
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

BOARD GAME FOCUSED ON EDUCATIONAL SUP-
PORT FOR GAMING ALGORITHMS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN ČÁSLAVA
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

DESKOVÁ HRA ZAMĚŘENÁ NA PODPORU VÝUKY
HERNÍCH ALGORITMŮ
BOARD GAME FOCUSED ON EDUCATIONAL SUPPORT FOR GAMING ALGORITHMS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN ČÁSLAVA
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. MARTIN DRAHANSKÝ, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt
Tato práce se zabývá oblastí umělé inteligence zvané jako ”Metody pro hraní her”. Cílem
této bakalářské práce je navrhnout a implementovat software, který umožní uživateli snad-
něji pochopit principy herních algoritmů Minimax a Alfa-beta prořezávání. Typickými
uživateli tohoto softwaru mohou být například studenti oboru umělá inteligence. Práci lze
rozdělit do dvou hlavních částí. První, teoretická část, obsahuje popis nejrůznějších metod
pro řešení úloh a detailněji se zaměřuje na metody pro hraní her. Cílem této části práce je
dát čtenáři teoretický základ pro bližší pochopení problematiky herních algoritmů. Druhá
část práce je věnována popisu návrhu, implementaci a testování implementovaného soft-
waru. V závěru druhé části práce jsou shrnuty a diskutovány dosažené výsledky a je zde
také nastíněn návrh na možná budoucí vylepšení.

Abstract
This work deals with the part of field of artificial intelligence known as ”Methods of playing
games”. The goal of this bachelor’s thesis is to design and implement software that allows
the user to more easily understand the principles of game algorithms Minimax and Alpha-
beta pruning. Typical users of this software can be, for example, students of artificial
intelligence. This work is divided into two main parts. The first theoretical part tries
to explain the ”Method of playing games” concept and subsequently contains detailed
descriptions of software design and educational benefits. The second part of this work is
devoted to a description of software implementation, testing and discussion of the achieved
results.

Klíčová slova
Umělá inteligence, herní algoritmus, stavový prostor, metoda pro řešení úloh, Minimax,
Alfa-beta ořezávání, hra Piškvorky

Keywords
Artificial intelligence, game algorithm, state space, method for task solving methods, Min-
imax, Alpha-beta pruning, Tic-tac-toe game

Citace
Martin Čáslava: Board game focused on educational support for gaming algorithms, bakalářská
práce, Brno, FIT VUT v Brně, 2015

Board game focused on educational support for gam-
ing algorithms

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana doc.
Ing. Martina Drahanského Ph.D. Dále prohlašuji, že jsem uvedl všechny literární prameny
a publikace, ze kterých jsem čerpal.

. .
Martin Čáslava

July 26, 2015

Poděkování
Rád bych touto cestou poděkoval mému vedoucímu práce panu doc. Ing. Martinu Drahan-
skému Ph.D. za drahocenné rady a připomínky, bez kterých by jistě tvorba této práce byla
jen stěží možná. Dále bych rád poděkoval kamarádovi Štefanu Martíčkovi za jeho návrhy
na zlepšení aplikace a zejména za kritiku, která se podepsala na celkovém výsledku práce.

© Martin Čáslava, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Task-solving methods 4
2.1 State space . 4
2.2 Methods based on state space exploration 6

2.2.1 Uninformed (Blind) Search methods 6
2.2.2 Informed search methods . 6
2.2.3 Local search methods . 6
2.2.4 Methods for decomposition to subtasks (AND/OR graphs) 6

3 Methods of playing games - game algorithms 8
3.1 Primitive games . 8

3.1.1 Tower of Hanoi game . 8
3.2 Difficult games . 9

3.2.1 Minimax . 9
3.2.2 Alpha-beta pruning . 11

3.3 Games with uncertainty . 14

4 Application design 16
4.1 Tic-tac-toe game . 16
4.2 Graphics user interface . 16
4.3 Application object model . 17
4.4 Application control system . 18

4.4.1 Application user input . 19
4.4.2 Application output . 20

4.5 Educational benefits . 22
4.5.1 Benefits . 22
4.5.2 Similar existing applications . 22

5 Application implementation 24
5.1 Implementation of the object model . 24

6 Application testing 29
6.1 Testing of the application functionality . 29
6.2 Testing of the real use . 30
6.3 Evaluation of the tests results . 33

1

7 Conclusion 34
7.1 Proposal for the possible future improvements 34
7.2 Discussion of the achieved results . 34

A CD content 37

B Manual 38

C Application screenshots 39

2

Chapter 1

Introduction

This thesis deals with the issues of teaching and presenting the basic principles of methods
of playing games. The goal of this thesis is to design, implement and subsequently test
the application which, thanks to the game ”Tic-tac-toe”, allows the user to more easily
understand principles of game algorithms (Minimax and Alpha-beta pruning).

Following chapter is devoted to the ”Task-solving methods” concept, which is basis
for understanding the methods of playing games. The thirth chapter explains the notion
”Method of playing games”, known as the ”Game algorithm” concept, and describes the
various types of games on which this thesis is focused. The fourth chapter contains a
theoretical design of the application and its graphical user interface and also it is devoted to
the description of the educational benefits of the implemented application when compared
with similar existing applications. The fifth chapter deals with implementation of the
application, description of chosen developmental tools and programming languages. The
sixth chapter describes the test scenarios, methods of test execution and achieved tests
results. The last chapter is devoted to the discussion of achieved results and subsequently
mentions the proposal of possible future improvements.

3

Chapter 2

Task-solving methods

The aim of this chapter is to give the reader a theoretical base for understanding the
methods of playing games. It also tries to explain the notion of ”Task-solving methods”
and subsequently how this notion is associated with the methods of playing games.

The notion ”Task-solving methods” in area of artificial intelligence, is close related with
the notion ”State space exploration”. In essence, it is testing of possible states of the task
and identifying what happens in next phases of the task. While playing games almost
everyone is considering, in this way, how the opponent would react to his move. [8]
Task-solving methods are evaluated by following criteria:

• Completeness - will the method find the solution (if exist)?

• Time demands - minimum/maximum/average time required to solve the task.

• Memory demands - minimum/maximum/average amount of memory needed to
solve the task.

• Optimality - will the method find the best solution? [14]

2.1 State space

We can imagine the state space as an oriented graph or tree. For simplifying the terminology
is therefore the notion ”state space” in the next phases of work, considered as a ”tree” (game
tree).

