
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

RECURSIVE IPC NETWORK ARCHITECTURE:
ANALYSIS AND MODELLING OF ENROLLMENT

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE KAMIL JEŘÁBEK
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

REKURZIVNÍ IPC SÍŤOVÁ ARCHITEKTURA:
ANALÝZA A MODELOVÁNÍ PŘIPOJENÍ K SÍTI
RECURSIVE IPC NETWORK ARCHITECTURE:

ANALYSIS AND MODELLING OF ENROLLMENT

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE KAMIL JEŘÁBEK
AUTHOR

VEDOUCÍ PRÁCE Ing. PATRIK HALFAR
SUPERVISOR

BRNO 2015

Abstrakt
Tato práce se zabývá analýzou připojení nového člena k síti a začlenením této fáze do modelu
Rekurzivní IPC síťové architektury (RINA) vyvíjené v simulačním prostředí OMNeT++.
V této práci je obecně popsána architektura RINA. Dále jsou uvedeny možné případy
připojení a popsáno kdy tyto fáze začínají a kdy končí.

Abstract
This thesis is focused on analysis of the Enrollment and integration of this phase to model of
Recursive InterNetwork Architecture (RINA) that is developed in the OMNeT++ simula-
tion environment. In this thesis is the RINA architecture described generally. Furthermore,
there are listed cases of the Enrollment and the Common Application Connection Estab-
lishement Phase, and it is described when starts and ends.

Klíčová slova
Simulace sítí, modelování sítí, RINA, OMNeT++, připojení k síti, CACEP, CDAP

Keywords
Simulation of networks, network modeling, RINA, OMNeT++, Enrollment, CACEP, CDAP

Citace
Kamil Jeřábek: Recursive IPC Network Architecture:
Analysis and Modelling of Enrollment, bakalářská práce, Brno, FIT VUT v Brně, 2015

Recursive IPC Network Architecture:
Analysis and Modelling of Enrollment

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Patrika Halfara

. .
Kamil Jeřábek
May 19, 2015

Poděkování
Rád bych poděkoval panu Ing. Patriku Halfarovi za ochotu, časovou flexibilitu a za nesčetné
rady při zpracovávání této práce. Dále bych chtěl poděkovat kolegům z projektu Pristine, v
rámci kterého je RINA simulator vyvíjen, taktéž za významné rady a nápady. V neposlední
řadě děkuji své rodině a přítelkyni za psychickou podporu při zpracování mé bakalářské
práce.

c© Kamil Jeřábek, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 5
1.1 Structure of the thesis . 5

2 RINA 6
2.1 Fundamental Definitions . 6
2.2 IPC Process . 7

2.2.1 The IPC Management . 8
2.2.2 Flow Allocator . 8
2.2.3 Resource Allocator . 8
2.2.4 RIB Daemon . 9

2.3 Addressing and Naming . 9
2.4 Communication Protocols . 10

2.4.1 Common Distributed Application Protocol 11
2.4.2 The Error and Flow Control Protocol 11
2.4.3 DTP . 11

3 Common Distributed Application Protocol 12
3.1 The CDAP overview . 12
3.2 Format and type of messages . 13

4 Common Application Connection Establishment Phase 16
4.1 Type of messages . 16
4.2 Description of behavior . 17

4.2.1 The CACE within DIF . 17
4.2.2 The CACE within DAF . 17
4.2.3 Release . 18

4.3 Requirement for CACE . 19
4.4 Draft of CACEP . 19

5 Enrollment 22
5.1 Type of messages . 22
5.2 Basic Concepts . 23

5.2.1 Creating a New DIF . 23
5.2.2 Connecting to a DIF . 23

5.3 Draft of Enrollment . 24
5.3.1 Become the New Member of a DIF 25
5.3.2 The Enrollment to known DIF . 26

1

6 OMNeT++ 29

7 Description of Implementation 30
7.1 Module design . 30
7.2 Implementation . 31
7.3 Objects . 32

8 Model Validation 33

9 Conclusion 34

A CD index 36

2

List of Figures

2.1 IPC Process scheme [6] . 8
2.2 The names required for distributed IPC or networking. [6] 10

3.1 The CDAP module scheme [9] . 12

4.1 Connection establishment over the newly allocated flow [9] 18
4.2 Initiating process CACE State Diagram . 19
4.3 Responding process CACE State Diagram 20
4.4 Both processes Release CACE State Diagram 21

5.1 Enrollment communication when IPC Process is joining a DIF for the first
time . 25

5.2 Enrollment communication when IPC Process was also member of a DIF . 26
5.3 Enrollment communication when IPC Process was also member of a DIF . 27
5.4 Initiating process Enrollment State Diagram 27
5.5 Responding process Enrollment State Diagram 28

7.1 IPC process in OMNeT++ . 30
7.2 Enrollment module from inside in OMNeT++ 31

3

List of Tables

2.1 Summary of Names required for any Well-Formed Network Architecture [6] 10

3.1 CDAP message field table [3] . 13
3.2 Legend for CDAP message field table [3] . 14

4.1 CDAP message field table of messages used within CACEP [12] 16

5.1 CDAP message field table of messages used within Enrollment only. It is
a part of CDAP field table 3.1. Legend represented by table 3.2 belongs to
this table. The empty fields were removed. [3] 22

A.1 CD index . 36

4

Chapter 1

Introduction

The Recursive InterNetwork Architecture is new network architecture based on distributed
applications. Everything in this architecture could be considered as an application. The En-
rollment, which is the main topic of this thesis, is important part of the architecture. Within
this phase, the application process is joining to a layer to be a part (member) of it. During it
is assigned an address and there are forwarded important information about the connecting
layer to a new comming one. In fact, it is the first application communication within a layer
that consider if the new member is able to operate within a layer or not and provide this
transition. This phase is important because it has to be done for every single application
process that want to operate within a layer.

