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FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
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FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

AGENTNÍ SYSTÉM PRO HRANÍ HER
AGENT BASED GAMEPLAYING SYSTEM

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE MICHAL TRUTMAN
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ KRÁL
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Abstrakt
Tato práce se zabývá universálńımi agentńımi systémy pro hrańı her. Oproti běžným agen-
t̊um, kteř́ı jsou určeni pouze pro určitý druh činnosti nebo konkrétńı hru, universálńı agent
muśı být schopen hrát prakticky libovolnou hru popsanou ve formálńım deklarativńım
jazyce. Výzvou je předevš́ım to, že pravidla hry nejsou předem známa, což znemožňuje
použit́ı některých optimalizaćı nebo vytvořeńı dobré heuristické funkce. Práce je rozdělena
na teoretickou a praktickou část. Prvńı část představuje oblast univerzálńıch herńıch
agent̊u, definuje jazyk GDL pro popis pravidel her a zabývá se vytvářeńım heuristických
funkćı a jejich aplikaćı v algoritmu Monte Carlo stromové hledáńı. V praktické části je před-
staven obecný zp̊usob, jak vytvořit novou heuristickou funkci, která je poté integrována do
vlastńıho herńıho agenta a ten je pak porovnán s daľśımi existuj́ıćımi systémy.

Abstract
This thesis deals with general game playing agent systems. On the contrary with common
agents, which are designed only for a specified task or a game, general game playing agents
have to be able to play basically any arbitrary game described in a formal declarative lan-
guage. The biggest challenge is that the game rules are not known beforehand, which makes
it impossible to use some optimizations or to make a good heuristic function. The thesis
consists of a theoretical and a practical part. The first part introduces the field of gen-
eral game playing agents, defines the Game Description Language and covers construction
of heuristic evaluation functions and their integration within the Monte Carlo tree search
algorithm. In the practical part, a general method of creating a new heuristic function is
presented, which is later integrated into a proper agent, which is compared then with other
systems.
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Introduction

Most of the current agent systems are designed to perform only one specific task during
their life time. For example, game playing agents are developed with only one game in
mind. Teaching them, how to do something else, even very similar to their original task,
would essentially involve major remake of that agent. Moreover, most of the intelligence of
such agents heavily relies on human analysis of that specific problem, therefore the most
difficult part is not done by the agents themselves, but instead by their programmers in
advance.

However, another approach exists and that is, how to make an agent as generic as
possible and this is what this thesis deals with. It is called General Game Playing (GGP)
and it is concerned with the development of intelligent agents, that can play well any
arbitrary game, given only its rules specified in a formal language.

There are many challenges to be overcome with the generic approach. The problem
analysis must be done entirely by the agent itself and it has to use its own knowledge to
decide, which algorithms to choose. Therefore, it is very difficult for the agent to come
up with a good heuristic function or to do some effective optimizations. Because of this,
generic agents are always the second, when it comes to compare them with their problem
specific alternatives.

As any environment with possibly other agents in it, which changes according to rules,
can be described as a game, general game playing agents should be able to solve large
variety of problems. Although GGP systems are not suited for all environments (such as
critical systems), they can be well used for example in autonomous robots or in prototyping
to develop a good strategy, which can be later hard-coded into a problem specific agent.

The main target of this thesis is to develop a good heuristic for a general game playing
agent, that can be used well within Monte Carlo tree search (MCTS) algorithm, which is
currently the far most popular search space algorithm.

This thesis consists of five chapters. The first one gives an introduction into the GGP
world and its main part is focused on the specification of the Game Description Language
(GDL), a declarative language, in which game rules for GGP agents are represented. It
is also shown, how games in GDL are simulated and how agents communicate between
themselves during a match. The following chapter explains MCTS algorithm in detail and
goes over common heuristics that can be used to guide the search.

In the third chapter, I propose a general algorithm to generate a new heuristic function.
It uses regression to construct the heuristic from the game rules and a fuzzy logic to evaluate
it. I also demonstrate, how additional knowledge about the game can be used to further
improve its performance. Then, I implement an MCTS agent in Java and Prolog in the
subsequent chapter and which is enriched with the heuristic function proposed.

In the final part, the agent is matched with other players in different testing schemes and
in various games. Finally, the results are analysed and the agent’s strengths and weaknesses
are determined and explained.
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Chapter 1

General Game Playing

General Game Playing (GGP) concerns with the development of general game playing
agents. A general game player is a system, which accepts descriptions of any arbitrary
games and uses them in such a way, that it is able to play those games effectively without
human intervention. The game rules are not known to the player until the game starts [1].

General Game Playing is a relatively new field of study in artificial intelligence, although
the idea, how to build a system, which can play large set of different games, can be traced
back to year 1968, when the first general game player was built [2], albeit at that time
it was limited to only various chess-like games played on a rectangular board with pieces.
Many years later, in 1993, this idea was revisited again with a concept of Metagamer [3].
However, it took another decade until 2005, when GGP was truly brought into light with
an introduction of the AAAI GGP competition [4]. From that year, the competition is held
annually and several research groups were established around it. Since that, GGP did big
steps forward and the state-of-the-art has been greatly advanced.

In these days, the AAAI competition is the most established event in GGP. Its intention
is to test abilities of systems in various games and sharing knowledge. It is open to any
player, which qualifies in a qualifying round. Then, players are matched against each other
in series of games in the second round. The system to win the most games in this round
becomes the winner of the competition.

This chapter gives first a short introduction into games and agents. Then, it explains
syntax and semantics of the Game Description Language (GDL) – a first order logic lan-
guage used for a description of game rules. The later part goes over game management,
communication protocol and it introduces different types of logic reasoners.

1.1 Agents and Games

An intelligent agent is an autonomous entity perceiving its environment through sensors
and acting upon that environment through actuators [5]. By this definition, agents are for
example humans, animals, computer programs or robots. Each agent has an agent function,
that maps from any possible percepts history to an action. The agent function determines
agent’s intelligence.

A rational agent is an agent, which always selects an action, which maximizes its per-
formance given the agent’s current knowledge. A rational agent is able to identify its goal
and takes actions in order to fulfil it.
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An environment is anything in which the agent operates. It could be a physical room
with obstacles for a vacuum cleaning robot or a state space for a software agent.

A game is a strategic interaction between agents, defined by rules, that results in a
quantifiable outcome [6]. In essence, a game is any situation described by rules, where
agents are trying to reach certain (possibly conflicting) goals with optimal results.