Each node of this tree represents a state of task and its edges represent the transitions
between them. The route from the initial node (root) to one of its final nodes (leafs) is the
solution of the task. Many tasks require a minimization of the route value, which is equal
to sum of values of each transition. On the other hand, for some tasks, the route is not
important at all and decisive is only the final node. [14]
The state space is defined as the pair:

• (S,O)

where:

• S - is a non-empty finite set of task states.

• O - is a non-empty finite set of operators, which allows to change the states of task.
[14]

4

The task in the state space is defined as the pair:

• (S0,G)

where:

• S0 - is an initial state of task.

• G - is a set of final states of task. [14]

The solution of the task is defined as a succession of operators:

• S1 = O1(S0), S2 = O2(S1), . . ., Sn = On(Sn − 1), Sn ∈ G [5, 14]

For description the state space (image 2.1) is used the following terminology:

• Node A - is the root.

• Nodes I, L, M, . . ., Z - are the leafs.

• Node C - is the immediate predecessor of H node, etc.

• Nodes A, D, J - are the predecessors of V node, etc.s

• Node K - is the immediate successor of D node, etc.

• Nodes H, I, S, T, U - are the successors of C node, etc.

• Node A - has a depth 0, nodes B, C, D have a depth 1, etc.

• Node A - is the initial state S0.

• Node L - is the final state SG.

• Expansion od the tree node is the specifying all of its immediate successors.

• Generations of the tree node is its creation.

• Evaluation of the tree node is equal to the sum of transitions from the root to this
node. [14]

Figure 2.1: State space example [14]

5

2.2 Methods based on state space exploration

One of the fundamental tasks of artificial intelligence are methods for solving mechanical
tasks. Despite high computing power of today’s computers, it is for the vast majority of
problems unthinkable that a machine is looking for a solution by successive testing of all
possibilities. It was necessary to somehow manage the search for the solution.

For these reasons a various methods (algorithms) with different advantages and disad-
vantages, were invented in recent decades, for exploring the state space. [1]
These algorithms are divided into these following groups:

2.2.1 Uninformed (Blind) Search methods

These methods do not have any information about final state and also do not have any
means how to evaluate the current state.

Even people sometimes have to use similar methods - for example when they are search-
ing for the route in the map, from some initial place to some final place, and do not have
any clue where the final place is. [14]
Among these methods belong for example:
BFS (Breadth-first search) algorithm
DFS (Depth-first) algorithm
Bidirectional search algorithm

2.2.2 Informed search methods

These methods have an information about the final state and also have the means how to
evaluate the current state. Back to the example with searching in the map - if someone is
searching for the route in the map from some initial place to some final place, he usually
has a rough idea, in which direction from initial place the final place is.

It means if the idea about the location of the final place is more precise, less area of
map (state space) is needed to be explored. [14]
Among these methods belong for example:
Beam search algorithm
Greedy search algorithm
A* algorithm

2.2.3 Local search methods

There are some tasks whose solution is only to search for the final state and the route is
meaningless. For solving these tasks, methods which instead of searching for the optimal
route search for the optimal final state, are used.

These methods are only good for one specific thing, for example for the optimal scatter
of the goods on the shelves in the shops etc. [14]
Among these methods belong for example:
Hill-climbing algorithm.

2.2.4 Methods for decomposition to subtasks (AND/OR graphs)

Decomposition to subtasks is possible to typify by graph (tree) as in other methods. The
difference is that the nodes do not represent the states of task, but subtask. Each following

6

node (subtask) can be expanded to easier subtask, until the leafs (final nodes) do not
correspond to the elementary tasks, or unsolvable tasks. The other difference is that the
nodes can acquire only the boolean types ”AND” or ”OR”. [11]

• OR problem - the task A (image 2.2) is soluble, if there is at least one of its subtasks
soluble (tasks A, C, D). [14]

• AND problem - the task E (image 2.2) is soluble, if there are all of its subtasks
soluble (tasks F, G, H). [14]

Among these methods belong for example:
AO algorithm

Figure 2.2: AND, OR problems [14]

For more information about the algorithms mentioned in this chapter, you can use following link:
https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf

7

https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf

Chapter 3

Methods of playing games - game
algorithms

This work takes into account the games for two regularly alternating players. Both of these
players have a complete idea about the state of game and each player is trying to win.
The problem lies in finding the optimal move for the player on turn (player A). Because
the next move is the opponent’s move (player B), every move which leads to the victory of
the player A, has to be unsolvable for the player B, in different words, all of the player B
moves, have to be soluble for player A (AND problem).

Searching for the move which leads to the victory, leads to the exploration of the
AND/OR graph 2.2.4. After selection and execution of the optimal move of the player
A

”
everything is forgotten“, in the next turn player B is playing, and player A chooses his

move from the new state of game again. [14].
Thus described games can be divided into following categories:

3.1 Primitive games

For this kind of games, it is possible to explore the whole AND/OR graph in real time.
In case of finding the solution of the game, it is not necessary to return the whole part of
graph, but only the move of player A, which leads to his victory.[14]

As the example of primitive game, serves the following example of the
”
Tower of Hanoi“

game. 3.1

3.1.1 Tower of Hanoi game

In the initial state of the task is the Tower of Hanoi consisting of N disks of different
diameters, situated on left pin (A pin). The goal of task is to move the disks to the right
pin (pin C) using the pin in the middle (pin B).

it is only allowed to move the upper disk and the disk must not be placed on the disc
of smaller diameter. Pins are denoted by diameter as the integers 1, 2, . . ., N.[11]

8

Figure 3.1: Tower of Hanoi - game example [11]

Figure 3.2: Tower of Hanoi - decomposition to subtasks [11]

3.2 Difficult games

In these games, the game tree is explored only to a predetermined depth. If at this depth
are not the nodes, for which is possible to decide about task solvability or insolvability, it
is necessary to evaluate the tree nodes somehow.

