∅ ∧ pre(b↑) ∩R↓i \b↑ = ∅}. (4.18)

The set consists of the states that are a part of the counterexample traces and their most
general elements that do not have any predecessors within R.

If no more updating of vector R is possible, N is increased and a forward step is carried
out. This phase is called inductive straightening. The algorithm terminates in states valid
(Cover ⊆ P↓) or invalid (Cover 6⊆ P↓).

The algorithm in [9] is described precisely as a procedure which applies the following
rules (in an arbitrary order):

[Initialize] The algorithm starts with the set R↓0 = I↓ and the empty queue Q.

[CandidateNondet] If a state a ∈ R↓N that is not in P ↓ is found, it is added to the queue
Q as an element 〈a,N〉.

[DecideNondet] The state a of the lowest level i is picked from the queue Q and all its
predecessors b such that b ∈ pre(a↑) and b ∈ R↓i−1 are added to Q with the level i−1.

[Model] If a state a from 0 level is contained in Q, the algorithm terminates in the state
invalid because a counter-example trace has been found.

[Conflict] If a does not have a predecessor within R↓i−1\a↑, then a belongs to a spurious
counter-example trace. The state a cannot be reachable in i steps and therefore its
upward-closed set a↑ can be removed from all the sets R↓1, . . . , R

↓
i . Moreover, also a

bigger set containing all the states b ∈ Geni−1(a) can be removed. After the upda-
ting of R, the element 〈a, i〉 is removed from the queue Q. Subsequently, the element
〈a, i+ 1〉 is added to Q to speed up the search.

[Induction] In the case, when the states ri,1, . . . , ri,m that have been removed from R↓i be-
come inductive relative to R↓i , i.e. such that post(R↓\ri,j↑) ⊆ Σ\ri,j↑, then the states
in ri,j cannot be reached also in i + 1 steps. They can be then safely removed also
from R↓i+1 as well as their generalizations b ∈ Geni(ri,j).
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[Valid] The algorithm terminates with the answer valid if there is a R↓i such that R↓i =

R↓i+1.

[Unfold] If the priority queue Q is empty, the forward step is carried out: R↓N+1 = Σ is
attached to the vector R.

In an implementation, these rules are usually applied in the following way. The predeces-
sors of the possible counter-example a create a chain a0, . . . , aN , ai ∈ R↓i . First, a possible
end-point of the chain from the lowest level is found using [CandidateNondet]. Then the
procedure [DecideNondet] is applied to search its predecessor. If no predecessor from level 0
(checking by [Model]) is found, then R↓1, . . . , R

↓
i is refined applying [Conflict] that removes

unreachleable states. If there is no more progress in refining of the vector R, [Unfold] is
applied.

In the phase of inductive strengthening, the procedure [Induction], is repeatedly applied.
If some pre-conditions fail to hold, it is checked whether [Valid] applies. If not, the algorithm
will continue to the next round.

4.3 Coverability for Petri Nets

In Section 4.2, the algorithm for the coverability problem was presented. Now, the im-
plementation of the general algorithm for the coverability problem for Petri nets will be
discussed.

The algorithm in [9] works with a downward-closed set R↓i that initially contains all the
states. Consider b↑ as a UCS of bad states that are blocked by b at level i. The aim of the
algorithm is to remove states of the UCS b↑ from R↓i where b ∈ Nn. Thus, the set R↓i will
be defined as:

R↓i = Σ\{b1, . . . , bl}↑. (4.19)

However, it is conceptually represented as {b1, . . . , bl}.
The algorithm uses delta encoding. Consider finite sets Bi and Bi+1. Let R↓i = Σ\Bi↑

and R↓i+1 = Σ\Bi+1↑, then Bi+1↑ ⊆ Bi↑. Since b is blocked on the level i and lower, only a
vector F = {F0, . . . , FN , Finf} is needed to be maintained such that b ∈ Fi, Fi is a difference
between B↓i and B↑i+1 ∪ . . . ∪B

↑
N , Finf represents a set of states that can never be reached.

For
(R↓0, R

↓
1, R

↓
2) = ({i1, i2}, {b1, b2, b3, b4}, {b2, b3}), (4.20)

where bi are blocked elements in Ri, the matching vector F is defined as:

(F0, F1, F2, Finf) = ({i1, i2}, {b1, b4}, {b2, b3}, ∅). (4.21)

The implementation involves the rules presented in Section 4.2 adapted to Petri nets.

[CandidateNondet] Testing whether a is contained in a set R↓k using the delta-encoded
vector F means iterating over Fi for k ≤ i ≤ N + 1 and checking if there is any c � a such
that c ∈ Fi. If such a state exists, then a is blocked by c, otherwise, a ∈ R↓k. In case of
k = 0, we search for c only in F0.

[DecideNondet], [Conflict], [Induction] In these rules, it is necessary to find predecessors
pre(a↑) in R↓i \a↑ and their generalizations. If no such predecessors exist, then relative
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inductiveness is concluded. The following lema shows how to compute the most general
predecessor along a fixed transition directly.

Lemma 1 Let a ∈ Nn be a state and t = (g, d) be a transition. Then b ∈ pre(a↑) is a
predecessor along t if and only if b � max(a− d, g) [9].

Therefore, it is needed to iterate through all transitions t = (g, d) and find the transition
such that max(a−d, g) ∈ R↓i \a↑. If there is no such transitions, then a↑ is inductive relative
to R↓i and thus, predecessor of a, max(a − d, g), is blocked by a itself, or a state ct ∈ Fit ,
for some it ≥ i, such that ct � max(a− d, g).

We define

i′ := min{it | t is a transition}, (4.22)

where it := N + 1 for t = (g, d) if max(a − d, g) is blocked by a itself. Then i′ ≥ i and a↑
is inductive relative to R↓i′ .

