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Abstrakt
Hlavním cílem této práce je obohatit hudební signály charakteristikami lidské řeči. Práce
zahrnuje tvorbu audioefektu inspirovaného efektem talk-box : analýzu hlasového ústrojí
vhodným algoritmem jako je lineární predikce, a aplikaci odhadnutého filtru na hudební
audio-signál. Důraz je kladen na dokonalou kvalitu výstupu, malou latenci a nízkou
výpočetní náročnost pro použití v reálném čase. Výstupem práce je softwarový plugin
využitelný v profesionálních aplikacích pro úpravu audia a při využití vhodné hardwarové
platformy také pro živé hraní. Plugin emuluje reálné zařízení typu talk-box a poskytuje
podobnou kvalitu výstupu s unikátním zvukem.

Abstract
The primary goal of the thesis is to enhance musical signals with signs of human speech.
This involves the creation of an audio effect inspired by the talk-box, by analyzing the vocal
tract with a suitable algorithm like linear prediction and applying the calculated filter to the
musical audio signal. An emphasis is given to excellent output audio quality, low latency
and small processing overhead for real-time use. The outcome is a usable software plug-in
targeted to professional audio editing applications and for live performance as well using a
suitable hardware platform. It will emulate the real talk-box equipment or provides similar
audio quality with a unique sound.
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Chapter 1

Introduction

The techniques of speech analysis are heavily challenged in today’s industry whether speak-
ing about communication technology or mobile and embedded systems. This work is
intended to examine the most common algorithms of speech processing from a musical
perspective, and modify them appropriately to provide artistic features, excellent output
quality and sufficiently short processing time for real-time use.

The use-cases of making an instrument sound as if it was talking are very diverse and
leaves a vast space for creativity. The two most common uses are to make the human sound
robotic and to make the instrument’s own sound more human-like [1]. An instrument in this
context can include effect modules and modulation devices as well. An early technology for
achieving this functionality was the so-called talk-box effect emerging from the late 1940s
and used heavily by Peter Frampton. He used the Hail talkbox construction where the
instrument’s signal is fed into a compression driver1 which is connected to a long plastic
tube (Figure 1.1). The other end of the tube has to be placed into the musicians mouth
to articulate and shape the sound traveling through the tube. The resulting signal is
recorded with a microphone and sent to an output speaker after amplification. Although
this technology is relatively old, a lot of musicians (Ritchie Zambora, Slash, Joe Perry,. . . )
still use it to get the exact sound of the legendary effect.

Digital alternatives had to catch-up in quality with the original talk-box and a lot of
projects attempted this issue with different approaches. The analogue music vocoder is
one that became wide-spread and dominant throughout the late 70’s and early 80’s elec-
tronic music. This is a fairly complex piece of electronics that uses bandpass filters to track
the spectral envelope in different regions of the speech spectrum and applies the formant
structure onto a carrier signal provided by a keyboard for example. Speech coding algo-
rithms like linear prediction were also used occasionally, but their popularity fell behind
the vocoder. An example of linear predictive coding can be heard on the song Notjustmor-
eidlechatter2 composed by Paul Lansky from the album More Than Idle Chatter released
in 1994. These techniques were designed to explore the artistic potential of human voice
and computer synthesis and not primarily to simulate the talk-box as a physical system.
In fact, it is very hard or nearly impossible to find a suitable emulation of the talk-box.
All such attempts resulted in a different sound texture and some of them gained popularity
for their own features. Examining the potential of speech coding algorithms for talk-box
emulation is taken as a side quest of this work. This could be very hard to achieve given

1A small specialized diaphragm loudspeaker.
2Available from http://www.amazon.com/More-Than-Idle-Chatter-Lansky/dp/B000003GJ8
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the fact that all sorts of complex physical and acoustic phenomena are making this effect
so authentic. Yet it will serve as the main inspiration along the development.

(a) A typical talk-box configuration.
(b) Joe Satriani performing on a talk-box
setup.

Figure 1.1: Concept of the talk-box effect.

Today’s studio trends are causing massive migration of analogue effects into their soft-
ware equivalents. Digital Audio Workstations (DAW) use plugins to provide the desired
effect in studio quality. The result of this thesis is a plugin module as an emulation of
the talk-box effect. A two channel audio card with a microphone is sufficient to use the
plugin which extracts the formants from the speech and synthesizes them with the signal
from the instrument. The plugin has to deal with requirements like real-time use, excellent
audio quality, musical texture and response, and a relatively unique sound to stand out
from the average vocoder-like effects accessible on the market or be at least comparable to
them in quality. In addition, my goal was to produce a publicly available (reference) imple-
mentation of a voice-driven effect with an interesting sound. Linear prediction and voice
coding algorithms will be in the focus throughout the research phase to find an acceptable
solution as these – for some reason – gained seemingly less attention compared to other
voice synthesis techniques in the music industry. Any findings regarding sound quality and
processing performance optimizations would represent a contribution to the communication
and multimedia industry as well.

The list of requirements does not stop at audio aspects. The result has to be available
on all major platforms and for the widest range of DAW softwares. With a well designed
framework, the algorithm can be packaged into multiple plugin formats to support as many
workstations as possible. The final product has to be usable “as is” without an engineering
degree and all configurations of controlling parameters have to be meaningful and usable
in an appropriate situation. A uniquely designed user interface for the plugin is also part
of the vision.
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1.1 Organization of the Thesis

The thesis is divided into six major parts, following a progression from the most general
topics to more and more specific issues regarding the development. In the first part, it will
continue to raise as much interest as possible in the subject of speech synthesis and music
creation practices with studio editing softwares and audio effects in general. The goal is
to point out the exact segment in which the final product could be deployed. The second
part involving Chapter 2 will be dedicated to more specific theoretical issues and formal
definitions, that may be indispensable to describe the thesis product itself. This description
will reside in the next two parts with Chapter 3 being a design section, where the tonality
remains theoretical, but switches over to a focused plan for assembling the final software
product. Chapter 4 is intended to describe the very specific problems and unpredictable
(or hardly identifiable) implementation issues in the design phase. Chapter 5 gives place to
evaluation and user testing. Finally, the last chapter provides a general discussion on the
results and lays out the future directions of improvements and distribution.

1.2 A brief history of digital singing

Attempts to create artificial speech has begun way before the digital era. Some experi-
ments were already made back in the 18th century lending voices to statues (and similar
avatars) via speaking tubes and mysterious mechanical machines to impress the public.
One of the earliest successful attempts at speech synthesis occurred in Russia in 1779 when
Kratzenstein constructed a mechanical model of the human vocal tract that was capable of
reproducing a few steady state vowels. The first recorded success in synthesizing connected
speech was achieved by Kempelen Farkas (Wolfgang von Kempelen) in 1791 when he com-
pleted the construction of an ingenious pneumatic synthesizer (Figure 1.2) that was driven
by a bellows with the air being forced past a whistle and an adjustable leather “vocal tract”
[2].

Figure 1.2: Pneumatic speech synthesizer developed by von Kempelen in 1791. [3]

In 1961, the first singing computer appeared on the scene. The IBM 7094 sang the
song Daisy Bell with the vocals programmed by John Kelly and Carol Lockbaum and the
accompaniment by Max Mathews. This was an inspiration for Arthur C’ Clark as the
song made its way to the legendary movie 2001 Space Odyssey released in 1968. The
earliest computer music project at Bell labs in the late 1950s yielded a number of speech
synthesis systems capable of singing, one being an early acoustic tube model of Kelly and
Lockbaum [4]. This was considered computationally and economically too expensive at the
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time to be used for music composition.
An early legacy of voice synthesis is the VODER device patented in 1939 by Homer

Dudley at Bell Labs. The technology was first demonstrated publicly at the 1939 New
York World’s Fair. It allowed speech generation using a controlling interface which was
fairly complicated. The solution consisted of a parallel array of ten electronic resonators
arranged as contiguous band-pass filters spanning the important frequencies of the speech
spectrum (such a system is sometimes referred to as a spectrum synthesiser). The device
was controlled via a keyboard (i.e., played like a piano). Ten finger keys controlled the
output gain of each of the filters, a wrist bar controlled the selection of aperiodic hiss or
periodic buzz, whilst a foot pedal controlled the pitch of the buzz. Three additional keys
supplied appropriate stop-like transient excitation [2]. Werner Meyer-Eppler3 recognized
the capability of the Voder to be used in electronic music. The device required a skilled
operator to produce intelligible speech and making singing voice was even more challenging.

Under the acronym VOCODER (VOice CODER) was hiding a device capable of cod-
ing speech efficiently for further transmission and communication purposes. Research was
already in progress from the late 1920s at Bell Labs yielding the pair of devices known as
the VOCODER for analysis and the VODER for speech synthesis which became more and
more interesting for the scientific world. It was finally shown that intelligible speech can
be produced artificially. Actually, the basic structure and idea of VODER is very similar
to present systems which are based on the source-filter model of speech [5].

Figure 1.3: A picture of the VODER in use. [3]

The Phase Vocoder debuting in 1966 (Flanagan and Golden, Bell Labs), implemented
using discrete Fourier transform, has found extensive usage in the music industry. Despite
that it was not primarily developed for speech coding, it can be considered a vocoding
effect as it allowed the transformation and recreation of speech with different properties
like the pitch or playback speed. Perhaps the most notable implementation was produced
by Mark Dolson in 1983 which took advantage of the increasing computing power at the
time. Today’s auto-tune effects are based on the phase vocoder principle.

Linear prediction was a breakthrough in speech processing and had a noticeable impact
on digital music as well (Lansky, mentioned in chapter 1). The success can be related to

3Werner Meyer-Eppler (30 April 1913 – 8 July 1960), was a Belgian-born German physicist, experimen-
tal acoustician, phoneticist and information theorist. Source: http://en.wikipedia.org/wiki/Werner_
Meyer-Eppler

7

http://en.wikipedia.org/wiki/Werner_Meyer-Eppler
http://en.wikipedia.org/wiki/Werner_Meyer-Eppler


the mathematical similarity with the source-filter abstraction of the vocal tract [4]. This
algorithm will be discussed in the following chapters in detail.