A strategy for a player maps every possible game state to an action for that player. A
player’s strategy completely determines the action the player will take at any stage of the
game.

Although previous definitions allow different types of agents, the focus of this thesis lies
on software agents only.

1.1.1 Game Types

Games can be characterized by certain features and split into following groups:

• A turn-taking game is a game where only one player at time is allowed to perform
an action. Otherwise it is a simultaneous move game, that is, players can do their
actions concurrently.

• In zero sum games, the sum of payoffs for all players always adds up to zero (or a
constant) for every set of strategies. Essentially, one player wins, only if the other one
loses.

• A deterministic game is game, where the next state is completely determined by the
current state and actions the agents do, i.e. there is no randomness. Otherwise, the
game is called non-deterministic or stochastic.

• A finite game is a game with finite number of players, with finitely many actions
the players can do, with finite number of possible game states and the game must
terminate after finite number of steps. For example, a simple game where players roll
a die, where the player with the highest sum wins, is not finite, if it is allowed to roll
again after rolling a 6.

• In games with perfect information, all players have complete view of the current game
state. In the contrary, where some information is hidden from any player, it is an
imperfect information game.

1.2 Game Description Language

In general game playing, game rules are defined in a formal language called Game
Description Language (GDL) [7]. GDL is a first order logic language with purely declarative
semantic, so that no prior knowledge (such as arithmetic) is assumed. Its syntax and sematic
is very similar to Datalog or Prolog.

This section explains first the underlying game model and characterises games, which
GDL is capable to describe. Then the syntax and semantics of GDL are described and
shown on example. Finally, some restrictions are established, so the game rules can be
effectively processed.
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1.2.1 Game Model

Games in GDL are modelled as finite state machines. That means, we are restricted to
discrete games with fixed number of players and with finitely many states. The transitions
between the states depend on joint moves, which is a list of moves, one for each player.
To make a transition, a joint move has to be formed by all players selecting one of their
legal moves. Effects of moves occur instantaneously and simultaneously – moves have no
duration and all players play their action synchronously at the same time. Thus games in
GDL are always described as games with simultaneous moves. Turn-taking games can be
modelled by only introducing a move with no effect for players that do not have a turn,
which is usually called a noop move.

Formally, a game is defined as follows [8]:

Definition 1.1 (Game). A game is a state transition system (R, s0, T , l, u, g) over sets
of states S and actions A, where:

• R, a finite set of roles;

• s0 ∈ S, the initial state of the game;

• T ⊆ S, the set of terminal states;

• l : R×A× S, the legality relation;

• u : (R→ A)× S → S, the transition or update function;

• g : R× S → N, the reward or goal function.

Each game starts in state s0 and progresses until some terminal state is reached. Each
player then receives a reward defined by the reward function g.

A game state in GDL consists of a set of facts, also called fluents, which are true in that
state. Players in GDL are called roles, moves are also sometimes called actions.

There are more restrictions coming from the GDL game model. First, there is no
randomness – all actions are deterministic and the environment is static. Second, GDL does
not allow describing games with imperfect information. Thus, GDL permits to describe a
large range of finite deterministic perfect-information simultaneous-move games with an
arbitrary number of players.

An example of games that cannot be typically modelled in GDL includes large variety
of card games as they contain both an element of chance (a shuffled deck of cards) and
imperfect information (cards in opponents’ hands).

1.2.2 Syntax

GDL is a first order logic based language, a variant of Prolog, that is, a game in GDL
is a logic program. Its structure is described with the following statements:

• A logic program in GDL is a set of clauses.

• A clause it is one of:

– A rule of form “Head :- Body.”. Reads as, head is true, if body is true. The
':-' symbol is a reverse implication symbol.
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– A fact is a rule without body, denoted as “Head.”. Facts are always true.

• A head is an atom.

• A body is conjunction of literals delimited by a comma.

• A literal is an atom or its negation.

• An atom is a relational symbol applied to terms as its arguments. It is written as
“relation(Term1, Term2, ...)”.

• A term is either:

– A variable. Variables are denoted by starting capital letter.

– A function symbol applied to terms as arguments such as “function(Term1,
Term2, ...)”. Function names must start with a lower case letter or a digit.

– A constant. A constant is a function symbol with no arguments.

There is also alternate prefix syntax to the Prolog syntax just introduced. It is known
as Knowledge Interchange Format (KIF) [9] and it is the standard syntax used in com-
munication between agents in GGP tournaments, so all current systems support it. The
relationship between the two notations is direct, and it is easy to translate from one to the
other. However, as the Prolog syntax is more human readable, it is used in the rest of this
thesis.

Examples of both syntaxes are shown in Table 1.1.

Prolog syntax KIF syntax Description
hello hello constant
123 123 constant
Var ?var variable
foo(X,Y ) (foo ?x ?y) function
not(p(a, b, c)) (not (p a b c)) negation
q(a, b, c), r(X) (q a b c) (r ?x) conjunction of literals
p(a, b, c). (p a b c) fact
p(Y ) :– q(a, Y ), r(b, Y ). (<= (p ?y) (q a ?y) (r b ?y)) rule

Table 1.1: Examples of Prolog and KIF syntaxes of GDL.

A ground rule is a rule that does not contain any variables. A transformation of non-
ground rule to ground rule is called grounding and it involves creating a set of new rules,
where all variables are substituted with all combinations of values from their domains. A
rule with N different variables, each having domain of size D, will generate DN new rules,
which is an exponential growth.

1.2.3 Semantics

The semantics of GDL is also similar to Prolog, however it is purely declarative. GDL
contains 10 special keywords, used to describe various features of the game state machine.
Notably, GDL must define roles, an initial state, terminal states, legal moves, payoffs and
a state update function. These are also the only relations in GDL with fixed meaning.

• role(a) means that a is a role in the game.
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• init(p) means that the fluent p is true in the initial state.

• true(p) means that the fluent p is true in the current state.

• does(r, a) means that role r performs action a in the current state.

• next(p) means that the fluent p is true in the next state.

• legal(r, a) means that a is a legal move to play for role r in the current state.

• goal(r, n) means that role r in the current state has payoff n, n is an integer between
0 and 100.

• terminal means that the current state is a terminal state.

• distinct(x, y) means that terms x and y are syntactically different.

• not(x) means that term x is not true.