The following lema shows how to compute a state a′ � a such that for all transitions
t = (g, d), max(a′ − d, g) remains blocked by a′ itself, or by ct.

Lemma 2 Let a, c ∈ Nn be states and t = (g, d) be a transition.

• Let c � max(a−d, g). If gj < cj, then a′′j := cj +dj and if gj ≥ cj, then a′′j := 0, for all
j = 1, . . . , n. Then a′′ � a and for each a′ such that a′′ � a′ � a, c � max(a′ − d, g).

• If a � max(a−d, g), then for each a′ such that a′ � a, it holds that a′ � max(a′−d, g)
[9].

If the predecessor of a, max(a− d, g), is blocked for each transition t = (g, d), then a′′

is defined in the following way.

• If the predecessor is blocked by some state ct ∈ Fit , then a′′t is defined as in Lemma
8 and the predecessors of a′′ remain blocked by ct.

• If the predecessor is blocked by a itself, then a′′t := (0, . . . , 0) and the predecessors of
a′′ remain blocked by a′′ itself.

The state a′′ is defined to be the pointwise maximum of all states a′′t .
However, if a′′ is in R↓0, then a′ := max(a′′, c) where c is any c ∈ F0 that blocks a (such

a state exists because a 6∈ R↓0) is a valid generalization: a′ � a and a′↑ is inductive relative
to R↓i′ .

In [Conflict] and [Induction], it is necessary when blocking a generalized upward-closed
set a′↑ inductive relative to R↓i′ for i′ < N to update the vector F by adding a′ to Fi′+1.
However, if i′ = N or i′ = N + 1, a′ is added to Fi′ . Moreover, for 1 ≤ k ≤ i′ + 1 (or
1 ≤ k ≤ i′) all states c ∈ Fk such that a′ � c are removed.

[Valid] The algorithm terminates, if Fi is empty for some i < N .
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[Unfold] If all bad states from R↓N were removed, N is increased and an empty set is
inserted to position N in the vector F , thus, Finf is pushed from position N to N + 1.

4.4 Efficient Coverability Analysis by Proof Minimization

The algorithm represented in [3] is based on backward search 1. It tries to generalize the
found predecessors of bad by guessing smaller candidates. This way accelerates the com-
putation and minimizes the proof of uncoverability, thus, failing to contribute to the proof
minimization. To eliminate such unhelpful canditates, a forward search is used to simulta-
neously generate a set of coverable elements. The simultaneously executed forward search
does not effect the overall results only the speed of the algorithm. During the forward search
represents an underapproximation, the backward search represents overapproximation. In
the notation of the paper, the set bad is called initial and denoted I.

Let q be an uncoverable state and I a set of an initial states. Brs denotes an upwared-
closed set of states that have an emanating execution leading to a state q. Since q is
uncoverable, Brs∩I = ∅. Its overapproximation is the set Brs], also fulfilling the condition
of being disjoint with the initial states

q ∈ Brs], CPre(Brs]) ⊆ Brs], Brs] ∩ I = ∅ (4.23)

where a procedure CPre is defined as:

CPre(v) = min(pre(v↑)) (4.24)

and computes the predecessors of a state v ∈ V . The function CPre returns a set of general
predecessors of UCS v↑. The uncoverability proof Brs] for q is minimal if

min(Brs]) ⊆ min(V \Cover) (4.25)

where Cover are states reachable from the initial states and no upward-closed subset X ⊂
Brs] is an uncoverability proof for q.

The algorithm maintains the following sets during the computation:

• a set U of labeled and identified vertices with encountered states,

• a set W of unprocessed vertices,

• a set D of coverability results,

• a set E of edges within a set U , E ⊆ U × U and

• a mapping ζ.

The mapping ζ associates each vertex with exactly one vertex, ζ: U → U . Each vertex
u ∈ U is called candidate vertex if ζ(u) = u, otherwise, the vertex u is called predecessor
vertex. Moreover, the mapping ζ can be extended to sets X, ζ(X) = {ζ(x) | x ∈ X} thus
the vertices are clustered into | ζ(U) | partitions, one per candidate vertex.

The backward search starts with the working set W and the set U containing only the
target q that represents a state where error occurs. The set E of edges is empty and the
function ζ associates q to itself. The algorithm consists of three procedures - Enlarge -
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creating new candidates, Backtrack - removing the partitions of unhelpful candidates and
Mcov - the main routine. The algorithm ensures any time, restricting of the partitioned
graph (U,E, ζ) to any equivalence class of vertices with the same associated candidate
vertex forms a tree with the candidate vertex as a root and all other vertices as their
predecessor vertices according to the relation E.

Let s ∈ U be a vertex. The set U expands by adding next candidate that leads to s.
The set of potential candidates C(s) ⊆ V leading to s is defined as:

C(s) = {v ∈ V | v ≺ s ∧ v 6∈ D}. (4.26)

The states in the set lead to s but are not yet marked.
Subsequently, one candidate p from the set of minimal candidate vertices, min C(p),

is picked and new minimal candidate vertices are created using the Enlarge routine. The
routine takes vertex u as an input and, if it is a new vertex, it adds the vertex to the set U
and the working set W . Then the graph is repartitioned by adjusting ζ and every vertex in
the set to preserve a shape of tree

Λ(u) = {r ∈ U | u = r ∨ (r →∗ u ∧ ζ(r) = ζ(u))} (4.27)

is associated with vertex u. Thus, r ∈ Λ(u) now entails ζ(r) = u.
In the next step, a minimal vertex from the working set W is picked. If no more unpro-

cessed vertex is in the set W , then the algorithm terminates with a result q 6∈ Cover, thus
proving the uncoverability of the target q. Otherwise, all covering predecessors p of vertex
w are found using the procedure Cpre(w) and proceed if they are ζ(w)-minimal, as defined
below.