The aim of the present thesis is to create module for the simulation tool OMNeT++
which will allow simulating of Enrollment phase within RINA model. This module will be
located as a part of IPC process. The result will be used in the RINA simulator developed
in the Pristine project.

1.1 Structure of the thesis

In the following chapter there is a brief description of the Recursive Internetwork Archi-
tecture (RINA) provided. There are important notions and the architecture itself named
and explained. Chapter 2 covers description of Common Distributed Application Proto-
col (CDAP) that is important for this thesis. It is important because while establishing
application connection as well as while Enrollment are used mainly CDAP messages.

The greatest attention is given to chapters 4 and 5. Each of these chapters covers
the description of CDAP messages and its meaning that is used within each phase. Also,
there is behavior and detailed design of this phases described.

In the conclusion there are three chapters which describes used environment, the im-
plementation of the model and its validation.

5

Chapter 2

RINA

In this chapter, there is provided only a brief description of the RINA architecture and its
components. These descriptions are necessary to understand other information that this
thesis contain. The described components will be also used in whole work.

The Recursive InterNetwork Architecture is distributed network architecture. This
architecture is based on the presumption that computer networking is just Inter Process
Communication (IPC). The main building block of the architecture is a single repeating
layer, the Distributed IPC Facility (DIF). Each occurence of the layer has the same funcions
or methods, but from layer to layer it can have different policies. The DIF have a scope and
include IPC Processes running on different machines that works together to provide flow
services to application processes. The RINA supports without need of creating any extra
mobility mechanisms, multihoming and Quality of Service. There is only one protocol,
called Common Distributed Application Protocol (CDAP) which providing communication
between two application processes.

2.1 Fundamental Definitions

Application Entity (AE) - The task within an application process providing communi-
cation with other application processes [8].

Application Process (AP) - The instantiation of a program intended for some pur-
pose, which is executed in system. An AP contains one or more application entities. [8] [9]

Protocol Data Unit (PDU) - The string of octets that two protocol machines exchange
among each other. It has two parts. The first one contains information understood and
interpreted by the DIF. The second part includes User-Data and what is inside this part
of PDU is passed to user. [5]

Service Data Unit (SDU) - The data transferred from one application process to another
that are passed across the (N)-DIF interface. The SDU may be fragmented or combined
with other SDUs in order to be sent through interface as one or more PDUs. The integrity
of SDU is maintained when delivered to a corresponding application protocol machine. [5]

IPC Process - The IPC Process is AP that implements locally funcionality to support
and manage IPC. It contains multiple subtasks. We can say that the IPC Process is a DAP

6

(Distributed Application Process) and it also contains the same components. [6]

Common Distributed Application Protocol (CDAP) - The CDAP is the only re-
quired protocol for communication between application processes. The reason, for the only
single protocol, is to make a clean transition from the IPC model of the DIF to the pro-
gramming model of DAFs. There are only six fundamental operations e.g. create/delete,
read/write and start/stop. [2] There are not needed more operations for communication.
All other maniuplation does not depend on communication, but on manipulation with data
in applications. [9]

Common Application Connection Establishement (CACE) - The CACE is a part
of CDAP. After the IPC connection is established, the CACE creates an application con-
nection between corresponding peers and initiates authentication. [9]

Distributed Application Facility (DAF) - The DAF consist of two or more application
processes on one or more systems that maintain shared state and communicate using IPC.
[9]

Distributed IPC Facility (DIF, Layer) - The DIF operates among multiple systems
and contains the IPC process running on every of these systems that belongs to the DIF.
It is like a blackbox. It means that what happens inside the DIF is not visible outside
of the DIF. The DIF is a collection of applications, where each have custom task such as
relaying. [2] The DIF is the DAF that provide IPC services to application processes or
other DIFs. [8]

(N)-DIF - The actual DIF from which is description based on in hierarchy of DIFs. [8]

(N+1)-DIF - The DIF in hierarchy, which is in N+1 level in view of (N)-DIF. The (N+1)-
DIF uses (N)-DIF. The (N)-DIF has information only about applications names of the IPC
processes of (N+1)-DIF. The (N+1)-DIF may provide other information to (N)-DIF. [8]

(N-1)-DIF - The DIF in hierarchy, which is in N-1 level in view of (N)-DIF. From this
point of view there are applied the same rules between (N)-DIF, which is in N+1 level from
(N-1)-DIF. [8]

Resource Information Base (RIB) - Each member of the DIF maintains the RIB,
the local representation of the local repository of objects. The distributed application may
define a RIB to be its local view of the distributed application. From the perspective of op-
erating systems model the RIB is actually storage. [9]

Relying/Multiplexing Task (RMT) - The RMT is a component of IPC Process that
performs multiplexing and/or relying of PDUs. [6]

2.2 IPC Process

The IPC Process is a component of DIF running on a processing system. Every DIF may
contain many of IPC processes. On a signle processing system it is intended to be one IPC
process that belongs or that operates within one DIF for every DIF that the processing

7

system is connected to. The IPC process is a DAP (Distributed Application Process) with
a specific purpose. To provide IPC services requested by applications. Creating one or
more (N)-connections for every Allocate request from applications. And to manage its use
of one or more (N-1)-connections with one or more DIFs. The communication within a DIF
is allowed only by the IPC Processes. The Figure 2.1 displays, what such IPC Process may
include. [6] [8]

Figure 2.1: IPC Process scheme [6]

2.2.1 The IPC Management

The IPC Management module is component of all DAPs and it is responsible for the use
of supporting DIFs (the (N-1)-DIFs through which is going communication with (N)-DIFs),
including SDU Protection, multiplexing and the DIF Allocator. The DIF Allocator is used
to make a new DIF to a desired application when no one of the available DIFs has access
to it. Another part is the RIB Daemon that stores routing tables and other local state
information. [6] [10]