In these methods the evaluation function is used for valuating the tree nodes. The pos-
itive values indicate the favorable conditions for player A (the bigger, the more favorable),
the negative values indicate the positive status for player B (the the smaller, the more
favorable). Winning or losing is assessed as the maximum of these numerical values of the
considered interval (for example 1, 0, -1). It is obvious that player A selects the moves
leading to nodes with the maximum valuations, and player B chooses moves leading to the
nodes with the minimum valuations. The basic game algorithm works on that principle
and is therefore called the Minimax. [14]

3.2.1 Minimax

These methods work on the principle of exploration of the game tree with restrictions of its
depth. For this algorithm, the static evaluation function f, which evaluates each tree node
on the i level, is specific. This evaluation function works on the principle of the following
iterative algorithm: [13]

• Tree node is expanded and for all its successors is determined the value of f. [13]

• From these determined values the best value is selected. This value is reversely used
as the evaluation of the parent node at the i level. [13]

Minimax algorithm expects the restrictively allowed depth of exploration of the tree. For
the effectiveness of this algorithm is the ”best” value of the evaluation function f, the
deciding factor.

As mentioned in the chapter 3.2, if it is player A’s turn, as the best value is considered
the maximum value of the function f at the closest lower level. Conversely if it is player

9

B’s turn, as the best value is considered the minimum value of the function f, at the the
closest lower level. It is therefore logical that player A is trying to maximize the profit of
player B, and player B is trying to minimize the profit of player A. [13]

Principle of the Minimax

Suppose the situation at the image 3.3. If the tree is explored to the depth 1, the node A
is evaluated as the maximum value of the evaluation function f, of its successors (B, C, D).
During the reverse evaluation process, the nodes B, C, D in the second level, are evaluated
as the minimum value of the evaluation function f of its successors at the third level. [13]

• f(B) = min{f(E), f(F), f(G)} [13]

• f(C) = min{f(H), f(I), f(J)} [13]

• f(D) = min{f(K), f(L)} [13]

At the higher level is the node A evaluated as the maximum of its successors (B, C, D).

• f(A) = max{f(B), f(C), f(D)} [13]

Figure 3.3: Minimax algorithm principle

Pseudocode of the Minimax

int score;

int optimal_opponent_move;

check the state of game and evaluate the tree node;

for all (empty game positions)

{

if(player == MIN_PLAYER)

{

take the game position;

score = minimax(MAX_PLAYER, depth-1, bestMaxScore, bestMinScore);

free the game position;

if(score < bestMinScore)

{

bestMinScore = score;

if (depth == 0)

optimal_opponent_move = position;

}

10

}

else if (player == MAX_PLAYER)

{

take the game position;

score = minimax(MIN_PLAYER, depth-1, bestMaxScore, bestMinScore);

free the game position;

if(score > bestMaxScore)

{

bestMaxScore = score;

}

}

}

if (player == MAX)

return bestMaxScore;

else

return bestMinScore;

Complexity

The algorithm has very low memory demands, because it does not need to remember the
whole section of the tree, when calculating. Only the current path from the root to the leaf
and immediately following moves is saved in the memory.

The problem is the exponential time complexity. In case of the tree with constant
branching factor x and the depth y is the time complexity xy. The calculation of the time
complexity shows the weakness: for the games that have a large branching factor, this
algorithm can not be effectively deployed in greater depth of exploration. In practice it is
therefore prefered to use the algorithms derived from Alpha-beta pruning, which achieves,
compared with the Minimax, almost twice larger depth of exploration, in the same time.
[2]

3.2.2 Alpha-beta pruning

This algorithm is based on the principle Minimax algorithm 3.2.1, but it is improved by
technique (branch-and-bound), which allows to decide, whether the next branch of the tree
is useless to explore, or not.

In case that exploration of some branch is useless, the branch is cut off and is not
explored. This technique allows in the very early stages of the tree exploration, to reject
the solution which is evidently worse than already found solutions. Thanks to this technique
there is no need to explore the whole tree, but only its

”
interesting“ parts.[13]

Principle of the Alpha-beta pruning

Unlike the Minimax, the Alpha-beta pruning uses besides the integer value of the node,
other two values α and β.

• α - this value represents the lower limit of the evaluation of the tree node, corre-
sponding to the move of the player A.

• β - this value represents the upper limit of the evaluation of the tree node, cor-
respinding to the move of the player B.

11

On the basis of these values, the algorithm decides whether the branch of tree will be cut
off or not. The α value is calculated on the level of player A, as the maximum value of
successors of the current node and the value of the α from the parent level. On the level
of player B, the value of α does not change. Analogously, the β value is calculated on the
level of player B, as the minimum value of successors of the current node and the value of
the β from the parent level.

Values of α and β are not therefore global minimum or maximum values, but the

”
bubbling“ values, between parts of the tree. The cutting of the branch may occur at any

level. At the level of player A, the α cuts may occur and at the level of player B the β cuts
may occur. [10]

• α cuts - the cutting and stopping exploration of the next branch of the tree occurs,
when during the reverse evaluation process, as in the Minimax algorithm, is fulfilled
the condition: α ≥ β

• β cuts - the cutting and stopping exploration of the next branch of the tree occurs,
when during the reverse evaluation process, as in the Minimax algorithm, is fulfilled
the condition: β ≤ α

At the beginning of the algorithm the values alpha and beta are initialized on:

• α = −∞

• β =∞

The image 3.4 shows the principle of Alpha-beta pruning algorithm. The red nodes denotes
the parts of the tree which the algorithm did not explore (cuts).

Figure 3.4: Alpha-beta pruning algorithm principle [14]

12

Pseudocode of the Alpha-beta pruning

int score;

int optimal_opponent_move;

check the state of game and evaluate the tree node;

for all (empty game positions)

{

if(player == MIN_PLAYER)

{

take the game position;

score = minimax(MAX_PLAYER, depth-1, alpha, beta);

free the game position;

if(score <= alpha)

cut the rest of the tree nodes in this branch;

if(score < beta)

{

beta = score;

if (depth == 0)

optimal_opponent_move = position;

}

}

else if (player == MAX_PLAYER)

{

take the game position;

score = minimax(MIN_PLAYER, depth-1, alpha, beta);

free the game position;

if(score >= beta)

cut the rest of the tree nodes in this branch;

if(score > alpha)

{

alpha = score;

}

}

}

if (player == MAX)

return alpha;

else

return beta;

Complexity

For maximum efficiency of this algorithm it is suitable to use some heuristics for sorting
the game moves. The cutting of the nodes is more effective, when the exploration of the
moves is carried out in the right order. When the game moves are in the optimal order,
the time complexity of Alpha-beta pruning is xy/2, which means, that in the optimal case,
this algorithm can reach twice the depth of exploration, of the Minimax, in the same time.