Definition Let v ∈ V , and u ∈ ζ(U). State v is u-minimal if v 6� u and for all s, s′ ∈ U
such that s→ s′ and ζ(s′) = u, we have v 6�s [3].

If p is not coverable, p 6∈ D, then the graph is expanded by adding an edge (p, w) to the
set E. If p is a new vertex, p 6∈ U , then a predecessor p is added to the sets U and W and
the mapping function ζ is changed such that ζ(p) = w. Finally, Enlarge routine is called
to create new candidates.

In case that p is coverable but not q, then ↓p is added to the set of coverable states D
because if p is coverable, then also its UCS is coverable and Backtrack routine is evoked.
The purpose of the backward search is to delete unhelpful candidates P ⊆ ζ(U) and their
partitions. However, a part of the partition may be shared with remaining candidates and
thus it is necessary to ensure that only unhelpful candidates are deleted and to preserve the
parts of the partition that are shared with remaining candidates. Therefore, for P -conflict
edges (r, s) ∈ E such that ζ(r) ∈ P and ζ(s) 6∈ P , the vertices in Λ(r) are reassociated to
ζ(s). Then all unhelpful candidates can be removed from the sets U and W and also all
edges associated with these candidates can be removed from E.

If there is a state u in the set min(U) such that u ∈ min(U)∩ ↑p, then new candidates
are created using the routine Enlarge.

If no previous condition is fulfilled, then q ∈ D, and hence the algorithm terminates in
a state q ∈ Cover.

The algorithm eventually terminates due to the finiteness of downward-closures and
the fact that during backtracking, only the conflicting edges are removed. If the algorithm
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terminates in a state q 6∈ Cover, which means that the target q is uncoverable, then all the
remaining minimal nodes from the set U represent an uncoverability proof for q: Brs] = ↑U .
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Kapitola 5

Determination of inductive
invariant

In this chapter, we will explain the notion of inductive invariant. The existing approaches
to finding the invariant will be discusses along with their pros and cons and a improved
method will be proposed.

5.1 Inductive invariants

The most recent methods for formal verification of systems with unbounded parallelism are
based on the concept of the forward search combined with the backward analysis to find an
invariant. It is a property that holds in every reachable state and can be proved by simple
induction. Our effort is to find the invariant with the smallest possible representations since
the smaller is its representation, the more effective its testing usually is, and the faster it
can be generated. A safe inductive invariant is a set of states of the system with three
following properties:

• contains its initial states (base),

• does not intersect with the undesired states (safety), and

• is closed under the transition relation (induction).

The properties together are an inductive proof of safety of the system. Let us illustrate the
notion of safe inductive invariant on an example of the Peterson’s algorithm (Algorithm 3).
The basic variant of the algorithm ensures exclusive access to critical section in a system
with two processes. It corresponds to the situation where the first process is in a state q4
and the second one in a state r4. The configuration where these two states simultaneously
occur is a part of the set bad representing the incorrect configurations of the system. The
task is to verify that no incorrect configuration from bad is reachable thus, the system is
safe.
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Algorithm 3 Peterson’s mutual exclusion

int x = 0; int y = 0; int T;

q1: x = 1;

q2: T = 1;

q3: while (y == 1 && T == 1)

{

// busy wait

} // critical section

q4: ...

// end of critical section

x = 0;

r1: y = 1;

r2: T = 0;

r3: while (x == 1 && T == 0)

{

// busy wait

} // critical section

r4: ...

// end of critical section

y = 0;

For an example of Peterson’s mutual exclusion algorithm a simple invariant can be
expressed as a formula over literals talking about states of the system:

¬((q3 ∧ x0) ∨ (q4 ∧ x0) ∨ (q2 ∧ x0) ∨ (r4 ∧ y0)∨
(r3 ∧ y0) ∨ (r2 ∧ y0) ∨ (q4 ∧ r3 ∧ T1) ∨
(q3 ∧ r4 ∧ T0) ∨ (q4 ∧ r4)) (5.1)

where qi or ri means that the control of the left or of the right process, respectively, is at
the i-th line, xi, yi and Ti means that a state of the appropriate variables is i.

To ensure that the formula represents an inductive invariant we have to verify that the
three above described properties are fulfilled.

[Base] The initial state of the system is a configuration where the two processes are in
the states q1 and r1. The formula holds for these states, therefore, this property is
fulfilled.

[Safety] Since the configuration with two processes in the critical section, represented by
a predicate q4 ∧ r4, is excluded by the formula the invariant does not intersect with
the incorrect states.

[Induction] The formula can be expressed as a conjunction of formulas: φ1∧φ2∧φ3∧φ4∧φ5
where φ1 = (qi ⇒ x1, i ∈ {2, . . . , 4}), φ2 = (ri ⇒ y1, i ∈ {2, . . . , 4}), φ3 = (q4 ∧
r3 ⇒ T0), φ4 = (q3 ∧ r4 ⇒ T1) and φ5 = (¬q4 ∨ ¬r4). The property of induction is
fulfilled if any transitions from a configuration where the formula is satisfied lead to
a configuration where the formula is satisfied as well. We will argue that it is true for
each formula φi, for i = {1, . . . , 4}.
First, we will discuss the formula φ1. Performing transition from q1 to q2, x is set to
1. Since the process q does not change the value of x on its way from a state q2 to
q4, and since the process r does not change the state of x at all, the formula φ1 is
satisfied. The argument of the formula φ2 is symmetric to φ1.

Consider the formula φ2, the configuration with states q4 and r3 is reachable by
transitions q3 → q4 or r2 → r3. The transition q3 → q4 is possible if y0 or T0. The
case y0 is excluded by the formula φ2. In case of T0, φ3 is satisfied (since T0 holds).
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Finally, the transition r2 → r3 sets T to 0 which guarantees that φ3 is satisfied. The
argument of the formula φ4 is symmetric to φ3.

