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Abstract
This thesis deals with question answering over structured data. In knowledge databases,
a structured data is usually represented by graphs. However, to satisfy information needs
using natural language interfaces the system is required to hide the underlying schema
from users. A question answering system with a schema-agnostic graph-based approach
was developed as a part of this work. In contrast to traditional question answering systems
that rely on deep linguistic analysis and statistical methods, the developed system explores
provided graph to yield and reuse semantic connection for a known question-answer pair.
Lack of large domain-specific structured data made us perform evaluation with the help of
prominent open linked datasets such as Wikidata and DBpedia. Quality of separate an-
swering stages and the approach in general was evaluated using adapted evaluation dataset
and standard metrics.

Abstrakt
Tato práce se zabývá problematikou odpovídání na otázky nad strukturovanými daty. Ve
většině případů jsou strukturovaná data reprezentována pomocí propojených grafů, avšak
ukrytí koncové struktury dát je podstatné pro využití podobných systémů jako součástí
rozhraní s přirozeným jazykem. Odpovídající systém byl navržen a vyvíjen v rámci této
práce. V porovnání s tradičními odpovídajícími systémy, které jsou založené na lingvistické
analýze nebo statistických metodách, náš systém zkoumá poskytnutý graf a ve výsledků
generuje sémantické vazby na základě vstupních párů otázka-odpověd’. Vyvíjený systém je
nezávislý na struktuře dát, ale pro účely vyhodnocení jsme využili soubor dát z Wikidata a
DBpedia. Kvalita výsledného systému a zkoumaného přístupu byla vyhodnocena s využitím
připraveného datasetu a standartních metrik.
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Chapter 1

Introduction

1.1 Motivation
In recent years, the usage of Natural Language Processing (NLP) for natural language
interfaces towards an effective Human–Computer Interaction (HCI) has received much at-
tention [59]. In last few years we see how dialog interfaces, both spoken and textual are
coming into daily life through available commercial products. Personal assistants like Siri,
Google Assistant and Cortana are examples of multi-purpose question answering systems
which provide to the end-user natural language answers based on structured information.
Monthly active user audience of messaging apps exceeds social network users audiences and
this trend give a rise to a new market of chatbots. Conversational interfaces become more
popular with the progress of natural language processing techniques [16].

Companies of all sizes have an interest to apply such technologies in their services be-
cause it allows them to optimize support expenses in case of existing users and opens the way
to new communication channels of marketing among potential customers. A development
of a conversational agents over popular messaging apps is cheaper than the development
of a mobile application, but provides almost the same features and potential benefits to
a company. Providing a customer service of a permanent quality is possible with Natural
Language Processing technologies. Automated solutions are much more scalable in com-
parison with any human powered support/sales service. Billing services in messaging apps
create a new market.

While marketing new products or providing a support, an employee uses prepared semi-
structured data of the company (e.g. deals information, conversation scripts). Conceptual
data description formats, such as Resource Description Framework (RDF), are efficient
tool to manage that. Most of semi-structured data can be converted into unified knowledge
representations. Actual principles and techniques, used in question answering systems
over knowledge bases, are applicable to a companies’ semi-structured data. Nowadays,
application of a modern natural language techniques in this area requires certain customer’s
skills and domain-specific knowledge. Key goal is to abstract users from the representation
of the dataset, allowing to edit and to improve automated solutions with a low entry barrier.

The exponential growth of the World Wide Web has transformed it into a knowledge
ecosystem in which highly variative information is linked in an extremely complex and
arbitrary manner [35]. It is important to note that the Web is increasingly understood
as a global information space consisting not only of linked documents, but also of Linked
Data [19]. The rapid increase in massive information storage and the popularity of using the
Web allow researchers to store data and make them available to the public. However, the

4



exploration of this large amount of data makes finding information a complex and time-
consuming task [21]. Knowledge bases play an important role in enhancing of the Web
and enterprise search intelligence, as well as in supporting information integration [20]. In
dealing with Semantic Web databases that can be distributed among multiple computers
with different database management systems on remote sites, a central problem faced by
users is the query formulation in terms communicable to the system [33]. Natural language
is a powerful tool of human-computer interaction, but any data processing systems require
knowledge about the words meaning [26].

The key challenge for commercial conversational agents and question answering en-
gines is to transform natural language question into structured query, interpretable by the
knowledge base management system. Over the past years, a range of approaches have
been developed to address this challenge, showing significant advances towards answer-
ing natural language questions with an accent to large, heterogeneous sets of structured
data [58]. Nowadays, available structured data is distributed among collection of inter-
connected datasets, partly available only in textual form. Datasets inconsistent structure
affects question answering systems design. New approaches in this area try to solve men-
tioned issues. Current evaluation campaigns, such as Question Answering over Linked Data
(QALD) campaigns, help developers and researchers to evaluate the quality of developed
systems.

1.2 Goals
The aim is to design and implement schema-agnostic question answering system. Our
system will be based on the approach of natural language queries answering over knowledge
graphs using a reference question, therefore the evaluation of the approach is necessary. The
system should focus on the structured data with the high measure of granularity represented
at the linked graph.

These objectives were selected:

1. Create a general domain question answering system, that:

(a) uses schema-agnostic approach;
(b) is dataset independent.

2. Create an extensible solution:

(a) that is independent of a language’s linguistic structures;
(b) abstracts data consumers from the dataset representation;
(c) extensible using natural language.

3. Modular architecture of the system.

4. Evaluate the proposed approach:

(a) over existing datasets;
(b) using standard or adapted metrics.

Traditional approaches are based on linguistic structures or formal grammars. We will
focus on the graph explorations to escape the dependence of a linguistic structure. Our
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system should provide sufficient level of abstraction and hide data representation in most
cases. The system should be extensible by users (at least ones with a specific role assigned).
The proposed approach should link natural language relations with corresponding semantic
relations if such relations are available within a knowledge base. Modularity of question
answering system is required to make developed components reusable.

Evaluation on the existing dataset, while meeting the lack of large-scale companies’
data, is possible using prominent open knowledge bases (Wikidata and DBpedia). Our
custom approach requires an adaptation of evaluation datasets, hence the objective is to
create the adapted dataset for evaluation. Evaluation using standard metrics is an essential
goal because the approach is valuable in a comparison with related systems. User evaluation
is a necessary part of this work as well since the question answering process is a subject of
human-computer interaction and quality of the result depends on the user experience.

1.3 Outline
The rest of this thesis is organized as follows:

Chapter 2: State of the art. The survey of question answering systems over linked
data is provided in this chapter. Actual principles of question answering systems devel-
opment with an accent on the natural language processing and its relation to the linked
data as a form of knowledge representation were researched. Key challenges and trends of
question answering systems design constitute significant part of this chapter.

Chapter 3: Design of the system. Set of requirements to the proposed system
was defined a as a result of the survey. The definition is followed by appropriate methods
definition, high-level architecture of the system, and an example of question processing.

Chapter 4: Implementation. This chapter explains how the question answering
system was developed, provides technical details and summarizes technologies used in the
system.

Chapter 5: Evaluation. The chapter reveals difficulties of question answering systems
evaluation and presents evaluation using adapted datasets. The question answering system
was assessed using quality measures in the chapter. Technical comparison with existing
question answering systems over linked data is provided at the end of the chapter.

Chapter 6: Conclusions and potential extensions. The chapter summarizes
achieved results and research conclusions, and describes potential extensions, which can be
applied to the system in the future.
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Chapter 2

State of the Art

2.1 Question Answering
Question Answering (QA) is an application area of computer science which attempts to
build software systems that can provide accurate useful answers to questions posed by
human users in natural language (e.g., English) [29].

As for human-computer interaction, natural language is the best information access
mechanism for humans. Therefore, Question Answering Systems (QAS) have special sig-
nificance and advantages over search engines and are considered as a goal of semantic Web
research for user’s information needs [56].

Question answering is the process performed by informational system with a natural
language interface and can be classified to several categories. Spoken question answering
systems in comparison to textual question answering systems have an extra pre-processing
step of utterance recognition and extra post-processing step of speech synthesis. Also ques-
tion answering process is always associated with an information represented by knowledge
bases (more at section 2.3). Quality of answers is represented by correctness and complete-
ness metrics and highly depends on a knowledge base quality [57].

Questions classification

Natural language question is the input of the process. This section provides classification
and examples of different question types.

Factoid questions are those asked about Named Entities (NE) or nouns, using for ex-
ample these words: When, Where, How much/many, Who, and What. These questions
ask about date/time, place, person, and organization [21]. Factoid questions also can be
separated to multiple classes: predicative questions, list questions, Yes/No questions [57].
There are examples of Factoid questions:

• Who was the first president of the USA?

• What is globalization?

• How far is the New York marathon?

• When was London founded?

• Where was born Mother Teresa?
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Definitions questions require definition of a term or a concept in result [21]. Answering
of this kind of questions is performed by hybrid approaches which uses structured and
textual information at the same time. Constructing definition from a structured data is an
opposite way of handling this kind of questions. Example:

• Who was George Washington?

Explanations questions category is the most complex type of questions, which can require
derivation from the provided knowledge. This type of questions tends to have less regular
answers structure in comparison to Factoid questions. Examples of these questions are:

• What is the difference between Alzheimer’s and dementia?

• What is the connection between history and government?

• Why did they give this name to Gulliver?

• How do I make a cheesecake?

• What does society think of global warming?

Answer representation

Question answering systems are not required, but it is desirable to present answers the
same natural way as a user question. Especially for question answering systems over linked
data, which purpose is to hide formal semantic queries and structure of the data set from
end-user, it is necessary to construct natural language answer possibly enriched by media
data [57].

2.2 Question answering systems
A Question Answering System (QAS) is a software system that provides exact answers to
natural language questions for some range of topics. The answer of QA system may be
supplemented with an additional information, including a clarification or dialog explaining
why the provided answer is correct [29]. A Question Answering System aims at giving
precise answers to users’ questions introduced in natural language [21].

Question answering systems vs. dialog systems

Question answering systems and dialog systems belong to the one field of research. Question
answering can be integrated into an existing dialog system as a part of a conversation flow.
On the other side, dialog elements with conversation flow can be integrated into a question
answering system. Both of them are able to generate natural language answers and the
system can be classified as question answering if:

• it has an underlying knowledge base;

• the main purpose is to provide information to the user;

• the context is beneficial, but not compulsory part of the process.
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On the other side, the question answering system can be classified as a dialog system if:

• dialog flow is an interface to the underlying layer;

• the primary (but not exclusive) purpose is to control an underlying system;

• a conversation flow generates context monitored by the system.

Question answering systems vs. search engines

In comparison to regular search engines, question answering systems allow the user to ask a
question in natural language and return a correct and exact answer to his question instead
of a set of relevant documents [21]. We should note that modern search engines attempt to
include semantic answers, mostly based on structured data represented by knowledge graph
into search results. That sort of semantic technologies intends to improve visibility and
clarity of search results. Google, Bing, Baidu and Yahoo search engines contain semantic
technologies based on structured data [45]:

• Knowledge Graph by Google;

• Satori by Microsoft (as a part of Bing);

• knowledge graph by Yahoo;

• Baidu Knowledge Graph.

The above mentioned systems are combining internal graph data parsed during the web
crawling and external data sets (for example, Freebase knowledge base was used as a basis
for the Google’s Knowledge graph) [50].

Background

The goal of QA Systems, as defined in [49], is to allow users to ask questions in Natural
Language (NL), using their own terminology, and receive a concise answer. The process
starts by linguistic analysis (dependency graphs creation using a syntactic parser with a
step of a named entities recognition). The next step is to classify the question according
to defined questions categories. The query is generated using system-specific approach. An
external ontology can be used for matching items generated in the process. Finally, when
the query is generated and performed over the Linked Data, the system generates an answer
to the user’s question [21].

Question answering systems can be built on top of structured knowledge bases (linked
data) or on top of textual data sets, as it has been already done in search engines. Some
question answering systems combine both principles (for example IBM’s Watson DeepQA
contains a semi-structured knowledge base).