It is possible to prove, that in case of incorrect selection order of the game moves, the
algorithm can reach the time complexity xy, which is the time complexity of the Minimax
algorithm. [9]

13

3.3 Games with uncertainty

There are many such games, for two regularly alternating players where both of them have
complete information about the state of the game. They play honestly and both of them
want to win.

Unlike the above mentioned methods, when playing these games, the players need to
use a dice and thus the uncertainty enters the game. The basic principle of the games with
dice is described in the image 3.5. The player A is on the turn and just threw the dice
(considered is the classic six-party dice). The result of the throw is No. 4, however, this
fact is not important for further consideration. [14]

Figure 3.5: The principle of the games with uncertainty [14]

Player A knows, which game moves Ci he can realize. Of course he can evaluate the
individual states of game (immediate successors) and choose the move leading to the state
with the maximum value. While a lot of people use this approach, it is certainly not
interesting. Player A, will therefore proceed with the evaluation of each state Ci in more
complicated way (the left part of the image 3.5).

Working on the assumption, that player B, would for the known result of the throw,
choose the move to the state Dj , with the minimum value. However player B does not know
the result of his throw, so he can work only with the expected value, expectimin (expected
minimum). [14]

expectimin(Ci) =
∑
k

P (hk)∗min
j

(Djki) (3.1)

The eaquation 3.1 is taken from [14] and serves for calculating the expected minimum.
In this equation is:

• hk - the k-th result of the throw (1, 2, 3, 4, 5, or 6).

• P (hk) - the probability of the k-th result (for games with one dice, the probability for
all of the results is the same: P (hk) = 1/6, for the games with two dice, with the same
numbers at the dice, the probabilities of the results are 1/36 and the probabilities of
the results, with different numbers at the dice, are 1/18).

• Djki - the evaluation of the state Dj , which is reachable from the state Cii, after the
k-th result of the throw of the dice.

The expectimin is therefore given by the sum of all the possible values of the results, after
the player has thrown the dice. Each value is given by the product of the probability of the
result of the throw and subsequent the minimum evaluation of the state, which is possible
to reach after the throw. Player A then chooses the move to the state Ci with the maximum

14

value expectmin. A similar procedure is followed in the investigation of the expected value
of the node Dijk (which is in the right part of the picture 3.5, for simplicity referred as
the Dj). Because player A chooses the maximum of the possible values, this evaluation is
denoted as expectimax (expected maximum). [14]

expectimax(Dj) =
∑
k

P (hk)∗max
j

(Cjki) (3.2)

The eaquation 3.2 is taken from [14] and serves for calculating the expected maximum.
In this equation is:

• hk - the k-th result of throw (1, 2, 3, 4, 5, or 6).

• P (hk) - the probability of the k-th result . . .

• Cjki - the evaluation of the state Ci, which is reachable from the state Dji, after the
k-th result of the throw of the dice.

15

Chapter 4

Application design

As the name of the work suggests, the goal of this thesis is to create an application, which
thanks to the board game, allows to demonstrate the principles of game algorithms Minimax
and Alpha-beta pruning.

For this reason, I decided to implement the game called as ”Tic-tac-toe”. This game is
well known, has a simple rules and one game does not take a lot of time. Whole application is
conceived as the educational tool. The user has an option to choose one of two implemented
game algorithms as his opponent and watch step-by step how the algorithms work.

4.1 Tic-tac-toe game

The Tic-tac-toe is the strategy game for two regularly alternating players. This game is
played on the squared paper. Both players are alternating in the drawing the game marks
(crosses or wheels). The winner is the first player to place his five game marks in the
orthogonal or the diagonal direction.

For the applications purposes the game rules were a little bit changed. The game desk
has size 3×3 game squares and the winner is the first player to place his three game marks
in the orthogonal or the diagonal direction.

Figure 4.1: Tic-tac-toe example [6]

4.2 Graphics user interface

When designing the graphics user interface (in next phases of the work this notion is
named as GUI) the emphasis was on maximum simplicity and intuitiveness of its use. The
application control system is desribed in chapter 4.4.

The GUI comprises of one main window, two buttons for controlling the application
and the simple list menu on the top left of the main window. The main application window
is divided into several parts:

• Game board - this part of GUI represents the game board for the game ”Tic-tac-
toe”. Thanks to the clicking the right mouse button into the squares of game board,
the user can place his game marks, and play the game. If the user does not choose any

16

game algorithm as his opponent, it is possible to play the game against the another
human player. But this effect is rather secondary.

• Window for displaying the application output - this window serves for display-
ing the application output, which is represented as the corresponding game tree. Each
node of this tree represents the one state of the game. Thanks to the special next
step button, the user has an option to simulate the game algorithm activity step-by
step. In the image 4.2 you can see the application screenshot with fully explored game
tree.

• Window for reading the pdf files - in this window, the user can read detailed infor-
mation about implemented game algorithms. This window also serves for displaying
the help.

• Window for listing the game algorithm details - this side panel serves for dis-
playing detailed information regarding the implementation of the chosen game algo-
rithm. In each game step, the user is able to see, what is happening in the background
of the selected game algorithm. For example: which conditions are evaluated, which
players is on the turn, which values is the algorithm selecting etc.

Figure 4.2: Application screenshot - GUI

4.3 Application object model

When designing the application, it was more than clear that it is needed to use the object
oriented approach and design the application object model. The object model is divided to
seven main classes and one data structure:

• Class: Square - this class represents one square in the game board for the Tic-tac-toe
game.

17

• Class: Board - this class is inherited of the Square class and represents the whole
game board for the Tic-tac-toe game.

• Class: Empty node - represents one non-expanded tree node.

• Class: Tree node - represents one expanded tree node.

• Class: Tree node data - contains the information about tree nodes.

• Class: Check game status - includes an auxiliary methods for artificial intelli-
gence.

• Class: Artificial intelligence - contains the implementation of the game algorithms
Minimax and Alpha-beta pruning.

• Structure: Game data - contains important control variables, pointers to the other
objects etc. Each object in this object system has permission to read the data from
this structure, some of them even to write.

The image 4.3 shows the application object model and the way the classes are communicat-
ing among themselves. The implementation of this object model is described in the chapter
5.1.