Consider the formula φ5, the configuration where q4 and r4 can occur by performing
transitions q3 → q4 or r3 → r4. The process can change its state from q3 → q4 if y0
which is excluded by the formula φ2, or if T1 which is excluded by the formula φ4.
The transition r3 → r4 can be fired if x0 which is excluded by the formula φ1, or if
T1 which is excluded by the formula φ3, thus the formula φ5 is satisfied.

Methods of finding invariant Let us now present how the notion of inductive invariant
is represented in the state of the art methods presented in Section 4. The algorithm from
Section 4.1 is based on running a program in an abstract domain. The abstract domain
is parametrized by a set of configurations D which defines its precision. The algorithm
converges if the parameter D has a subset V such that a complement of the UCS V ↑ is an
inductive invariant. Since elements of D are almost the only data the algorithm works with
(besides transition function) we can say that the smaller inductive invariant is, the faster
the algorithm is.

The algorithm from Section 4.2 is based on a method of eliminating configurations
a0, a1, . . . that are a part of spurious counterexample paths. The convergence of the algo-
rithm is guaranteed if the complement of the UCS of the upward closure of these confi-
gurations forms an inductive invariant. In the notation of 4.2, the inductive invariant is
then represented by the vector R. Certain emphasis on finding more succinct invariants is
noticeable in the design of the algorithm. Particularly, the procedure Gen defined by the
equation (4.2) tries to guess generalizations of the configurations from the spurious coun-
terexample paths which leads to inferring number of smaller configurations (that represent
the invariant).

The core of the algorithm from Section 4.4 is backward search for minimal uncoverable
elements from a set of incorrect configurations. During the backward analysis, a tree of
possible predecessors is created and the unhelpful candidates are removed. The algorithm
converges in case that an UCS of a set U↑ of minimal nodes covering q, denoted by Brs,
is an inductive invariant. The algorithm attempts to guess generalizations of potential
candidates C(p) (this is similar to the role of the procedure Gen in the algorithm from 4.2).
The smaller the covering predecessors we examine, the shorter the paths the algorithm
needs to traverse.

All the three algorithms learn the invariant of the same form - as the complement of an
UCS . It is evident that a heuristic leading to finding more succinct invariants would help
to accelerate the overall performance of the algorithm. The last two methods are about to
guess the succinct invariants in a certain way. The performance of the three algorithms is
similar, as it is shown in the result of the experiments in [11]. We have found experimentally
that the invariant in case of the algorithm from Section 4.1 has a size of 135 disjuncts, as
discussed detailedly in Section 8, which offers a possibility of improving the method since
we discovered the existence of the invariant of the size 9 disjuncts (see formula (5.1)).

Analysis of the optimization The current methods learn invariants based on the coun-
terexample runs. The backward analysis explores the state space of the system using an
operation pre starting in a set of incorrect configurations. The search is performed in a
rather Breadth-first manner, and essentially all found configurations are being added to
the constructed representation of the invariant (modulo some rather local optimizations
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such as the “generalization” of algorithms 4.2 and 4.4). Due to the absence of a global
view of the counterexample runs, the methods cause an unnecessary increase in the number
of inspected configurations that form an approximation of the invariant and thereby the
inductive invariant is unnecessarily verbose. The example can be the case of Peterson’s al-
gorithm where the method presented in [14] found an invariant corresponding to a formula
with 135 disjuncts, while we proved the existence of the invariant with 9 disjuncts. We thus
believe that many systems have much more succinct invariants than what can be found by
the current methods, and that by designing techniques focusing on the search of succinct
invariants, we can improve efficiency of the current approaches significantly.

This work is inspired by certain initial ideas about the search for an invariant within the
method of Section 4.1 since it can be directed towards more succinct invariants. Particularly,
we will replace the breadth-first backward state space exploration of all configurations that
can reach the set bad by exterminating of so called minimal (abstract) counterexample
runs. A minimal counterexample run is consider to be a run within an abstract domain,
leading from an initial set to a set of incorrect configurations bad which is executed using
a minimal set of transitions. Using a more detailed analysis, we will determine a minimal
(most succinct and most general) reason that the run is spurious - it is not feasible in the
concrete domain. This minimal reason (in a form of a set of configurations) will then be
used to refine the abstract domain (it will be included into D). The minimal reason has a
potential to be a part of the minimal inductive invariant since 1) it is necessary to refute
the examined spurious counterexample run and 2) it is a “minimal” such “reason”.

Overall, the modification of the method of Section 4.1 has two steps. First, its counte-
rexample analysis loop must be modified to proceed rather depth-first instead of breadth-
first search, and generate minimal counterexample runs. Second, a method of analysis pro-
duced minimal counterexample runs is needed such that would determine the most succinct
invariants (that can refute them).

The aim of this work is not to design the whole method yet. This would exceed usual
bounds of a master thesis. We rather focus on verifying that it is sensible as a research
direction, and on verifying that succinct invariants indeed exist for many practical systems.
Therefore, in the practical part of the thesis, we will proceed as follows.

We will implement the modification of the algorithm presented in [14] and re-implement
the original algorithm as well, in order to compare its performance with the performance
of its modified version. The modification is based on the implementation of the depth-first
search whose effort would be to find minimal runs. The second part will be implemented as
a simple and brute-force analysis of minimal counterexample runs. An efficient method of
the analysis will be a subject of a further research.
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Kapitola 6

Modified analysis

This chapter describes the core of the technical part of this thesis. We first discuss the use
of Petri nets for encodings of programs, the instantiation of the framework of [14] to Petri
nets, followed by a representation of abstraction and an implementation of the algorithm
presented in [14] and its modified version, discussed in the previous section.