1.3 Digital audio effects

There are a few misconceptions about certain phrases used in the field of signal processing
when it comes to sound waves in general. Terms like sound effects, sound transformation,
sound processing or audio effects are used many times for the same subject, despite they
may refer to slightly different disciplines. Even the word “effect” can be confusing as it
represents the perception of certain cause or phenomenon in the mind of a person, which
is inevitably subjective and can be hard to define formally. With this in mind, one could
separate the two most frequently used terms sound effects and audio effects by an analogy of
the object being made and the tool used for creation [6]. The shift of the meaning of “effect”
prevails in the semantics of these two terms: a sound effect is the change or modification
being perceived itself and the tool used to make that change is an audio effect. A sound
effect can provide natural or processed sounds either by synthesis or recording to produce
specific effects on perception used to simulate actions, interaction or emotions in various
contexts. On the other hand, an audio effect is the subject of research and falls into the field
of signal processing. The fact that these terms are used interchangeably is not accidental.
The most usual audio effects are known to modify the sound at its surface level by means
of the retrievable amount of information from the digitalized waveform. Filters, delay
lines, frequency domain transformations can modify the sound quite moderately (thinking
of distortion effects, especially. . . ) but the used methods are still touching the surface
of the information contained in the samples with little intelligence at all. An example of
deeper modification could be the phase vocoder which extracts the pitch and envelope and
resynthesizes the sound using only the information from the samples and not the samples
themselves. Today’s audio effects are reaching a maturity where these “levels” are melting
together and it is not a coincidence that the terminology melts with it at the same time.
The definition of “audio effects” provided by the DAFX Book [6] and explained above will
be used throughout the rest of the thesis for the sake of consistency.

Figure 1.4: Communication flow in sound effect evaluation. [6]

The result of this work has to be an audio effect targeted to digital workstations. It
could be appropriate to make a small overview of currently available effects and their cat-
egorization, only to point out where this “guitar speech” effect could fit into the picture of
studio effects, which music production softwares are the potential hosts and what features
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they provide. The usual communication flow between the actors of music creation (evalua-
tors of audio effects) is shown on Figure 1.4 where each actor could be a different entity or
even the same in every case depending on the situation. The categorization can be based
on the requirements of any from these actors and would yield fairly diverse schemes as all
of them have a bit different motivation.

The instrument maker’s perspective is perhaps the most relevant from a technical stand-
point reflecting the implementation concepts. The following type of components are known
to exist in this class: [6]:

� Filters and delays (re-sampling)

� Modulators and demodulators

� Non-linear processing

� Spatial effects

� Time-segment processing

� Time-frequency processing

� Source-filter processing

� Adaptive effects processing

� Spectral processing

� Time and frequency warping

� Virtual analog effects

� Automatic mixing

� Source separation.

Perceptual properties are relevant to the end-users, namely the producers, musicians
or composers. Nevertheless, it may also be a foundation for developing user tests and
interfaces [6]:

Loudness The perceived intensity of sound. Relates also to dynamics, and phrasing (play-
ing styles), levels in musical terminology like pianissimo (pp) or fortissimo (ff). A
couple of effects is based on this quality such as compressors, limiters, tremolo (am-
plitude modulation), noise gates, and so on. . .

Time and Rhythm related to duration, tempo, and rhythmic modifications (accelerando,
deccelerando)

Pitch Denotes the manipulation of note heights, intonation, transposition or harmony
changes. (e.g., pitch shifter)

Spatial Hearing Environment acoustics, motion effects (Doppler, rotary speaker) as well
as source localization (distance, azimuth, elevation)

Timbre Captures the texture, or essence of the sound. More specifically it relates to
spectral attributes, like formants, short term time features as transients and attacks.
Generally, the timbre is what makes two sounds with the same pitch different. Ex-
ample effects include choruses, distortions, equalizers, or even vibrato.
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1.4 Audio workstations and pluggable effect modules

Starting from the 1970s, the tools of music production have slowly but inevitably trans-
formed from multi-channel tape recorders to integrated software and hardware solutions.
Quality issues from the AD/DA conversion could not hold back the economic and practical
benefits of computer based recording system and nowadays, the change-over has almost
finished. Although analogue recording devices are still part of the chain, the center or
“brain” of the recording system is a digital audio workstation running on a PC or Mac
depending on the particular software. Since a computer has no tapes but a hard drive, the
available space allows a non-destructive workflow whereas the old technology had to delete
a previous recording. A DAW can have several “tracks” like a multi-channel tape recorder
with many additional features, like containing multiple layers on each track or dynamically
allocate or remove unused tracks. A recorded piece of audio can be processed by a unique
signal chain assembled for a particular track with a separate time-line of parameter values
(sometimes referred to as the automation curve). Additionally, a signal chain can utilize
inserts and sends to route the audio data flow by preference.

Figure 1.5: Preview of Ardour3 with several plugin modules in use.

Another major benefit is the opportunity for individual audio effect developers to dis-
tribute their work in a form of external plugin modules (shortly plugins). These can be
loaded into a signal chain corresponding to one of the workstation’s tracks and used real-
time in the monitored output as well. From a technical viewpoint and especially as a
programming concern, these modules are compiled shared or dynamic libraries4 as far as
the computing logic goes [7]. Static information and meta-data can reside in separate de-
scriptor files in a chosen data definition language (XML or similar). Plugin creation can
be done with a specific API or framework that defines the interface of the shared library.
Frameworks do exist for different platforms with various approaches but their interfaces
can be unified with additional effort.

4Standard OS dependent binary file, .dll in Windows, .so in Linux. . .
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1.4.1 Overview of DAW applications

In order to build a rough picture of current DAW solutions and to choose a reference
instance for developing the plugin, an investigation has been made concerning common and
well known DAW applications:

Steinberg Cubase/Nuendo One of the oldest representatives. It offers an impressive
set of internal effects and support mainly the VST plugin type as it was developed
primarily for this product.

Apple Logic The DAW supported by Apple and available only for their platforms. A
major advantage is the excellent real-time support of a Mac system. Audio Unit
plugins are supported natively and others can be utilized through special wrapper
plugins.

Avid ProTools Simply speaking, the industry standard in digital audio production. In-
stead of providing a stand-alone software, it covers hardware interfaces (“tools”) for
I/O and acceleration. It owns a unique plugin format as well which was discussed
above.

Ardour3 Although this DAW is significantly less widespread than the previous “big play-
ers”, it is an important and only living representative from the open-source world of
professional audio editors (primarily but not exclusively for Linux) and is amongst
the few existing open-source professional music production softwares at all. It is a
suitable candidate to be a reference DAW for the development phase as well.

The provided list includes only a few of the most significant DAWs, without mentioning
a lot of high quality but similar applications. Plugin modules are unable to run individually
without a hosting environment. In technical terms a host can be any piece of program able
to load the library at run-time and pass through audio and control data. DAW applications
are also hosts and each of them supports slightly different features. The mode of operation
(real-time use, GUI support, HW acceleration, etc.) may also differ from each other.
However, some features are assumed implicitly, like the ability to display a plugin’s own
UI, or in case of no special graphics, the host has to generate the control widgets based on
the available metadata.

1.4.2 Plugin modules

A general scheme of a plugin is shown in Figure 1.6. A reasonable API should provide
a straightforward documentation on writing plugin instances. The framework will almost
certainly define a function with the appropriate linkage as an entry point. Moreover, virtu-
ally all of them specify a function in which the processing will take place (usually process,
run or a similar name). Further details about this topic can be found in [8] for example.
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Figure 1.6: Anatomy of a software plugin. [8]

A non-exhaustive overview of the common plugin APIs is provided below:

Steinberg’s VST A proprietary plugin framework from the company Steinberg. It ap-
peals with the widest range of support amongst audio applications. Moreover, it
supports unique user interface creation and MIDI functionality.

Audio Units The plugin standard for Apple’s Mac platform. It covers system-wide audio
effects as well as studio applications with all the essential features like GUI support,
real-time processing, etc.

Avid Audio eXtension Primary format for the ProTools family of applications. Its
unique feature amongst the competition is the ability to use hardware acceleration
using the proprietary accessories bundled with a ProTools package.

LADSPA A slightly outdated format that has been considered as the system-wide stan-
dard for GNU/Linux based operating systems. It shines with the most simple and yet
very well designed API which consists of a single header file. Open-source portability
and unbeatable simplicity has a drawback of lacking a dedicated MIDI support or
custom user interface creation.

LV2 A fully fledged modern plugin API replacement for the emerging Linux audio infras-
tructure intended to be the successor of the previous LADSPA format. It supports
GUI creation with existing widget toolkits, MIDI messages, data description with
static metafiles, and many other features.

JUCE audio framework This is a unique member of the list being a wide-ranging C++
class library for building cross-platform applications and plugins (as stated in their
official website5). If an audio plugin is made with the JUCE library, it can be compiled
to support many of the previous formats simultaneously. It offers high level signal
processing classes as well, and is not limited to plugin development, but aims to be
an overall audio software toolkit.

5http://www.juce.com/
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Type Maker API License features Notes

VST Steinberg proprietary MIDI, GUI widest popularity
Audio Units Apple proprietary MIDI, GUI only for Apple systems

Audio eXtension Avid proprietary MIDI, GUI HW accel.
LADSPA ladspa.org open-source – Very simple API

LV2 lv2plug.in open-source GUI, MIDI GUI with any toolkit
JUCE ROLI ltd. open-source GUI, MIDI supports multiple formats

Table 1.1: Summary of plugin architectures

Some plugin technologies can be utilized in more lightweight audio editors (e.g., Audacity
or Garageband) with offline and destructive editing approach. Furthermore, they can be
used in system wide audio daemon services as Pulseaudio can use LADSPA plugins or the
Coreaudio framework with Audio Units plugins.