This thesis is focused on question answering over linked data, thus, the architecture of
question answering system and key challenges will be reviewed in the section 2.5.

2.3 Structured data
Linked Data is a structured data in the terminology of knowledge bases. Linked Data
employs the Resource Description Framework (RDF) and the HyperText Transfer Proto-
col (HTTP). Published structured data on the Web are connected between different data
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sources. It allowing data from the one data source to be linked to data in another data
source. The principles of Linked Data were first outlined by Berners-Lee in 2006 [14]. This
publication includes comprehensive guidance upon which data publishers have begun to
realize the Web of Data. Later the guidance has been extended by technical documents
that capture best practices from the Linked Data community [19].

Linked data is an example of structured data. As long as we consider the latent linguistic
structure of human languages, almost no data are truly “unstructured” [42]. Graph is
commonly used for the representation of entities and relations between them.

Information retrieval

As for academic field of study, information retrieval might be defined as finding material
(usually documents) of an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers) [42].

RDF data triples

Resource Description Framework (RDF) is a standardized model for data interchange on
the Web. RDF has features that making possible a data merging even if the underlying
schemes differ. Also, RDF supports the evolution of schemes over time without requiring
all the data to be changed. RDF uses Universal Resource Identifiers (URIs) to name the
relationship between things as well as the two ends of the link (this is usually referred to
as a “triple”). Usage of this simple model allows structured and semi-structured data to
be mixed, exposed, and shared across different applications. This linking structure forms a
directed, labeled graph, where the edges represent the named link between two resources,
represented by the graph nodes. The graph view is the possible mental model for RDF and
is often used in easy-to-understand visual explanations [47].

Here is provided an example1 of the RDF triple for the Wikidata entity wd:Q7874
(American Bobtail, the cat breed):

Listing 2.1: RDF data example.
1 <http://www.wikidata.org/entity/Q7874>
2 <http://www.wikidata.org/prop/direct/P31>
3 <http://www.wikidata.org/entity/Q43577> .
4
5 <http://www.wikidata.org/entity/Q43577>
6 <http://www.w3.org/2000/01/rdf-schema#label>
7 "cat breed"@en .
8
9 <http://www.wikidata.org/entity/Q43577>

10 <http://www.w3.org/2004/02/skos/core#prefLabel>
11 "cat breed"@en .
12
13 <http://www.wikidata.org/entity/Q43577>
14 <http://schema.org/name>
15 "cat breed"@en .
16

1Source: http://www.wikidata.org/wiki/Special:EntityData/Q7874.nt
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17 <http://www.wikidata.org/entity/Q7874>
18 <http://www.wikidata.org/prop/P31>
19 <http://www.wikidata.org/entity/statement/Q7874-01F55EE3F372> .
20
21 <http://www.wikidata.org/entity/statement/Q7874-01F55EE3F372>
22 <http://wikiba.se/ontology-beta#rank>
23 <http://wikiba.se/ontology-beta#NormalRank> .
24
25 <http://www.wikidata.org/entity/statement/Q7874-01F55EE3F372>
26 <http://www.wikidata.org/prop/statement/P31>
27 <http://www.wikidata.org/entity/Q43577> .

RDF data contains semantic triples consisted of subject, predicate and object. The first
triple represents a link between subject wd:Q7874 (American Bobtail) via the predicate
wdt:P31 (instance of) to the object wd:Q43577 (cat breed). RDF data provided by the
Wikidata endpoint for the wd:Q7874 includes 4597 triples. The request to the endpoint
provides extra properties of the connected entities. Furthermore, RDF store contain service
ontology subjects such as:

http://www.wikidata.org/entity/statement/Q7874-01F55EE3F372.

SPARQL

As noted before, RDF is a directed, labeled graph data format for representing information
in the Web. The specification [46] defines the syntax and semantics of the SPARQL Proto-
col and RDF Query Language (SPARQL) query language for RDF. SPARQL can be used
to express queries across various data sources, whether the data is stored natively as RDF
or viewed as RDF via middleware (for example, Wikidata stores knowledges in JavaScript
Object Notation (JSON) blobs and generates RDF triples for the current version of the
data). SPARQL contains capabilities for querying graph patterns along with their conjunc-
tions and disjunctions. The result of a SPARQL query is a set of entities or an RDF graph.
SPARQL is SQL-like querying language. Below you can see an example of the SPARQL
query with Wikidata-specific items.

Listing 2.2: SPARQL query example.
1 SELECT ?breed ?breedLabel ?pic
2 WHERE
3 {
4 ?breed wdt:P31 wd:Q43577 .
5 OPTIONAL {
6 ?breed wdt:P18 ?pic
7 }
8 SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }
9 }

At the example ?breed entities were selected as a set of entities with a connection via
the property wdt:P31 (instance of) to the instance wd:Q43577 (cat breed). Selected breeds
were extended with images via the property wdt:P18 (image of).
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Open knowledge databases

DBpedia is a crowdsourced community effort to extract structured information from
Wikipedia and make this information available on the Web. DBpedia allows users to ask
sophisticated queries against Wikipedia, and to link the different data sets on the Web to
Wikipedia data [25]. The aim is to make it easier for the huge amount of information in
Wikipedia to be used in some novel ways. Furthermore, DBpedia is potentially may serve
new mechanisms for navigating, linking, and improving the Wikipedia itself [37]. Virtuoso
SPARQL Query Editor is a publicly available DBpedia SPARQL endpoint 2.

Wikidata is a free and open knowledge base, it can be read and edited by both humans
and machines using the MediaWiki engine. Wikidata is the community-created knowledge
base of Wikipedia, and the central data management platform for Wikipedia and most of
Wikimedia Foundation projects [61]. Wikidata also provides support to many other sites
and services beyond just Wikimedia projects. The content of Wikidata is available under
a free license, exported using standard formats, and can be interlinked to other open data
sets on the linked data web. Wikidata was filled up with Freebase knowledge base after
acquiring Metaweb Technologies by Google and shutdown of Freebase. Since its public
launch in late 2012, the site has gathered data on more than 24 million entities, including
over 130 million statements, and over 138 million labels and descriptions in more than 350
languages [27]. This is the work over 16 thousand users who have actively contributed so
far (more than one edit per month). Their efforts continue to make Wikidata more and
more comprehensive and accurate [62]. Wikidata SPARQL endpoint is available online 3.

YAGO (Yet Another Great Ontology) is a lightweight and extensible ontology with
high coverage and quality. YAGO builds on entities and relations, is includes the Is-A hier-
archy as well as subclass relations between entities (such as hasWonPrize). The facts have
been automatically extracted from Wikipedia and unified with WordNet, using a carefully
designed combination of rule-based and heuristic methods. The resulting knowledge base
is a major step beyond WordNet: in quality by adding knowledge about individuals like
persons, organizations, products, etc. with their semantic relationships and in quantity by
increasing the number of facts. Empirical evaluation of fact correctness shows an accuracy
of about 95% [53]. YAGO2 introduced an enhanced data representation, including time and
location as first-class citizens. The wealth of temporospatial information in YAGO2 can be
explored either graphically or through a special query language [34]. YAGO3 is extension of
the YAGO knowledge base that combines the information from the Wikipedia in multiple
languages. Special technique fuses the multilingual information with the English WordNet
to build one consistent knowledge base [41].

Proprietary knowledge databases

Knowledge Graph is knowledge base used by Google, which helps users to discover new
information in search results. It currently contains more than 500 million objects, as well
as more than 3.5 billion facts about and relationships between these different objects. The
Knowledge Graph Search API allows developers to find entities in the Google Knowledge
Graph [50].

2https://dbpedia.org/sparql/
3https://query.wikidata.org/
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Unified data set structure

Knowledge bases with structured data, open ones or proprietary, contains diverse informa-
tion from different areas, structured by various schemes and object classifications of various
accuracy. The common thing between all of them is graph representation, which is easily
convertible to a set of triples. Data set independent question answering system, which al-
lows interlinking between objects from different data sets should limit the plenty of features
available from certain knowledge bases.

Implementation

Apache UIMA (Unstructured Information Management Application) is a software sys-
tems suite, that analyze large volumes of unstructured information in order to discover
relevant knowledge [2]. An example UIM application might ingest plain text and identify
entities, such as persons, places, organizations or relations. UIMA enables applications to
be decomposed into components, further each component implements interfaces defined by
the framework and provides self-describing metadata via XML descriptor files. The frame-
work manages these components and the data flow between them. UIMA additionally
provides capabilities to wrap components as network services, and can scale to very large
volumes by replicating processing pipelines over a cluster of networked nodes.

The Apache LuceneTM project develops open source information retrieval software
library, including:

• Lucene Core, that provides Java-based indexing and search technology, as well as
spellchecking, hit highlighting and advanced analysis/tokenization capabilities [1].

• SolrTM is an open source enterprise search platform, written in Java, with XM-
L/HTTP and JSON/Python/Ruby APIs. It uses the Lucene search library at its
core for full-text indexing and search Its major features include full-text search, hit
highlighting, faceted search, real-time indexing, dynamic clustering, database integra-
tion, NoSQL features and rich document handling. Providing distributed search and
index replication, Solr is designed for scalability and fault tolerance.

Numerous RDF JS libraries are available:

• rdfstore-js is JavaScript (JS) RDF store with SPARQL support is a pure Javascript
implementation of an RDF graph store with support for the SPARQL query and data
manipulation language [7].

• rdflib.js is Linked Data API, RDF library for browsers and Node.js, that allowing to
read and write RDF/XML, Turtle and N3 [4].

• node-rdf are ECMAScript libraries for handling RDF data, designed for Node.js. An
important point is that the system implement RDF datatypes with Javascript types
and provide related APIs and in-memory utilities[3].

2.4 Natural language processing
Natural Language Processing (NLP) techniques can be used to convert the user request
from NL into SPARQL [21]. Text processing techniques such as a stemming and lemma-
tization are used in question answering systems at most stages of input phrase processing.
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Lemmatization is widely used at mapping (with the data) step of question answering sys-
tems because dictionary form is used while searching in labels indexes of a dataset.

Common tools

This section reviews prominent tools for natural language processing.
NLTK (Natural Language Toolkit) is a leading platform for building Python software

to work with human language data [17]. It provides easy-to-use interfaces to over 50 corpora
and lexical resources such as WordNet, along with a suite of text processing libraries for
classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers
for popular NLP libraries [6].

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis
tools [43]. It can give the base forms of words, their parts of speech, whether they are
names of companies, people, etc., normalize dates, times, and numeric quantities, mark up
the structure of sentences in terms of phrases and word dependencies, indicate which noun
phrases refer to the same entities, which is extremely useful for the context monitoring,
indicate sentiment, extract particular or open-class relations between entity mentions, get
quotes people said, etc [9].

Parse tree

Syntactic parsing of natural language sentences is a central task in natural language pro-
cessing (NLP) because of its importance in mediating between linguistic expression and
meaning [52].

The Link Grammar Parser is a syntactic parser of English, based on link grammar,
an original theory of English syntax. Given a sentence, the system assigns to it a syntactic
structure, which consists of a set of labeled links connecting pairs of words. The parser also
produces a representation of a sentence (showing noun phrases, verb phrases, etc.). The
system is written in generic C code and runs on any platform with a C compiler. There
is an application program interface (API) to make it easy to incorporate the parser into
other applications. Davy Temperley, Daniel Sleator and John Lafferty developed a formal
grammatical system called a link grammar, showed how English grammar can be encoded
in such a system, including algorithms for efficiently parsing with a link grammar [18].
Although the expressive power of link grammars is equivalent to context free grammars,
encoding natural language grammars appears to be much easier with the new system. The
performance of this system both in the breadth of English phenomena that it captures and
in the computational resources used indicates that the approach may have practical uses
[51].

spaCy is a library for advanced natural language processing in Python and Cython
that was designed to be used in real products. spaCy currently supports English, German
and French [5]. Tokenization is based on Penn Treebank script and regular expressions
with various updates to account for unicode characters. spaCy tagger uses greedy decoding
with the averaged perceptron, Brown cluster features and case normalization features. The
parser uses the algorithm of shift-reduce dependency parsing described in the CoNLL 2013
paper (Honnibal, Goldberg and Johnson 2013) with Brown cluster features and redesigned
feature set. Other improvements were obtained using Goldberg and Nivre (2012) dynamic
oracle with the improved cost-sensitive update.
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Named entities recognition

The goal of a Named Entity (NE) extractor (as a part of the NLP tools family) is to extract
named entities. The first definition of NE was coined by Grishman et al. as an information
unit such as the name of a person or an organization, a location, a brand, a product, a
numeric expression including time, date, money and percent found in a sentence [48].