6.1 Petri net

We use Petri net, a tuple N = (S, T,W ), to simulate and test behavior of systems with
parallel running processes. Places and transitions of Petri net may have for different systems
different interpretation. Places can represent required/freed resources, input/output data,
input/output signals or buffers while transitions can represent tasks, computations, signal
processing or processors.

As an example, we model the Peterson’s mutual algorithm (Algorithm 3) as a Petri
net. Configurations of the system are multisets over the alphabet {q1, q2, q3, q4, r1, r2, r3,
r4, x0, x1, y0, y1, T0, T1}. In this chapter, we will denote a multiset as a word over the
alphabet, and we will sometimes use the word terminology, for instance a subword for a
submultiset. Each letter of the alphabet represents a one token in a place in the Petri net
and corresponds to a literal in the formula (5.1).

If the first process changes its state from q1 to q2, it executes an instruction x = 1. It
corresponds to firing the transition t1: the token from the place q1 moves to the place q2
and the token from the place x1 moves to the place x0, or if the token is at the place x1 it
remains there. The Petri net modeling Peterson’s algorithm is shown in Figure 6.11.

The aim is to check that the protocol guarantees exclusive access to a critical section
regardless of the number of processes. A violation of mutual exclusion is considered a word
with simultaneous occurrence of letters q4 and r4 that are represented in Petri net by a
occurrence of tokens at places q4 and r4. The configurations that violate the property are
given by bad = {q4r4}↑. Note that bad is an UCS : whenever a configuration contains two
processes in the critical section then any larger configuration will contain (at least) two
processes in the critical section as well.

1We know that studying of the PN is not necessary for understanding the rest of the thesis (but it is an
intriguing exercise.)
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Obrázek 6.1: Peterson’s mutual exclusion algorithm modeled as a Petri net

6.2 Abstraction

In chapter 3.1, we introduces Petri net as an instance of WSTS . Analysis of Petri nets has
to tackle the problem of the state space explosion, and, for instance when Petri nets are
used to model systems with unbounded parallelism, also infinite state spaces. Hence, it is
necessary to use abstraction. The abstraction α[D](c) defined in the equation (4.1) returns
all subwords of the configuration c contained in the parameter D of the abstraction domain.

Let us consider the Peterson’s mutual exclusion protocol and the following parame-
ter D = {q1, q2, q3, q4, r1, r2, r3, r4, x0, x1, y0, y1, T0, T1, q4r4}. Given a configu-
ration c = q4r4T0x0, after applying α[D] on c, we receive the abstract set α[D](c) =
{q4r4, q4, r4, T0, x0}.

6.3 Forward search

The algorithm in Section 4.1 is presented in terms of WSTS . Nevertheless, it can be instan-
tiated to Petri nets. Given a Petri net N = (S, T,W ) and an UCS bad, we check whether
we can fire a sequence of transitions starting from an initial marking x0 and hit the set bad.
Checking the safety property equals to deciding reachability of the UCS bad.

Algorithm 4 Forward reachability

Input:

• N = (S, T,W ): Petri net

• bad : UCS of incorrect markings
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Obrázek 6.2: Backward analysis GRB

Output:
Is bad reachable?

Pi = α[D](x0)
path = ””
while Pi 6= Pi−1 do

for t in T do
if t.isEnabled(Pi) then

path = path . t
Pi+1 = Pi ∪ postt][D](Pi)
i = i+ 1

end if
end for

end while
if Pi ∩ bad = ∅ then

return UNREACHABLE
else if ∃x0, . . . , xk ∈ D : x0 → · · · → xk ∈ bad then

return REACHABLE
end if

The algorithm considers the abstraction domain parametrized by D and the abstract
function α[D] (4.1). The function t.isEnabled() returns True if there is a marking in
γ[D](Pi) such that the transition t can be fired from the marking, and False otherwise.
The function postt][D](Pi) represents a set of abstract successors of Pi under the transition
t. It is computed in a symbolic manner analogical to an abstract post operator post] (4.5)
with the difference that it is restricted to the transition t that is:

x ∈ postt](P )⇔ (x ∈ D ∧ ¬(pret(x↑) ⊆ (D\P )↑)), (6.1)

where

pret(X) =
⋃
x∈X

pret(x) (6.2)

and
pret(x) = {y | y t→ x}. (6.3)
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Obrázek 6.3: Backward analysis - our approach

The main idea of the algorithm is that if there is a sequence of transitions such that bad
is reachable then we found a counterexample. If it is the case, we have to check whether it
is a spurious counterexample that was received due to the low precision of the abstraction.
Hence, we refine the abstract domain by enlarging the parameter D. If Pi does not intersect
with bad then we excluded all spurious counterexamples and the precision of the abstraction
is enough to prove the system safe.

The forward search is analogical to the forward search represented in the article [14].
On top of that, we store a sequence of transitions the analysis was going through during
one particular forward run, and sets Pi, for i < n, representing the abstract states. They
will be used in the backward analysis for examination of counterexample runs.

6.4 Backward analysis

Since the forward run is performed within the abstraction domain, the spurious counte-
rexamples can be discovered. Hence, it is necessary to find a way how to increase the
precision of the abstract domain enough to solve the coverability problem. The refinement
technique is based on the analysis of the configurations from which the set of incorrect
configurations bad is reachable.

Consider the backward analysis described in Algorithm 1. The algorithm is given an
initial state x0, the set of incorrect configurations bad, and a PN N . The backward analysis
explores the state space using an operation minpre (4.10), searching for configurations
from which the set bad is reachable. Nevertheless, not only one counterexample path is
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inspected during the backward analysis but we follow all transitions whose postconditions
the inspected configuration fulfills. Thus, several transitions can be fired backward from a
single configuration. This technique is called breadth-first search. Hence, in each iteration
of CEGAR, a covering set of the set bad (the current approximation of an invariant) is
enlarged with a large number of states (see 6.2).