1.5 Similar voice-driven audio plugins

This section is dedicated to investigate similar products on the market as the developed
plugin is intended to be. Vocoder plugins are fairly easy to obtain even for free of charge
as part of several plugin bundles (e.g., the open source CALF plugins, the free MDA VST
bundle).

Figure 1.7: Preview of the AIR Boxing Talk plugin. Source: protoolsproduction.com

More complex commercial formant extraction plugins are also available, although not
quite common and tend to lean towards interesting voice synthesis effects instead of really
simulating a talk-box unit. Some realizations advertise themselves as “digital talkbox”
plugins, like the free ARTICULATOR Evo from the company Antares or the Boxing Talk
from the AIR plugins bundle, but they sound just like a precise vocoding effect in almost all
cases. Even a broader web search for a dedicated talk-box simulation yields no reasonable
result if an exact talkbox plugin is desired. This phenomenon sets a suspicion that the
mentioned physical simulation is far more complex than it would be cost-effective, or simply
impossible yet with the current speech analysis techniques. Nevertheless, even the free
alternatives can provide a strong inspiration of what a synthesis plugin is capable of and
how the UI layout is arranged. A lot of extra modes, and modulations can be found in
these effects, seemingly trying to fill the gap between the digital, robotic sounding vocoders
and the acoustic, organically sounding talk-box solutions.
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Chapter 2

Theoretical Overview of Voice
Synthesis

Analyzing the performer’s speech is the most fundamental part of this work and requires
some formal basis. As the title suggests, this chapter provides an introduction to the field
of speech processing to support any deliberation occurring in the design phase. The goal is
not to provide a comprehensive description of speech coding but to cover the thesis subject
itself without major theoretical gaps.

2.1 Spectral properties of the human vocal tract

A short introduction of the biological aspects is appropriate before describing the spectral
model on its own.

Figure 2.1: Biological speech system. Source: Wikipedia1

Without going into further details, the three main stages of speech production are as
follows [9]:

1. Air flow from the lungs provides the acoustic power needed to make any sound at all.

2. The flow is modified by the periodically opening and closing larynx that results in a
sound source or excitation.

1en.wikipedia.org/wiki/Motor_theory_of_speech_perception
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3. The vocal tract articulates a distinct vowel from the incoming signal.

A wide-spread representation of the speech system is the source-filter model, as the
source is coming from the vocal cords and the vocal tract acts as an acoustic filter [1]. It is
a system that has its own impulse response h(t) and spectral transfer function H(f) with
each configuration.

Figure 2.2: Analogy between the biological speech system and the source-filter model. [1]

The transfer function is obviously not constant as the mouth shape is changing con-
tinuously. The implication is that the filter modeling the vocal tract is time varying. A
sound source has to excite this filter in order to produce speech. If this excitation signal
is periodic, the result will be a voiced sound. With a stochastic or noisy excitation, the
speech will be unvoiced.

Figure 2.3: Time (left) and spectral domain (right) samples of voiced (top) and unvoiced
(bottom) speech. Source: what-when-how.com

A real-time speech processing application has to continually track the state of the vocal
tract in such short intervals (frames) where it becomes much or less stationary. The spectral
shape of voiced fragments depends on two major factors:
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1. The fundamental frequency and the accompanying harmonics F0 inducted by vocal
cord vibrations.

2. The spectral envelope with several distinctive local maxima created by the vocal tract.
These peaks are referred to as formants.

The human hearing system acts like a filter bank and is most sensitive to the
200 - 5600 Hz frequency range in terms of perception [10]. This is where the first three for-
mants as the most important spectral features occur in speech, characterizing any human-like
manifestation. Reproducing the spectral envelope of the speech is the key to create a rea-
sonable talk-box simulation.

2.2 Source-filter separation

The previous section has led to a conclusion that any manipulation with the speech has to
rely on the accuracy of detecting and extracting the formant structure separated from the
excitation source. Referring to chapter 1.3, this can be considered as a deeper analysis of
sound samples. Before going into further details of how the separation could be done, the
meaning of the term spectral envelope has to be defined accurately to know what is going to
be separated exactly. Taking a purely harmonic signal, the envelope could be imagined as
the curve which passes through the points denoting the harmonics in a frequency domain
representation. The question remains open concerning what interpolation has to be used
to retrieve parts of the curve in-between the harmonics. This definition stays no longer
valid, if additional noise or non-harmonic components are present in the signal. In this
case, the nature of the spectral envelope becomes dependent on what exactly makes up the
excitation and what is the resonance. With all these concerns in mind, the (non-formal)
definition found in [6] is borrowed, stating that “a spectral envelope is a smoothing of a
spectrum, which tends to leave aside the spectral line structure while preserving the general
form of the spectrum.”

Figure 2.4: Source-filter analysis work-flow. [6]
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Three reference techniques are wide-spread (with many variations) to perform a source-
filter separation:

The channel vocoder with several frequency bands to estimate the signal energy inside
each band and assemble the approximation of the spectral envelope.

Linear prediction yielding an all-pole filter corresponding to the envelope estimate.

Cepstral analysis techniques perform a conversion of spectral domain information with
multiplicative filter components into a logarithmic scale with additive (and thus sep-
arable) source-filter components.

Figure 2.5: Source-filter estimation scheme. [6]

Figure 2.5 depicts a typical manipulation scheme where the spectral envelope of the
signal x(n) is removed by filtering with the inverse H1(z) filter and replaced by a different
envelope denoted as H2(z).

2.3 Linear prediction algorithms

Linear prediction is a widely used mathematical apparatus to estimate the behavior of
discrete-time signals from their history. Applications are not restricted to sound waves,
usages can be found in many engineering areas, but the subject covered in this thesis is
focused on how an acoustic filter could be retrieved from a short speech signal segment. This
topic is essential regarding the design phase. Despite the fact, that detailed descriptions
can often be found in literature, a formal section based on [6] is dedicated to the subject
to be a well of backward references through the development. This section assumes that
the reader is familiar with basic digital filtering concepts like FIR and IIR filters or the
Z-transform.

The basic model works with a discrete time input signal x(n) and tries to predict the
next sample as a linear combination of past samples. The prediction of x(n) is computed
using an FIR filter by:

x̂(n) =
p

∑

k=1

akx(n − k) (2.1)
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where p denotes the prediction order and ak are the prediction coefficients. An error
or residual signal can be calculated from the difference of the predicted samples and the
original ones by the equation:

e(n) = x(n) − x̂(n) = x(n) −
p

∑

k=1

akx(n − k) (2.2)

or working in the Z domain:

the prediction filter: P (z) =
p

∑

k=1

akz
−k (2.3)

the prediction error: E(z) =X(z) − X̂(z) =X(z)[1 − P (z)] (2.4)

Equation 2.4 forms the basis of analysis and synthesis and is referred to as the feed-
forward prediction scheme (Figure 2.6) due to the direction of the calculation.

(a) analysis (b) synthesis

Figure 2.6: Feed-forward prediction block scheme.

Based on the previous derivation, the prediction error filter (simply inverse filter) is
defined as:

A(z) = 1 − P (z) = 1 −
p

∑

k=1

akx(n − k) (2.5)

and a Z domain multiplication with the original signal will yield the error signal:

E(z) =X(z)A(z) (2.6)

Using the approximated error (residual) signal as an input to the all pole filter H(z) defined
by equation 2.8 will produce an output signal Y (z):

Y (z) = Ê(z)H(z) (2.7)

H(z) =
1

A(z)
=

1

1 − P (z)
(2.8)

If H(z) was the predicted envelope filter to the original signal X(z) and Ê(z) is the
estimated residual of X(z), then Y (z) should be a nearly matching version of the original
input X(z).

Knowing that H(z) is practically a spectral model of the vocal tract (without a gain
factor), it shall be called the synthesis filter or simply LPC filter. In case of desiring
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compression, the low numerical values of e(n) are opening the possibility of efficient quan-
tization. This requires the minimization of the residual energy by obtaining an accurate
LPC filter. The exact calculation of LPC coefficients resembles to a problem of finding the
minimal energy for the error signal, E = E{e2(n)}, thus calculating its first partial deriva-
tives and setting them to zero. Solving this derivation would lead to E{x(n)x(n− i)}. The
majority of literature suggests a solution using the autocorrelation values

rxx(i) =
N−1

∑

n=i

u(n)u(n − i) (2.9)

together with the Levinson-Durbin recursion method for finding the coefficients of the
inverse filter A(z). In equation 2.9, u(n) = w(n)x(n) denotes a windowed version of a
block with N samples.

The best spectral fit can be found by minimizing the residual energy, but the gain factor
of the calculated signal segment is still ignored. To accurately model the input signal x(n),
a modified synthesis filter is used corresponding to the following equation:

Hg(z) = G ×H(z) =
G

1 −
p

∑

k=1
akz−k

(2.10)

where G stands for the gain factor of the calculated segment. By using the autocorrelation
coefficients according to equation 2.9, G can be obtained as:

G2
= rxx(0) −

p

∑

k=1

akrxx(k) (2.11)

The last important term to define is the prediction gain that is essentially the ratio of
the signal energy compared to the residual e(n).

Gp =

N−1

∑

n=0
x2(n)

N−1

∑

n=0
e2(n)

(2.12)

There are certain weaknesses of linear prediction when used for speech analysis mainly
due to the assumption of linearity. The inverse filter A(z) does not model the incidental
nonlinearities, that may occur from various causes, like source-tract coupling, non-linear
wall vibration losses, and aerodynamic effects resulting in deviations from the ideal source-
filter model. The outcome of re-synthesis could sound “buzzy” if these factors reach an
extreme [4].