NERD (Named Entity Recognition and Disambiguation) is a web application plugged
on top of various named entities extractors. It allows the user to analyze any textual
resource published on the web and accessible with a URI, and to extract from the text
the named entities detected, typed and disambiguated by five Named Entity Recognition
(NER) APIs. It provides a user interface for assessing the performance of each of those
five tools according to the pattern (NE,type,URI). All user interactions are collected and
stored in a database. The framework can finally generate analysis reports and comparison
of tools using the NERD ontology [48].

TextBlob is a Python (both 2 and 3) library for processing textual data. It provides a
simple API for diving into common natural language processing (NLP) tasks such as part-
of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation,
and more [10]. TextBlob API contains noun phrase extraction methods, which are even
more useful than named entities at the mapping with the linked data step.

DBpedia Spotlight is an open source project developing a system for automatic an-
notation of DBpedia entities in natural language text. It provides programmatic interfaces
for phrase spotting (recognition of phrases to be annotated) and disambiguation (entity
linking) as well as various output formats (XML, JSON, RDF, etc.) in a REST-based
(Representational State Transfer) web service. The standard disambiguation algorithm is
based upon cosine similarities and a modification of TF-IDF weights (using Apache Lucene).
In comparison to other NERs tools, this one is deeply integrated with the knowledge base
and provides an annotated result with a mapping to DBpedia entities [23].

Synonyms and semantic relations

WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.
Synsets are interlinked by means of conceptual-semantic and lexical relations. The resulting
network of meaningfully related words and concepts can be navigated with the browser.
WordNet is also freely and publicly available for download. WordNet’s structure makes it
a useful tool for computational linguistics and natural language processing. WordNet su-
perficially resembles a thesaurus, in that it groups words together based on their meanings.
However, there are some important distinctions. First, WordNet interlinks not just word
forms — strings of letters, but specific senses of words. As a result, words that are found in
a close proximity to one another in the network are semantically disambiguated. Second,
WordNet labels the semantic relations among words, whereas the groupings of words in a
thesaurus does not follow any explicit pattern other than meaning similarity [11]. WordNet
provides a more effective combination of traditional lexicographic information and modern
computing. In summary, WordNet is an online lexical database designed for use under
program control [44].
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2.5 Question answering over linked data
Current trends confirm that question answering systems are moving to the usage of linked
data [21]. In comparison to textual-based, question answering systems based on linked data
deeply track semantic relations inside of a question. On the other side, these systems are
facing issues with representation of answers and with a construction of natural language
results. Besides, the structure of the required information affects the accuracy of those sys-
tems. Question answering systems are effective tools to interact with structured knowledge
bases [21].

Key challenges

Traditional approach for question answering method is constructing a query (SPARQL)
based on an input question phrase. Most of key challenges are derived from distinctions
in expression compatibility between a natural language question and a machine-readable
query.

Variety of semantic terms complicating mapping possibilities of question answering
systems. It is required to use synonyms of word or collocation from the input phrase and
properly stem word before searching in knowledge base. Properties or object labels in linked
databases are not always provided, but it’s commonly used way to map phrase elements to
linked data elements [21].

Who was the wife of Zeus?
(connected via P26 property spouse to Hera, Q38012)

Granularity of language is another problem, which should be handled by question
answering systems. In some cases property of an object in linked database is semantically
overloaded:

When did Germany join the EU?
(connected via dbp:accessioneudate property)

Granularity of data is an opposite case to the granularity of language. Sometimes
language expression power involves multiple semantic links between objects and cannot be
mapped straightforward to a property. Example:

Who was the grandfather of Ashoka?
(double connection via P40 property)

Filtering of resulting objects is expressed in natural language by quantifiers, com-
parative expressions, cardinals or superlative [57]. This edge cases should be handled by
deriving filter options from the input phrase structure and by handling special non-textual
data types in knowledge bases. Example:

What is the second largest city in the USA?

Ambiguity occurs on both sides of mapping process. Some questions in natural lan-
guage are not straight for human to answer. Object in linked data structure might be linked
through multiple links with redundant properties. Common sense allows human to under-
stand which objects with similar labels are semantically acceptable. Question answering
systems usually use ranking of answers or mapped objects to estimate how correct produced
results are. Also we should note that semantically right expressions in natural language
entail cases with an extreme ambiguity.
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Question answering systems architecture

Question
analysis

Natural language question Answer(s)

Matching
with data

Scoring

Query
construction

Answer 
retrieval

Figure 2.1: Common components of a question answering system.

Question analysis step detects a type of the question and parameters of the searched
entity. Using linguistic analysis methods a question answering system recognizes Named
Entities and classifies the question category.

Matching with the data step links input entities with appropriate entities in the
knowledge graph. Natural language techniques are used to search by synonymous labels.
Indexing tools are used for a textual search over linked data entities.

Query constructing step is different for various question answering systems. The step
traditionally produces a SPARQL query.

Answer generation step applies formed query to the knowledge base and receives
a set of entities. After evaluating result entities, question answering system displays the
result in requested form (links to the entities/natural language/media enriched data).

Question answering approaches

According to [57] in this section we provide classification of approaches applicable to the
question answering over linked data.

Approaches based on controlled natural language consider a subset of natural
language phrases that can be processed by the question answering system. Evident pros of
this approach is clear representation of input query. Typical example of this approach is
GINSENG (Guided Input Natural Language Search Engine). GINSENG relies on a simple
question grammar which gets dynamically extended by the structure of an ontology to guide
users in formulating queries in a language seemingly akin to English [15].

Approaches based on formal grammars typically based on linguistic grammars that
assign a syntactic and semantic representation to lexical units and exploit the principle of
compositional semantics to compute and overall semantic representation of a question by
combining the meaning of the parser as specified in the grammar [57]. ORAKEL is an
example of system, which uses this approach. It computes wh-based questions as logical
query form and knowledge is represented with F-Logic and Onto broker form. This system
is used to convert question into query form, and the given query is fed to bottom-up
generalization model for getting intentional answer to the user. Inference engine is used
to evaluate queries to knowledge base form. Customization is performed through the user
interaction. Linguistic argument structures, such as verbs or nouns with their arguments
are mapped to the relations in the ontology [36].

Mapping linguistic structures to ontology semantic structures is another ap-
proach used by PowerAqua question answering system. In a first step, the linguistic com-
ponent analyses the NL query and translates it into linguistic triple form. In a second
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step the Ontology Discovery sub module of PowerMap, identifies the set of ontologies likely
to provide the information requested by the user. To do so, it searches for approximate
syntactic matches within the ontology indexes, using not just the linguistic triple terms,
but also lexically related words obtained from WordNet and from the ontologies, used as
background knowledge sources. After this process, PowerMap generates a set of Entity
Mapping Tables where each table links a query term with a set of concepts mapped in
the different domain ontologies. In a third step the Triple Similarity Service module takes
as input the previously retrieved Entity Mapping Tables and the initial Linguistic triples
and extract, by analyzing the ontology relationships, a small set of ontologies that jointly
cover the user query. The output of this module is a set of Triple Mapping Tables. Each
table relates a linguistic triple with all the equivalent ontological triples. Using these triples
the information drawn from the relevant semantic sources is analyzed to generate the final
answer [60].

Template-based approaches are represented by LODQA and TBSL systems. That
kind of systems is constructing a template of the query by a result of question analysis.
At the next stage this template is filled up with the results of entities matching. This
approach is dataset–sensitive to natural language structural mismatches, which can be
caused by natural language granularity. [57]

Graph exploration approaches process a question query by selecting a basis entities
and processing through the knowledge base graph using matching with the natural language
terms. Like any other graph exploration algorithm, this approach is limited to the depth
of the graph extension over large amount of linked data. Implemented heuristic allows to
efficiently explore graph even without the knowledge of the schema. Typical examples of
this approach are Treo question answering system, Top-k exploration approach and the
approach by Ngonga et al [57]. Quantified question is another challenge for the graph
exploration approach as long as semantic connection doesn’t contain trivial evidence of
filtering or quantifiying.

2.6 Relevant applications and technologies
QALD systems

FREyA is NLI to ontologies which balances between heavy customization (which is usually
required by application developers, in order to port the NLI system to a different domain),
and the end–users who need to explore the available knowledge without being constrained
with the query language. FREyA combines the output of the syntactic parser with the
ontology-based lookup in order to approve the user’s information need and, if necessary,
engage the user into the dialog [24].

PowerAqua is a multi-ontology-based Question Answering (QA) system, which takes
as input queries expressed in natural language and is able to return answers drawn from
relevant distributed resources on the Semantic Web. In contrast with any other existing
natural language front end, PowerAqua is not restricted to a single ontology and therefore
provides the first comprehensive attempt at supporting open domain QA on the Semantic
Web [39].

CASIA is a question answering system over Linked Data (DBpedia), which focuses
on construct a bridge between the users and the Linked Data. Based on the Linked Data
consisting of subject-property-object (SPO) triples, each natural language question firstly
is transformed into a triple-based representation (Query Triple). Then the corresponding
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resources in DBpedia, including class, entity, property, are mapped for the phrases in the
query triples. Finally, the optimal SPARQL query is generated as the output result. CASIA
can not only deal with the single-relation questions but the complex questions containing
multi-relations. CASIA was evaluated on QALD-3 test data set and achieved an F-measure
score of 0.36, an average precision of 0.35 and an average recall of 0.36 over 99 questions
[32].

Xser is a question answering system over Linked Data (DBpedia), converting users’
natural language questions into structured queries. There are two challenges involved:
recognizing users’ query intention and mapping the involved semantic items against a given
knowledge base (KB), which will be in turn assembled into a structured query. Authors
propose an efficient pipeline framework to model a user’s query intention as a phrase level
dependency DAG which is then instantiated according to a given KB to construct the final
structured query. They evaluate the approach on the QALD-4 test dataset and achieve an
F-measure score of 0.72, an average precision of 0.72 and an average recall of 0.71 over 50
questions [63].

YodaQA is a question answering system over Linked Data. The QA task is imple-
mented in YodaQA as a pipeline that transforms the question to a set of answers by
applying a variety of analysis engines and annotators [13]. It is composed from largely
independent modules, allowing easy extension with better algorithms or novel approaches,
while as a fundamental principle all modules share a common end-to-end pipeline. The
YodaQA pipeline is implemented mainly in Java, using the Apache UIMA framework. Yo-
daQA represents each artifact as a separate UIMA CAS, allowing easy parallelization and
straightforward leverage of pre-existing NLP UIMA components; as a corollary, authors
compartmentalize different tasks to interchangeable UIMA annotators. Extensive support
tooling is included within the package [12].

Watson/DeepQA is a software architecture for deep content analysis and evidence-
based reasoning. The DeepQA architecture views the problem of Automatic Question
Answering as a massively parallel hypothesis generation and evaluation task. As a result
DeepQA is not just an answering system – rather it can be viewed as a system that performs
differential diagnosis: it generates a wide range of possibilities and for each develops a level
of confidence by gathering, analyzing and assessing evidence-based on available data. With
a question, a topic, a case or a set of related questions, DeepQA finds the important concepts
and relations in the input language, builds a representation of the user’s information need
and then through search generates many possible responses [54]. For each possible response
it provides independent and competing threads that gather, evaluate and combine different
types of evidence from structured and unstructured sources. It can deliver a ranked list of
responses each associated with an Evidence Profile describing the supporting evidence and
how it was weighted by DeepQA’s internal algorithms [28].