Figure 4.3: Application object model

4.4 Application control system

The application control system was designed with respect to the maximum simplicity and
its intuitiveness. After starting the application, the mandatory user input is expected, in
form of the starting game situation and selection of the game algorithm. After entering the
valid user input, the application generates the output in form of the coresponding empty
game tree. The application output can be further modified by clicking the appropriate

18

next step button, and simulate the activity of the chosen game algorithm. The image 4.4
shows the model of application control system.

Figure 4.4: Application control system

4.4.1 Application user input

The entering of the user input data, proceeds in two mandatory steps in this order:

• Preparing the starting game situation - the user, thanks to the clicking the right
mouse button at the game fields, places the game marks and prepares the starting
game situation. This situation is the initial state for the game algorithm and concur-
rently is the root of the generated game tree. The condition is that the last placed
game mark must belong to the user (cross mark), because the next player on the turn
must be the opponent (circle).

Figure 4.5: Example of the possible starting game situation (the user plays the cross mark)

19

If the user prepared the incorrect starting game situation, he is reminded by the spe-
cial warning window.

Figure 4.6: Reaction for the incorrect user input.

• Choosing the game algorithm - after preparing the starting game situation, the
user is expected to choose one of two implemented game algorithms.

Figure 4.7: Choice of the game algorithm

4.4.2 Application output

After entering the correct input data, the user can run the generation of the application
output. The standard application output is represented as the empty unexplored game tree
(image 4.8). This tree is possible to be modified and simulate the activity of the chosen
game algorithm (images 4.9, 4.10).

The simulation of the game algorithm activity, proceeds in the following manner. After
clicking the next step button, one expanded tree node is displayed. Above each expanded
node is displayed its relevant value, and the bitmap of the arrow. This arrow gives the user
accurate idea, in which part of the tree is the algorithm located. Thanks to the next step
button the user can see step-by step, the recursive plunging of the chosen game algorithm
and the process of evaluating of the tree nodes. After expanding all tree nodes, the user
has an option using the place opponent move button to find out, which game move the
algorithm chose as its optimal move.

20

Figure 4.8: Empty unexplored game tree

Figure 4.9: Partly explored game tree by Minimax algorithm

Figure 4.10: Partly explored game tree by Alpha-beta pruning algorithm

21

4.5 Educational benefits

During the software development process, every software developer should be able to answer
the question: ”Why would the user want to use this software?”. This question, should be
even more emphasized, when the similar software already exists.

In this chapter, the main advantages of the developed application are mentioned, as well
as the similar existing applications and their comparison. The disadvantages, and their
possible future improvements are mentioned in the chapter 7.1. Because the developed
application is conceived as the teaching tool, its advantages are to be the educational
benefits. Mentioned benefits in this chapter, are considered the subjective benefits from
the developer’s perspective. The chapter 6 contains the research, whether these proposed
benefits are real benefits for the users.

4.5.1 Benefits

It is hard to imagine, that the users will want to use this software in a long time period.
In most cases, the aim of its users, will be to run the application, understand the game
algorithm principles and not to run the application anymore.

For that reason, the proposed benefits are aimed at the maximum effectiveness of un-
derstanding the issue, in the shortest possible time. The main application benefits are:

• Connection between the algorithms principles and the game - majority of
the similar existing applications tries to explain the game algorithm principles on the
example with game tree, where the tree nodes are represented as the empty circles,
and the user has only the option to watch, how the values of the tree nodes (circles)
are changing. Since as these algorithms are primary developed for playing the games,
I decided to implement the simple game Tic-tac-toe 4.1 and connect the playing of
this game, with the demonstration of the game algorithms principles. This connection
should give the user clearer idea how these algorithms work.

• Detailed description, of how the algorithms work, on the level of imple-
mentation - thanks to the special window, which is described in chapter 4.2, the user
can see, what is happening in the each algorithm step, on the level of the source code.
The advantage is, that the user not only understands the algorithm principles, but
also gets the idea how the algorithm is implemented, or eventually how to implement
it.

4.5.2 Similar existing applications

Vast majority of the similar applications run online. For running these applications, in most
cases, the user just needs an internet connection, which is nowadays negligible problem, and
the web browser with installed Java plugin. Indisputable advantage of these applications,
is that the user does not have to install any software on his hard drive.

On the other hand, the problem is, that the creation of the user friendly GUI for the
web applications is a bit difficult, and most of these applications with slight differences,
look the same, as you can see in the following images 4.11, 4.12.

Links to similar web applications:
http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
http://kra.lc/projects/gamevisual/launch.php

22

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
http://kra.lc/projects/gamevisual/launch.php

Figure 4.11: Example of similar existing application [12]

Figure 4.12: Example of similar existing application [7]

23

Chapter 5

Application implementation

This chapter describes the implementation of the most important classes, presented in
the chapter 4.3. For implementation of the application, the programming language C++
version 10 was used. The QT framework version 3.2.0 was used for creation of the GUI.

5.1 Implementation of the object model

The application object model is divided into 7 main classes:

Class Square

The instance of this class, represents one field (square) of the game desk for the Tic-tac-
toe game. Each object of this class has an information, which game mark is placed on it,
and also the information about its position on the game desk. For holding the information
about the game mark, serves the instance variable int type and for holding the information
about the square position, serves the instance variable int position.

The instance variable type can reach the integer values 0, 1, 2. The zero value means
that the square is empty, and the player is able to place his game mark at this square, the
value 1 means that at the square is already placed the circle mark and the value 2 means,
that square is already occupied by the cross mark. The instance variable position can
reach the integer values 1, 2, 3, 4, 5, 6, 7, 8, 9. In the whole object system the instance of this
class exists 9 times.
Instance methods:

• void generateTree() - method for generating the empty, uexplored game tree, which
is displayed on the graphics output. Each node of this tree, is in the default situation
presented as the empty grid. You can see the example of this tree in the image 4.8.

• static void oponentMove(square *s) - this method shows the optimal opponent
game move, after the end of run of the game algorithm.

• static void insert_node_into_view(int x, int y, int id) - this method al-
lows to create and insert the one expanded tree node, in the graphic form, into the

C++ is a general-purpose programming language. It has imperative, object-oriented and generic pro-
gramming features, while also providing the facilities for low-level memory manipulation. [4]

Software framework is an abstraction in which software providing generic functionality can be selectively
changed by additional user-written code, thus providing application-specific software. [3]

24

graphics output. The first two parameters x and y are the coordinates on which the
node will be inserted. The last parameter id is the identificator of the inserted node.
Each of these nodes is default set as the invisible. If the user wants to modify the
output, the node will become visible. The pointers to these objects are stored in the
array of pointers tree[], which is saved in the game_data structure.