2.4 Numerical representation of prediction coefficients

The coefficients ak calculated from linear prediction are mostly a subject of further cal-
culations or interpolation. Some of these operations require or suggest a different type of
representation, to save computing resources, maintain filter stability, or aid miscellaneous
post-processing algorithms. Needless to say, that all of these representations have to con-
tain 100% of the information from plain LP coefficients and provide sufficiently short time
complexity regarding the conversion.
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Line spectral frequencies It is generally known that LP coefficients have a wide numer-
ical dynamic range which makes them ineffective for operations like quantization. On
the other hand, line spectral frequencies have much better dynamic range. Also, LSF
coefficients are ideal for interpolation between arbitrary speech segments. Another
useful property is that LSF coefficients reside in the spectral domain and have a close
relationship with the actual formant structure. A change in a particular coefficient
will affect the power spectrum near the corresponding formant [9].

Reflection Coefficients A side-product of the Levinson Durbin recursion is a set of pa-
rameters known as the reflection coefficients of an acoustic tube model of the vocal
tract.

Autocorrelation Function In certain circumstances, the coefficients calculated with equa-
tion 2.9 can be used without further calculation having attractive features for inter-
polation [9].

2.5 Analysis windows

The theory of speech analysis and synthesis works mostly with short time segments usually
called frames. Determining the duration of these chunks is up to the perceptual and motoric
limitations of our biology. More specifically, to ensure that the frame contains useful static
information, it has to capture a duration as long as the inertial forces can keep the vocal
tract in a stationary state. During slow speech, the vocal tract’s shape and excitation can
remain unchanged for even 200 ms. On the other hand, the average duration of a phoneme
is considered to be 80 milliseconds [10]. Extraction of the formant structure needs a more or
less stationary spectral footprint but it is still required to have enough samples to perform
an accurate analysis. Additionally, if the signal is sliced into pieces, and frequency domain
operations are applied to the segments, the continuity of spectral characteristics might be
distorted if a simple rectangular “scissor” is used. This is a common signal processing issue
and the solution is to use a window function for selecting each segment from the signal. The
rectangular window would introduce several high frequencies due to the edges. Multiplying
the input signal s(n) with a window function w(n) can reduce these negative effects as
it eliminates the mentioned edges of the rectangle. The goal here is not to describe the
theory of windowing, but to introduce, what kind of window functions may be considered
in continuous real-time speech analysis for the best audio quality.

The Hamming window is considered as the most popular in case of FIR filtering. It
weighs the samples near the center with the highest ratio and slowly decreases with
a sinusoidal fashion close the edges of the set.

w(n) = 0.54 − 0.46 cos(2π
n

N
) , 0 ≤ n ≤ N (2.13)

The Hanning window is very similar to the previous Hamming window with a difference
that the Hanning window gets very close to zero at the edges.

w(n) = 0.5(1 − cos(2π
n

N
)) , 0 ≤ n ≤ N (2.14)
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The exact Blackman window with its derivatives, the Blackman and Blackman-Harris
window are believed to give the best out-of-band rejection [11].

yi = xi[0.42 − 0.5 cos(w) + 0.8 cos(2w)] (2.15)

for i = 0,1,2, . . . , n − 1, where n is the window length.
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Figure 2.7: Comparison of the most common window functions.

Figure 2.7 shows a side-by-side comparison of the most common window functions.
Many others are known to exist beside the mentioned window types, like the triangular,
Bartlett, Kaiser-Bessel, Poisson, Reimann, just to mention a few. The question here is
not only the type of window function, but the alignment and overlap ratio of each segment
which is a specific design issue, and it will be discussed in Chapter 3.

2.6 High-Fidelity audio filtering

Filtering is the very essence of basic signal processing. Common description of how digital
filters work can be found in many articles and a lot of tools are available for designing filters.
Yet, when it comes to the implementation, a few issues just might pop up that have to be
investigated carefully. It is not a secret, that the final product has to be ready at the time
of writing these lines and the existence of this section is implied by specific problems which
do require an additional theoretical basis regarding filter implementations in software.

When a transfer function of the form

H(z) =
b0 + b1z

−1
+ b2z

−2
+ ⋅ ⋅ ⋅ + biz

−i

1 − a1z−1 − a2z−2 − . . . − aiz−i
(2.16)

is realized it means a conversion into a filter network or structure. There are generally more
than one possible solutions each having unique qualities. The choice of structure can be
influenced by factors such as the sensitivity to quantization, level of output noise due to
arithmetic rounding or truncation, computational efficiency, number of systems used, and
type of filter [12]. This section will briefly introduce the most significant topologies and
their properties.
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Direct forms Using the direct relationship between the filtering topology and the differ-
ence equation, the obtained structure is shown in Figure 2.8a. Coefficients of the transfer
function serve directly as a multiplier in the corresponding structure which is known as the
Direct form 1 (DF1). As stated in [12], there are severe coefficient sensitivity problems,
when the poles of the filter lie close to each other or near the unit circle in the Z plane. In-
put is processed first by the bk coefficients, that is why this structure is sometimes referred
to as a zeros-before-poles realization.

(a) Direct form 1 (b) Direct form 2

Figure 2.8: Direct form filter structures.

The structure in Figure 2.8b is an alternative realization known as the Direct form 2 or
canonic form due to the minimized number of utilized processing blocks. The properties
regarding coefficient sensitivity are very similar to DF1, quantization and generation of
high level roundoff noise is still present. These forms are popular for hardware realizations,
because they allow for a high level of parallelism.

DF1 is known to be more resistant to overflow problems which is not guaranteed in DF2.
According to [12]: “For a filter with an input and output magnitude less than unity, the
inputs to all multipliers can be expressed in fractional arithmetic. . . If modulo arithmetic
is used, the partial sums of products may be allowed to overflow since it is known that the
final output will be within the range of the number system used.”

Cascade form The cascade form (Figure 2.9) reduces the coefficient sensitivity and quan-
tization problems known by the previous arrangements. Here, the transfer function is
shaped into a cascade of first or second order sections Hi(z):

H(z) =
K

∏

i=1

Hi(z) (2.17)
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Figure 2.9: Cascade filter realization.

This arrangement may also require a greater control over the ordering of sections and
the pairing of the poles to achieve the best results.

Parallel form A sibling of the cascade arrangement where the first or second order
function blocks are placed in parallel side-by-side to each other, as depicted on Figure
2.10. The parallel structure produces even lower levels of roundoff noise than the cascade
arrangement [12].

Figure 2.10: Parallel filter realization.

The provided list of arrangements is by no means complete and touches only the surface
of how a digital filter can be implemented when a particular hardware architecture is under
examination. The decision of which structure will be used, can be already predetermined
by the purpose of filtering – an equalizer will surely benefit from a cascade implementation.
Furthermore, a specific platform can introduce additional constraints. For instance, if
integer arithmetic is unavoidable or parallelism is not an option. In fact, for a software
plugin implementation, the fundamental sample data type is almost certainly specified by
the API or framework used for plugin creation which is usually a single precision floating
point type (float in C language). Parallelization of the filtering algorithm inside a plugin’s
source code can also be tricky as the host may be sensitive to thread-safeness of the called
routines. Hardware acceleration is yet another issue which has to be thought over carefully.
Ideally, acceleration should rely on the framework’s features used for development (e.g.,
Avid’s Audio eXtension plugins).
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2.7 Zero State Response and Zero Input Response

An alternative way of filtering can be achieved through the transfer function’s zero state
and zero input response, abbreviated as ZSR and ZIR respectively. Suppose a transfer
function H(z) and a speech signal being defined as L dimensional vector [13]:

S = [s(0), . . . , s(L − 1)], s(n) =
∞

∑

i=0

h(i)u(n − i)

with h(n) marking the infinite-length impulse response of H(z) and u(n) being an excita-
tion signal. ZIR is nothing more than the response of a filter structure with arbitrary state
to a zero input. This could be even infinitely long, if an IIR filter is used. The ZSR on the
other hand, is the result of using a zero state filter for filtering an input signal. Considering
a frame-based re-synthesis of a speech signal, where coefficients of H(z) change with each
frame of a usual 20 − 30ms length, there is a problem of handling the state of a constructed
filter for H(z) at the moment of a filter change taking place. A possible solution is to use
the property of the transfer function being decomposable to a sum of the corresponding
ZIR and ZSR in order to perform continuous filtering on a derived excitation signal e(n).
Formally (based on [13]):

S = SZIR +EH E = [e(0), e(1), . . . , e(L − 1)]

with the matrix product EH being the zero state response of H(z) using the L dimensional
vector E as the input signal. In this case, H has to be a matrix containing samples of the
impulse response in the following form:

H =

⎛

⎜
⎜
⎜

⎝

h(0) h(1) ⋯ h(L − 1)
0 h(0) ⋯ h(L − 2)
⋮ ⋮ ⋮ ⋮

0 0 0 h(0)

⎞

⎟
⎟
⎟

⎠

(2.18)

A non-formal explanation is that the zero input solution is the response of the system
to the initial conditions, with the input set to zero. The zero state solution is the response
of the system to the input, with initial conditions set to zero. The complete response is
simply the sum of the zero input and zero state response.
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Chapter 3

Conceptual Design of the Talk-box
Emulation

This chapter will outline a design plan of an audio effect using the previously described
theoretical basis. The goal is to use illustrative design tools like block diagrams, to explain
each part of the system and support technical decisions with proper reasoning. Additionally,
outline some alternative and potentially viable solutions if found to be appropriate.

3.1 Technical description of the idea

The basic concept was roughly introduced in previous chapters. This section will guide the
reader through a more specific description. The upcoming plugin is intended to be an exten-
sion effect module for home or studio recording setups, let it be called the formantfilter
from now on. In practice, it requires minimalistic and usual equipment including a micro-
phone and virtually any kind of musical instrument like a synthesizer or an electric guitar.
A recording hardware interface is also implicitly assumed.