2.2.2 Flow Allocator

Flow Allocator is processing all Allocation requests (it is a request to access a requested ap-
plication). For every single Allocation request is created one separated Instance of the Flow
Allocator (FAI). Its function is to find a requested application address of IPC Process that
has access to requested application, to determine whether requesting Application Process
(AP) has access to requested AP, select policies for flow, monitors and manages the flow.
There is also the Name Space Management function which manage the assignment of ad-
dresses within a DIF and which is resolving the mapping of addresses/namings from the up-
per layer to the current DIF addresses/names. This function is also accessed during the En-
rollment phase described in 5. [6] [7] [5]

2.2.3 Resource Allocator

Resource Allocator is responsible for managing resource allocations, monitoring and coor-
dinate the IPC Tasks, IPC Management and the Flow Allocator to make sure that quality

8

of services targets being met and to adjust the policies according to changing conditions.
This is performed by sharing information with other DIF IPC Processes. [5] [6]

2.2.4 RIB Daemon

The RIB Daemon is contained in both the DAF and in the DIF. With a little bit different
purpose. Especially of the perspective of its content and purpose. The RIB is distributed
database that is maintained by every single member of a DIF and a DAF.

For DIF it represents all important logical informations from the point of view of the mem-
ber such as routing objects important for flows etc. But some informations, as real time
information, often used by tasks, will be maintained by them. [6]

The RIB Daemon is responsible for memory management within a DAF. It is common
for all subtasks or threads of application process participating in distributed application.
Because of every single subtask or thread may require data from the others. It could be
asked for a once, more time (it depends on events) or periodically. The RIB Daemon accord-
ing to the requests may optimize the information. It maintains database synchronization
rules e.g. commits on update. [9]

To programming applications the RIB Daemon should be able to provide data within
a DAP as it would be on a single system available with possibly no delay. Meant data
in application namespaces. Application tasks of DAF members could register subscription
to RIB Daemon to take information or to distribute data to one or more members also
with defining whether on request or periodically. According to this the RIB Daemon make
measurements to reduce the amount of data to be send. [9] [6]

2.3 Addressing and Naming

The naming and addressing is important in any network architecture as well as in RINA.
There have to be bound name for every single object. Objects that have no name do not
exists. The name is represented by unique string in some alphabet. The name came from
given name space, which is a set of N names that are assigned to a collection of objects.
A name could be in a time bound to only one object. Synonym designation is when two
or more names that are given from one or multiple namespaces that are referencing one
object. [8]

There are two main operations for managing names. The Assignment, which allocates
name in a namespace after allocation the name is capable to be bound to an object, it is
able to use. Deassigment, which remove the name from use. And the Binding, which bind
the name to an object that could be accessed through it now. Unbinding breaks the binding
and the access to an object through the name is no more be done. [8]

Whatevercast-name is a special identifier taken from namespace that address (gives
a reference to) multiple names. In referencing through the name it is used a rule to reference
set of names. This is used traditionally for multicast or anycast. [8]

In Table 2.1 are shown the most important parts, which are used by some type of identi-
fication and their scope within an architecture. There are need to have identifiers for every
single part that are responsible for communication as well as for messages.

9

Figure 2.2: The names required for distributed IPC or networking. [6]

Common Term Scope Application Term
Application Process Name Global (unambiguous) Application Process Name
Address DIF (unambiguous) Synonym for an IPC Process

Name
Port-id Allocation AE of an IPC

Process (unique)
AE-instance-identifier

Connection-endpoint-id Data Transfer AE of an
IPC Process (unique)

AE-instance-identifier

Connection-id Src/Dest Data Transfer
AEs (unique)

Concatenation of data trans-
fer AE-instance-identifiers

DIF Management Ex-
change

IPC Process (unambigu-
ous)

AE-identifier

Table 2.1: Summary of Names required for any Well-Formed Network Architecture [6]

2.4 Communication Protocols

There is necessity to submit that there is a difference between application, which modify
shared state external to protocol itself and data transfer protocols that have no external
effects than delivering SDUs. [9]

Data Transfer Protocols - Could be devided into two phases. The Allocation phase,
which has management function rather than data transfer function. It finds the requested
application and determines whether the requesting application has access to it. Then deter-
mines whether the requested application could be supported and allocate resources to sup-
port IPC. And the Data Transfer Phase, which is responsible for ensuring that the requested
properties for communication are provided. [9]

Application Protocols - Also could be devided into two phases. The Initiation phase,
which ensure that the two applications are communicating with who they think they should
be, i.e. authentication. And an Operations phase, in which operations do modifications

10

external to the protocol. [9]

2.4.1 Common Distributed Application Protocol

The Common Distributed Application Protocol (CDAP) is the only required protocol for
communication between application processes. This protocol well be described in more
details in chapter 3.

2.4.2 The Error and Flow Control Protocol

The Error and Flow Control Protocol (EFCP) on each allocation request provides IPC
connection/flow. After the Flow Allocator Instance return that it was successfull the EFCP
connections are bound to two correspondents AEs. There could be a wide range of protocol
to do that. Communication proceeeds only between two EFCP machines. [6]

There are determined three timers: Maximum Packet Lifetime (MPL), Maximum Delay
on Ack (A), and Time to Complete Maximum Retries (R). This is used to help to controll
communication e.g. when a traffic was not indicated for 2(MPL + A + R) the state between
Error and Flow Control Protocol machines could be discarted. [6]

2.4.3 DTP

It is a loosely bound protocol. When there is need for retransmission or flow control
for an Allocation request, this protocol is instantiated. There is a state vector used to
coordination of protocol machines. [6]

11

Chapter 3

Common Distributed Application
Protocol

This chapter provides only basic description of Common Distirbuted Application Protocol
(CDAP) and the description of information that different messages may contain. There
is no need to pay attention to significance of each message. Meaning and usage of CDAP
messages will be described in two sections later. However, it will describe only messages
that are important and used within phases that this thesis deals with.