GDL uses negation-as-failure semantics, that means, everything that cannot be proved
to be true is considered false. In the contrary with Prolog, semantics of GDL does not
depend on the order of clauses, nor on the order of literals in their bodies.

As mentioned before, a game in GDL is a logic program and it must give definitions for
following relations:

• Complete definition of roles and an initial state using role and init as facts.

• Definition of legal moves, terminal states and payoffs using legal, terminal and goal
in terms of true relation.

• Definition of a next state by next in terms of does and true.

• There must not be any clauses with does or true in their heads.

1.2.4 Example Game: Tic Tac Toe

As it is hard to understand GDL just from its definition, this section shows on an
example, how to encode complete rules for a simple game in GDL. This game is called Tic
Tac Toe and its rules are explained in Appendix A, where also rules for any other games
used in examples through the thesis can be found.

We start with a definition of roles. There are two players: x and o.

role(xplayer). (1.1)

role(oplayer). (1.2)

Then we specify an initial state, which is an empty 3×3 board. Also, we need to declare,
that player x starts the game (1.12).

init(cell(1, 1, blank)). (1.3)

init(cell(1, 2, blank)). (1.4)

init(cell(1, 3, blank)). (1.5)

init(cell(2, 1, blank)). (1.6)

init(cell(2, 2, blank)). (1.7)
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init(cell(2, 3, blank)). (1.8)

init(cell(3, 1, blank)). (1.9)

init(cell(3, 2, blank)). (1.10)

init(cell(3, 3, blank)). (1.11)

init(control(xplayer)). (1.12)

Now, we shall define legal moves. When a player is on turn, it is legal for it to mark a
blank cell (1.13), otherwise it can play only a noop action (1.14).

legal(P,mark(X,Y )) :– true(control(P )), true(cell(X,Y, blank)). (1.13)

legal(P, noop) :– role(P ),not(true(control(P ))). (1.14)

Next, we create state update rules. When the mark(X,Y ) action is taken, then the
corresponding cell is marked with the player’s symbol (1.15, 1.16). Cells other than the
marked cell keep their original value (1.17, 1.18). Lastly, control is passed to the other
player (1.19, 1.20).

next(cell(M,N, x)) :– does(xplayer,mark(M,N)). (1.15)

next(cell(M,N, o)) :– does(oplayer,mark(M,N)). (1.16)

next(cell(M,N,C)) :– true(cell(M,N,C)),does(P,mark(X,Y )),distinct(X,M). (1.17)

next(cell(M,N,C)) :– true(cell(M,N,C)),does(P,mark(X,Y )),distinct(Y,N). (1.18)

next(control(oplayer)) :– true(control(xplayer)). (1.19)

next(control(xplayer)) :– true(control(oplayer)). (1.20)

The game terminates, when either player builds a line of its markers or if the board is
full (not open). The board is open, if a blank cell exists.

terminal :– line(x). (1.21)

terminal :– line(o). (1.22)

terminal :– not(open). (1.23)

open :– true(cell(X,Y, blank)). (1.24)

Finally, goal conditions. A player receives 100 points, if it builds a line of appropriate
markers, or receives 0 points, if its opponent does it. If neither of them has a line, the game
ends in a draw with 50 points.

goal(xplayer, 100) :– line(x). (1.25)

goal(xplayer, 50) :– not(line(x)),not(line(o)). (1.26)

goal(xplayer, 0) :– line(o). (1.27)

goal(oplayer, 100) :– line(o). (1.28)

goal(oplayer, 50) :– not(line(x)),not(line(o)). (1.29)

goal(oplayer, 0) :– line(x). (1.30)

And the one last thing remaining to be defined is the definition of a line. A line can be
either a horizontal line (1.31), a vertical line (1.32) or one of the diagonal lines (1.33, 1.34).

line(P ) :– true(cell(1, Y, P )), true(cell(2, Y, P )), true(cell(3, Y, P )). (1.31)
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line(P ) :– true(cell(X, 1, P )), true(cell(X, 2, P )), true(cell(X, 3, P )). (1.32)

line(P ) :– true(cell(1, 1, P )), true(cell(2, 2, P )), true(cell(3, 3, P )). (1.33)

line(P ) :– true(cell(1, 3, P )), true(cell(2, 2, P )), true(cell(3, 1, P )). (1.34)

1.2.5 Restrictions

Not all possible descriptions in GDL are actually corresponding with valid games, be-
cause agents must be able to use the rules to simulate games effectively. To ensure, that a
game match runs smoothly, we must impose some restrictions. The first type of restriction
guarantees that all computations done with the game description terminate, while the sec-
ond type ensures, that the description is meaningful, i.e. each player has a legal move to
play.

Finite Derivability

Finite derivability restriction ensures, that answering a query in GDL is decidable and
always terminates, which is essential for efficient automated reasoning with rules.

Definition 1.2 (Safety). A clause is safe if and only if every variable in the clause appears
in some positive literal in the body. A GDL description is safe if and only if all clauses are
safe.

Note, that distinct(t1, t2) is a negative literal. Examples of unsafe rules follow:

r(X,X). (1.35)

p(a) :– not(q(X)). (1.36)

The problem with the rule (1.35) is, that it can produce infinitely many consequences,
therefore facts must be always ground. On the other hand, the rule (1.36) has unclear
semantics. Suppose that q(a) is true and q(b) false, then what is negation of q(X)? In
safe rules, variables within a negation can be always grounded first and such things cannot
happen.

Definition 1.3 (Dependency graph). The dependency graph for a set of clauses C is a
directed labelled graph where its nodes are predicate symbols from C and its edges are:

• A positive edge p
+→ q if C contains a clause p(. . . ) :– . . . , q(. . . ), . . . .

• A negative edge p
−→ q if C contains a clause p(. . . ) :– . . . , not(q(. . . )), . . . .

Definition 1.4 (Stratified negation). A stratified negation for a set of clauses is met, if
and only if there are no cycles involving a negative edge in its dependency graph.

Stratified negation ensures, that a set of clauses has always single unique model. A
following non-stratified rule illustrates the problem:

p(X) :– q(X),not(p(X)). (1.37)
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Definition 1.5 (Recursion restriction). A recursion restriction for a set of clauses C holds,
when if the rules contain a clause:

p(s1, . . . , sm) :– b1(t1), . . . , q(v1, . . . , vk), . . . , bn(tn).

such that p and q occurs in a cycle in the dependency graph G for C, then for every
i ∈ {1, . . . , k}:

• vi is variable-free, or

• vi is one of s1, . . . , sm, or

• vi occurs in some tj , j ∈ {1, . . . , n}, such that bj does not occur in a cycle with p in
the dependency graph G.