Instrument

Audio interface

Figure 3.1: A minimal hardware setup to use the plugin.
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The formantfilter requires two input signals: one for the instrument and one for the
microphone. In order to set up the DAW to correctly run the plugin, a two channel bus
can be added to the session with the inputs routed accordingly. Using the effect consists
of playing the instrument and making vocal sounds (noises, whispers, etc.) simultaneously.
The vocal does not have to be in tune with the underlying harmony, the pitch of the vocals
should not have any effect on the note being played whatsoever. The instrument dictates
which note will be heard, instead of the vocals.

The effect should have a few control parameters, though not too many to keep it user-
friendly. The main function is to synthesize speech with the instrument sound, but other
modes of operation can be imagined as well, like mixing the original instrument or vocal
signal with the synthesized result. A variation or mode where the vocal signal is pitch shifted
to the tone of the instrument and added to the resulting sound was also considered with
various cross synthesis methods (using just the excitation pitch shifted vs. the complete
signal. . . ).

(a) Mono version (b) Stereo version

Figure 3.2: Illustration of plugin instances.

A stereo and a mono configuration are taken into account, these are depicted on Figure
3.2. Ideally, the plugin logic should use independent processing chains on each channel.
More channels than two are not likely to be utilized during usual operation.

A straight-forward attitude is to implement the complete algorithm offline with a rich
signal processing toolkit like the one offered by MATLAB. The real plugin version with
online processing can be assembled afterwards. Finally, a unique GUI can be crafted for
the plugin to be more competitive against similar products. With an intention of using
multiple plugin technologies (VST, LADSPA, etc.) for various platforms, an independent
and simple C/C++ framework is also desired, which can be:

1. An external project attempting such issues.

2. A completely new framework written from scratch.

The first attempt would introduce an essential dependency at the very basic level, and
the only considerable framework – the JUCE library – seemed to be a promising but incom-
plete solution, with a lot of unnecessary modules which produce a potentially huge binary.

26



For the above mentioned reasons, the decision is to use a tiny but functional framework
written from scratch in C++. This allows a clear formulation of the final algorithm itself
which will not depend on any particular API, and comes with maximum portability. Fig-
ure 3.3 shows how the algorithm will be defined over a unified plugin interface. Chapter 4
reveals further details about the implemented layers.

Figure 3.3: Scheme of a custom plugin framework.

3.2 Requirements and constraints

As the section title suggests, a brief summary will follow concerning the technical require-
ments. Being a plugin which has to support real-time processing, it is appropriate to
investigate the maximal acceptable latency values, and other ways of reducing the per-
ceived delay from the input to the output even if the physical buffering is limited to a
certain amount of samples.

As stated in [14], the maximum time of human-perceptible audio latency is assumed
between 20 – 30 ms. This can be assigned to a duration of a single analysis segment. The
frame length is not the only factor that contributes to a latency-free operation. A smartly
structured analysis window has to be used to avoid artifacts and distortion with minimal
delay. Most LPC coders use 20 ms frames which are further divided to sub-frames, or the
frames overlap [13].

A 20 ms long duration for each frame implies that all the calculations have to take place
in the aforementioned timespan, but the situation gets more complicated by recalling the
basic mechanism of audio signal processing within a plugin hosting environment. Section
1.4 gives a rough explanation of how the plugin logic is initiated by calling the process
method (might have different names across APIs). Scheduling this callback function is
completely up to the host. More precisely, it is dictated by the low-level audio subsystem
of the given platform (ASIO, JACK, Coreaudio) with adjustable buffer size that can be
certainly expected under 20 ms. With a well suited platform and hardware setup, this du-
ration can be easily under 10 ms. With respect to the actual sampling frequency (usually
between 44.1 kHz up to 192 kHz inclusively), the corresponding sample count is delivered
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as a parameter to the process() function with each callback. On the other hand, succes-
sive speech analysis cannot be performed on frames with much shorter length than 20 ms.
Therefore, the samples have to be collected across consecutive calls, and analyzed when the
desired amount of samples become available.

As mentioned before, the processing algorithm has to adapt to different sampling fre-
quencies, potentially variable input and output channel count, unpredictable amount of
samples for each call and to fit the longest processing path into the time-span of one call-
back. Not satisfying these constraints can result in tiny clicks and pops also known as
Xruns1, or even a completely unrecognizable output.

3.3 Algorithm design and decomposition

With respect to the previously described issues and using the information gathered in
Chapter 2, the next step is to outline a general solution for the desired formantfilter effect.
This section will go through the planning stage having no feedback from the described
solutions yet. Chapter 4 should provide the necessary information of how the discussed
solutions perform and decide which one of them is going to be used finally.

Figure 3.4: Generalized block-scheme of the formantfilter.

Figure 3.4 shows the basic structure under consideration. It addresses a case with a
single instrument and a voice channel, which corresponds to a mono configuration depicted
on Figure 3.2a. A stereo arrangement can be imagined easily by duplicating the upper part
of Figure 3.4, thus yielding two distinct output signals. Each channel has a generalized
preprocessing block that includes basic operations as removing the DC offset, or adjusting
signal levels. The LPC analyzer has the responsibility to perform a source-filter separation
with linear prediction and estimate the coefficients for the inverse filter A(z) and the corre-
sponding gain G for the analyzed frame. Parameters pinstr and pspeech denote the prediction

1Term used collectively for events like delivering the processed samples too late or not accepting the
provided ones in-time.
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order for both the instrument and the speech analyzer. The idea is to take the formant
structure of the speech signal and apply it to the calculated excitation e(n) of the instru-
ment. Bold arrows are showing the path of audio samples while the white arrows indicate
the parameters to the processing blocks. In order to remove the spectral envelope from the
instrument signal, it is filtered with an FIR filter given the coefficients from A(z). The
final stage is an IIR synthesis filter with the input being the residual from the instrument
signal and A(z) placed in the feedback loop. This is an essential cross synthesis scheme and
it serves as a starting point for further development. A variation (Figure 3.5) where the
original signal is fed straight to the synthesis filter is also under consideration, the deciding
factor is mainly the resulting sound texture. Using only the instrument excitation could
destroy its musical signature over a benefit of more accurate speech reproduction. On the
other hand, the lack of higher harmonics and noise may hold back the proper excitation of
the spectral envelope when the original instrument signal is used. A weighted combination
of the two is also possible with a dedicated controlling parameter as their ratio.

Figure 3.5: Synthesis with the original instrument signal.

Let the LPC analyser be examined in more detail. This should include a buffer for
collecting the input samples and arranging them into a stream of frames. The correct
placement and the frame size are also affecting the sound quality, processing time and per-
ceived latency. A few possibilities of sample buffering and windowing will now be discussed.

The simplest possible structure is to use a buffer with the appropriate size and collect
the incoming samples till the buffer gets full. When this happens, calculate the inverse
filter A(z) and repeat the whole procedure. Figure 3.6 depicts the situation considering a
window function for multiplying the frame samples after being ready for analysis.

Figure 3.6: Simple buffering of samples into frames and windowing.

The solution in Figure 3.6 has an advantage of simplicity which makes it less vulnerable
to errors, requires relatively low processing power and can be developed and tested faster
than the other, more complicated variations. As a major drawback, the minimum latency
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has to conform to the exact duration of one frame which is at least 15 ms even with the
shortest usable frame size. Additionally, the accuracy of prediction may not be acceptable.

An enhanced version of the previous structure is shown on Figure 3.7. This arrangement
is suggested by [9] and its focus is to maximize the positive effects of the window function
and the accuracy of prediction with an implicit overlap of the windowed segments. The
samples are collected into a window with twice the size of a frame which is centered under
the window segment. This arrangement is complicated for implementation and is taken as
a backup plan if every other fails.

Figure 3.7: Enhanced buffering and windowing.

A compromise between the previous two arrangements is a simple but overlapped frame
structure illustrated on Figure 3.8. The exact size of the frame and the overlap still remains
a question. The next section will try to provide some estimations related to such values
including prediction order and suitable window functions. However, the final decision relies
on practical experiments as well. Although this arrangement is a bit more complicated
than the simple structure on Figure 3.6, it is tempting due to the scalable overlap and thus
the overall latency.

Figure 3.8: Simple overlapped buffering and windowing.
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3.4 Choosing the optimal parameters of prediction

The development time needed for examining all possible parameters, measuring prediction
gains, and generally playing around with different parameters blindly is unacceptable. This
section will gather the best recommendations found in the literature concentrating on audio
quality and performance. The parameters in question are:

� Sampling frequency

� Prediction order

� Frame length

� Type of window function

Parameters are qualified by the ability to give a reasonable accuracy (though not necessar-
ily perfect) with no unpleasant frequencies, buzz or anything non-musical. Secondly, the
processing time has to be minimized thinking of the fact, that in a real situation there are
possibly multiple plugins and effects running simultaneously, sharing the same resources.
The primary measure of accuracy for linear predictive coding is the prediction gain defined
by equation 2.12. It depends mainly on the prediction order and the size and shape of the
analysis window.

Sampling frequency The sample rate affects nearly all parts of the processing chain.
“Fortunately”, audio plugins are not responsible for choosing the exact value, they just need
to be prepared for the possible variations (or inform the host about the inability to use a
particular sampling frequency). The majority of audio interfaces operate with a sampling
rate of 48kHz, but more extreme products can easily reach 192kHz. A higher frequency
also requires more processing power, not only for the increased number of samples that has
to be processed. The following discussions will highlight that – besides other factors – the
prediction order has to be increased as well, resulting in higher CPU usage.