• void paintEvent(QPaintEvent *) - this method serves for the displaying the game
marks, after the click, on the free game field in the game board. Which mark will be
shown, depends on the instance variable type.

• void mousePressEvent(QMouseEvent *e) - method for handling the action, after
the click on the square object. In case of click on the empty square, to the variable
type is assigned the value 0 or 1, according to, which player’s turn it is. After
assigning the value to the variable type, the method paintevent is invoked and
then the information about the mark is saved, on the currently clicked square. If
the user chose the artificial intelligence as his opponent, the method minimax, or
alphabeta is invoked from the class Artificial_intelligence and then the method
generateTree is invoked. In the end comes the other player’s turn.

Class Board

This class is inherited of the Square class and represents the whole game board for the
Tic-tac-toe game. The current data configuration of this board, is saved in the array of 9
characters, game_desk[].

This array is saved in the data structure game_data. Each character in this array can
reach values ” , X, O”. The value ” ” means, that the game field is empty, the values ”X,
O” mean, that the position is already occupied by X, or O player. At the beginning of
game, every character in this array is initialized to the ” ” value.
Instance methods:

• void minimax_selected() - after choosing the Minimax algorithm from the appli-
cation menu, this method sets the ai_menu flag to the 1. When the ai_menu is set
to the value 1, it means that the Minimax algorithm was selected, value 2 means the
Alpha-beta-pruning was selected and 0 means that no game algorithm was selected.

• void alphabeta_selected() - after choosing the Alpha-beta pruning algorithm from
the application menu, this method sets the ai_menu flag to the 2.

• void restart() - this method initializes all important variables to their initial values.
The values of the game_desk[] are also initialized to the ” ” values.

• static void showNode() - this method serves for showing the expanded tree nodes.
When the user wants to modify the application graphics output and simulate the
activity of the chosen game algorithm, after each click on the next step button, the
expanded game node is set as visible. The pointers to these expanded nodes, are
saved in the array tree[]. This array is also saved in the game_data structure. This
method also shows the bitmaps of arrows, above the every expanded node. Thanks
to this arrow, the user exactly knows, which node of the tree, the game algorithm
goes through. The pointers to these bitmaps are saved in the array bitmap_arrow[].
This array is also saved in the game_data structure.

25

• void help() - method for displaying the application help.

• static void printNodeDetail() - this method serves for displaying the detailed
information, about what is happening during the each game algorithm step. This
information is shown in the window for listing the game algorithms details, which is
described in the chapter 4.2.

• void onDetailItemClicked(QListWidgetItem *item) - this method handles the
activity when the user clicks on the listing about the game algorithms details.

• void blickNode() - when the user clicked on the listing about the game algorithm
details, the node which is related to this listing, the user clicked on, starts flickering.

Class Empty node

This class represents one non-expanded tree node in graphics form, which is displayed as
the standard graphic output, which is described in the chapter 4.4.2
Instance methods:

• QRectF boundingRect() const) - method which returns the outline of the the tree
node.

• void mouseDoubleClickEvent(QGraphicsSceneMouseEvent *event) - this method
is invoked, when the user clicks twice on some non-expanded node in the graphics
output. After double clicking on the arbitrary non-expanded node, the part of the
tree is automatically explored, to the node which the user clicked.

• void paint(QPainter *painter,const QStyleOptionGraphicsItem *option,
QWidget *widget) - this method creates the grid (miniature of the game desk for the
Tic-tac-toe game) from the outline, which returns the boundingRect method.

Class Tree node

This class represents one expanded tree node in graphics form, which is displayed as the
modified graphic output, which is described in the chapter 4.4.2
Instance methods:

• QRectF boundingRect() const - method which returns the outline of the the tree
node.

• void paint(QPainter *painter,const QStyleOptionGraphicsItem *option,
QWidget *widget) - this method creates the grid (miniature of the game desk for the
Tic-tac-toe game) from the outline, which returns the boundingRect method.

• void drawCross(QPainter *painter) - method for drawing the cross mark into the
outline of the tree node.

• void drawCircle(QPainter *painter) - method for drawing the circle mark into
the outline of the tree node.

26

Class Tree node data

Instance of this class, represents one tree node in its data form. Each instance of this class
contains following instance variables: char node_game_desk[] is the array, which holds
the information about the configuration of the node.

The int id is the unique identificator of the node. The int father is the identifckator
of the predecessor of this node. The level is the depth of the node. The int end_of_game
is the value of this node (0, 1, -1). The int alpha and int beta are the values of α and
β in case the user chose the Alpha-beta pruning algorithm. The bool cut means that the
node is cut off.
Instance methods:

• static void add_node_into_tree(int depth, int father) - this method creates
the node in the data form and inserts it into the tree. The first parameter depth is
the depth, where the node is created, the second parameter father is the identifikator
of its predecessor.

Class Check game status

This class checks, whether in the tree node occured the end of game. In case the end of
game occurred, methods of this class return the value of the node.

The value 0 is returned in case of draw, the value 1 is returned in case of victory of
player X and the value -1 is returned in case of victory of player O. In case, the end of game
does not occur, the initial values of the tree nodes are set to ∞ and −∞.
Instance Methods:

• static int checkDraw() - method which checks whether during the playing game
occurred the draw.

• static int checkWin() - method which checks whether during the playing game
occurred the victory of some player.

Class Artificial intelligence

This class implements the game algorithms Minimax and Alpha-beta pruning.
Instance methods:

• static int minimax(int player,int depth,int bestMaxScore,int bestMinScore)
- this method implements the Minimax algorithm. The first parameter player is the
player on the turn, second parameter depth is the depth of the recursion and two last
parameters bestMaxScore and bestMinScore are the best score of players X and O.

• static int alphabeta(int player, int depth, int alpha, int beta) - this method
implemets the Alpha-beta pruning algorithm.

Structure Game data

Data structure, which contains very important control variables, pointers to the other
objects etc. Each object in this object system has permission to read the data from this
structure, some of them even to write.

The most important variables in this structure are: node_data *tree[] which is the
array of pointers to the instances of the Tree_node_data class, which represents one tree

27

node in its data form. The tree_node *visible_node[] which is the array of pointers to
the instances of the Tree_node class, which represents one tree node in its graphic form.
The char game_desk[], this array represents the game board for the Tic-tac-toe game in
the data form.