2.7 Trends and open topics
Combining structured and unstructured data, as it was performed by IBM Watson,
is an efficient approach to answer other than Factoid question. A lot of information is still
available only in textual form, both on the web and in the form of labels and abstracts in
linked data sources. Therefore, approaches that can not only deal with the specific char-
acter of structured data but also with finding information in several sources are needed.
These approaches should be able to process both structured and unstructured information,
and combinie such gathered information into one answer [58]. The integration of structured
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and unstructured data gets benefits of both structured and unstructured resources and ap-
proaches. Combining available resources mutually enriches the answering process. Current
evaluation campaigns include a task on hybrid question answering. Systems retrieving an-
swers for questions that required the integration of data both from RDF and from textual
sources.

User interaction allows question answering systems to collect a feedback, which is
especially important for the machine learning purposes. Allowing for a question answering
dialog instead of single questions and answers would allow users to pose questions in a
dialog context, e.g. referring to previous questions or answer. Furthermore, the utilization
of interaction modalities may improve the efficiency of the question answering process, in
particular in a dialog context [57].

Besides, the following techniques gain a traction:

• Confidence measurement can provide more feedback for the end-user and allow
to tune search techniques for the particular question.

• Interlinking web of data is a key trend in development of question answering
systems. General domain knowledge bases can supplement each other to answer a
complex question.

• Machine learning becomes more applicable to natural language processing after
new researches in RNN (recurrent neural network) and word embedding. Question
answering over linked data just starting to be considered as a machine learning task.
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Chapter 3

Design of the system

The chapter describes principles of the proposed question answering system. Each approach
described in section 2.5 has a segment of questions with a high quality of achieved results.
To form a list of requirements for our system, we are going to select cases and challenges.
Afterwards, the section describes the proposed approach of solving these challenges and
reveals the approach using high-level scheme and the algorithm. Consequent result of
proposed approach is a list of key features and known constraints. To explain the proposed
approach principles, examples of sentences processing are provided in the end of the chapter.

3.1 Requirements
General domain solution can be applied for business interests and regular question an-
swering search. Most of semi-structured companies’ data can be transformed into regular
knowledge representation formats (such as RDF), which are used by general domain promi-
nent knowledge bases. General domain solution, which has a low entry barrier to extend
the system, can be used in the commercial sectors of the natural language answering in-
dustry. Due to the data availability, our system should be developed over general domain
knowledge bases. Also, the system should be easily scalable to private datasets.

Make applicable solution is a high-priority aim for the project. A commercial usage
integrated with chatbots and search purpose require the system to provide a natural end-
user experience, instead of providing links to the knowledge base entities. Final solution
should be flexible to integrate into existing conversational agents, dialog systems or any
natural language interfaces. Scenarios mechanism integrated to the question answering
system should combine dialog system components to provide better user experience.

Schema-agnostic approach was selected as a basis of our study. Prominent linked data
knowledge bases, such as DBpedia and Wikidata, are not unified. Extraction of valuable
knowledges require user (software) to use service-specific queries. Schema-agnostic ap-
proach, which uses only primary features of linked data, makes the system more universal.
Moreover, existing companies’ data potentially can have a complex structure in comparison
to general domain knowledge bases. Feasible solution can be built upon the basis of triples
with the usage of less features.

Question granularity and answers granularity obstruct classical methods of mapping
natural language lexemes to SPARQL query structures. In our work we are trying to scale
graph comparison methods to linked data. It becomes possible by searching of a semantic
connection between noun phrases and named entities in input and output phrases. Whole
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system is based on the following assumption: “if a known question has a correct and
complete known answer, we can recognize an input question as a similar and produce an
answer with the same semantic links over the knowledge base”. Searching of semantic links
in the knowledge base is a core of developed system. Semantic links are represented as a
set of paths over directed graph of dataset. They can be stored and applied to any item of
the dataset. Complete description of semantic links search is provided in section 3.5.

Matching input sentences with known questions is one of the tasks for our system. Syn-
tactic comparison of sentences is based on our previous work related to dialog systems [18].
The question answering system was developed from scratch. System should be capable to
match sentences with distorted syntax tree structure and sentences with included redun-
dant natural language items. In addition, high-priority objective is tuning of the semantic
module for every type of questions. Every type of questions discussed in section 2.1 requires
corresponding methods to optimize question answering process.

Focus on the Wikidata knowledge base is one of our objectives. Last couple years Wiki-
data project receives attention despite of the remaining DBpedia popularity1. Answering
over Wikidata was included into the QALD tasks in year 2017. Wikidata has granular prop-
erties in comparison to DBpedia. Granular properties are much compliant to the proposed
graph-based approach.

Entities extraction should not be limited to named entities extraction, but should in-
clude every noun phrase available in the answer. Transforming available noun phrases into
possible permutations and substituting words with possible synonyms provided by the-
saurus improve a rate of linkage with the data. The step of matching language entities
with data is general to every question answering system. Our system should combine best
practices to maximize the rate of matching.

3.2 Processing pipeline

Question
matching

Answer
generation

Question
analysis

Question
in natural language

Answer
in natural language

Index Knowledge base

Input
hooks

Scenarios
engine

Question-answer
pairs database

Query
construction

Matching
with data

Scoring

Figure 3.1: Designed processing pipeline of the question answering system.

1Source: https://scholar.google.com. Wikidata: 670 citations in 2016 (+97%). DBpedia: 3140
(+12%).
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Figure 3.1 shows key elements of the designed system processing pipeline. Input hooks
block binds input channel with one of the available interfaces (console, WebSocket, IM, etc.).
In case of scenario control, scenario engine takes the control and asks questions to a user,
working as a dialog system. If scenario engine figures out an answer to the question, module
is going to update question-answer pairs database. That database accumulates phrase
syntactic trees and semantic relations between question and answer entities. In case of
regular request question analysis module recognizes a type of the question. Later, question
matching block compares syntactic tree of the input phrase with known candidates and uses
a knowledge base index to match noun entities properly. Semantic query is performed over
the knowledge base. Answer generation engine produces the answer in natural language by
matching the answer template with received entities.

3.3 Analysis of features
Key features

Schema-agnostic graph-based approach entails resistance of the question answering system
to granularity issues. Granularity of data appears in graph-based approaches as a require-
ment of long connections between nodes. The question answering systems is able to create
links within question and answer entities. This technique creates preconditions inside of
input questions and postconditions inside of output questions. It is another way to improve
the rate of correct matching.

The designed question answering system includes dialog system components to perform
scenarios while receiving user’s feedback. This design also provides a possibility to recognize
an unknown answer in opposition to an unknown linked data connection. Dialog unit of
the designed question answering system should be able to ask user for an unknown answer
and derivate a semantic connection from question-answer pair, while extending a set of
acceptable questions. Natural interface of the system extension makes possible improvement
of the system by several user roles. We can easily involve end–users into the process of the
system improvement with the aid of scenarios.

Current dialog system is designed for English language, but graph-based approach do
not restrict us to apply algorithms to any localized items. Natural language processing unit
abilities will allow the whole system to be able to process new languages.

Known constraints

In comparison to traditional approaches, which focus on constructing SPARQL queries our
technique has an obvious constraint. Question answering requires answers of questions to
improve itself. Answering question without provided reference question was implemented.
That process isn’t an advantage of the system and was created only for evaluation using
standard metrics. Semantic relations have a form of paths over linked data graph. They
allow us to predict a straight number of items, which are eligible to match the reference
question. That evaluation is provided in the section 5.2.

Filtering questions processing have an experimental nature. The only option available
to graph-based approach is to inference attributes of filtering from the semantic connection.
Inference might be acceptable with the small amount of results. It becomes impossible to
inference a correlation between all properties in general listing questions. That constrain
shows us insufficiency of exclusive items linking and importance of properties linking.
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The special techniques for definition and explanation questions are required. Definitive
questions are handled by matching with the link data items. The next step is a looking
for a source of information and requesting textual data from the source (primary source is
Wikipedia). Explanation questions stay at the field of experiments.

The question answering without reference has certain issues with links of the one prop-
erty. These semantic links don’t contain any other noun phrases to derive claimed property.
It can be solved by processing and linking properties with the language entities in a similar
manner as the previous issue.

3.4 Algorithm description
The processing flow of the designed question answering system combines following multiple
algorithms:

• matching with data;

• answering with a reference;

• extending known question-answer pairs;

• answering without a reference.
Algorithm 1 parses syntax tree of the sentence, extracts noun phrases and links with

entities of the knowledge base. Algorithm 2 tries to answer using known question. As
for general domain, it is unlikely that the reference is going to be available. Question
answering systems with a specific domain are able to cover a large set of questions and
provide conceived answers using this method.

Input: question, characters sequence
Output: syntax tree, matched dataset entities
tokenize sentences and classify the language of the question;
parse syntax tree structures;
foreach noun phrase in the syntax tree do

create noun phrase permutations;
try to match permutations with knowledge base entities;

end

Algorithm 1: Matching with items of a knowledge base.

Algorithm 4 (available at the end of this section) will be applied in case of unavailable
reference. Regular use case of the designed approach is known pairs extension. Algorithm
3 represents providing question-answer pair. The result of this process is an addition of
the new reference including a semantic path to the database. The proposed system uses a
graph-based schema-agnostic approach, but also can be classified as a template-based due
to the initial syntactic tree comparison.

3.5 Processing examples
The section provides in-depth overview of input processing of the designed question an-
swering system. Each use case was illustrated by an example of a question and appropriate
steps description.
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Input: syntax tree, matched dataset entities
Output: natural language answer
foreach reference question in pairs database do

if similarity > threshold then
apply semantic path to items using SPARQL;
if applicable then

construct answer by substituting item labels;
return answer

else
/* answer isn’t available in the dataset */

end
end

end

Algorithm 2: Answering with the use of a reference question.

Matching with data

String (characters sequence) is an input form of the system. At the first stage the system
checks the number of sentences in provided sequence using NLTK. The system splits an
input query to separate sentences. Our system rejects queries with multiple sentences inside.
Processing of multiple sentences, with a context saving is related to conversational agents
and dialog management. That kind of features were ignored at the moment. Further, the
system is going to check the language of the sentence using external module (see section
4.4 for details). Used linked datasets are multilingual, but our system accepts only English
questions. If an input string wasn’t rejected, it moves into the syntax tree parser. The
system uses spaCy as a primary NLP unit.
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Figure 3.2: Selecting noun subtrees from the syntax tree.

Figure 3.2 shows an example of the parsed input sentence. Relations between words of
the sentence are represented by arrows with a corresponding relation type on labels. After
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Input: question and answers syntax trees, matched dataset entities
Output: semantic path
foreach question’s entity do

foreach answer’s entity do
foreach possible connectivity direction do

find a connection using SPARQL;
end

end
end
score and sort found paths;
while user do not accepting meaning do

ask about pre- and post- conditions;
generate an example of a linkage;
show semantic path and example;

end
save semantic path to the pairs database;

Algorithm 3: Extension of the question-answer pairs database.

receiving syntax tree, the system starts the process of entities extraction. This process is a
necessary step for every use case described below. In case of successful reference matching
the system is required to check the ability to find suitable entities to apply the semantic
path.

Current system is focused on noun entities. In comparison to other parts of speech nouns
have a straightforward related element on the linked data graph —– nodes. As opposed
to nouns, edges mean verb or adjective entity. The system searches for an appropriate tag
mark to extract noun phrases from a sentence. SpaCy uses part-of-speech tags used in the
Penn Treebank Project and tags are available at the figure 3.2 under each word. Following
tags are related to the root of a noun phrase: NN, NNS, NNP, NNPS. The sentence from
the previous example contains three nouns: soundtrack, Cameron, Titanic.