Prediction order As stated in [15], the memory of the inverse filter A(z) has to cover at
least twice the duration required for sound waves to propagate from the glottis to the lips
which is 2L

c where L is the length of the vocal tract (cca. 17 cm) and c is the speed of sound
(340m/s). This means that a memory of at least 1ms is required and by speaking of the
filter A(z), the memory is equal to the number of coefficients, thus the prediction order.
The exact order has to be chosen prior to the usual sampling rates that audio plugins are
dealing with. As stated in section 3.2, the expected sampling frequencies should be around
44,1 and 192 kHz depending on the audio interface. Generally,

10−3 [s]

Fs [Hz]
= Fs × 10−3

coefficients are required which leads to roughly an order between 41 and 192 for a com-
pletely intelligible speech reconstruction (which is not primarily the case). Moreover, this
deliberation does not take into account the glottal and lip radiation characteristics and
other factors that would lead to even more coefficients. At the same time, these values are
to be taken as a minimum, meaning that for the sake of audio quality, they may have to
be increased further. At the same time, if the sound quality is not degraded, there is no
need to make a super-accurate speech reproduction, as the final product is intended to be
a musical effect in the fashion of the talk-box, and not a speech encoder.
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Frame length The previous section has outlined a few solutions for buffering and win-
dowing. The proper size of the analysis window is evidently dependent on the sampling
frequency. Several actions happening in the vocal tract are shorter than the many times
mentioned 20ms time-span which is considered as a usual frame length in speech coding.
As explained before, accuracy is not the primary concern, therefore, this value seems to
be acceptable without further discussion. However, given the fact that 20ms is an almost
noticeable latency for a musician – especially for a singer with a microphone – and knowing
that the latency accumulates with other effects potentially working with small but existing
latencies, this value can be troublesome. Using overlapped frames can solve the physical
delay from the input to the output, but the perceptual latency would still remain around
the length of the frame itself, although slightly decreased with the overlapping prediction
coefficients. Using a 15ms overlap should not be noticed at all by the ears of listeners and
performers. With a bit of luck, the slightly lagging formant structure will be unnoticeable
as well.

Type of window function Perhaps the most difficult recommendation is the type of
window function. Section 2.5 has introduced common functions used in signal processing.
Presumably, many of these would produce very similar results — which makes the deci-
sion mostly an experimental concern. The primary literature on the subject of audio effect
creation [6] suggests the Hanning window, although it does not provide an exhaustive rea-
soning regarding this choice other than the good periodicity with the edges of the function
close to zero.
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Chapter 4

Implementation of the Audio
Plugin

Now that all the crucial parts have been introduced and several recommendations are
available for the most significant issues, this chapter will describe the development process
with all the experiments and final decisions.

4.1 Development environment and workflow

The development platform was chosen to be a GNU/Linux system for being free and open-
source and having excellent low-latency audio capabilities. As a drawback, it may be
lacking the myriad of DAW applications found to be available for other major platforms.
Nevertheless, Ardour3 can be an acceptable reference DAW, despite of being a beta version
(see Figure 1.5 for screenshot). The straight-forward workflow is the development of the
algorithm in Matlab, followed by the adoption to a plugin API of choice. This approach was
slightly extended during the programming work. Offline operation could generally mean
any non-realtime usecase, which is amongst the basic capabilities of every plugin framework.
With a bit of effort, the off-line plugin can be bridged into Matlab that is an overall work-
bench for the development. While some parts were implemented first in Matlab, others
started their existence in C++. At the end, all the parts were transferred into C++ and
incorporated into the final program. The bridge between the two environments was a simple
MEX function capable of loading the plugin and sending/receiving the audio and control data
via function arguments and return value.

In order to shorten the development time, the Itpp1 library was used for several sig-
nal processing operations in the C++ code. In some ways, it resembles the functionality
provided by Matlab, which is reflected in the function signatures as well.

The easiest way to run real-time audio applications under GNU/Linux is to use the
Jack Audio Connection Kit. With a correct configuration and a dedicated real-time ker-
nel, the reference system’s (see appendix B) latency has been successively set to 5ms,
which corresponds to 256 samples under a sampling frequency about 48 kHz. Fortunately,
several Linux distributions are dedicated to audio or multimedia related tasks and come
pre-installed with applications like Ardour3 and Jack. Additionally, they are pre-configured
for real-time use. An example of such distribution is the one called AVLinux. The easiest
way to try the plugin is probably to use a LiveUSB setup with a similar distribution.

1http://itpp.sourceforge.net/
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4.2 Software framework

A custom C++ framework was written to serve as the playground for audio related classes,
hiding and unifying most of the plugin specific overhead. This framework was initially
built on top of the LADSPA API due to its simplicity. Figure 3.3 shows this concept
being a wrapper interface layer. Special care was taken for using virtual functions only
when necessary and avoid them in places with frequent usage (e.g., accessing the audio
samples) as this could degrade the performance right from the beginning. Figure 4.1 shows
a simplified class diagram of how the framework can be imagined. The class AudioFilter
is an abstraction of a plugin that uses ports for audio data and control parameters. The
subclass FormantFilter derived from AudioFilter is the plugin under development. Ports
and parameters are captured in class Port and their accompanying subclasses. The real
framework defines several more subclasses for ControlPort to capture different types of
controls like a linear or logarithmic pot-meter, a switch control or a selector for various
modes of operation.

Figure 4.1: Simplified class diagram of the developed software framework.

The implementation of specific structures and methods are left to the module represent-
ing a particular plugin technology. For example, if a plugin is going to be built for LADSPA,
then the appropriate module has to be specified for compilation. This is the module where
the declared structures are actually defined, like the private PortData which varies across
plugin technologies. Several plugins can be compiled at the same time by automating the
compilation. The low-level module implementing the LADSPA interface can be found in
the ladspaplugin.h and ladspaplugin.cpp source files. Others plugin technologies can
be implemented similarly. Due to the limited time frame, only the LADSPA and the JUCE
back-end was implemented exclusively.
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4.3 Development stages and milestones

Although the concept of cross-synthesis may seem to be a straight-forward procedure, a lot
of issues occurred during the development. It took a long time to establish a clear sound
without any artifacts, noise, clicks, pops, buzz, or any unpleasant features. The biggest
challenge was to get rid of the high energy peaks occurring when a new inverse filter A(z)
was ready to replace the old one. Many solutions had been proposed addressing this issue.
A short pair of audio samples (about 2.5 seconds) containing an “i” vowel and a musical
“A” note will be used for demonstrating different approaches of cross-synthesis to show
how the audio output evolved to be acceptable. The spectra of the two input sounds are
shown in Figure 4.2. A lot of experiments and repeated evaluation were performed with
only tiny incremental changes in the designed architecture, therefore the following part of
this section will present only the significant changes made towards the final solution.
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(a) Spectrum of the “i” vowel
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(b) Spectrum of an “A” note (dist. guitar)

Figure 4.2: Illustration of plugin instances.

The first attempt was to use the plain coefficients of the A(z) filter and a usual Hamming
window for multiplying each frame. The output generated this way was full of distorted
high frequencies both with Matlab and in C++ using the filter classes provided by the
Itpp library (Figure 4.3). The filter’s state was saved before changing the coefficients and
restored right afterwards.

Initially, two possible solutions were proposed:

1. Interpolate the coefficients using a suitable representation like the line spectral fre-
quencies

2. Use the zero input response of the synthesis filter for smoothing out coefficient changes
instead of saving and restoring the filter memory (see section 2.7).

Additionally, a constant assumption was that a correct window structure discussed in
section 3.3 can always reduce unwanted sound features. Interpolation of the coefficients
was not a welcomed solution as it requires high amount of processing overhead, considering
both the coefficient conversion from the LP domain and the linear interpolation itself. For
this reason, the second alternative was implemented being simple enough to be acceptable
as a fast solution.
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Figure 4.3: Output PSD of using plain LP coefficients with state-restored filters.

0 5 10 15 20
−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency (kHz)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Periodogram Power Spectral Density Estimate

Figure 4.4: Output PSD of using ZIR and ZSR for cross-synthesis.

Using the zero input response and zero state response for cross-synthesis has made a
few enhancements. With some instrument input signals, the unwanted frequencies were
almost completely gone from the output. However, the perceived presence of the formant
structure seemed to appear weaker than previously. Nevertheless, using a real unfiltered
distortion guitar sound with the sample “i” vowel produced an output with still unusable
buzzing high frequencies (the spectra is shown in Figure 4.4). The weakness of the applied
formant structure has been considered to be the consequence of poor harmonic content of
the input instrument signal. If there are no frequencies at the position of the formants, there
is nothing that excites the A(z) filter on those positions and the formant structure will not
be strong enough on the output signal. For this reason, an embedded nonlinear distortion
(or overdrive) effect was built into the plugin, with a gain control parameter on the UI.
The nonlinear processing can produce richer harmonic content in case the problem above
really exists. If it does not, a built-in overdrive can still come handy in many situations.
The “A” note used with these outputs is a distorted guitar sound, therefore, this problem
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is eliminated.
Eventually, the issue with filter changes was found out to be caused by the implemen-

tation of filters used both by Matlab and the Itpp library. Namely, the canonical or Direct
Form 2 (see section 2.6). This form has a very bad behavior with instant coefficient changes
even with saving and restoring the filter memory. DF1, however, has shown to have much
better properties regarding this issue. To completely smooth out the filter changes, the
final structure of the frame buffer was chosen to be similar to what is illustrated on Figure
3.8 with a massive overlap. After every 5ms, a new frame is produced from the actual
window content by multiplying it with a periodic Hanning window function. This way, a
high amount of correlation is introduced between the coefficients of consecutive inverse fil-
ters and the perceptual delay is also minimized. Figure 4.5 shows the mentioned “i” vowel
and “A” note synthesized with the final approach. It shows that the formant structure of
the input speech is perfectly recognizable. Higher frequencies are still present, but being
mostly periodic, it can be addressed to the distortion effect of the guitar tone.
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Figure 4.5: Final output spectrum with a DF1 synthesis filter.