Such an attention is layed to this protocol in this thesis because the Common Application
Connection Phase (CACEP) and the Enrollment, which are the main themes of this work,
is using mainly its messages for communication.

3.1 The CDAP overview

The CDAP is the only required protocol for the communication among application pro-
cesses. The reason for the only single protocol is to make a clean transition from the IPC
model of the DIF to the programming model of DAFs. From the point of view of the ap-
plication there are only six fundamental functions that application can perform on objects.
These operations are create/delete, read/write and start/stop. The CDAP is in basi-
cally composed from three modules as it is seen in Figure 3.1. [9]

Figure 3.1: The CDAP module scheme [9]

The first one is the common application connection establishement module (CACE).
This module which is a part of CDAP module is based on a simplified version of the OSI
ACSE protocol. Its behavior and use will be described in more detail in chapter 4. The next
is the authentication module and the last one is CDAP. [9]

12

The modules shown in Figure 3.1 are orientation modules specifying a phase or a part
of the communication. The CACE part presents the first exchange of the communication
between two correspondents.

The authentication is not strictly defined. There could be many authentication modules
for every single application. There is also possibility to use or create own protocol. Each
authentication within different types of connections could be in the range from using only
password, encryption etc. The authentication part could be entirely skipped. [9]

3.2 Format and type of messages

CDAP messages contain limited types of information. Not all of them are entirely used
in every type of message. Table 3.1 displays information held by each different CDAP
message.

Table 3.1: CDAP message field table [3]

According to markers in the fields that show which information is carried by messages
in which case. The meaning of markers are explained in Table 3.2.

13

Table 3.2: Legend for CDAP message field table [3]

There are several information fields that could be grouped by its significance. The one
is the source and destination information. The source as well as destination information
each are represented by four fields. That clearly identifies the correspondent and the re-
ceiver of information on the level as is needed. Source Application-Entity-Instance-Id
(srcAEInst in table, string type) identifies the exact instance of the AE originating the mes-
sage. Source Application-Entity-Name (srcAEName, string) is a name of AE within
the application. Source Application-Process-Id (srcApInst, string) is instance of ap-
plication originating the message. Source Application-Process-Name (srcApName,
string) is name Application originating the message. The destination information is caried
also in such fields but specifying the destination. [12]

The another one is intended to identificate and transition of objects inside messages.
ObjectClass (objClass, string) identifies an object class definition of the addressed object.
ObjectInstance (objInst, int64) carries information that identifies the single object with
its specific object class and object name in applications RIB. ObjectName (objName,
string) is an unique identifier (the name) of the specific object of the specific object class
that distinguish the object within application. ObjectValue (objValue, Message) may
contain scalar, array or compound object type and value.[3]

Furthermore, there is authentication which is a essential part of the connection messages
providing first simple authentication of the communication. This needs only two fields.
Authentication-MechanismName (authMech, string) presenting the identification of
the authentication method that destination application use to authenticate the source ap-
plication. The second one is Authentication-Value (authValue, bytes) carrying a format
and a value appropriate to the used authentication mechanism. [3]

The last group is reserved for the result. It presents also two fields. Result-Reason
(resultReason, string) which provides the addition explanation of Result (if it is necessary).
The Result (result, (enum) sint32) that represents result of operation indicating the degree
of success or failure of the requested operation. [3]

Moreover, there are other fields that could not be grouped such as that above. These
types will be described separately. AbstractSyntaxID (absSyntax, int32) determines
specific version of the CDAP protocol message declarations that the message conforms to.
Opcode (opCode, (enum) int32) carries the type of the CDAP message type. [3]
InvokeID (invokeID, int32) is an unique identifier provided to identify request and

other messages associated with it. There is also a possibility to have no invokeID. In this

14

case the invokeID is represented by value 0. If a request contains no invokeID, the response
is not required. It is provided either by the application or the AE. This is an integer value
that could be taken from a pool of different size of space of numbers (applications could
cycle through that amount of messages as it is needed). If the invokeID is provided in
a message, CDAP creates a transaction state machine. It checks all responses against all
active invokeID’s. If no match is found, the message is discarded. In case that a match is
found, the message is processed appropriately to the application. [3]

When CDAP is used in an environment where the application manages a hierarchy
of objects. There is a place to use a field Scope (scope, (enum) int32) that determines
on which level in the hierarchy the given operation should be done. In addition, Filter
(filter, bytes) presents an interpreted predicate function. This function determine whether
the operation should be applied on a specific object. [3]
Version (version, int32) specifies a version of RIB as well as a version of an object set

to use in the conversation. The last one is Flags (flags, (enum) int32) modify meaning
of a message in a uniform way when true. [3]

15

Chapter 4

Common Application Connection
Establishment Phase

This chapter contains the analysis and the description of the application connection phase.
The emphasis is on the CDAP protocol messages used within this phase, the description
of the begining and the end as well as on the overall description.

4.1 Type of messages

Table 4.1: CDAP message field table of messages used within CACEP [12]

To CACE phase could be assigned four CDAP messages. Two messages M CONNECT

16

and M CONNECT R response are responsible to create the application connection between two
correspondents. In the following table 4.1 there should be seen what these CDAP messages
contain. The more specific description of CDAP messages is provided in chapter 3.

While establishing the application connection there has to be determined not only which
specific version of CDAP will be used during communication but also the version of RIB
and objects. These messages also carry the initial authentication. There is need to use
invokeID because the response is required. These two messages are also the only CDAP
messages that contain the information specifying source and the destination peers. Whether
the connection should be established matters on what respondent inserts into the Result.
[12]

The releasing of the connection is also associated with CACEP. Two messages are re-
sponsible for that: the M RELEASE and M RELEASE R. Those messages contain only the min-
imum of the information. InvokeID in M RELEASE request is optional. This depends
on the application and on the case why the request is sent. Response is also carried
by M RELEASE R as well as in all the other responses. [12]

4.2 Description of behavior

At least two a bit different cases could be distinguished in RINA when CACEP is taking
place. The first one is to establish the application connection between two IPC processes
(between initator and member of DIF) e.g. management flow. The second one is to establish
the application connection between AEs within DAF. The difference is especially between
the start of DIF and DAF application connection.