The last important variable in this data structure is the QGraphicsScene *TreeViewScene,
which is the pointer to the graphic application output.

28

Chapter 6

Application testing

This chapter is dedicated to the application testing, describes the test scenarios and achieved
test results. The application was tested in two independent phases. In each phase, played
the important role its potential users.

The first phase, is focused on testing the application functionality. The second phase,
is focused on testing the usability of the application for the real users. The application was
tested on the operational systems Windows 8.1 x 64 and Fedora linux 10.

6.1 Testing of the application functionality

In the first phase of testing, was tested, whether the implemented algorithms work cor-
rectly and whether the application submits the valid graphics outputs. The validity of the
application output was tested in following manner.

I implemented the algorithms Minimax and Alpha-beta pruning as the simple, inde-
pendent test application, which runs in the command line. The input of this application is
the initial game situation in the text form. The output of this application is the text file,
containing the informations about the generated tree 6.1. Then this output was compared
with the real graphic output of the main application.

When the new application functionality was implemented, the application in form of the
prototype, was submitted to the real users. During the implementation process, the users
already had a choice to try the application. The users were asked, to try the application in
various, unexpected situations, which came to their mind. This kind of testing led to the
finding of many application glitches, which from the developer’s perspective were difficult
to discover. Another important aspect is, that the release of these prototypes, allowed
to react to the users requirements, and improve the application functionality, during the
implementation process.

29

Figure 6.1: Example of the test application output

6.2 Testing of the real use

After finishing the implementation process, the aspects of the real use of the implemented
application were tested. The whole process of testing was divided into the four simple
sub-tests.

The reason I decided to divide the test into sub-tests, was that it might be demotivating
for the users, to solve the difficult tasks at start. These sub-tests were not so difficult to
solve and the completion of each sub-test was motivating for the users to learn, how the
game algorithms work. First test, was focused on controlling the application. The next
three tests covered the learning process of the game algorithms principles.

This testing was executed on the sample of 7 real international users, each of these users
is the student of the IT university.

Sub-test1 scenario: GUI control

The users were familiar with the GUI and their task was to prepare random initial game
situation, run the arbitrary game algorithm and then generate the game tree.

In the diagram 6.2 you can see the times, which the individual users needed for solving
the task.

30

Figure 6.2: Sub-test1 - diagram

Sub-test2 scenario: time for learning the algorithm

The goal of this test, was to give a user time to learn the principles of Minimax and Alpha-
beta pruning algorithms. After the user said, that he understood these principles, he was
subsequently asked to solve two following independent tasks.

In the diagram 6.3 you can see the times that the individual users needed for under-
standing the game algorithm principles. The columns marked as Min mean the time taken
for learning the Minimax algorithm and Alph for Alpha-beta pruning.

Figure 6.3: Sub-test2 - diagram

Sub-test3 scenario: solving the task without using of the application

In this sub-test, the users were asked to solve the simple game situation (for all users the
task was the same) by the Minimax and Alpha-beta pruning algorithms, on the paper,
without using the implemented application. The goal of this test was to find out, how

31

many errors the users will make, and compare this result with the situation, when the users
use the application.

In the diagram 6.4 you can see the count of errors the users made while solving this
task. The colums marked as Min mean the count of errors while solving the task by the
Minimax method and Alph by Alpha-beta pruning.

Figure 6.4: Sub-test3 - diagram

Sub-test4 scenario: solving the task with using of the application

In this sub-test the users were also asked to solve the different, simple game situation (for
all users the task was the same) on the paper, but they used the implemented application
while solving this task. The users could not solve the whole task by the application, they
could only review the status of their solution.

In the diagram 6.5 you can see the count of the errors the users made while solving of
this task.

Figure 6.5: Sub-test4 - diagram

32

6.3 Evaluation of the tests results

During each test, I was physically present and I watched the user’s behavior during his
application control activity. I focused on these two following aspects:

• time needed for understanding the application control - each user, after he
saw the application for the first time, did not have a clue how the application works
and needed to read the application help. After reading the help, each user was able
to control the application more or less immediately. Based on this observation flows,
that the average time needed for understanding the application control system is 14,42
seconds.

• time needed for understanding and the level of understanding of the game
algorithms - it turned out, that for the users who did not have any clue about the
artificial intelligence, the graphical demonstration of the algorithm principle, was not
enough. For that reason it turned out as a good idea, to implement the window, where
the user can read the basic information about the chosen game algorithm in pdf form.
Each user took this option, and after reading this information, in combination with
the graphical demonstration, understood how the implemented game algorithms work.
At first, the application seemed a bit confusing for the users, but after some time it
started to make sense for them. Based on this observation flows, that the average
time needed for understanding the Minimax algorithm principle is 15,14 minutes and
time needed for understanding the Alpha-beta pruning algorithm principle is 36,85
minutes. If we take into account the number of errors the users made, while solving
the test tasks, when the users could not use the application, the average count of the
errors was 2.57 per user in the Minimax and 6,28 in the Alpha-beta pruning. On the
other hand, when the users could use the application, and could review the status of
their solution, the average count of the errors was 1 per user in the Minimax and 3,74
in the Alpha-beta pruning.

Of course the testing on sample of 7 users can not provide completely relevant results. For
that reason it would be beneficial to distribute the application for the greater mass of the
users.

Since the application is focused on narrow group of the users, predominantly the students
of the artificial intelligence, it would be suitable to distribute the application for example
on the web pages of these courses etc. Nevertheless, it turned out, that on the base of this
application, it is possible to better understand the principles of Minimax and Alpha-beta
pruning algorithms, in rather short time interval.

All of these users, on which the application was tested, agreed, that this application
represents the good learning ”complement”, which could save their time, during the learning
of the game algorithm principles.

33

Chapter 7

Conclusion

This chapter discusses the achieved test result mentioned in the chapter 6.3 and subse-
quently in this chapter are mentioned the proposed future improvements of the application.

7.1 Proposal for the possible future improvements

Even thought the developed application is really usable and gives a fairly satisfactory results,
there are still many things that could be improved.

In terms of improving the application at the source code level, it would be worth to
consider the optimization of algorithms, for generating the graphical output. For example,
in case of the tree consisting of the units up to tens of nodes, the application response time
is almost instant. In case of the tree consisting of the hundreds up to thousands nodes, the
application response time reaches tens of seconds.