4.4 Assembly of the plugin and final notes

The signal processing aspects of the formantfilter plugin are depicted on Figure 4.6. A
few controlling parameters have been added, these are shown at their respective positions.
Perhaps the most interesting feature is the one named presence that is a balance specifier
between two synthesis paths described in section 3.3. The two approaches are implemented
at the same time and their respective amount can be selected with a simple coefficient
from the interval ⟨0,1⟩. In the first path, the instrument excitation is extracted, while in
the second path, the signal is left unprocessed and goes straight into the synthesis. Other
parameters are the gain that specifies the amount of distortion on the input and the level
which is the overall signal level of the plugin. The latter is needed to compensate the wide
range of input signal levels that are affecting the output as well. In order to prevent potential
overflow of the signal with wrong settings, a limiter2 is placed at the end of the processing

2A nonlinear signal processing block that detects possible clipping and holds back the gain to decrease
the amount of distortion.
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chain. It was shown in many practical use-cases, that this is a welcomed feature. The mix
parameter is a “joker” control which specifies the amount of the original instrument signal
that is mixed to the processed one. This can be achieved with the DAW as well, therefore,
it should be less important, but cannot be ignored due the offered creative potential.

Figure 4.6: Detailed scheme of the formantfilter

The function of the overdrive block can be expressed with the following formulas3:

k =
2a

1 − a
(4.1)

x(n) =
1 + k

1 + ∣x(n)∣
(4.2)

with the coefficient a determining the amount of distortion — this value is controlled by
the gain parameter (from the interval ⟨0,1)) shown in Figure 4.6.

An important factor is the interoperability of the plugin, and the overall dependency
on other signal processing blocks. Ideally, the effect should be usable without any further
processing. On the other hand, it should not limit other effects to be placed before or after
the formantfilter in the signal chain. For example, the microphone input left uncompressed
leads to huge dynamic variations that can be hard to handle, or may just be the thing

3 Matlab code available at www.musicdsp.org
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that a musician is going for. A solution could be to have a built-in compressor at the
input of the speech signal. Knowing that a compressor is amongst the most common plugin
effects, writing a custom version, or even using an external (open-source) project was not a
priority. However, if a boxed, hardware distribution of the effect is considered, these would
be incorporated, together with better equalization and a true bypass switch.

An additional note addressing the effect usage is the optimal position in a typical signal
chain. Focusing on the electric guitar, the formantfilter can be considered to be a post-
distortion effect, which means that at least the overdrive effects should precede it. Spatial
effects, on the other hand, should be placed after the formantfilter. Despite this recommen-
dation, experimenting with different arrangements is not forbidden and may lead to usable
results.

A unique user interface for the plugin was initially planned as well, but did not make
it to the final release, due to the limited time frame and the fact that it can be generated
perfectly. Figure 4.7 shows the automated GUI created by Ardour3 during an editing
session. The indicators on the right side are displaying the exhausted CPU time compared
to the available time interval between consecutive audio callbacks. These are implemented
using just a few lines of code and are intended for testing and measuring purposes.

Figure 4.7: Plugin UI generated by Ardour3

4.4.1 Compilation and build issues

The filtering problems mentioned in the previous section has led to a decision to write
the basic signal processing operations in C++ from scratch including digital filters, basic
algorithms and calculations together with linear prediction. These are grouped under the
sigproc namespace. This way, the Itpp library is not a crucial dependency anymore and
used only for building unit tests. The CMake configuration will ignore these tests if the
Itpp library is absent and the compilation of the plugin should not stop.

The JUCE library has a custom build system, this was integrated into the existing
CMake project by generating the JUCE configuration files straight with CMake. This
solution makes it possible to use the formantfilter in applications supporting VST plugins
and the advantage over writing a dedicated VST backend is that the JUCE library can
automatically compile the plugin into many formats if the appropriate SDK is provided.
Using the JUCE library as an optional and temporary backend still makes the project
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compilable without this heavyweight dependency. By configuring the project without the
JUCE SDK, only the LADSPA backend will be compiled, but other dedicated backends are
waiting to be implemented. More details about the framework can be found in the doxygen
generated documentation and README files.

The supported compilers are the GCC 4.8 and above with finished C++11 standard
and the Microsoft Visual Studio 2013 C++ compiler on Windows systems. However, the
Windows version will compile only the JUCE backend for which both the JUCE SDK and
the VST SDK is required. The JUCE plugin version is included rather as a tech-preview
and has not been tested extensively. Compiling the complete solution does not differ from
a typical sequence of commands used by CMake projects. More details can be found in the
project README files regarding the compilation process.
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Chapter 5

Testing and Evaluation

5.1 Technical testing

Several unit tests were developed to ensure flawless operation of the basic low level functions
like filtering, ring buffers used for windowing, and overall audio data pass-through tests.
These can be initiated with the make test command after building the project tree.

In order to measure the consumed processing power, the plugin was equipped with
two additional output ports, emitting the measured processing overhead. Let Tcb be the
time available between consecutive calls to the process() method. This interval can be
calculated from the product of the sampling frequency and the provided sample count —
both values are available at any time during the processing. Furthermore, let Ts be the
time spent in the process() method. The ratio of Ts

Tcb
gives an indication of the current

processing overhead which can be observed in Figure 4.7. The occupation of the CPU was
below 10% almost all the time on the development hardware (see Appendix B).

5.2 User testing

To examine the plugin as a product, it is very hard to define objective measures that can
be put under evaluation. The generated sound quality is free of unwanted artifacts, every
other feature is dependent on the actual signal chain in which the formantfilter effect is
located. Therefore, a survey is used to collect user opinions in a structured manner with
the following questions:

1. How do you rate the overall output quality?

(a) Poor with unpleasant features, clicks, pops, noise or non-harmonic frequencies.

(b) Usable but not perfect.

(c) Completely acceptable.

(d) Excellent.

2. Can you imagine a musical situation, where you could use this effect?

(a) No, not at all!

(b) Yes, in rare situations.

(c) Yes, in many occasions throughout a single tune.
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(d) Yes, complete songs can be based on this effect.

3. Do you find the effect capable of co-operating with other existing effects?

(a) No, it always sounds the same with any input signal.

(b) Yes, but only limited sound textures are usable (e.g., only clean or distorted
sounds).

(c) Yes, the output sound responds meaningfully to every input variation.

4. To what degree is this effect distinguishable from existing vocoder effects?

(a) Sounds completely like a channel or phase vocoder.

(b) Similar but has some unique features.

(c) Completely different.

(d) I have no experience with vocoder effects.

From ten musicians (mostly guitarists) only four has provided a dedicated review (see
appendix A for the full reviews). Others have completed the test survey only. The results
are collected in Table 5.1 with a value indicating the number of testers giving an answer
respective to the cell position. The Overall Success column should indicate an intuitive
summary from the received answers.

An interesting conclusion can be made based on the answers for question 4. The majority
of guitarists does not use vocoder or talk-box effects making it hard to get a reasonable
end-user comparison to similar products. It was a new experience for nearly all the test
subjects, mostly with a positive impression.

Question number a b c d Overall Success

1. Output quality 0 0 8 2 ☀☀☀☀☀

2. Usability 1 3 5 1 ☀☀☀☆☆

3. Cooperativeness 0 4 6 - ☀☀☀☀☆

4. Novelty 1 2 1 6 ☀☀☀☀☆

Table 5.1: Results from user reviews

5.3 Demonstration of the effect in-use

To demonstrate the usage of the final plugin, several example sessions are provided both in
exported flac format and in a complete project representation for Ardour3. The session
files contain all the effect configurations and signal routing for the plugin itself with other
accompanying effects and the recorded audio regions, to illustrate a practical recording
session.

Additionally, a cover version of the famous song Livin’ on a Prayer containing well
known marks of a talk-box effect was re-assembled using the created plugin. Here, a backing-
track free of guitar parts was used as a basis, and the traces of the talkbox are replaced
using the formantfilter effect. Furthermore, the solo part is also enhanced with it.

A second track is a simple improvisation with various articulations in the solo guitar
part.
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Chapter 6

Conclusion

6.1 Summary of the performed work

The official goal of the thesis was to create an audio effect making use of speech analysis
techniques. The method for formant extraction was chosen to be a type of linear prediction.
After getting familiar with various speech detection and synthesis algorithms, an effect was
designed inspired by the legacy of the talk-box. Alternative textures can also be dialed in
with the provided controlling parameters. The designed unit was packaged into multiple
software plugin formats to be usable in today’s audio workstations. Special effort was
made towards a cross platform implementation, with a simple framework supporting various
plugin technologies. Finally, the plugin was tested by musicians and a summary was made
about the practical usability and quality of the effect.

Despite the fact, that the idea of cross-synthesis is by no means a novelty and quite
a few theoretical sources are available regarding source-filter processing, implementing a
nice sounding audio effect requires a lot of experiments. Small parameter changes can
make a difference between an unusable output signal and a completely appealing sound.
A good example is the problem with the canonical filter structure and its bad resistance
to coefficient changes that caused a lot of trouble and delay during the development stage.
The effect was tested for real-time performance and latency free operation. As far as the
perceptual limits go, these requirements were satisfied with no inconveniences and effortless
playability.

Fortunately, the audio quality and texture was not subject to any complaints. Dávid
Zoltán has made a comment, that the effect needs several external processing blocks to get
a nicer result (equalizer, compressor), making it less comfortable: “. . . As a drawback, I
could mention the need of external effects for a really usable sound, like the compressor for
the microphone input or an overall equalizer – perhaps a simple tone and bass parameter
would be enough. . . ”

Gábor Szabó has made a similar comment, stating: “. . . As a backdraft of this effect I
would mention – it’s complicated. I would like to try it either as a part of a vocal performer
multieffect (like the ones that are made by TC Helicon) or as an independent effect pedal.
But using it through a computer – it might be useful, but personally I would refuse this kind
of option.. . . ” As a reaction, software plugins are not far from being utilized in hardware
multi-effect units. A few solutions – like the MOD duo project1 – are being on the way,
loaded with an embedded Linux system for hosting plugins. Therefore, a suitable hardware

1http://portalmod.com/home
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platform can make this effect usable in live situations as well.
A few testers have mentioned the possibility of microphonic feedbacks, to which this

effect can be sensitive indeed. An anti-feedback correction can be a solution. As a draw-
back, it may restrict the performer from achieving desirable instrument feedback sounds.
The correct acoustical arrangement and the general feedback-resistance of the particular
microphone can also reduce the number of unwanted feedbacks.