4.2.1 The CACE within DIF

IPC process is instructed to join a DIF by receiving allocate request from the Application
Process of the DAF, specifying the application process name and the Quality of Service
parameters it requires.

At first, the initing IPC process (initiator) allocates the communication with a member
of the DIF. This is an application-to-application connection. This connection is used for
the internal DIF management and it is the first connection that is created with the member
IPC process. After the successful allocation of the management flow the initiator starts with
CACEP. It is the first communication, over the successfully allocated flow, which is await by
the other side of the communication (responder/member IPC process). In addition, right
after initial connect request/response there is a possibility for the other authentication
exchanges as requested. If other authentication techniques are used depends on policy
of a DIF. [9]

When CACEP succeds the CDAP connection is established and the Enrollment may pro-
ceed. After the successfull Enrollment the initiator have assigned an address. The initiator
could now allocate a data transfer connection with application processes of the appropriate
DAF that uses the DIF.

4.2.2 The CACE within DAF

This phase may proceed within the DAF after the IPC process has assigned an address,
when it is authenticated member of the DIF. The CACEP occurs nearly after the initiat-
ing application process obtain a positive allocation response for the requested connection.

17

The corresponding AEs exchange initial CACE request response. This CACEP should be
more application specific then in the DIF. After the initial CACE request/response can take
place additional authentication procedures as needed. [9]

The primary function of creating this application connection is to authenticate each
side of the communication. And also to establish the set of objects that remote operations
on the created flow have access to. [9]

Figure 4.1: Connection establishment over the newly allocated flow [9]

The picture 4.1 shows what was described earlier. At first, it has to be established
connection with the IPC process. Then could be send other CACE pdu’s to the application.
[9]

4.2.3 Release

The connection release belongs to the CACEP as well. The releasing connection depends
if it is on demand or as a reaction of unexpected behavior. The release could be initiated
by both sides in every state of the communication. [12]

If is it on demand, it is mostly caused by the application for example the application
send/receive all the data it wants and it is closing the connection now. In this case the re-
lease could be shortened or not. All depends wheteher the application requires the release
response or not. [12]

If it requires it sends the CDAP release message with invoke ID provided in the message
and wait, for the release response. When receiving the release response the application
process may have an option to leave this connection/flow open and reuse it later. If it
not requires the release response, the application process sends the CDAP release message
without invoke ID and immediately deallocates flow. [12] [3]

If it is the reaction on an unexpected behavior like received unexpected type of the CDAP
message in the current state of communication. The receiver of this message sends a release
and immediately deallocate the flow. Because this could be a suspicious behavior that can
indicate an attack. [12] [12]

18

4.3 Requirement for CACE

There is a requirement for CACE from a security perspective. To establish every IPC
connection there is at least the CACE exchange expected. When it is known what the first
message should be and it is expected. It prevents from some attacks of third parties. [6]

4.4 Draft of CACEP

The common application connection establishement phase starts right after it receive pos-
itive allocation. More information about when CACEP starts is provided in section 4.2.

The following two state diagrams were designed according to known information and
specifications. This is the uniform draft for every connection. Communication always takes
place between two endpoints, the initiating and the responding process. There is a small
difference between them.

After receiving the positive allocate response the initiator sends M CONNECT message
with the appropriate authentication and others required values included. When application
receive M CONNECT request it validates the information included in the message as well as
authentication values. If the responding process receives a valid message with a valid
authentication then it sends M CONNECT R response with a positive result and transition to
the established state. If it is the case, in which the Enrollment is followed by. The member
will wait for M START Enrollment. Otherwise the connection is established and the data
transfer phase may proceed.

On the other hand, if the message is not valid or the authentication failed, the respond-
ing process sends M CONNECT R response with the negative result. There does not need to
be more information about which failure occures, that could help attackers. After the re-
sponding process sends negative result it increases a number of connection retries and set

Figure 4.2: Initiating process CACE State Diagram

19

Figure 4.3: Responding process CACE State Diagram

a timer. If the timer expires or max connection retries are reached it sends M RELEASE with
no response requested and deallocates all associated with this connection.

When the initiating process receives a negative M CONNECT R response it could create
new M CONNECT request with repaired information inside, or it could send M RELEASE with
no response requested and immediately deallocates. If the M CONNECT R response is positive,
the initiating process transition to established state and if it is that case when the Enroll-
ment is followed, it sends M START Enrollment so the Enrollment starts. Otherwise the
connection is established and the initiating and responding process may start to communi-
cate with each other.

The last state diagram 4.4 shows releasing. Either the initiating or the responding
process may in any state send M RELEASE. This may occure if it receive unexpected mes-
sage in any state, if the timer expired or if max connection retries are received (as was
described earlier). In that cases no response is required and all is deallocated. There is
also case in which this is on demand from the application process itself. There should be
the M RELEASE R response expected. There sould be a case when the application want to
reuse the flow later. So after receive the M RELEASE R response the initiator keep the flow
open and uses it after again. [3] Otherwise deallocates all associated with the connection.

20

Figure 4.4: Both processes Release CACE State Diagram

21

Chapter 5

Enrollment

This chapter describes basic concepts of Enrollment. Furthermore, there will be portrayed
in more detail design of the Enrollment.

5.1 Type of messages

In the course of the Enrollment are used many of CDAP messages. All these messages are
listed in the following table.

Table 5.1: CDAP message field table of messages used within Enrollment only. It is a part
of CDAP field table 3.1. Legend represented by table 3.2 belongs to this table. The empty
fields were removed. [3]

All of the messages are focused on handling with objects. As was said in chapter 3
applications can only perform three operations and its oppositions such as create/delete,
read/write, and start/stop. Within Enrollment there are used only create, read and
start/stop operations.