Our modification of the backward analysis outlined in Section 4.1 is based on a global
view of the run. It has two steps. First, we traverse the state space of a system in a depth-
first manner, rather than breath-first, and construct a minimal abstract run as we discuss
in Section 5.1, and then we analyze the run to determine a minimal reason for that the run
is spurious.

To analyze the run, we use the sets of abstract states Pi, for i < n, and path received in
a forward analysis (Algorithm 4). It is a sequence of transitions path = t1t2 . . . tn where n is
a length of the run. The sequence represents a run in an abstract domain parametrized by
D from an initial set I to the set bad . We have to analyze whether the run corresponding
to path is feasible in a concrete domain as well or whether the analysis has hit a spurious
counterexample due to the abstraction.

To do that, we construct a graph which records how exactly were the elements of Pi,
i < n (including an abstraction of bad), generated by the forward abstract run. An element
e is generated in the i-th step of the run if it results of firing the transition ti from a
concretization γ[D](Pi−1) of Pi−1. It means that Pi−1 contains the abstraction α[D](•ti) of
the precondition of ti and the element is covered by the postcondition t•i of ti, i.e t•i � e.
To reflect this, the graph will have an edge from the element to the precondition and from
the precondition to each element of the abstraction of the precondition. The construction
of the graph is described in the following pseudocode (Algorithm 5).

Algorithm 5 Construction of the graph

Input:

• G = (V,E) where V = α[D](bad) and E = ∅

for i = n to 1 do
if α[D](•ti) in Pi−1 then

for v in V do
if t• � v then

V = V ∪ {•ti} ∪ α[D](•ti)
E = E ∪ {(v, α[D](•ti))} ∪ {(v, x)|x ∈ α[D](•ti)}

end if
end for

end if
end for

As discussed in Section 5.1, we focus on an analysis of a minimal run which corresponds
to a way how bad can be reached from the initial set. It is a minimal subgraph of G such
that it is a DAG, its root is an abstraction of bad , and all its leaves are in an abstraction
of the initial set (see Figure 6.3). Our aim is to refine the abstraction domain so that we
will not generate the run in the future. This can be done by preventing the abstraction
from generating some of the preconditions of the transitions used in the run (in the graph
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they appear as the nodes •ti inserted on line 5 of the Algorithm 5). The refinement can be
achieved by including all the preconditions into the parameter D of the abstract domain.

Nevertheless, it is not necessary to include all the preconditions into the parameter
since usually only a certain small set of subwords of the preconditions is necessary for the
exclusion of the run. Finding the smallest set of such subwords efficiently is an interesting
and difficult task that will be the subject of our future research. Our aim in this work is
only to confirm that succinct invariants can be indeed discovered based on an analysis of
minimal runs.

For this purpose, we implemented a simple and naive method for the analysis of minimal
runs. From each minimal run, we select a subset of subwords of the preconditions on random
bases. We use several selection strategies which will be described in detail in Section 8.
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Kapitola 7

Implementation

To prove the existence of more succinct invariant we have implemented a tool based on
the method presented in Section 6. The tool serves as a prototype. In this chapter, an
implementation of Petri net is discussed followed by a description of the implementation of
the forward and backward analysis.

The tool is implemented in Python. Python is a scripting and a highly readable language
which offers simply and general syntax. Moreover, it provides the abstraction capabilities
needed to express the Petri net model. Since variables are neither declared in the program,
nor generating by the compiler, their types need to be checked at run time which has a
negative impact on performance for data intensive computation.

7.1 Requirements

We require from the tool that fulfills the following requirements in order to perform the com-
putation required to prove the existence of more succinct invariants. The tool is necessary
to be able:

• to load parameters of Petri net from an input file in format of mist22,

• to create a Petri net based on a given set of places, transitions and rules,

• to abstract a configuration based on the equation (4.1),

• to perform forward simulation within an abstract domain based on the equation (4.4),

• to perform a depth-first search analysis of counterexample runs,

• to determine a minimal reason which refutes the examined spurious counterexample
run, and

• to generate a file in a format required by Graphviz 3.

2http://www.cprover.org/bfc/
3http://www.graphviz.org/
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7.2 Processing the input file

Since the requirement was to implement a tool with an ability to verify a set of benchmarks
we decided to create an interface for loading input files in format of mist2.

For the inputs in the experiments, we use the collection of Petri net examples from the
MIST toolkit in format mist2. The format mist2 is defined as:

# comments

S ::= vars

set_of_vars

rules

set_of_rules

init

init_states

target

target_states

invariants

invariant_set

set_of_vars::= variable , set_of_vars

| variable

set_of_rules::= guard -> effect; set_of_rules

| epsilon

guard ::= guard_atom , guard

| guard_atom

guard_atom ::= variable >= integer

| variable =integer

| variable in [integer, integer]

effect ::= effect_atom , effect

| effect_atom

effect_atom ::= variable’ = assignment_var

assignment_var ::= variable + assignment_var

| integer

init_states ::= guard init_states

| guard

target_states ::= guard target_states

| guard

invariant_set ::= invariant EOL invariant_set

| epsilon

invariant ::= invariant_atom , invariant

| invariant_atom

invariant_atom::=variable = integer

Let us remark that EOL is a sign for the end of line. As effect atom we consider a rule in
form x′ = x + c, x′ = x − c or x′ = c specifying the invariant where c is the coefficient of
variable x. The rules correspond to Petri net transitions or to Petri net extension transitions
[13].