In other words, recursion restriction says, that terms cannot grow indefinitely and every
recursion terminates.

Finally, we can define finite derivability in terms of previously introduced supporting
concepts.

Definition 1.6 (Finite derivability). A set of clauses is finitely derivable, if and only if it
is safe and it fulfils both stratified negation and recursion restriction. Any valid GDL must
be finitely derivable.

Well-formed Games

This section brings us to a definition of well-formed games which ensures that any GDL
describes a meaningful game with no invalid states and with well-defined goals.

Definition 1.7 (Termination). A game description in GDL terminates if all infinite se-
quences of legal moves from the initial state of the game reach a terminal state after finite
number of steps.

In praxis, termination is usually achieved by adding a step counter into the game, so it
is terminated prematurely in a draw after reaching certain number of steps.

Definition 1.8 (Playability). A game description in GDL is playable if and only if every
role has at least one legal move in every non-terminal state reachable from the initial state.

Definition 1.9 (Winnability). A game description in GDL is strongly winnable if and only
if, for some role, there is a sequence of individual actions of that role that leads to a terminal
state of the game where that role’s goal value is maximal no matter what the others do.
A game description in GDL is weakly winnable if and only if, for every role, there is a
sequence of joint actions of all roles that leads to a terminal state where that role’s goal
value is maximal.

In other words, a game is strongly winnable for some role, if and only if that role can
enforce victory, regardless of what the other roles do. A game is weakly winnable, if and
only if for all roles, that role can win a game, if all roles cooperate on it.
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Definition 1.10 (Outcome Definedness). A game description in GDL is outcome defined
if and only if there is exactly one goal value for every role in every terminal state reachable
from the initial state.

A definition of well-formedness differs between [7, 1, 8], but for the purpose of this
thesis, the following definition will suffice. We assume, that all games are well-formed.

Definition 1.11 (Well-formedness). A game description in GDL is well-formed if it termi-
nates, is outcome defined and is both playable and weakly winnable.

1.2.6 Fluent Properties

A fluent is a simple fact, that either holds or not in a given game state. The simplest
property that can be identified is the information about fluent persistence as defined in [10]:

Definition 1.12 (Fluent persistence). A fluent is persistent true if, once it is true in a
state, it will persist to be true in all future states. A fluent is persistent false if, once it
becomes false in a state, it will never become true in any future state.

For instance, cell(1, 1, x) is persistent true in Tic Tac Toe, as once marked cell stays
marked until the game end. In contrast, cell(1, 1, b) is persistent false in this game.

Second identifiable property is a fluent mode, which distinguishes between input and
output arguments of the fluent [11]:

Definition 1.13 (Fluent mode). Consider an n-ary fluent f , denoted as f/n. By a fluent
mode of f we mean a function mf from {1, . . . , n} to the set {'+', '−'}. If mf (i) = '+',
then i is called an input argument of f . If mf (i) = '−', then i is called an output argument
of f .

Mode mf is written in a more readable form f(mf (1), . . . ,mf (n)).

For example, the mode of cell(1, 1, b), that is the mode of cell/3, is cell(+,+,−) meaning
the first two arguments are inputs and the last one is an output argument. In general, one
fluent can have more than one mode.

1.2.7 GDL-II

One disadvantage of GDL is, that it allows describing only perfect information deter-
ministic games, which are far from real world situations, as real world always contains some
randomness or something unknown. This issue was resolved in a new version of GDL,
known as GDL-II [12]. It introduces two new keywords to define a random element and to
control, which information is seen by each player.

However, the choice of publicly available games in GDL-II is still low in these days and
so is the support in the current players. For this reason, this thesis considers only games
written in pure GDL.
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1.3 Game Management

In order to enrol general game players in a match, we need a central point – a game
manager – to arrange and oversee the match. The game manager is responsible for distri-
bution of game rules to players, maintenance of an official game state, verification of legality
of moves and determination of winners [4].

To ensure the match progresses fast and smoothly, the game manager enforces two time
constraints. Play clock is time in seconds the players can use to deliberate about each move,
while start clock is extra time at the beginning of the match before the first turn starts.

1.3.1 Communication

A communication between the game manager and players is done through TCP/IP
protocol, where the game manager acts as a client who connects to individual agents. To
start a new match, game players must be already running and listening on the specified
port. Then, we can select a game and assign its roles to the players. Finally, we specify
start clock and play clock and start the game.

As the game is started, the game master connects to the players and exchanges messages
with them using a simple request-response protocol. The messages are encoded in KIF
syntax and the first parameter of each message sent to the players is a match ID – an
arbitrary string ensuring, that all players are engaged in the same match.

The game begins with a START message containing a role the player is playing for, rules
of the game in GDL, start clock and play clock. After waiting for start clock seconds and
then every play clock seconds, game master sends a PLAY message which contains a joint
move taken by all players in the last turn. The players should adjust their current game
state accordingly, then deliberate about the next turn and reply with a move, they want
to play. This repeats again and again until a terminal state is reached. When it happens,
the game master sends a STOP message containing the last joint move, so the players can
determine, who won the game. Table 1.2 shows sample communication between the game
manager and a player.

In case a player fails to submit reply to the PLAY message in the time specified by play
clock, the game master will take random legal move instead. The same happens, when the
player responds in the time, but the move provided is not legal. In these situations, the
player should be able to resume later and continue playing in subsequent turns.

Game Manager Message Game Player Response
(START MATCH.1366 WHITE description 60 10) READY

(PLAY MATCH.1366 (NIL NIL)) (MARK 2 2)

(PLAY MATCH.1366 ((MARK 2 2) NOOP)) NOOP

(PLAY MATCH.1366 (NOOP (MARK 1 1)) (MARK 1 2)

(PLAY MATCH.1366 ((MARK 1 2) NOOP)) NOOP
...

...
(STOP MATCH.1366 ((MARK 3 3) NOOP) DONE

Table 1.2: Sample game communication.
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1.4 Reasoners

Having a formal game description is only one part of work in GGP. As game rules are
written in logic, some form of automated reasoning is required to be able to play a game.