22

The first messages used is M START with its M START R response. With start request
begin process of making an object operational. According to start there are also M STOP
with its response M STOP R. As start request makes object operational, the stop put an end
to operational state above that object. Both requests and responses may contain additional
information in the form of objValue.

Another messages are M CREATE with its M CREATE R response. This request have to
contain appropriate values that the object could be created. Except needed fields such as
objInstance and objName there could be transmitted values to be bound to given object.

Last messages used within Enrollment are M READ and its M READ R response that serve
to read additional information. There is result and eventually requested values carried in
response. [3]

5.2 Basic Concepts

Enrollment is the first phase that all communication must go through. The purpose of En-
rollment is to create sufficient shared state that an instance of IPC can be created.

5.2.1 Creating a New DIF

From the point of view of (N)-DIF. It creates initial IPC Process and then connect it to
one or more (N-1)-DIFs. This created IPC Process could be directed to start Enrollment
with other IPC processes or could wait for other IPC Process that want to enroll with it.
[11]

Actually the creation of a New DIF does not fall under the Enrollment phase. But it is
one of the important part and the Enrollment will be needed as soon as after the creation
of a DIF.

5.2.2 Connecting to a DIF

Enrollment starts after a CDAP connection is established. Firstly, IPC process must allo-
cate communication with a member of the DIF it is instructed to join. The IPC process do
this by using (N-1)-DIF that provide sercices both to the IPC process and to one or more
IPC processes that are members of the DIF, which the IPC process is trying to join. This
connection is used for internal DIF management.

After initial CACE request/response and when the both processes have authenticated
each other, the Enrollment may proceed. While authenticating member IPC process deter-
mine if the IPC process is allowed to join the DIF or not. Entire CACE phase is described
in more deatil in chapter 4.

If it is allowed to join, than member IPC process may request the IPC process for
list of (N-1)-DIF-names the IPC process has access to. It could be useful to determine
the location of the IPC process network.

This information should be also notifed by the IPC process. The member IPC process
or other member IPC processes may also have access to these (N-1)-DIFs, wich could be
used as supporting DIFs, if the IPC process wish to support multiple paths within the DIF.

The member of the DIF assigns a synonym Application-process-name to a newcomers
IPC process. (In fact, the Name Space Management function, which is incorporated in
Flow Allocator, is accessed during the Enrollment to obtain a synonym (address) for use
internal to the DIF. The policy of the NSM may also delegate blocks of adresses to members

23

of the DIF [6].) This synonym could be understand as address, which is used to internal
coordination. It has scope only within the DIF and could be structured to facilitate its using
within the DIF. In addition to the address, to the IPC process may be given a certificate
that can be used to identify itself to other members of the DIF. The two corespondents
can exchange some addition relatively static information used by the DIF, such as what
policies are in place (range, curently in place), supporting DIFs, etc. There will be also
RIB update.

After that, when RIB update is complete, the IPC process is a full-fledged member
of the DIF.

We can distinguish two possible types of joining to a DIF. A Naive Case, where an IPC
process is instructed to join an existing DIF, which is described above. A Pragmatic Case,
where is presupposed that a member lost contact with the DIF due to crash or failure
of the physical media.

In this case, Enrollment should be as quick as possible, and that a potentially “new
member” not need to be completely initialized.

The initialization starts as above, the “new member” allocates connection to the DIF
member, initial CACE request/response and then authenticate the “new member”. The

”
new

member“ might use the certification to shorten the authentication process.
The IPC process send address and other information to member IPC process. If the ad-

dress is NULL or assignation expired the member automaticly assign new address. By this,
the Enrollment is complete. If the IPC process has mulple (N-1)-DIFs that is also used
by members of this DIF, than flows are created with them. [7][5][4]

5.3 Draft of Enrollment

From the perspective of implementation we can clasify the Enrollment as a finite state ma-
chine or a part of finite state machine. On the one side is always initiator a process request-
ing to become member of a DIF. On the oposite side is target a process that is a member
of the DIF. There are several CDAP messages used during the Enrollment phase. There is
no strict sequence that has to be observed. This fact is given mainly because the initiator
may or may not read any addition information not provided by the existing member. That
means that the initiator may only read information about whole DIF it wants to join. It
is expected that there could be at least two situations for the Enrollment phase. First one,
when a process was member of a DIF and now is reconnecting or is still member of the DIF
and enroll to neighbor member of the DIF (multiple paths). Second one, when a process is
trying to connect for the first time. [5] [7]

The actual Enrollment starts when the initiator recieves M CONNECT R response. Then
the initiator send M START Enrollment containing Address which could be Null (not mem-
ber before) or Address (if rejoining), Address Expiration and other useful information. Mem-
ber send M START R response with Address, Application Process Name, Current Address,
Address Expiration included.

The RIB Deamon of the member processes the M Create messages that comprises in-
formations such as Neighbours and Directory forwarding table entries. This is followed
by the M CREATE R response carrying result of create request. Nearly after the mem-
ber sends all information in M CREATE messages, it sends M STOP Enrollment containing
Boolean value. If the value is true, the initiator will be free to transition to the Operational
state. On the other hand, if the value is false, than the initiator cannot transition to the

24

Operational state until an M START Operation is recieved. However, the initiator may read
another information from the member by sending M READ containing number from zero spec-
ifying object that want to read. After the initiator finished reading, it sends the M STOP R
Enrollment response.

The member sends M START Operationmessage and New Member reply with M START R
Operation response. By this the Enrollment is done and operation within DIF started.

5.3.1 Become the New Member of a DIF

The New Member was not connected to this DIF yet. That means that it has no information
about the DIF. The Enrollment could be more extensive in this case. This scheme displays

Joining IPC Process Member IPC Process

M_START (Enrollment { Address = null, Expiration_Time = … })

M_START_R (Enrollment { Address = 123, Expiration_Time = … })

M_CREATE (information_about_DIF 1)

M_CREATE (information_about_DIF 2)

M_CREATE_R (ok)

M_STOP (Enrollment { Transition = true })

M_STOP_R (ok)

M_START (operational_status)

M_START_R (ok)

. . .