The function loadF ile loads input files, processes them and creates corresponding
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structures required by the tool. The function defines regular expressions for each type
of the input information:

• variables - represent places of PN (states of the system),

• rules - transitions between places (state changes of the system),

• initial marking - an initial marking of PN (an initial configuration of the system),

• targets - incorrect markings of PN (incorrect configurations of the system), and

• invariants.

The function is based on an automaton. It parses an input file and if one of the key
words is observed then the following lines are parsed using the relevant regular expression
corresponding to the type of the information. In this way, an initial state, targets, variables
and invariants are loaded.

Different approach is used in case of rules since they have more complex format. First,
the relevant lines are selected and split into single rules. Subsequently, they are split again
into a left and right part. Each part of the rule is processed separately since the left part
of the rule indicates the required pre-conditions of the rule while the right part of the rule
determines how the marking of PN is changed.

The retrieved parameters of PN from the input file are stored in structures variables
(states), bad (a set of incorrect configurations), x0 (an initial configuration), invariants
and transitions.

7.3 Petri net

Each PetriNet object is an instance of the class PetriNet. PetriNet instance contains a list
of names (states of the system), a list of transition names, a list of Transition objects, and
the current labeling. States of the system are represented by their names as strings (“x0”,
“q1”, “T0”, . . . ). The labeling is a dictionary from a name of the state to a token count.

As an example, let us consider the incorrect configuration in Peterson’s algorithm - q4r4.
The corresponding labeling of PN is the following:

bad = {"q1":0.0,"q2":0.0,"q3":0.0,"q4":1.0,"r1":0.0,"r2":0.0,"r3":0.0,

"r4":1.0,"x0":0.0,"x1":0.0,"y0":0.0,"y1":0.0,"T0":0.0,"T1":0.0}.

Each Transition object contains a transtion name, an input and an output dictionary.
The input/output dictionary map the name of a state to the number of tokens that the
transition takes as input/give as output. The class Transition contains two methods - IsE-
nabledBack and FireBack.

The method IsEnabledBack takes a labeling of PN as its input and return true if the
transition can be fired or false otherwise. It compares a number of tokens in the labeling
to a number of tokens requiring as post-condition of the transition. The method FireBack
takes a labeling of PN as its input and modifies a number of tokens to simulate firing of
the transition.

PetriNet also inherits methods from a class PetriNetBase consisting of names of the
transitions and two methods - BuildTransitions which creates the object for each defined
transition and SetDegree which sets post-condition and pre-condition labeling required for
each transition.

The PetriNet class includes besides others the following methods:
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• StringToLabel - takes a string (represented the configuration of a state) and creates
a dictionary with corresponding labeling of PN,

• LabelToString - takes a dictionary as an input and converts it into a string ac-
cording to the configuration that the dictionary represents. Considering the previous
dictionary representing the state bad as an input the function returns a string q4 r4.

• LabelToList - takes a dictionary as an input and coverts it into a list of all letters
included. Considering the previous dictionary representing the state bad as an input
the function returns a list [q4, r4].

7.4 Abstraction

The abstraction is implemented based on the equation (4.1). We iterate over the parameter
D of the abstract domain and test whether the configurations from D are in the DCS of the
upward-closure of the configuration c. The abstraction of the initial state x0 is implemented
as follows:

this.invariant = x0

for item in dSet:

if(this.CheckInvariant(item)):

pSet += [item]

where a procedure CheckInvariant returns True if item is in the UCS of the upward-closure
of x0, and False otherwise. The procedure CheckInvariant is implemented as follows:

def CheckInvariant(this, label):

for index in label:

if label[index] > this.invariant[index]:

return False # invariant invalid

return True # invariant valid

Given x0 representing by a word q4r4 andD representing by a set of words {q3, q4, r3, r4, q4r3}
as an input the abstraction procedure returns a subset {q4, r4, q4r4}.

7.5 Forward search

In Section 6.3, we have introduced the algorithm of the forward search. The forward search
is equivalent to the forward search presented in Section 4.1. The only modification consists
in storing the sequence of fired transitions during the search in path.

A function Forward is implemented based on the equation (4.5). The forward search
can be divided into several parts:

[Initial abstraction] Function takes the initial configuration x0 as its input and returns
a subset of D. The abstraction is described in detail in Section 7.4. The whole subset
is included to the set P .

[Complement recalculation] The next step is creating a complement D\P . According
to the equation (4.5), the valid predecessors of x are the configurations outside of the
complement.
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[Forward step] To determine a post-image of P , we iterate over the parameter D and
test which of the configurations are able to reach the set P in one step backward. For
each configuration x from D we fire all transitions using a procedure FireBack. If
the predecessor is valid (we check this property using a procedure CheckInvariant)
and it is not included yet in D then x is a valid successor of P and is added into P .

7.6 Backward analysis

In Section 6.4, we presented the optimized modification of the backward analysis. Since we
have implemented both algorithms we introduce first the backward analysis of the original
version.

Raskin tool We have implemented the backward analysis based on the equation (4.10).
We start with the whole set bad that is stored in a list dBad. The list stores predecessors of
the incorrect configurations from bad. i-th item of the list represents a set of predecessors
of the configurations from the previous level.

In each iteration of CEGAR, the backward analysis takes one step backward using a
procedure FireBack. The predecessor is proved valid if:

• is not already included in D,

• is not in a complement D\P , and

• is not in an DCS of the down-ward closure of the initial state x0 (last two properties
are checked by the procedure CheckInvariant).

If the initial set is reached then the system is proved unsafe. This property is chec-
ked by testing whether the inspected configuration is in the DCS of x0 by a procedure
CheckInvariant.

Our prototype The modified version of the backward analysis was presented in Section 6.4.
The backward analysis is divided as well as the forward search into several parts:

Initial abstraction To check whether the initial set is reached, we apply abstraction to
x0 within the set P as we presented in Section 7.4. The result of the abstraction is stored
in initAbs.