A hearth of each general game player is a reasoner. The reasoner is doing all compu-
tations with game rules in GDL, that is calculating legal moves, state update, checking
state for terminal and computing goal values. As all current players spend most of their
time in the reasoner, its performance significantly affects overall performance of a player.
Having a fast reasoner is therefore crucial and even the fastest of the current general game
playing reasoners cannot face a comparison with their game specific counterparts, as they
are slower in orders of magnitude [13].

Two main approaches for interpreting the game descriptions exist: a direct interpreta-
tion of the GDL by means of logical programming or translation of the game rules to some
alternative representation such as propositional networks.

1.4.1 Theorem Provers

Most of the current players rely on answering queries in GDL in a scope of logic pro-
gramming, that is usually by proving using SLD resolution. Some of these players use
custom made GDL interpreters, though they are rather slow as creating a custom reasoner
is a highly demanding task. Others rely on translation of GDL rules to Prolog and interpret
them using off-the-shelf Prolog engine.

The translation to Prolog is more or less straightforward, as GDL is a variant of Prolog.
However, some precautions must be taken to ensure, that semantics stays the same. This
applies mainly to a negation operator, as the standard negation-as-failure operator may
produce non-logical results if its operand contains free variable. A solution is to reorder
literals in a rule in such way, that the variables are bound first or to use sound negation
operator instead (which delays until the operand in bound).

While custom based interpreters provide poor performance, translation to Prolog is a
robust solution offering a reasonable speed.

1.4.2 Propositional Networks

A propositional network (propnet) is a structure in its essence very similar to an electric
circuit with logic gates implementing a boolean function. Formally, a propositional network
is a directed bipartite hypergraph consisting of propositions alternating with connectives
(inverters, and-gates, or-gates, and transitions) [1]. There 3 types of propositions:

• Base propositions represent state fluents and their values correspond with values of
matching true(f) relation in the current state. Inputs of these components are con-
structed from next(f) relation and the initial values are taken from init(f).

• Input propositions correspond with does(r, a) relation. When a successor state is to
be computed, propositions appropriate to the joint move played are set to true.

• Output propositions are of three types, which correspond with legal(r, a), goal(n, r)
and terminal relations. Their boolean value give information, whether given move is
legal, which goal is reached or if the current state is terminal respectively.

Figure 1.1 shows a sample propnet for a simple game together with its description in
GDL.
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role(white). (1.38)

legal(white, a). (1.39)

legal(white, b). (1.40)

p :– does(white, a), true(s). (1.41)

q :– not(p). (1.42)

r :– q. (1.43)

r :– does(white, b). (1.44)

next(s) :– r. (1.45)

goal(white, 100) :– true(s). (1.46)

goal(white, 0) :– not(true(s)). (1.47)

terminal :– q. (1.48)

Figure 1.1: Sample propnet with its description in GDL for an incomplete game.

Every time a value of an input proposition changes (plus at the start of a game), it is
propagated through the network. After this is done, base propositions reflect the current
game state and output propositions can be used to determine legal moves and so.

Reasoning with propnets is very fast, the speed-up is in orders of magnitude comparing
to prover reasoners. On the other hand, there are also significant disadvantages. Proposi-
tional networks cannot handle GDL with variables, which is frankly a feature of nearly all
games. All is not lost, but the game rules must be grounded first, which takes considerable
time and size of the game rules can grow up exponentially. That means, propnets are less
robust as they can be used only in certain games.

An interesting fact about propnet reasoners is, that they can be entirely implemented
in hardware. This goes very well together with field programmable gate arrays (FPGAs),
because their logic can be reconfigured at any time. This suits the needs of GGP as a new
propositional network could be loaded at the beginning of each match. As all reasoning
would be done in hardware, it should be extremely fast. Nevertheless, none attempted to
do it so far.
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Chapter 2

Heuristic Search

Being able to systematically reason with game rules in GDL is only part of the puzzle,
as every game player must also perform some kind of state space search. In the early days
of GGP, different variants of MiniMax search were used, however this algorithm had several
downsides. Its memory consumption was big and when exhaustive search of a state space
was not feasible, because it was huge, some kind of heuristic was required to estimate values
of unexplored subtrees. Although MiniMax was enhanced by many improvements, it could
not compete with new Monte Carlo tree search (MCTS) algorithm. This simulation-based
search space algorithm has started a new trend in the development of general game players.
Although MCTS does not need any heuristic, as it implicitly focuses on the most promising
parts of a game tree, a good heuristic function further improves its performance.

Automated generation of a useful and fast heuristic still remains one of the most difficult
problems in GGP. This is in the contrary with game-specific players, where it is usually
constructed by a programmer using his own knowledge about the game. In GGP, this
process must be fully automated and the heuristic must be entirely created by the game
player itself. There are two ways to create heuristics. First, offline heuristic relies on
game analysis and feature detection before the game starts and once it is generated, it is
used throughout the game. On the other hand, online heuristic is learned and constantly
improved during the game play.

This chapter first describes the Monte Carlo tree search algorithm. Then, it shows, how
to enhance it with a heuristic and introduces common control schemes.

2.1 Monte Carlo Tree Search

Monte Carlo tree search with UCT (Upper Confidence Bounds Applied to Trees) [14]
represents the current state-of-the-art between search algorithms in GGP and it is widely
used among game players. A clear evidence of its success is, that it has been used in winning
players of the AAAI competition since 2007.

MCTS works by running complete simulations of a game, that is, repeatedly playing a
simulation of a game starting at the current state and stopping when a terminal state is
reached. The simulations are used to gradually build a game tree in memory. The nodes
in this tree store an average reward (goal value) achieved by executing a certain action in
the node. When deliberation time is up, the player plays the best move in the root node of
the tree. Each simulation consists of four steps as depicted on Figure 2.1:
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1. Selection: selecting actions in the tree based on their average reward until a leaf node
of the tree is reached.

2. Expansion: adding one or several nodes to the tree.

3. Playout: playing randomly from the leaf node of the tree until a terminal state is
reached.

4. Back-Propagation: updating values of the nodes in the tree with the reward achieved
in the playout.

Figure 2.1: Schema of Monte Carlo tree search.

In the selection phase, there are two strategies, how to select an action:

• Exploitation: select the most promising action with the highest average score in a
hope for the best result.

• Exploration: select the most unknown action with the lowest number of simulations
in a hope for exploring something new.