For each noun occurrence our system extends a word to a subtree. Rounded shapes at
the figure 3.2 represents found subtrees. These subtree may include other subtrees, but all
intersections will be skipped at the later steps of the processing pipeline.

To increase quality of linking with the knowledge base entities, the system creates
permutations of founded phrases. Initial set of three noun phrases with removed inclusions,
extends by all of the subtree variations as shown at the left side of the figure 3.3. We should
note, these structural permutations always save the root word. It is required to produce
syntactically right language items, which can be recognized as noun phrases.

Extra permutations are created using WordNet thesaurus. For every word in noun
phrases set, the system will generate variations of substitution with a synonym. WordNet
allows the system to search only synonyms with the same part-of-speech inside a synset to
save the initial meaning. The module generates synonymic permutations for every generated
structural permutation as shown on the right side of the figure 3.3.

The system requests items URIs from knowledge bases using created set of noun phrases.
Wikidata uses IDs formatted as follows: Q42, where 42 is the number of the item. DBpedia
uses labels to reference an item of the dataset. At the listing 3.1 you can see items’ IDs
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Figure 3.3: Structural and synonymic permutations of the subtree.

binded to noun phrases extracted from the input query (count of relevant items is limited
to 3 at the example).

Listing 3.1: Result of the matching with data stage.
1 <ENTITY_SET>
2 <ENTITY> the soundtrack for Cameron ’s Titanic (3)
3 <BATCH> soundtrack for (10)
4 (Q28449220, -) (Q7564988, -) (Q16950640, -)
5 <BATCH> the soundtrack (7)
6 (Q15749736, -) (Q2165175, -) (Q19867933, -)
7 <BATCH> soundtrack (10)
8 (Q217199, -) (Q7564979, -) (Q7564980, -)
9

10
11 <ENTITY_SET>
12 <ENTITY> Cameron ’s (1)
13 <BATCH> Cameron (10)
14 (Q3971976, -) (Q225123, -) (Q959820, -)
15
16
17 <ENTITY_SET>
18 <ENTITY> Cameron ’s Titanic (1)
19 <BATCH> Titanic (10)
20 (Q25173, -) (Q44578, -) (Q738840, -)

Search results may contain redundant items despite of the ordering by relevance. As
it turned out reducing the number of items is important at this stage. Large amount of
items lead to exponential amount of possible connections during the unknown questions an-
swering. Depending on a strictness settings the system rejects up to every non-identically
labeled item and items without the highest relevance. Entities set with intersections in
linked knowledge bases items will be merged after that reduction step. That step is im-
portant because certain processing elements will find shortest connection between entities
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sets. If sets weren’t properly merged, it might cause production of short semantic paths.
Merged set of entities is shown at the listing 3.1.

Listing 3.2: Example of merged entities.
1 <ENTITY_SET>
2 <ENTITY> Pierce (1)
3 <BATCH> Pierce (10)
4 (Q225330, -) (Q1517751, -) (Q963193, -) (Q6453166, -) (Q10863000, -)
5
6 <ENTITY> Pierce Brosnan (2)
7 <BATCH> Pierce Brosnan (1)
8 (Q81520, -)
9 <BATCH> Brosnan (2)

10 (Q4975406, -) (Q19089805, -)

Created entities sets are used as a linkage between a sentence and the knowledge bases
items at the later processing steps.

Answering using reference question

Answering question with a reference question available in the database is a basic and pri-
mary use case of the system. One of input of the system is a database which contains triples
of question tree, semantic path, answer tree. Detailed structure of the data is provided at
the listing 3.3.

Listing 3.3: Item of the known question-answer pairs database.
1 {
2 "question": b" ... ", // binary serialized question’s syntax tree
3 "answer": b" ... ", // binary serialized answer’s syntax tree
4 // bindings to a noun entities
5 "items": [
6 {
7 "origin": "question",
8 "token_id": 72836,
9 "match": {

10 "dataset": "wikidata",
11 "id": "Q889821"
12 }
13 },
14 ...
15 ],
16 "solution": [
17 {
18 "dataset": "wikidata",
19 "semantic": ["P279", "Q880198", "P39", "Q1293842", "P27"],
20 "strict": false
21 },
22 ...
23 ],
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24 "precondition": [
25 ...
26 ],
27 "postcondition": [
28 ...
29 ]
30 }

Question matching process starts by comparison of input question with every available
question from the database. Every reference question receives a score, derived as a percent-
age of similar links inside of tree. This comparison involves lemmas of the words if none of
the word isn’t part of a parsed noun phrase. This condition guarantees similarity of trees
and allows variability at the position of a noun phrase at the same time. An example of
trees matching with evaluation of possible variability available in the section 5.2.
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in natural language
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in natural language

Answer’s enitites

Question’s enitites

Knowledge base

Question-answer pairs database

Syntax tree

Semantic path Syntax tree

SELECT ?item1 ?item1Label
WHERE
{

?item1 wdt:P36 ?item2 .
SERVICE wikibase:label {

bd:serviceParam wikibase:language "en"
}

}

Answer generation

SPARQL query

Semantic path Syntax tree

Semantic path Syntax tree

. . .

used as a template

similar

used as a templateexecuted over

substituted into

matched with parsed to

Figure 3.4: Answering with a reference scheme.

Question sentence with a highest similarity score, which surpasses the manually set
threshold is used as a reference sentence. Every noun phrase of an input question links
to a proper noun phrase of a reference question. Semantic path in the database of known
question-answer pairs contains a list of properties, which are applicable to the items. The
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system tries to apply that pass by formulating a SPARQL queries for every linked item
from an input question (shown at the listing 3.4). Configuration of the question answering
system has an option, which determines a behavior in case on unmatched entities in the
output phrase (ignoring, rejecting).

Listing 3.4: Example of a SPARQL query generated using semantic path.
1 SELECT ?item3
2 WHERE
3 {
4 wd:Q6425 wdt:P176 ?item2.
5 ?item2 wdt:P159 ?item3.
6 SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }
7 } LIMIT 100

Question recognized as answered in case of application at least of one path, which con-
nects item from (and a corresponding noun entity) to another item from reference answer.
Depending on desired result, question answering system can perform question constructing
by inserting output item’s labels into reference answer. The system also tries to adjust word
configuration to the same as noun phrase from reference answer has. Eventually, the output
answer moves to the output of the systems and can be processed by connected interfaces
while passes to the user.

Extending question-answer pairs database

Knowledge base with items described at the listing 3.3 is a core of the system. Extending of
the database with semantic links extends a number of acceptable by the system questions.
To extend the database, user with assigned administrative role provides a question-answer
pair to the system. System tries to find a semantic connection between question and answer
by searching over the linked data graph. Question answering system tries to connect every
element of the question’s entities sets to another element from the answer’s entities sets.
Scheme of the process is provided on the figure 3.5.

Question
in natural language

Semantic path

Answer
in natural language

Answer’s enitites

Question’s enitites
Graph exploration

Knowledge base

SPARQL Question-answer
pairs database

Semantic path

Semantic path

Figure 3.5: Extension of the question-answer pairs database scheme.
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Graph traversal stops, when the system found a path (s), which connects every answer’s
entity with one entity from the question. At the low level of abstraction linking of two items
in one knowledge base is performed querying SPARQL endpoints. RDF triples create a
directed linked data graph, yet semantic relation isn’t directional thing. SPARQL querying
is an optimal and universal method of search through the linked data graph. The question
answering system generates possible connection direction and gradually increases acceptable
length of a path. Listing 3.5 shows SPARQL query examples to receive the following
semantic path:

(x) -[ wdt:P176 ]-> (_) -[ wdt:P159 ]-> (x)

Listing 3.5: Example of a SPARQL query that searches for a semantic path.
1 SELECT ?prop1 ?item2 ?prop2
2 WHERE
3 {
4 wd:Q6425 ?prop1 ?item2.
5 ?item2 ?prop2 wd:Q1297.
6 SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }
7 FILTER ( !strstarts(str(?prop1), "http://wikiba.se/ontology") )
8 FILTER ( !strstarts(str(?prop2), "http://wikiba.se/ontology") )
9 } LIMIT 100

The system allows a user to check the correctness of a found path not only by checking
a syntax tree structure, but also by checking relations between the entities inside of a
sentence. That pre-conditions and postcondition are semantic paths, which are executed
before an acceptance of an input question or an output answer. Following example of a
question requires a precondition:

In what city is the Heineken brewery?

While system applies a semantic path, with manufacturer (P176) and headquarters
location (P159) properties, the Heineken (Q854383) item can be substitute only by brew
label:

In what city is the Coca-Cola brewery? (invalid)

Relation between Heineken (Q854383) and brewery (Q131734) items via Heineken In-
ternational (Q180855) is required.

Answering an unknown question

Regular question answering systems generates SPARQL queries based on a natural language
sentence and request the query to a knowledge base. These systems do not use any reference
while preparing known answers. Proposed approach requires a set of known question-
answer pair to derive semantic links. To make or solution comparable with other question
answering systems using standard metrics, we implemented a flow for a question without
known answer.

When the system decide, that question reference isn’t available in the database, the
process of answering without a reference begins. First step of the process is to classify
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a question type. The system searches for a corresponding syntax tree substructures of a
certain question types.

Noun entities linked with the knowledge bases’ items is an input of the answer deriving
process. That process uses an assumption that output entity (at least in case of a single
factoid question type) is a node of one of the paths between entities. The system searches
for paths over knowledge base between each possible entities pair from an input sentences.
An example of found paths is provided on the figure 3.6 .

Question: In what  city  is the  Heineken   brewery  ?
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Legend:

valid answer
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regular item

Figure 3.6: Answering an unknown question over linked data graph.

Figure 3.6 contains a fragment of the dataset with semantic paths between every ques-
tion’s items. Connection of knowledge base items built the same way as discussed earlier
in the previous subsection. After creation of paths list, the system filters them.
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One of filters examples is a symmetrical filtering. Large subset of knowledge base’s
items can be connected through a general. Occurrence of a general item which connects a
large set of items can be detected by a symmetric property occurrence in a semantic path.
The following example shows how Sparta (Q5690) and biophysics (Q7100) are connected
via Armenian Soviet Encyclopedia (Q2657718):

( wd:Q5690 ) -[ wdt:P1343 ]-> ( wd:Q2657718 ) <-[ wdt:P1343 ]- ( wd:Q7100 )

Scoring process depends on a question type. In the case of a factoid question with a
single answer, the system searches for an item which occurs in maximal number of connected
paths. Individual paths have a higher score if they have unique properties inside of group.
Factoid questions with multiple answers as opposed to questions with a single answer have
another scoring priorities. The system searches for items with surrounding elements that
consistently persist in a set of found paths. As for boolean questions, we implemented
a flow, that recognizes statement as a true if exist unique path between elements with a
shorter length, than other found paths. Time and value questions are handled the same
way as in case of factoid question with a higher scoring of date/time and numerous values.

Result of that answering process is a sorted list of knowledge base instances, which
doesn’t allow the system to construct a natural language answer. System output in case of
embedded solution is basically a label of the item with a highest score.
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Input: syntax tree, matched dataset entities
Output: datasets items
classify the question type;
foreach question’s entity do

foreach other entity from the question do
foreach possible connectivity direction do

find a connection using SPARQL;
end

end
end
if question type is boolean then

if every item is linked then
return true

else
return false

end
end
if question type is factoid then

if multiple answers required then
score items lying on paths;
return [set of items]

else
remove symmetrical paths;
score items lying on paths;
if answer type is resource then

return item with the highest score
else

score candidates’ properties;
return item with the highest score

end
end

end
return answer is not found

Algorithm 4: Answering without a reference question.
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Chapter 4

Implementation

Python was selected as a programming language for the implementation. High-level pro-
gramming language with a dynamic typing is an appropriate tool for natural language pro-
cessing. Question answering systems are not environment-dependent solutions. Developed
system is cross-platform: it was tested at the Linux operation system. The distribution
includes prepared python environment, which automates set up process. Complete setup
instructions are available in Appendix B. Generated technical documentation and UML
class diagram were prepared for future development and maintenance. Source code is li-
censed under the MIT license and distributed at the GitHub repository1. In addition the
code base follows PEP8 guidelines and passes static analysis.