Initialization The backward analysis starts from a state badState representing the abs-
traction of the incorrect configuration from the set D which was hit during the forward
search. We select the relevant transition from the sequence of transition path. Both the
badState and its predecessor are stored in a list treePre.

AbsConfiguration Since the backward analysis starts from an abstract set the procedure
AbsConfiguration is called. It returns a set of configurations from D that represents the
abstraction of the predecessors.

Step backward For each configuration from the current level of the analysis we fire a
corresponding transition selected from the sequence path. Since the discovered configurati-
ons are configurations from the abstract set P we can easily check whether the discovered
configuration is in the abstract set of the initial set initAbs.

Creating the set of possible configurations The result of the backward analysis is the list
treePre containing new-found configurations. We create a list of all these configurations and
their sub-configurations. The sub-configurations are created using a procedure AllSubwords.
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Obrázek 7.1: Small graph

If they are not included already in D they will be a part of the set newSet. One of the
configuration of the set newSet is randomly selected and added to D.

7.7 Creating graphs

During the backward analysis, the configurations and their predecessors are stored in order
to be written to an output file in a format required by Graphviz. Graphviz is open source
graph visualization software which represents structural information as as diagrams of abs-
tract graphs and networks. It has important applications in networking, bioinformatics,
software engineering, database and web design, machine learning, and in visual interfaces
for other technical domains. he Graphviz layout programs take descriptions of graphs in a
simple text language, and make diagrams in useful formats, such as images and SVG for
web pages; PDF or Postscript for inclusion in other documents [6]. Figure 7.1 illustrates
the example of the minimal run using our approach.
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Kapitola 8

Evaluation

Based on our method from Section 6, we have implemented a prototype in Python to
find invariants for checking safety properties for parameterized programs communicating
via shared variables and mutexes. We have implemented also the original version of the
Algorithm 2 (GRB) and compared its performance to our implementation in experiments
on a set of Petri net benchmarks [2]. The input files are in format of mist2 (see Section 7.2).

8.1 Results

The goal of the evaluation was to compare a size of the inductive invariant. We measured a
number of iterations of CEGAR as well. The experiments were based on Petri net examples
from the mist2 distribution. They contain Petri nets modeling for instance a variation of
classical example of concurrent readers and writers (rw), a mutual exclusion protocol such
as Peterson’s exclusion algorithm (Peterson), or a PN model of asynchronous programs
(pingpong).

We implemented several strategies of refinement of the parameter D. They are all based
on choosing a subset of subwords of preconditions of a minimal run (Section 6.4). We were
choosing the refinement of D as the set of:

1. all preconditions,

2. all subwords of preconditions with the maximum length 2, 3 or 4,

3. one randomly selected subword from the set of preconditions, or

4. a subword of a precondition very close to the beginning or end of the minimal run.

Using completely random method (method 3) leads to finding the most succinct inva-
riant in most of the cases. The disadvantage of the random method is that it needs many
iterations of CEGAR and has unpredictable results. In the Table 8.1, we show the results
of the most successful strategies.

Table 8.1 presents results for both algorithms. The column on the left shows the ben-
chmark while the columns on the right show the size of invariant (a number of elements)
and the number of CEGAR iterations. The last column shows the percentage reduction
in the size of the invariant compared to GRB. A positive value shows a reduction while a
negative value an increase in the size of the inductive invariant.
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Benchmark
GRB Our Approach

Reduction
Size of invariant Iterations Size of invariant Iterations

basicME 45 5 22 19 44%
rw 331 8 36 35 90%
Peterson 135 8 107 21 21%
newrtp 9 9 56 53 -20%
pingpong 10 10 28 27 65%

Tabulka 8.1: Comparison between GRB and our approach

The set of Petri net benchmarks of mist2 contain more examples than presented but
our method using the random strategy did not terminate in the given time limit and the
other strategies did not give results comparable to GRB.

8.2 Discussion

Our results confirm that method of analyzing minimal runs can be used for finding a more
succinct invariant than which can be found using the method GRB. The difference can
be seen at example of Peterson’s mutual exclusion algorithm. While the method GRB
found invariant of size 135 our approach discovered that there can be even smaller one
of size 107. However, the price for a smaller invariant was an increase in the number of
iterations required to find it. In Section 5.1, we presented even smaller invariant of size 9.
This indicate that there is still much space for improvement which we hope to harvest by
using more sophisticated methods of analyzing minimal runs.
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Kapitola 9

Conclusion

In the first part of this thesis, we have introduced state-of-the-art methods [9, 14, 3] for
automatic verification of systems with parallel running processes. The presented methods
are all based on the effort to find an inductive invariant of the system. Based on our
study, we conjecture that they would benefit from focusing on finding the smallest possible
inductive invariants.

We have chosen the methods presented in [14] as the most suitable for future re-
search and testing our ideas. The method discovers an inductive invariant using a variant
of counterexample-guided abstract refinement. The original version of the algorithm uses
breath-first search to analyze counterexamples. This causes that a huge number of elements
are added into the approximation of invariant, making it unnecessary verbose. Our mo-
dification is based on analyzing counterexamples in a death-first manner, searching for so
called minimal counterexample runs.

We implemented the original method as well as our modified version. Even though we
use a naive method for analysis of minimal runs, our experimental results confirm that our
approach can indeed give smaller invariants. This result will motivate our future research
which will focus on a development of a truly efficient method for analyzing minimal runs.
We believe that this will lead to a design of a method for analyzing parallel systems much
better than the state-of-the-art.

This work participated in the student conference Excel@FIT 2015 and was awarded
with the first place in the category “Scientific contribution” and the second place in the
category “Technical level”.
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Příloha A

Storage Medium

A storage medium containging an electronic version of the thesis and source code of the
implemented tools.
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