6.2 Prospects for the future

The primary plan is the integration of the effect into an embedded multi-effect pedalboard.
Either by designing a dedicated hardware, or – more ideally – using an existing platform
addressing such concerns. A potential candidate is the mentioned MOD Duo project that
gathers existing open source software plugins into a hardware device targeted to live perfor-
mances. Secondly, the implementation of several more plugin back-ends to support many
other DAW applications. This is rather a time consuming work and not a real engineering
problem.

The user reactions have shown that this effect can raise interest in musicians and provide
an inspiration for artistic creation. This can be considered as a big success from a practical
perspective.
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Appendix A

Full User Reviews

“I play bass guitar, yet I am very opened to use any – really, any – effect that I come
across. Honestly, trying to use this kind of effect was very new to me. Playing a tone plus
singing any tone I want – the experience was really shocking but it opened my mind. I was
thinking about versions “OK, just admit it, you are not a singer. But, what about leaving
the instrument behind – let it be played by others – and try to say something into the mic,
and see what happens.” That was a completely new experience. I never tried to “sing” a
song but the feeling that no pitch will be false because it’s actually corrected by the guitar
gave me such a self-confidence that I felt more than powerful. It was really interesting to
feel something that is in some way different to the vocoder-sounds that we have been used
to at bands like Pendulum, but in some ways quite similar.

An absolute – and, unfortunately untested – unique thing would be to use this effect with
a jaw-harp or any wind instrument. The backdraft of a jaw harp is that its soundscape is
limited by the instrument itself and the technique of the player. This effect would eliminate
at least one – if not both – of them. What about a blues harp? Most of the blues guitarists
play and sing simultaneously, it would be quite interesting to use this effect to spice up their
performance.

As a backdraft of this effect I would mention – it’s complicated. I would like to try it
either as a part of a vocal performer multieffect (like the ones that are made by TC Helicon)
or as an independent effect pedal. But using it through a computer – it might be useful, but
personally I would refuse this kind of option. I can imagine that some day this one receives
its own firmware and box-on-floor layout and the computer can be avoided because this one
is quite complicated to use on stage.

However, it can be quite useful in studios, or in the “garages”, rehearsal rooms: for
bands who like to experiment, this gadget can be a way finding their own and unique sound.”

Gábor Szabó
Bass guitarist (H.A.L.)

(full unedited review — English)
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Tamás Mészáros gave me his own programmed voice effect to test. I run my Tumblr
site since august last year. There are my humorous, sarcastic poems and hopefully I will
release some minimal synth-pop songs later on. I have only two instruments so far. One
is a semi-acoustic guitar “Dowina” and a Korg MicroKorg synth.

I tried this effect only with the guitar. It sounds very strange. It was very hard to get
used to it in this short time frame but it is definitely something I haven’t met so far. In
something, what I can imagine as a song, I don’t think that such an effected voice would go
through the song all the way, but it can be interesting for “bridge” or “interlude” parts of
it. Or simply something used in the background, probably by adding some hall/delay effect
on top of it. I found this effect very interesting. I don’t know how it would sound using
it together with a Clouds texture synths and adding some Wiard synths. But I suppose it
would be very a special, unworldly, transcendent trip. Maybe not the most pleasant one
ever but absolutely one to remember.”

Ma.F.F.
maganyosfarkasokfalkaja. tumblr. com

(full unedited review – English)

“Mészáros Tamás told me about his thesis subject and asked me to test it. Myself being
a guitarist as well, I have immediately accepted his request. My preferred musical styles are
oriented towards heavier rock genres where the usage of this effect appears to be rare. For
me, it was just one more reason for excitement.

Before testing the effect, I have made an overview amongst the bands I’m familiar
with, searching for appearances of similar effects and found some interesting songs from
Bon Jovi, Black Label Society, Joe Satriani or from Daft Punk as well, although from a
different genre. I have never used a talkbox before and felt myself as a newbie. It was
hard to get used to talking while playing at the same time, but after some practice, I got
synchronized with the effect.

In my opinion, the software is working very well and I think that Tamás has made the
most of it. The test was accomplished with a middle-class microphone and a cheaper kind
of electric guitar. Even so, I haven’t experienced any significant feedback with a high signal
output, which is impressive even compared to commercial effects. Despite having just a few
controlling parameters, a lot of different textures could be set with the presence and gain
“knob” which I find to be a big advantage. After getting familiar with the effect, I tried to
play different parts of songs from the above mentioned artists. The best match I could get
is the style of Daft Punk. Additionally, a good approximation can be made to the talkbox
guitar intro heard in the song Livin’ on a Prayer from Bon Jovi. As a drawback, I could
mention the need of external effects for a really usable sound, like the compressor for the
microphone input or an overall equalizer – perhaps a simple tone and bass parameter would
be enough.

After the test, my overall impression was very positive.”

Dávid Zoltán
guitarist from band Ankh

(full review — translation from hungarian by Mészáros Tamás)
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“Although the talkbox was a popular modulation effect in music production during the
late 20th century, various reissues are still frequently used today. Human voice is a versatile
tool for sound creation and by fusing it with instrumental playing, we can get a very exciting
and colorful musical accessory.

As an active musician and music devotee, I find it very important for new tones to
emerge in the contemporary musical genres. Mészáros Tamás has developed a modern
music creation tool, that is able to make some melodies richer, more interesting and more
“alive”. The created tool connects the musician’s own vocal organs with the instrument in
his hands, opening up new artistic possibilities. I would also list the extendability of digital
processing amongst the benefits of this effect. The result is a usable modulation effect that
may become popular amongst today’s modern musicians.

The behavior of the effect in live situations is still uncertain with the apparently high
input sensitivity. Microphonic feedback is perhaps the most potential threat. However, it
would certainly perform well in a studio environment.”

Ing. Pál Tamás
drummer and sound engineer from the band H.A.L

Ph.D. student at BUT FEEC Department of Telecommunications
(full review — translation from Hungarian by Mészáros Tamás)

“I have been testing the demo application on my usual gig-setup: Through a set of few
basic pedal effects, I normally run the guitar signal directly to the top-boost channel of a
vintage VOX AC30 amplifier. For the demo, I have set the input gain of the amplifier to
low in order to allow good headroom without too much distortion (the amplifier is known to
easily run into saturation due to lack of the internal negative feedback). I have been testing
both with the distortion pedals on as well as fully by-passed.

The testing microphone was a dynamic Shure SM57 — perceived as an established stan-
dard in the community. The room setup didn’t let me move the microphone too far from the
AC30 (around 1.5 m), so I had to tweak the gain knobs on all devices in the chain to avoid
the feed-back. The room was a 2-by-4 m “garage-band” style rehearsal room with carpets
on the walls and ceiling to eliminate.

Immediately after connecting the application, I was surprised by the quality of the sound,
especially on the louder side of the master volume knob. The sound was very pronounced
and clean with no obtrusive artifacts. There was no lack of bass nor I had to adjust the
treble setting. It took me a while to synchronize playing guitar and singing at the same
time to achieve the desired talk-box-like effect. The application offers limitless number of
creative sounds and ways to play and sing. The application can be used both for solo-style
of guitar playing, as well as for power-chords — again resulting in different sounds. Not
only the player is not limited by the style of guitar playing, but also the vocal part of the
effect is very versatile and yields interesting effects with different style of vocal input. E.g.
the most obvious was to use long voiced singing modulated by the vocal tract to achieve
“wah” style of effect. However, I have also tried rhythmic modulation using e.g. fricatives
and various styles of “funny cha-cha” sounds. Personally, I liked the rhythmic sounds with
simple guitar solos.

From the user-point of view, the biggest advantage is the modularity of the application,
i.e. it’s built as a plugin and apparently, the effect is available also as a VST plugin. Apart
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from my stomp-box effects, I used a software compressor on the guitar to smooth out the
playing. This makes the usage and development of the effect very versatile and creative.

A suggestion for further development would be to add a dynamic envelope shaping of
the parameters of the effect, i.e. attack, sustain, release to smooth out the triggering of the
microphone input by the guitar.

In general, this effect is very creative and offers interesting sounds. Once I found my
style of playing, it was difficult to stop playing. This effect has exactly what it is supposed
to have: very high “fun” and “inspiration” factors.”

Ing. Ondrej Glembek, PhD.
lead guitarist of the band RockMood

(full unedited review – English)
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Appendix B

Recording Environment

Operating system Ubuntu 14.04.2 x86 64

Kernel version 3.16.0-38-lowlatency

Host CPU Intel® Core� i3 CPU M 370 @ 2.40GHz

Host memory 4 GB

Reference DAW Ardour3; version Ardour3.5.403-dfsg-3-ubuntu14

USB audio interface Mackie Onyx Blackjack

Figure B.1: Onyx Blackjack recording interface.

Microphone Behringer XM 1800 S

Instrument used on recordings Epiphone LP Special
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Appendix C

DVD Content

The following files and folders can be found on the DVD:

/AudioSamples Contains the demo audio tracks with the plug-in sounds.

/Distribution Compiled binaries of the plug-in.

/ProjectTree The project tree managed by CMake. It contains the LATEX source code of
the thesis as well.

/RecordingSessions Contains the recording session project files of the demo tracks for
opening in Ardour3. The Bon Jovi track can be opened using the session file
livinonprayer.ardour

runardour.sh A bash script for running Ardour3 with an environment set up to recognize
the plugins correctly. This can be used with a LiveUSB setup of a Linux distribution
intended for multimedia editing purposes (AVLinux, Ubuntu Studio, etc.).
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