Figure 5.1: Enrollment communication when IPC Process is joining a DIF for the first time

whole Enrollment phase, starting after the new member received M CONNECT R response
from the member. It starts with sending the M START Enrollment message containing
address = null (not member before). Depends on the location within a DIF the member
sends M START R Enrollment response with address for the new member and also other
informations such as Address expiration.

Than the member sends series of M CREATEmessages followed by the M STOP Enrollment
with the positive Boolean value. In this case, the new member do not read any information.
Now, when the new member have a DIF in common with one or more of the neighbors,
this information recieves through the M CREATE messages (it is multihomed).

The member sends M START Operation and the new member is successfully enrolled.

25

5.3.2 The Enrollment to known DIF

In this case the New Member (initiator) was a member of a DIF, but according to momen-
tary loss or failure on physical media, it lost a connection with the DIF. The initiator may
still have the old address that it had before.

The another possibility is that the initiator is a member of the DIF and is trying to enroll
to another member through different (N-1)-DIF for supporting multipath connection to
the DIF. As is shown in this scheme, the initiator sends M START Enrollment request

Joining IPC Process Member IPC Process

M_START (Enrollment { Address = 123, Expiration_Time = … })

M_START_R (Enrollment { Address = 123, Expiration_Time = … })

M_CREATE (information_about_DIF 1)

M_CREATE (information_about_DIF 2)

M_CREATE_R (ok)

M_STOP (Enrollment { Transition = false })

M_READ (152)

M_READ_R (objx { value = 12 })

M_STOP_R (ok)

M_START (operational_status)

M_START_R (ok)

. . .

Figure 5.2: Enrollment communication when IPC Process was also member of a DIF

with address, which was assigned to it before. The Member sends M START R Enrollment
response with the address and confirmation that it is all right. This is valid in case that
the initiator has still valid address (its expiration time still not expired) or if the initiator
is trying to enroll another member for support multipath connection.

For case when the member is rejoining to the DIF with address that expired, the member
will send new one to it. The difference is shown in picture 5.3. The rest of communication
is similar to the case above.

The M START Enrollment request may contain list of known informations such as ob-
jects created when it enroll for the first time. Responding process may check that informa-
tion if it is still valid and may shorten the part when objects are created or entirely skip
it. Also the initiator do not need to read so much information and this also shorten whole

26

Joining IPC Process Member IPC Process

M_START (Enrollment { Address = 123, Expiration_Time = … })

M_START_R (Enrollment { Address = 235, Expiration_Time = … })

M_CREATE (information_about_DIF 1)

. . .

Figure 5.3: Enrollment communication when IPC Process was also member of a DIF

Enrollment. At best case these two parts could be entirely skipped and the Enrollment
should be as quick as possible.

The following diagrams is designed based on known informations described in this chap-
ter. They covers all of the possible cases.

Figure 5.4: Initiating process Enrollment State Diagram

27

Figure 5.5: Responding process Enrollment State Diagram

28

Chapter 6

OMNeT++

OMNet++ [1] is a discrete event simulation environment which is primary used for a sim-
ulation of networks. The network simulation is not the only field of this environment, its
also used for the simulation of IT systems as well as hardware architectures.

When modeling in the OMNeT++, the main concept is in modules that are hierarchicaly
pludged and communicating with each other. The programming of logic of this modules
is used C++ language and for the defining structure of modules is used special language
called NED.

The modules are communicating through messages that may come from a module to an-
other module or could be sent from a module to a module itself. The messages are sent
through the specially defined input and output gates. Between that gates connections are
created that all communication among modules go through.

The OMNeT++ is running on every Unix-like platforms as well as on Windows, Linux
and Mac OS X.

29

Chapter 7

Description of Implementation

This chapter contains description of the implementation of Enrollment module and its
inclusion within IPC process.

7.1 Module design

The Enrollment take place within the creating management connection between two IPC
processes. There is no doubt, that Enrollment module belongs to the IPC process. It also
needs to communicate with other modules within one IPC process such as the RIB Daemon
that is a primary user of the CDAP within the IPC process [6].

Figure 7.1: IPC process in OMNeT++

Because to one IPC process, which is also member of DIF, could be connecting more than
one IPC processes, there is a need to keep information about the state and other information

30

associated with each management flow. For this purpose is created enrollmentStateTable
which is the component of this module as it is shown in Figure 7.2.

Figure 7.2: Enrollment module from inside in OMNeT++

The enrollment included in the enrollmentModule contains the part of the pattern
machine that reacts on received messages. This module is currently processing all the com-
munication associated with the CACE and the Enrollment. It is not necessary to have
a separate module for CACE because the Enrollment starts right after the connection is
established over the management flow.

7.2 Implementation

All the implementation is managed by object oriented paradigm. Therefore, every impor-
tant part is represented by its own class. This include CDAP messages, table entries and
also listeners associated with signals.

The Enrollment module is implemented as a pattern state machine for both sides
that reacts on received signals that in most cases carry the CDAP messages as an input.
It maintain information about the authentication (authType, authName, authPassword,
authOther). This information as well as maximum connection retries (maxConRetries) is
configurable and it is taken from parameters included in the enrollment.ned file.

This module also includes a function to validate authentication information held by
M CONNECT message. Two types of the authentication are supported namely: none and
simple password.

Each function is getting and setting all information from/to the EnrollmentStateTable
which contains std::list<> of EnrollmentStateTableEntry. This entry carry all neces-
sary information about states (conStatus for CACE and enrollStatus for Enrollment)
and other information such as current connection retries (conRetries), if Enrollment stops
immediate (immediateEnrollment). This information is associated with given management
flow.