4.1 Architecture
Architecture of the question answering system is shown on the figure 4.1. That modular
view scheme in comparison with the figure 3.2 describes how individual components of the
system work and communicate to compose the final pipeline. Questions for the subsequent
answering or question-answer pairs generation are inputs of the system.

These questions move through the entities extraction module to create tree structures
linked with data. Those questions are switched between core functionality and scenarios
engine in case of an interactive extension. The core functionality module extensively uses
graph connection module with appropriate bindings to the Wikidata and the DBpedia
endpoints. As a result the system produces answer(s) in form of a natural language or in
the form of items set.

4.2 Modules
Question answering system contains following modules:

• __init__.py package wrapper
• __main__.py console utility functions
• common.py common functions
• core.py answering and extension
• dbpedia.py DBpedia SPARQL and JSON endpoints bindings
• graph.py semantic search over a knowledge graph
1Link: http://github.com/kusha/qas.
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Figure 4.1: Architecture of the developed question answering system.

• items.py enitites representations
• link_grammar.py Link Grammar Parser bindings (deprecated)
• logs.py shared logging module
• noun_phrase.py matching with data
• scenarios.py scenarios interpreter
• sentence.py natural language processing unit
• wikidata.py Wikidata SPARQL and JSON endpoints bindings

4.3 Linked data integration
DBpedia and Wikidata are main datasets for the project. The system uses a combination
of a SPARQL querying and JSON requests for both knowledge bases. JSON endpoint
of knowledge bases is flexibile, but the way of the information retrieval is less efficient.
Several heuristics were tested to figure out a proper way of a BFS (breadth-first search)
over a dataset. Searching of a connection between two entities is more efficient by querying
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a SPARQL endpoint with a connection of different lengths. The reasons are optimized
search engines (see more implementation details in section 2.3).

Wikidata is requested using MediaWiki API endpoints and Wikidata Query Service
SPARQL endpoint.

MediaWiki API endpoints

MediaWiki is a free software open source wiki package written in PHP, originally for use
on Wikipedia. Now it is also used by several other projects of the non-profit Wikimedia
Foundation including the Wikidata project. The MediaWiki action API is a web service
that provides convenient access to wiki features, data, and metadata over HTTP. Clients
specify an action parameter to request particular “actions”.

wbsearchentities action searches for entities using labels and aliases. The action
returns a label, description for the entity and details of the matched term in the user
language if it is possible. The matched term text is also presented in the aliases key if
different from the display label.

wbgetentities action gets the data, including labels and relevant links for multiple
Wikibase entities.

Wikidata Query Service

The Wikidata Query Service provides SPARQL endpoint and GUI interface2. This end-
point allows to request data in the SPARQL RDF query language. With SPARQL we are
able to extract any kind of data represented in JSON, with a query composed of logical
combinations of triples.

DBpedia Lookup

DBpedia Lookup used to linking entities with the data. DBpedia is able to return JSON
data instead of render HyperText Markup Language (HTML) pages. Public DBpedia
SPARQL endpoint is used to search for semantic paths.

The DBpedia Lookup Service can be used to look up DBpedia URIs by related keywords.
Related means that either If the label of a resource matches, or an anchor text that was
frequently used in Wikipedia matches the servie consider related keywords. The results are
ranked by the number of inlinks pointing from other Wikipedia pages at a result page.

The KeywordSearch API of the DBpedia Lookup was used to find related DBpedia
resources for a given noun phrases as strings.

DBpedia provides the access to every entity in the structured JSON format.

4.4 Third-party components
NLTK

NLTK toolkit, discussed in the section 2.4, was used for a basic natural language pro-
cessing operation such as separate word transformations. Furthermore, NLTK incorporate
WordNet thesaurus, so synonymous permutations are generated using NLTK [6].

2Wikidata Query Service GUI: https://query.wikidata.org.
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spaCy

First prototype of the system was built using Link Grammar Parser. Link Grammar Parser
was originally used in the work [18] as a parser of syntax trees. Links produced by parsers
fits well to the comparison module of the system, but there are two main reasons of the
switch to another natural language parses. The first thing is a usage of a non-standard
tags and links, which can’t be reused in the NLTK module. spaCy uses the Penn Treebank
part-of-speech tags as well as NLTK [5]. Dependency-based parse trees produced by spaCy
instead of a constituency-based parse trees by Link Grammar Parser. While additional
syntactic structure associated with constituency-based parse trees remains an object of
debate, reduction in the average in number of nodes is beneficial for tree comparison.
Processing speed wasn’t an essential reason of this change. Compared to overall processing
speed syntax tree parsing time is inconspicuous. Speed of the parsing was estimated for
both systems using the prepared evaluation dataset. Link Grammar needs an average of
272.3 ms to parse the sentence, while spaCy needs only 1.6 ms.

SpaCy is written in Cython with a static typization, which allows it to achieve the
performance of a native C code. This unit uses Penn Treebank tag as NLTK. Part-of-
speech tagging is implemented with the greedy decoding and averaged perception tech-
niques. Shift-reduce dependency parser creates dependency trees 171 times faster than
previous implementation with a Link Grammar Parser.

langdetect

langdetect module uses an adaptation of the vector space model to n-gram to detect lan-
guage. This module uses a directory of samples language documents to collect all the
n-grams up to specified limit. Using created global vocabulary (with associated frequen-
cies) over the documents set it builds a reverse index with a vector of weights calculated
with TF-IDF (Term Frequency, Inverse Document Frequency) that represents each file in
the space where each dimension is an n-gram. During the language detection it receives a
piece of text and return a list of languages sorted in the reverse order by scores of similar-
ity. A text is treated in a similar fashion to the language documents; it is represented as a
vector of weights in the n-grams space. Only purpose of the module is to filter non-English
queries.

Requests

Request module is HTTP library for Python that makes possible parallel requests to APIs
and endpoints. Support for concurrent requests, powered by gevent library allows us to
make parallel request at the matching with the data step and SPARQL querying at the
core linking steps [8].

The async module of the requests has the exact same API as requests, except it it
returns the Request object instead of sending the request immediately. Further prepared
request is executed using async.map() method, which also allows us to specify the number
of parallel connection and handlers for a specific HTTP errors.
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Chapter 5

Evaluation

Evaluation is a necessary part of the work which allows us to asses achieved results. The
chapter covers statistical measures of the developed system and argues achieved results.

5.1 Datasets
QALD challenge

In particular, natural language interfaces to online semantic data have the advantage. They
can exploit the expressive power of Semantic Web data models and query languages, while
at the same time hiding their complexity from the user. However, despite the increasing
interest in this area, there were was a lack of evaluations that systematically evaluate this
kind of systems in contrast to traditional question answering and search interfaces to doc-
ument spaces. To address this gap, authors have set up a series of evaluation challenges for
question answering over linked data. The main goal of the challenge was to get insight into
the strengths and capabilities of question answering systems as interfaces to query linked
data sources [40]. Another aim is to benchmarking how these interactions can deal with
the fact that the amount of RDF data available on the web is very large and heterogeneous.
Authors report on the results such evaluation campaigns.

Another goal of the QALD challenge is to evaluate and compare question answering
systems with respect to their ability to cope with large amounts of heterogeneous and
structured data. Participating systems mediate between semantic data and users who ex-
press their information needs in natural language. The main motivation behind QALD
is to provide a common evaluation benchmark that allows for an in-depth analysis of the
strengths and flaws of current semantic question answering systems. Systematical cam-
paigns allow to track the progress of systems over time. The task for participating systems
is to return for a given natural language question and an RDF data source, a list of entities
that answer the question, where entities are either individuals identified by URIs or labels,
or literals such as strings, numbers, dates, and booleans [40].

For the QALD challenge, authors simplified the evaluation process as much as possible.
Participants ran their system locally and submitted the results in an XML file via an online
form. Current systems are based on very different infrastructures. For example, they
may use the provided SPARQL endpoint or not, they might be based on different semantic
database servers (such as Virtuoso), and they may require indexes to optimize performance,
as well as different configurations and libraries (such as GATE or WordNet). For the
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QALD challenges, authors therefore designed an evaluation with the goal of facilitating
participation as much as possible [22].

Participating systems are evaluated with respect to a precision and a recall. Evaluation
includes the average time of queries processing. Answers provided by a participating system
are compared to the answers provided by the gold standard. The evaluation tool computes
precision, recall and F-measure for every question as described at equations 5.1, 5.2 and
5.3 respectively.

𝑅𝑒𝑐𝑎𝑙𝑙(𝑞) =
number of correct system answers
number of gold standard answers (5.1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛(𝑞) =
number of correct system answers

number of system answers (5.2)

𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑞) =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(5.3)

Prepared dataset

At the moment Wikidata dataset becomes an object of research at the QALD challenge.
Focus on Wikidata and a necessity of a reference questionanswer pairs pushing us to creating
a new evaluation dataset. It was created by mixing following QALD datasets:

• qald-6-test-hybrid.json (hybrid question answering over RDF and free text data),
• qald-6-train-hybrid.json,
• qald-6-test-multilingual.json (multilingual question answering over RDF data),
• qald-6-train-multilingual.json,
• qald-7-train-multilingual-extended-json.json,
• qald-7-train-en-wikidata.json (English question answering over Wikidata),
• qald-7-train-hybrid-extended-json.json (updated hybrid question answering),
• qald-7-train-largescale.json (large-scale question answering over RDF).

Datasets preceded to the QALD-6 were skipped because actual datasets are mixing
previous datasets and the gold standard questions set. We extracted all questions from
QALD datasets, mixed available DBpedia and Wikidata URIs and completed the missing
attributes. That was done by extracting available labels and querying the endpoint for
missing attributes.

Radar chart 5.1 characterizes combined dataset. It shows the amount of reused ques-
tions. Total amount of questions in the produced dataset is 632. Total number of answers
is 1859, with an average of 2.94 answers per question. Factoid questions constitute 70.25%
of the dataset, while other answer types (number, date, boolean) all together constitute
29.75%. The newest QALD datasets also provide keywords set for every input question.
Keywords containing noun phrases were filtered out (for example question words were fil-
tered). Later, those dataset items were used to evaluate matching with data step of the
designed pipeline. It is 526 question with specified keywords in the dataset.

Our system primarily designed for the Wikidata usage, so interlinking of the generated
dataset is necessary. 398 factoid question were successfully interlinked. Answers presence
in the Wikidata doesn’t guarantee the presence of a semantic link or even input phrase
entities. Information retrieval is usually done by bots, which discover and extract linked
data from a specific domain.
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Figure 5.1: Components of the final evaluation dataset.

5.2 Evaluation measures
Answering evaluation

Our system focuses on linking items within a dataset. It uses the following assumption: path
over a linked data graph represents semantic relation of a question. Valid path extraction
and availability of the data in the dataset are prerequisites of the evaluation.

SPARQL language allows us to calculate possible applicable items for a certain semantic
link. That feature was implemented as a part of the system. Possibly it has a high potential
in future development. Also, that feature is used to generate a set of possible substitutions
while adding known question-answer pair using natural language.

For example:

What is the capital of Austria?
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The answer (Vienna, Q1741) will be generate the connection via the property capital
(P36). We can estimate a number of possible question-answer pairs by querying the follow
SPARQL query:

SELECT (COUNT(DISTINCT ?item1) AS ?count)
WHERE
{

?item1 wdt:P36 ?item2 .
SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }

}

A total number of 55058 question-answer pairs are available over the dataset. Provided
question can be recognized as simple.