Of course, none of these extremes is good, a solution is somewhere between. This is
where UCT comes in, as it allows setting a trade-off between the two. In the selection
phase, an action a with the highest UCT value is chosen instead of relying on the average
score Q(s, a) entirely:

QUCT (s, a) = Q(s, a) + C ∗

√
ln(N(s))

N(s, a)

where N(s) is the number of simulations from the state s and N(s, a) is the number of
simulations from s with the action a. The constant C controls exploitation vs. exploration.
Typically, its value is empirically set between 20 and 40, where higher number means more
exploration.
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During the back-propagation step, N(s) and N(s, a) must be properly increased for
every state s and action a on the path, as well as the average Q(s, a) must be updated with
the goal value achieved in the playout phase.

When applying MCTS to simultaneous moves games, the number of simulations and the
average score with each action needs to be stored separately for each player. In the selection
phase, each player chooses its action independently and then a joint move is formed. When
propagating rewards up, the values for each player are updated with the reward reached by
that player.

Monte Carlo tree search has several advantages over conventional MiniMax approach,
which is the reason, why it so popular between current players. Firstly, it is suitable even
for large games, as it does not require to expand full game tree in memory, instead a game
tree is built gradually as the game progresses; it also achieves better results in games with
higher branching factor, as the tree grows asymmetrically. Second, it does not require any
heuristic, as an average of goal values or UCT is used instead to guide the search. On the
other hand, MCTS does not terminate, it is just slowly converging to the true MiniMax
value [15], however this helps to use deliberation time effectively, as the simulations can be
interrupted at any time.

2.2 Heuristics

Although MCTS does not need any heuristic, a good heuristic function can significantly
improve its performance. Heuristics used in search come traditionally in the form of a state
evaluation function, that is, an evaluation of non-terminal states in a game. Especially
in the context of MCTS, it seems advantageous to evaluate actions instead of states. In
perfect-information turn-taking games, there is no difference between the value of an action
and the value of the state that is reached by executing that action. However, games in GGP
can have simultaneous moves in which case the successor state depends on the actions of
all players. Even in the case of turn-taking games, evaluating an action directly instead
of the successor state reached by that action saves the time needed to compute one state
update. In GGP, this time is often significant compared to the time for computing the
heuristics [13]. Both reasons make it beneficial to evaluate actions instead of states. The
two types of evaluation are called action heuristic and state heuristic respectively.

In general, there are three ways, how a heuristic can be utilized in the MCTS player to
control different parts of the search:

• Tree heuristic: a heuristic is used to control the game tree growth in the selection
phase.

• Playout heuristic: a random action selection in the playout phase is biased towards
more promising moves.

• Combined heuristic: a combination of the two previous approaches, a heuristic is used
to guide the action selection both during the random playouts and in the game tree.

2.2.1 Related Work

Several ways were suggested of how to automatically generate heuristic offline. While in
[16] they try to build a heuristic upon detecting common game features like a game board,
game pieces or quantities; in [17] game properties like termination, control over the board
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and payoff are used as components in the evaluation function. In [18], fuzzy logic is used
to evaluate the goal condition in an arbitrary state and the value is used as a measure of
how close the state is to a goal state. The approach is further improved by using feature
discovery and was used in Fluxplayer, when winning the GGP competition in 2006.

A different approach relies on learning a heuristic online from simulations of the game.
The first notable enhancement of MCTS was Rapid Action Value Estimation (RAVE) [19],
a method to speed up the learning process of action values inside the game tree. A similar
technique to learn state and move knowledge was based on which state fluents mostly occur
in the winning states and which moves lie on the winning paths [20]. The state-of-the-art
has also been greatly advanced by Move-Average Sampling Technique (MAST) [21]. MAST
is a control scheme used in the playout phase of MCTS which learns the general value of an
action independent from the context the action is used in. This and other control schemes
such as Features-to-Action Sampling Technique (FAST) [22] were used by CadiaPlayer, a
successful player that won the GGP competition three times. Recently, the MAST concept
was made more accurate by using sequences of actions of given length (N-grams) instead
of just single actions [23]. It has also been shown, that is possible to get more information
from the playouts by assessing the lengths of simulations and evaluating the quality of the
terminal state reached [24].

2.3 Search Controls

Some of the beforementioned methods are worth of closer look and they are explained
in details in this section. We will use these control schemes later together to create a new
heuristic. All methods are described in [22] and [18].

2.3.1 Move-Average Sampling Technique

In the standard MCTS with UCT, actions are selected uniformly at random during the
playout phase. However, if we have any information on which actions are good, it is better
to bias the action selection in favour of more promising moves. One way, how to determine
good actions, is Move-Average Sampling Technique (MAST) [21], which relies on the fact,
that actions that are good in one state are often good also in other states. To exploit this
property, an agent must keep an average value QMAST (a) for every action independent of
a state. When a terminal is reached, QMAST (a) is updated with the current outcome for
every action a on the path of a simulation. This works well in games, where certain actions
are good not depending on the state, however it fails in highly strategic games like Chess.

Actions are then selected using the Gibbs (Boltzmann) distribution:

P (a) =
eH(a)/τ∑
a′ e

H(a′)/τ

where P (a) is the probability that the action a will be chosen in the current playout state
and H(a) is the action heuristic function, that is QMAST (a) in this case. The parameter τ
is temperature and controls the degree of randomness. Whereas high values makes it rather
uniform distribution; τ → 0 means that more valued actions are chosen more likely.

2.3.2 Predicate-Average Sampling Technique

Predicate-Average Sampling Technique (PAST) [25] further improves MAST scheme by
taking state context into account. It works as MAST, but instead of just keeping average
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action values, it stores average values QPAST (p, a) for each action and fluent pair. During
back-propagation in a state s where action a was taken, QPAST (p, a) is updated for all
fluents p, which are true in the state s. An action is selected as in MAST in the playout
phase, except H(a) is substituted with QPAST (p′, a), where p′ is the true fluent in the state
s with the highest QPAST value for action a.

Although PAST is more expensive than MAST, it can realize, that some actions are
good only in certain situations.

2.3.3 Rapid Action Value Estimation

An example of tree heuristic is Rapid Action Value Estimation (RAVE ) [19], which is
used to speed up the learning process inside the game tree. When backing up the outcome
of a simulation, not only Q(s, a) is updated for the action a taken, but also special value
QRAV E(s, a′) for any action a′, that occurs further down on the path below the state s.
Essentially, QRAV E(s, a′) is an average outcome of simulations, where action a′ was taken
in any state on the path below s.