Receiving and sending messages is provided by the RIB Daemon. Received and sended
messages are forwarded between modules by signals that one modul emits and appropriate
listener of this signal received and forward to its module.

The whole implementation follows the description provided in chapters 4 and 5.
Currently the CACE and the Enrollment happens over the standard data transfer flows.

The common application connection phase starts after the Flow allocator instance (FAI)
emits the signal that presents the successful allocation of the flow. This is caused by that

31

the RINA simulator is still being developed. However the CACEP and the Enrollment is
working even over that flow and it could be demonstrated.

7.3 Objects

According to the Enrollment were created two special classes namely EnrollmentObj and
OperationObj. The EnrollmentObj is used for start and stop Enrollment and it is currently
carrying information about address (address), the current address (currentAddress), ad-
dress expiration time (addressExpirationTime) and if the Enrollment stops immediate
(immediate). Another object is the OperationObj that is used to start operational state.

32

Chapter 8

Model Validation

This chapter contains a basic validation according to avaliable resources that are the only
specifications of the CACEP [12] and the Enrollment [5].

The behavior of implemented model is deterministic. It was tested on two different
simulation examples repeatedly with the same result. The main factors to control was if
each side react on a received message by the transition to the appropriate state and if it
answers with the expected message.

The CACEP starts right after the flow is successfuly allocated. The initator sends
the M CONNECT with all the defined values assigned. The member validates the authentica-
tion values. If none authentication is used, it sends the positive connect response always. If
the authentication by password is used, the member appropriate response. If it is negative,
the initiator then sends connect retries up to max connect retries.

The Enrollment proceeds in the way it was designed in chapter 5.3.2. It is expected that
there is no need to create or read any additional information. However all of the states for
both the initiator and the member progress in the right order. The Enrollment is in this
case as quick as possible and comply the design.

The successfully authenticated connection is enrolled and it finishes with the state
ENROLLED. Both phases strictly follow the design. According to that and according to
specifications that corresponds to the draft, the model could be marked as valid.

33

Chapter 9

Conclusion

The aim of this thesis was to analyse and to describe the connection of IPC process
to a layer (DIF). It was found that this consecution includes two phases of the commu-
nication: the Common Application Connection phase and the Enrollment phase that are
described in more detail here. The communication in these two phases is provided by
Common Distributed Application Protocol which is described here as well.

In this work the design was created out of these two phases according to available
information. The Enrollment was created that controls the communication within both
phases. The resulting modul is the part of the RINA Simulator developed in OMNeT++
on our faculty within Pristine project.

The Enrollment phase currently supports only so called pragmatic case. In that case
the requestor was member of a DIF and it tries to rejoin. Currently, other cases are not
possible because the whole simulator is still being developed. However, the implemented
part of the model is working and validated.

Further developement of the Enrollment module will deal with the other case of the En-
rollment and to support a proper deallocation. In addition, the CACEP occures not only
within DIF but as well within DAF. There is also a need to have a module to support
the CACE phase or it could be a part of a module.

34

Bibliography

[1] Omnet++ community site. http://www.omnetpp.org. Accessed: 2015-1-9.

[2] The pouzin society - building a better network. http://pouzinsociety.org.

[3] Steve Bunch. Cdap - common distributed application protocol reference, December
2010. unpublished.

[4] John Day. Patterns in Network Architecture: A Return to Fundamentals. Prentice
Hall, 2008. ISBN-13: 978-0-132-25242-3.

[5] John Day. Patterns in network architecture - recursive ipc network architecture -
basic enrollment specification, 2012.

[6] John Day. Recursive ipc network architecture - the interina reference model - part 3:
Distributed interprocess communication - chapter 1: Fundamental structure, 2012.

[7] John Day. Recursive ipc network architecture - the interina reference model - part 3:
Distributed interprocess communication - chapter 2: Dif operations, 2012.

[8] John Day. Patterns in network architecture - recursive ipc network architecture -
the interina reference model - part 1: Basic concepts of distributed systems, 2013.

[9] John Day. Recursive ipc network architecture - the interina reference model - part 2:
Distributed applications - chapter 1: Basic concepts of distributed applications, 2013.

[10] Eleni Trouva John Day. Recursive ipc network architecture - the interina reference
model - part 2: Distributed applications - chapter 2: Introduction to distributed
management systems, 2014.

[11] Karim Mattar John Day, Ibrahim Matta. Rearch’08 - re-architecting the internet
(madrid, spain, december 2008). 2008.

[12] Eleni Trouva Steve Bunch, John Day. Patterns in network architecture - recursive ipc
network architecture - common application connection establishment phase (cacep),
2012.

35

http://www.omnetpp.org
http://pouzinsociety.org

Appendix A

CD index

RINA/src/ Source codes of all current RINASim modules (including
enrollmentModul).

omnetpp-4.5-src.tgz OMNeT++ simulator installation package for Linux.
tex/ LATEX source code of this thesis.
project.pdf Electronical version of this thesis in PDF format.
README CD content, installation guide.

Table A.1: CD index

36

	Introduction
	Structure of the thesis

	RINA
	Fundamental Definitions
	IPC Process
	The IPC Management
	Flow Allocator
	Resource Allocator
	RIB Daemon

	Addressing and Naming
	Communication Protocols
	Common Distributed Application Protocol
	The Error and Flow Control Protocol
	DTP

	Common Distributed Application Protocol
	The CDAP overview
	Format and type of messages

	Common Application Connection Establishment Phase
	Type of messages
	Description of behavior
	The CACE within DIF
	The CACE within DAF
	Release

	Requirement for CACE
	Draft of CACEP

	Enrollment
	Type of messages
	Basic Concepts
	Creating a New DIF
	Connecting to a DIF

	Draft of Enrollment
	Become the New Member of a DIF
	The Enrollment to known DIF

	OMNeT++
	Description of Implementation
	Module design
	Implementation
	Objects

	Model Validation
	Conclusion
	CD index