Sometimes the system meets a high granularity of natural language and a high-level
of abstraction in the dataset. For example, a question from QALD dataset: Who is the
president of Eritrea? Item President of Eritrea (Q19108193) is an example of a data gran-
ularity and generated path uses that item instead of separate Eritrea (Q986) and president
(Q30461) items. In a result, the found semantic path is not useful for future querying.

We should note that evaluation of the answering process takes a place only after exten-
sion question answer pairs connection. During the evaluation process system tried to find
a number of possible substitutions for every found path. It takes a long time to evaluate
formulated SPARQL queries without any items specified. Evaluation of the number of pos-
sible substitutions is a potentially effective metric of the quality assurance. However the
number can be influenced by multiple reasons:

• specific areas, such as imported datasets, are covered better and can generate more
possible question-answer pairs;

• question simplicity may vary within the evaluation dataset;

• properties directions in the semantic path may overgeneralize possible substitutions.

Extension evaluation

User experience can be maximized with a supplementation of new question-answer pairs.
The subsection evaluates search for a connection between given entities, which is one of
core processes of the system. This process will stop when every output entity is linked to
any of input entities as described in the section 3.5.

We used evaluation questions and right answers labels to generate a large amount of
semantic paths.

Found solutions can be evaluated by characterization of constituent links. The figure
5.2 shows two distributions of found solutions. Left side of the figure shows number of paths
per found solution. Large number of the semantic paths in the solution is an indicator of the
invalid paths included to the solution. The system automatically rejects solutions with more
than 200 semantic paths. The distribution on the right sied is a distribution of semantic
paths lengths. Semantic path length was initially limited to 4 properties per semantic path
to reduce processing time and the amount of invalid paths. That also characterizes dataset
structure. An average length between semantically related items is 2.51 properties. A
linkage was found in 73.25% cases of input question-answer pairs.
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Figure 5.2: Solutions and semantic paths characteristics.

Answering without a reference

Answering without a reference was initially implemented in an experimental manner to
evaluate the system as a general-purpose question answering system.

The following average values were estimated on the set of 228 questions (subset of the
evaluation dataset):

𝑅𝑒𝑐𝑎𝑙𝑙 = 0.04 (5.4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 = 0.12 (5.5)

𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0.06 (5.6)

Note: provided F-measure is global with respect to the total number of questions.
Obtained measures tell us about low quality of question answering without a reference.

F-measure of the QALD participants varies in the range of 0.08 to 0.39 in case of qald-6-
train-hybrid and 0.17 to 0.89 in case of qald-6-train-multilingual.

There are multiple reasons which affect the final quality:

• low precision values are related to the scoring process and an adjustment of a score
threshold;

• low recall values are related to the scoring process specific to multiple factoid ques-
tions;

• evaluation over Wikidata doesn’t guarantee the presence of a connection over linked
graph;

• approach based on noun phrases implies limitation to specific datatypes.

Another limitation is a zero-length semantic path. There are an example of a question
that belongs to the QALD dataset:

What is Batman’s real name?
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Answer entity Bruce Wayne (Q3645503) has a connection of “said to be the same as”
(P460) from the input question entity Batman (Q2695156). The approach tries to find
an answer entity at the path between noun phrases entities. For example, between name
(Q82799) and Batman (Q2695156). The system can’t answer to that kind of questions due
to the system inability to link property of “said to be the same as” (P460) with the “real
name” natural language entity.

Current approach of question answering without a reference should be revised in the fu-
ture versions of the question answering system. Current issues should be resolved following
ways:

• the system should link properties with question entities;

• the system should extract items and properties from the set of items related search
results;

• we should limit possible directions of links using the syntax tree structure to reduce
amount of redundant items during linking with data.

Processing time

First of all, we should note that systems processing time is related to the graph discovery
activities. An example of that sort of activities is a known question-answer pairs extension
and an answering without a reference. Typical use case of the system is an answering with
a reference. That use case requires two steps:

• matching with data (the average processing time is 0.87s);

• querying of the generated SPARQL query (the average processing time is 0.48s).

Detailed matching with data evaluation will be discussed in the subsection 5.2. The
processing time of SPARQL query was estimated by calling recently generated semantic
paths. In the real cases embedded entities become different, but the average time can be
recognized as more-or-less representative.

Answering with a reference time is acceptable. Complications arise with a graph related
activity. An important point is that querying SPARQL is more efficient in terms of time
in comparison with a custom implementation of a search over linked data graph. Several
steps were done to improve the initial speed of processing.

Parallel HTTP requests shown the significant speed improvement. Structural changes
of the architecture were required to make parallel requests possible. The system prepares
a batch of items or formulated queries. Subsequently the system executes all the queries in
a parallel. Matching with data speed was reduced more than ~10x times.

Dynamic timeout calculation is another way of time optimization. SPARQL query
encounters timeout in case of a general query. The system tries to estimate a processing time
while querying on a specific length of a semantic path. Response time of successful queries
are used in the process. That improvement of a SPARQL querying reduces processing time
more than 3x. Potential improvement may belong to the aggregation of links directions in
the semantic path.

Graph-based approach is a part of graph optimization tasks. The whole answering
process resides in a balancing between time and quality. At first, adjusting of the system
configuration may improve the speed or the quality for specific tasks. Minor processing
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speed improvements were obtained with a replace of the Link Grammar Parser by the
spaCy NLP.

Note: Processing time was estimated on the merlin.fit.vutbr.cz server.
Initialization of the system requires ~10.39s (estimated at 30 runs) that is primarily

spent on the spaCy initialization. Processing related to graph manipulations require more
time than answering with a reference due to the amount of queries. Finding of a sematic
connection takes 35.99s in the average. That search uses question-answer pairs from the
prepared dataset. We should note that successful search of a path takes 37.9s, but unsuc-
cessful semantic paths search takes 30.78s. That may be a sign of a demand in a higher
timeout values. Semantic paths will be prepared before any user-related evaluations in case
of a real application.

Answering without a reference requires ~103.38s to produce an answer. This amount
of time isn’t appropriate for a question answering purposes. The reason of the result is a
variety of possible connection between questions entities. The one of possible solutions is a
usage of PODS structures (will be discussed in the section 5.3).

Matching with data

Searching for semantic paths

Complete matching
0.87s Length (3) - 8.55s Length (4) - 18.7s

Length (1)
0.57s

Length (2)
0.95s

Total average (extension, w/o reference): 29.67s

Figure 5.3: Processing time of the processing pipeline’s stages.

In the figure 5.3 we can see a comparison of a time on different steps of the processing
pipeline. Lengths 1 to 4 in the figure represents an average time spent searching for a
semantic path of the corresponding length. We can see an exponential relation between the
length of path and the processing time. The growth of the amount of possible connections
among items and the growth of possible directions configurations imply the relation.

Matching with data metrics

Preliminary step of matching with data affects the final processing quality. Parsed noun
phrases and successive permutations are involved into the matching. Exponential depen-
dency between number of question entities and a possible connection, which the system
should check forcing us to optimization the step of linkage with the data. Merging of
entities with intersection inside of search result makes the actual solution possible in an
adequate time processing range.

QALD dataset also provides a keyword set for every question sentence. This set was used
to evaluate a quality of linking with the data. We should note that our question answering
system focuses on linking of noun phrases as a representation of nodes over linked data
graph. Provided keywords of the QALD dataset are not obligatory nouns, because different
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approach focuses use different sentence parts. Evaluated at 451 question with specified
items, our system produces such recall, precision and Fmeasure values:

𝑅𝑒𝑐𝑎𝑙𝑙 = 0.44 (5.7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 = 0.8 (5.8)

𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0.53 (5.9)
F-measure of 0.53 tell us about the relatively high quality of matching process. Match-

ing with the data was an object of optimization, because it affects subsequent processing
time.

Tree matching queries

Process of tree matching was initially covered and discovered in our work related to dialog
system. The figure 5.4 provide an example of a syntax tree matching.

Which professional surfers were

born

in Australia ?

dobj

nsubjpass auxpass prep

pobj

WDT JJ NNS VBD

VBN

IN NNP .

Which professional snowboarders were

born

in Australia ?

dobj

nsubjpass
auxpass

prep

pobj

WDT JJ NNS VBD

VBN

IN NNP .

Figure 5.4: Example of a tree matching.

As we can see, system will accept an answer with a higher refinement to produce some
answers. Optimal threshold for question matching was calculated during different exper-
iments and trees are recognized as a similar in case of 70% links similarity and entities
matching.

Our implementation of the dialog system stores serialized question-answer pairs (the
structure is covered at the figure 3.3) in a binary file and wasn’t focused on a high-volume
question answering. That can be easily optimized by usage of traditional database system.

Precondition and postcondition steps are related to question/answer acceptance. As
long as postcondition is only related to complex answer structures obtained by end-users it
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Table 5.1: Question type classification measures.
Question type Processed Processed (%) Precision Recall

single resource 253 40.03% 0.78 0.84

multiple resources 191 30.22% 0.77 0.80

number 81 12.82% 0.74 0.80

date 28 4.43% 0.80 0.86

boolean 55 8.7% 0.81 0.78

wasn’t evaluated yet. Precondition search has no difference with a naive question answering
without a reference. Final percentage of precondition persistence was obtained during an-
swering evaluation (38%). That percentage of questions contains at least one link between
input sentence entities. We can recommend to limit the semantic connection between ques-
tion items to one property, as long as longer connections can significantly reduce question
matching rate.

Classification metric

The system searches for syntax tree substructures while classifying question types. Quality
of question type classification affects the final result in case of answering without a reference.
In case of invalid question classification the system will score found semantic paths using
invalid heuristic. Prepared dataset contains a question types from QALD datasets. For
every type of question we calculated questions classification (see table 5.1).

5.3 Comparison with existing solutions
Treo

Treo is a Semantic Search and Question Answering System for Databases. Treo is designed
to cope with the Big Data vision of handling very heterogeneous databases. The system
focuses on scenarios, at which it becomes unfeasible for data consumers to understand the
representation of the data in order to query the database [31].

Processing starts with consists in determining the key entities in the user query and
mapping the entities in the query to entities on datasets. The first step of processing is
similar in most approaches. The mapping from the natural language terms representing
the entities to the URIs representing these entities in the datasets is done through entity
search step. The URIs define the pivot entities in the datasets, which are the entry points
for the semantic search process.

At the next step the user natural language query is pre-processed into a Partial Ordered
Dependency Structure (PODS). PODS is a format which is close to the triple-like (subject,
predicate and object) structure of RDF. The construction of the PODS demands the previ-
ous entity recognition step. In opposition to our system Treo extracts triple relation from
the question tree structure.

Taking as inputs the pivot entities URIs and the PODS query representation, the se-
mantic matching process starts by fetching all the relations associated with the top ranked
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pivot entity. Starting from the pivot entity, the labels of each relation associated with the
pivot node have their semantic relatedness measured against the next term in the PODS
representation of the query. The relations with the highest proximity measures define the
neighboring nodes. These nodes will be explored in the search process. The search algo-
rithm then navigates to the nodes with high relatedness values, where the same process
happens for the next query term. The search process continues until the end of the query is
reached, working as a spreading activation search over the RDF graph. Activation function
(the threshold to determine the further node exploration process) is defined by a semantic
relatedness measure [31].

Treo algorithm is optimized to complexity of a query because if moves through a pivot
entities the same way as syntax tree structure connects entities. Comparison of initial item
properties and linked items has a beneficial effect to the process, without any limitation
to noun-only entities. Triple PODS implementation also defines a unified scoring while
extending items. Linked data graph may contain directed links, which are not used while
extending pivot elements in single direction [30]. The approach faces the issues with the
granularity of data, so multiple links should be used in case of granular property. Semantic
proximity measure adopts the approach to granularity of a dataset.

Top-k approach

Top-k approach is also a graph related approach, IR concepts are adapted to support an
imprecise matching that incorporates syntactic and semantic similarities. As a result, the
user does not need to know the labels of the data elements when doing keyword search.