Initially, only the heuristic is used to give an estimate of the action value, but as the
sampled action value Q(s, a) becomes more reliable with more simulations executed, it
should be more trusted over the heuristic H(s, a). This is achieved by using a weighted
average:

Q(s, a)′ = β(s)×H(s, a) + (1− β)×Q(s, a)

with

β(s) =

√
k

3×N(s) + k

The equivalence parameter k controls, how many simulations are needed for both esti-
mates to have equal weights and the N(s) function returns number of visits of the state s.

2.3.4 Goal Heuristic

Another idea, how to construct a heuristic function, is to estimate, how much the current
state differs from a goal state. It was shown, that fuzzy logic can be used to evaluate the
degree of truth of a goal condition [18]. The idea is to assign certain values to fluents
depending on their truth value and then use fuzzy logic to evaluate complex formulas.

Definition 2.1 (Fuzzy Evaluation). For non-atomic formulas the evaluation function
against the current game state s is defined as:

eval(f ∧ g, s) = >(eval(f, s), eval(g, s))

eval(f ∨ g, s) = ⊥(eval(f, s), eval(g, s))

eval(¬f, s) = 1− eval(f, s)

where > and ⊥ are Yager family t-norms and t-co-norms:

>(a, b) = 1−⊥(1− a, 1− b)

⊥(a, b) = (aq + bq)
1
q
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All remaining atoms of the heuristic formula are of the form true(X), these are evaluated
as:

eval(true(f), s) =

{
p if f is true in s

1− p otherwise

The value for p parameter should be from interval (0.5, 1], where p = 1 essentially
transforms fuzzy logic into boolean logic. In general, the value of this parameter could
vary between fluents, where higher values could be used for more important fluents (such
as fluents, for which it is hard to switch their truth value in the game). The parameter q
determines appropriate form of t-norm and t-co-norm. The recommended values for both
parameters are q = 15 and p = 0.775.

A higher value is returned by the evaluation function for states that are more similar to
a goal state, if evaluated with goal condition state formula.

2.3.5 Combined Approaches

Previous control schemes can be combined together and a heuristic can be used to guide
the action selection both during the random playouts and in the game tree. As it was shown
in [25], this combination has a synergic effect, when RAVE was used as a tree heuristic and
MAST as a playout heuristic.
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Chapter 3

Generating Heuristic

Previous approaches to generate heuristics in GGP are very limited in the sense that
the learned heuristics are very simple and often ignore the context in which an action is
executed (MAST, RAVE), or it is a state evaluation function, and therefore not suitable
for MCTS (such as goal heuristic).

A good heuristic function for MCTS algorithm should have following properties:

• An action evaluation function instead of a state evaluation function.

• Fast to evaluate. That is especially important, when used in playouts.

• Taking context into account.

• Not misleading. It should lead an agent towards fulfilling a goal.

Based on general knowledge about heuristics described earlier, I propose a new heuristic
function. An idea for generation of such heuristic is to create an action-based version of the
goal heuristic [18], which uses fuzzy logic to evaluate the degree of truth of a goal condition
in a given state.

The key step is turning a state evaluation function into an action heuristic, which is
achieved by taking the goal condition and by regressing it one step. This essentially yields
a new condition which must be satisfied in the current game state, when this state is only
one step away from the goal state.

3.1 Regression

The definition of regression in this thesis is based on regression in the situation calcu-
lus [26]. Similar to situation formulas in situation calculus, a state formula in a game is
defined as any first-order formula over the predicate, function and constant symbols of the
game description with the exception of the does predicate and any predicate depending on
does.

Thus, the truth value of a state formula can be determined in any state independently
on the actions that players choose in that state. For example, goal(xplayer, 100) is a state
formula in the Tic Tac Toe game, because goal may not depend on does according to
GDL restrictions. For the purpose of this thesis, it is only considered variable-free state
formulas and game descriptions. Generalizing the proposed algorithm to non-ground game
descriptions should be straight-forward.
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Definition 3.1 (Regression). The regression of a variable-free state formula F by one step,
denoted as R[F ], is defined recursively as follows:

• If F is an atom true(X), then:

R[true(X)] = F1 ∨ F2 ∨ . . . ∨ Fn

where Fi are the bodies of all rules of the following form in the game description:

next(X) :– Fi.

• If F is an atom distinct(a1, a2), then:

R[distinct(a1, a2)] = distinct(a1, a2)

• If F is any other atom p(a1, a2, . . . , an), then:

R[F ] = R[F1] ∨R[F2] ∨ . . .R[Fn]

where Fi are the bodies of all rules of the following form in the game description:

p(a1, a2, . . . , an) :– Fi.

• If F is a non-atomic formula then the regression is defined as follows:

R[F1 ∨ F2] = R[F1] ∨R[F2]

R[F1 ∧ F2] = R[F1] ∧R[F2]

R[¬F ] = ¬R[F ]

Note, that GDL is finitely derivable by its definition, so computing the regression of a
formula always terminates.

Once having the regression defined, it can be applied on a state formula. Let us have
a look, what happens, when we try to regress true(cell(1, 1, x)) from the well-known game
Tic Tac Toe. The relevant part of the game rules follows:

next(cell(1, 1, x)) :– true(cell(1, 1, b)),does(xplayer,mark(1, 1)). (3.1)

next(cell(1, 1, x)) :– true(cell(1, 1, x)). (3.2)

The regression of true(cell(1, 1, x)) is computed by simply replacing it with the disjunc-
tion of the bodies of the two matching next rules:

R[true(cell(1, 1, x))] =
(
true(cell(1, 1, b)) ∧ does(xplayer,mark(1, 1))

)
∨

true(cell(1, 1, x))
(3.3)

The regressed formula (3.3) essentially says, when true(cell(1, 1, x)) is true in the current
state, then in the previous game state, there had to be true(cell(1, 1, x)) already true, or
the player x had played the action mark(1, 1) and then true(cell(1, 1, b)) had to be true.

We see, that the assertion about the previous state differs depending on, which action
the player x has taken. By substituting does(xplayer,mark(1, 1)) with true, we get a state
formula related to the previous state, when action mark(1, 1)) was taken from that state by
player x. This is essentially a heuristic for the action mark(1, 1)).
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3.2 Algorithm

Based on the previous definition, following algorithm to generate a heuristic function
for each action a of a player p is proposed. The algorithm consists of following steps:

1. Compute R[goal(p, 100)], the regression of goal(p, 100). R[goal(p, 100)] represents a
condition on a state and actions of players that – when fulfilled – allow to reach a
goal state for player p.