Regarding the new functions of the application, it would be good idea to implement
the additional concept describing the principle of the methods for solving the tasks for one
player, for example the Tower of Hanoi game 3.1.

7.2 Discussion of the achieved results

It turned out, that for the users who do not have any clue about the artificial intelligence,
the principle of the graphical demonstration of the game algorithm, is not enough and this
application will hardly replace exclusively study materials or even the teachers.

On the other hand, this application is the good learning
”
complement“, which allows

the users to make sure, that they really understand the game algorithm principles and it
also allows to deepen their knowledge.

Since as the goal of this thesis was to develop the application for educational support,
the discovering that the developed software can not fully replace exclusively study materials,
is not unexpected.

34

Bibliography

[1] Prohledávání stavového prostoru [online].
http://cs.wikipedia.org/wiki/Prohledávání_stavového_prostoru, 2013-10-15
[cit. 2015-05-27].

[2] Minimax (algoritmus) [online].
https://cs.wikipedia.org/wiki/Minimax_(algoritmus), 2015-05-02 [cit.
2015-05-27].

[3] Software framework [online].
https://en.wikipedia.org/wiki/Software_framework, 2015-05-20 [cit.
2015-05-27].

[4] C++ [online]. https://en.wikipedia.org/wiki/C%2B%2B, 2015-06-11 [cit.
2015-05-27].

[5] Stavový prostor a jeho prohledávání [online]. https:
//cw.fel.cvut.cz/wiki/_media/courses/y33zui/01_neinformprohled_v2.pdf,
[cit. 2015-05-26].

[6] Traced by User:Stannered. A sample tic-tac-toe game, for en. [online].
http://en.wikipedia.org/wiki/File:Tic-tac-toe-game-1.svg, 2007-03-30 [cit.
2015-05-27].

[7] Kristian kraljic. Game visualization [online].
http://kra.lc/projects/gamevisual/launch.php, 2011 [cit. 2015-05-27].

[8] Václav Matoušek. Hraní her (teorie a algoritmy hraní her) [online].
http://www.kiv.zcu.cz/studies/predmety/uir/predn/P2/FThema2_hry.pdf,
2015-03-04 [cit. 2015-05-21].

[9] Jan Němec. Složitost alfabeta metody [online].
http://www.linuxsoft.cz/article.php?id_article=1239, 2006-07-17 [cit.
2015-05-27].

[10] Ondřej Popelka. α -β prořezávání [online].
https://akela.mendelu.cz/~xpopelka/cs/ui/prorezavani/, 2015-01-08 [cit.
2015-05-27].

[11] Tomáš Ripel. Řešení úloh rozkladem na podproblémy [online].
http://1url.cz/V5o0, 2009-05-08 [cit. 2015-05-27].

35

http://cs.wikipedia.org/wiki/Prohled�v�n�_stavov�ho_prostoru
https://cs.wikipedia.org/wiki/Minimax_(algoritmus)
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/C%2B%2B
https://cw.fel.cvut.cz/wiki/_media/courses/y33zui/01_neinformprohled_v2.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/y33zui/01_neinformprohled_v2.pdf
http://en.wikipedia.org/wiki/File:Tic-tac-toe-game-1.svg
http://kra.lc/projects/gamevisual/launch.php
http://www.kiv.zcu.cz/studies/predmety/uir/predn/P2/FThema2_hry.pdf
http://www.linuxsoft.cz/article.php?id_article=1239
https://akela.mendelu.cz/~xpopelka/cs/ui/prorezavani/
http://1url.cz/V5o0

[12] José Manuel Torres. Demo: minimax game search algorithm with alpha-beta pruning
(using html5, canvas, javascript, css) [online].
http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html, 2011 [cit.
2015-05-27].

[13] Vladimír Mařík. Olga Štěpánková, Jiří Lažanský a kolektiv. Umělá inteligence (1).
Academia, 2000. ISBN 80-200-0496-3.

[14] F. Zbořil and F. Zbořil ml. Základy umělé inteligence izu studijní opora [online].
https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf,
2013-04-30 [cit. 2015-05-21].

36

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html
https://www.fit.vutbr.cz/study/courses/IZU/private/oporaizu-esf-5a.pdf

Appendix A

CD content

CD directory structure

• SRC - directory containing the source codes of the application.

• Thesis - directory containing the LATEXsource codes.

• Video - directory containing the short video presentation.

• README.txt - text file containing the information about compiling the application.

• bachelor thesis xcasla03.pdf - text of the thesis.

37

Appendix B

Manual

Process of starting the application

• Compilation - For compiling the application you need installed QT framework ver-
sion 3.2.0 or higher and compiler of programming language C++ version 10 or higher.
Application is possible to compile on platforms Microsoft Windows or Linux.

• Application control - After starting the application, user must prepare his initial
game situation. By clicking the right mouse button on the game board squares, he
can place the game marks onto the game board. The only condition is, the last placed
game mark must be opponent’s mark (circle). After preparing this initial situation
the user can choose one of two implemented game algorithms (Minimax and alpha-
beta pruning) from the menu and start generation of the application output. If the
application output is generated, the user can modify it by clicking the next step
button and simulate the game algorithm activity. If the user wants to see, which
game move the game algorithm chose as the best one, he can click on the place
opponent move button, and the opponent’s mark will be shown in the game board
on its best position. More detailed information about the application control system
you can read in the chapter 4.4.

38

Appendix C

Application screenshots

Figure C.1: Application screenshot - Minimax algorithm

39

Figure C.2: Application screenshot - Alpha-beta pruning algorithm

40

	Introduction
	Task-solving methods
	State space
	Methods based on state space exploration
	Uninformed (Blind) Search methods
	Informed search methods
	Local search methods
	Methods for decomposition to subtasks (AND/OR graphs)

	Methods of playing games - game algorithms
	Primitive games
	Tower of Hanoi game

	Difficult games
	Minimax
	Alpha-beta pruning

	Games with uncertainty

	Application design
	Tic-tac-toe game
	Graphics user interface
	Application object model
	Application control system
	Application user input
	Application output

	Educational benefits
	Benefits
	Similar existing applications

	Application implementation
	Implementation of the object model

	Application testing
	Testing of the application functionality
	Testing of the real use
	Evaluation of the tests results

	Conclusion
	Proposal for the possible future improvements
	Discussion of the achieved results

	CD content
	Manual
	Application screenshots