Traditional approaches interpret keywords as neighbors of answers. Proposed in the
[55] approach interpret keywords as elements of structured queries. Instead of presenting
the top-k answers, which might actually belong to many distinct queries, top-k approach
let the user select one of the top-k queries to retrieve all its answers. Thus, the keyword
search process contains an additional step, namely the presentation of structured queries.
Refinement can be made more precisely on the structured query than on the keyword query
[38].

Main technical contribution of the approach is a novel algorithm for the computation of
the top-k subgraphs. Traditionally keywords are exclusively mapped to vertices. In order to
connect the vertices corresponding to the keywords, top-k algorithm aim at computing tree-
shaped candidate networks or answer trees. Since keywords do not necessarily correspond to
answers exclusively in our approach, they might also be mapped to edges. As a consequence,
substructures connecting keyword elements are not restricted to trees, but can be graphs in
general. Therefore, algorithms as applied for tree-exploration such as breadth-first search,
backward search or bidirectional search are not sufficient.

The top-k approach constructs possible queries over linked data instead of searching of
an item. Our answering without a reference approach has a relation to searching for an
item over linked data graph approaches. Reference sentence in our approach makes our
approach strict, but efficient.
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Chapter 6

Conclusions and potential
extensions

We have created a question answering system which uses and improves a graph-based ap-
proach. The system was evaluated using standard metrics in this area of research and the
adapted dataset, it was tested in real use cases. This solution is designed as a dataset
independent tool with abilities of extension using natural language, not as a query con-
struction tool. We can see benefits and potential advantages of graph discovery at every
step of the answering pipeline. Graph comparison allows to match input queries retain-
ing the context, apply relevant graph path to input data and construct a natural language
answer using reference. The question answering system focuses on the answering with a ref-
erence question-answer pair provided by the user but also implements regular entity search
method in order to the compatibility with similar systems. Our schema-agnostic system
uses general principles of linked data and is able to fit custom knowledge representations.

Drawback of the graph-based approach reveals itself in case of non-factoid questions.
Being initially designed for factoid questions our system isn’t an eligible option in case
of aggregation and non-standard data type queries. Focus on structured data limits the
system when it comes to the tasks that require hybrid techniques.

Developed system was evaluated using standard metrics. Answering quality and linking
rate 73.25% of the initial approach are acceptable, while an attempt to adapt the approach
to standard metrics have been unsuccessful with answering without reference F-measure of
0.03. Obtained answering and extension time is acceptable for artificial querying, but not
comparable with real use cases. Processing time is counterbalanced by the final precision.
while working with heterogeneous and inconsistent data is a possible way to find balance
between precision and response time. This work binds sentence structures with the connec-
tion over linked data graph, but there are a lot of challenges and appropriate techniques in
the area of question answering over linked data which can significantly improve answering
process when correctly combined.

As for practical usage of question answering system, it is possible to create a reference
question-answer pair, evaluate quality of the found linkage and query similarly structured
question with a reply. Designed as a multi-user system, it is able to redirect an unknown
question between users during work in a server mode. Final solution is extensible by means
of natural language and abstracts data consumers from the data structure.

Modular architecture of the system allows to reuse components as part of any other
Python conversational agent to access prominent knowledge bases. Highly optimized match-
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ing module that introduces structural permutations demonstrates F-measure of 0.53 and
an average processing time of 0.74 seconds. Another beneficial influence of the modularity
is a possibility to integrate custom data representations. In case of custom linked data
implementation this system can lower the barrier for extensions of a domain independent
system.

Potential extension belongs to these categories:

• optimization of the processing time;

• answering without a reference improvements;

• general improvements that affects the proposed approach.

Processing time optimization is essential for practical usage over large-scale datasets.
Graph-based systems are sensitive to the granularity of the provided dataset and link qual-
ities. General domain usage over prominent knowledge bases and especially over Wikidata
is also possible and should belong to processing time improvements by usage of local knowl-
edge base instances and endpoints.

Answering without a reference extension may belong to the scoring heuristics, for ex-
ample in spreading activation guided by a measure of semantic relatedness. Self-sufficient
semantic paths are not an eligible option for a complete inference of the answer. Future
research may comprise matching words featuring a part-of-speech other than noun with
item properties and semantic paths scoring.
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Appendix A

CD Content

.
|-- poster.pdf poster
|-- sources
| |-- LICENSE.txt MIT license
| |-- README.md readme and manual
| |-- config.ini default configuration
| |-- evaluation
| | |-- dataset.json prepared evaluation dataset
| | |-- evaluate.py evaluation of the
| | |-- generate.py generation of the dataset
| | |-- processing.py generate figures
| | +-- ... helper scripts
| |-- init.sh environment setup script
| |-- qas question answering system sources
| | |-- __init__.py
| | |-- __main__.py
| | |-- core.py
| | |-- dbpedia.py
| | |-- graph.py
| | |-- items.py
| | |-- link_grammar.py
| | |-- logs.py
| | |-- noun_phrase.py
| | |-- scenarios.py
| | |-- sentence.py
| | +-- wikidata.py
| |-- requirements.txt dependencies list
| |-- server server wrapper
| | +-- ...
| +-- setup.py installation scripts
|-- thesis tech. report LaTeX sources
| +-- ...
+-- thesis.pdf tech. report
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Appendix B

Manual

B.1 Virtual environment installation
Please, make sure, that you have a python3 (3.5.2) and pip3 and/or easy_install-3.x
installed. Also curl utility is needed.

sudo apt-get install python3-setuptools python3.6-dev python3-pip

It is possible to create a virtual environment with python dependencies. Make sure,
that you have virtualenv. To check that virtualenv is installed:

which virtualenv

You should see a path to the executable. If it is available, you can run the initialization
script:

. ./init.sh

init.sh file creates a virtual environment, install needed dependencies and download
WordNet and spaCy corporas.

After, you can run the system:

qa_system --help

To leave the virtual environment:

deactivate

To activate the environment again:

source env/bin/activate

To leave and delete the virtual environment:

. ./clean.sh
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B.2 External dependencies
All dependencies will be automatically installed in case of the environment setup. This
dependencies required only in case of a custom installation.

The QAS uses spaCy for natural language processing. You can install spaCy using pip:

pip install -U spacy

SpaCy requires an english model (~1GB) as well:

python -m spacy download en

The second required dependeny is the NLTK:

echo "import nltk; nltk.download(’wordnet’)" > download_wordnet.py

For WebSocket wrapper you also need a Flask webserver:

pip3 install flask

B.3 Getting started
Generating the evaluation dataset:

cd evaluation
python3 generate.py qald/ | tee dataset.test.json

Running the evaluation script:

python3 evaluate.py dataset.test.json 2> processing.log

Generating distribution graphs:

python3 processing.py

To manually run the system under the environment:

qa_system -q "In what city is the Heineken brewery?"

Please, provide a question-answer pair to find a semantic path:

qa_system -q "In what city is the Heineken brewery?" -a "Amsterdam"

59



Appendix C

Evaluation dataset

Listing C.1: Fragment of the evaluation dataset.
1 {
2 "questions": [
3 {
4 "aggregation": "false",
5 "answers": [
6 {
7 "answertype": "resource",
8 "dbpedia": "http://dbpedia.org/resource/Barack_Obama",
9 "wikidata": "http://www.wikidata.org/entity/Q76"

10 }
11 ],
12 "answertype": "resource",
13 "dataset": "qald-6-test-hybrid",
14 "items": [],
15 "keywords": [],
16 "string": "Who is the president by whom 20 million Americans had
17 gained health insurance?"
18 }, {
19 "aggregation": "true",
20 "answers": [
21 {
22 "answertype": "resource",
23 "dbpedia": "http://dbpedia.org/resource/Indian_Railways",
24 "wikidata": "http://www.wikidata.org/entity/Q819425"
25 }
26 ],
27 "answertype": "resource",
28 "dataset": "qald-6-test-multilingual",
29 "items": [
30 "Indian company",
31 "the most employees"
32 ],
33 "keywords": [
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34 "Indian company",
35 "the most employees"
36 ],
37 "string": "Which Indian company has the most employees?"
38 }, {
39 "aggregation": "false",
40 "answers": [
41 {
42 "answertype": "number",
43 "value": "6"
44 }
45 ],
46 "answertype": "number",
47 "dataset": "qald-6-test-hybrid",
48 "items": [],
49 "keywords": [],
50 "string": "How many awards achieved the creator of the world’s
51 most famous equation?"
52 }, {
53 "aggregation": "false",
54 "answers": [
55 {
56 "answertype": "resource",
57 "dbpedia": "http://dbpedia.org/resource/Rick_Husband",
58 "wikidata": "http://www.wikidata.org/entity/Q346671"
59 },
60 {
61 "answertype": "resource",
62 "dbpedia": "http://dbpedia.org/resource/William_C._McCool",
63 "wikidata": "http://www.wikidata.org/entity/Q334463"
64 },
65 {
66 "answertype": "resource",
67 "dbpedia": "http://dbpedia.org/resource/Michael_P._Anderson",
68 "wikidata": "http://www.wikidata.org/entity/Q318542"
69 },
70 {
71 "answertype": "resource",
72 "dbpedia": "http://dbpedia.org/resource/Ilan_Ramon",
73 "wikidata": "http://www.wikidata.org/entity/Q219569"
74 },
75 {
76 "answertype": "resource",
77 "dbpedia": "http://dbpedia.org/resource/Kalpana_Chawla",
78 "wikidata": "http://www.wikidata.org/entity/Q237879"
79 },
80 {
81 "answertype": "resource",
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82 "dbpedia": "http://dbpedia.org/resource/David_M._Brown",
83 "wikidata": "http://www.wikidata.org/entity/Q350317"
84 }
85 ],
86 "answertype": "resource",
87 "dataset": "qald-6-test-hybrid",
88 "items": [],
89 "keywords": [],
90 "string": "Which astronauts died at the Columbia disaster
91 also known as STS-107?"
92 }, {
93 "aggregation": "false",
94 "answers": [true],
95 "answertype": "boolean",
96 "dataset": "qald-6-train-hybrid",
97 "items": [],
98 "keywords": [],
99 "string": "Did Napoleon’s first wife die in France?"

100 }, {
101 "aggregation": false,
102 "answers": [
103 {
104 "answertype": "resource",
105 "dbpedia": "http://dbpedia.org/resource/Marcus_Adoro",
106 "wikidata": "http://www.wikidata.org/entity/Q3545252"
107 }
108 ],
109 "answertype": "resource",
110 "dataset": "qald-7-train-multilingual",
111 "items": [
112 "professional surfer",
113 "born",
114 "Philippines"
115 ],
116 "keywords": [
117 "professional surfer",
118 "born",
119 "Philippines"
120 ],
121 "string": "Which professional surfers were born on the Philippines?"
122 }
123 ]
124 }
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Appendix D

Poster

Nowadays natural 
language interfaces 
become popular.

We can see the 
exponential growth of 
the Semantic Web.

It is important to note that 
сompanies accumulate 
custom data.

Prominent linked datasets 
were used in the project.
The system was evaluated 
using standard metrics.

Schema-agnostic approach allows to hide 
the underlying schema from users.

Graph-based system explores provided graph 
to yield and reuse semantic connections.

“if a known question has a known answer, we can recognize an input question as similar and 
produce an answer with the same semantic links over the knowledge base”

Answering with a reference: Extending known question-answer pairs: Answering without a reference:

Icons by: The Noun Project, Python Software Foundation, W3C, 
Wikidata, DBpedia. (CC BY 3.0)

Question
Answering
System

Source code is available at the 
Github under the MIT license.

The system can be extended 
with the use of natural language.

The system substitutes 
answers using syntax trees. 

Methods of answering without a 
reference were implemented.

BRNO
UNIVERSITY
OF TECHNOLOGY

FACULTY
OF INFORMATION
TECHNOLOGY

AUTHOR: Mark Birger
SUPERVISOR: Doc. RNDr. PAVEL SMRŽ, Ph.D.

Figure D.1: Research illustration.
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