For now, only the highest valued goal is taken into consideration for each player.
Combining different goals could be done similar to the way described in [18], but
would make the heuristics more expensive to compute.

2. R[goal(p, 100)] contains conditions on actions of players. However, we want a formula
that indicates when it is a good idea for player p to execute action a. To obtain such a
formula, we restrict R[goal(p, 100)] to those parts that are consistent with does(p, a).
In practice this is achieved by replacing all occurrences of does(r, b) for any r and b
in R[goal(p, 100)] as follows:

(a) In case p = r and a = b, the occurrence of does(r, b) is replaced with the boolean
constant true.

(b) In case p = r, but a 6= b, the occurrence of does(r, b) is replaced with the boolean
constant false.

(c) In case p 6= r, the condition is on an action for another player. In that case, the
replacement depends on whether or not the game is turn-taking:

i. In case of a game with simultaneous moves, the occurrence of does(r, b) is
replaced with unknown value in three-valued logic. This represents, that we
are not sure, which action the opponent decides to play.

ii. In case of a turn-taking game, if b is a noop action, the occurrence of
does(r, b) is replaced with true, otherwise with false (because r must do
a noop action if p is doing a non-noop action such as a).

3. The formula is simplified according to laws of three-valued logic. In particular, any
constants introduced in previous steps are propagated up and the formula is partially
evaluated.

For performance reasons, it is better to perform all the steps in one go, that is recursively
regress the formula, while replacing does and suitable true with their values and return
already simplified formula from each recursion step.

3.2.1 Example: Tic Tac Toe

This section demonstrates on an example, how the algorithm works on a simplified
version of the game Tic Tac Toe, where the goal was reduced to build only any of the two
diagonal lines. The grounded and expanded version of the goal for the player xplayer is:

goal(xplayer, 100) :–
(
true(cell(1, 1, x)) ∧ true(cell(2, 2, x)) ∧ true(cell(3, 3, x))

)
∨(

true(cell(1, 3, x)) ∧ true(cell(2, 2, x)) ∧ true(cell(3, 1, x))
)
.

(3.4)

Assume, we are computing the heuristic function for the action mark(1, 1) for the role
xplayer. The first atom to regress in (3.4) is true(cell(1, 1, x)). Its regression has been
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thoroughly shown in the section 3.1, so here is the result only:(
true(cell(1, 1, b)) ∧ does(xplayer,mark(1, 1))

)
∨ true(cell(1, 1, x)) (3.5)

The does predicate in (3.5) is replaced with boolean true, because both the role and
the action match the ones we are interested in right now (3.6) and the formula is simplified
(3.7). Thus (3.7) is the final replacement for true(cell(1, 1, x)).(

true(cell(1, 1, b)) ∧ T
)
∨ true(cell(1, 1, x)) (3.6)

true(cell(1, 1, b)) ∨ true(cell(1, 1, x)) (3.7)

Going back to the goal condition (3.4), the next part of the formula to be regressed is
true(cell(2, 2, x)). The matching next rules are:

next(cell(2, 2, x)) :– true(cell(2, 2, b)),does(xplayer,mark(2, 2)). (3.8)

next(cell(2, 2, x)) :– true(cell(2, 2, x)). (3.9)

The regression of true(cell(2, 2, x)) therefore yields formula (3.10). This time, the does
keyword is replaced with boolean false, because the role matches, but the action does not
(3.11). This can be simplified to (3.12), which equals the term we have started with,
meaning that true(cell(2, 2, x)) stays in the formula untouched.(

true(cell(2, 2, b)) ∧ does(xplayer,mark(2, 2))
)
∨ true(cell(2, 2, x)) (3.10)(

true(cell(2, 2, b)) ∧ F
)
∨ true(cell(2, 2, x)) (3.11)

true(cell(2, 2, x)) (3.12)

We repeat the same steps for any other true keywords in the goal (3.4). As in the last
case, each term is replaced by the term itself and nothing in the formula is changed. The
final heuristic formula for xplayer taking action mark(1, 1) follows (3.13):((

true(cell(1, 1, b)) ∨ true(cell(1, 1, x))
)
∧ true(cell(2, 2, x)) ∧ true(cell(3, 3, x))

)
∨(

true(cell(3, 1, x)) ∧ true(cell(2, 2, x)) ∧ true(cell(1, 3, x))
) (3.13)

As it can be seen, this condition describes a situation in which xplayer taking action
mark(1, 1) would lead to a winning state. Thus, a boolean evaluation of such conditions for
all legal moves in a state is equivalent to doing 1-ply lookahead.

3.3 Evaluation

Using the algorithm above, the heuristic formula can be constructed for any role and
any potentially legal move during start clock. During game play, the formula for each legal
action can be evaluated against the current game state using fuzzy logic as described in
section 2.3.4 about goal heuristic. In essence, a higher value of the evaluation means, that
more prerequisites are satisfied for a particular action to lead to a goal state.

However, during experimenting with the heuristic, it was discovered, that the fuzzy eval-
uation function from Definition 2.1 is too slow compared with the time needed to calculate
legal moves and state updates. Further investigation revealed, that the main reasons for
the slowdown were the power and root operations used in the Yager family t-norms and
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t-co-norms. Instead, these are replaced with a product t-norm > and a probabilistic sum
t-co-norm ⊥ as follows:

>(a, b) = a · b
⊥(a, b) = a+ b− a · b

This change resulted into an approximately tenfold speedup in the evaluation, although
the heuristic is less accurate than it was with the original t-norm and t-co-norm as used in
[18]. The value for the parameter p defining the evaluation of a true fluent must be adjusted
accordingly and p = 0.97 is used.

The heuristic values (after normalization) for each legal action in the aforementioned
version of the game Tic Tac Toe are shown in Table 3.1.

(1, 3)

25

(2, 3)

0

(3, 3)

25

(1, 2)

0

(2, 2)

50

(3, 2)

0

(1, 1)

25

(2, 1)

0

(3, 1)

25

Table 3.1: Heuristic evaluation of actions in the simplified version of Tic Tac Toe.

The heuristic function was evaluated in the initial game state (an empty board). We can
see, that the action with the highest value, is to take the middle cell (mark(2, 2)), followed
by 4 actions taking one of the corner cells. Indeed, this corresponds with the fact that
marking the middle cell as the first action leads to the most options for winning the game.

3.4 Control Schemes

This heuristic can be easily incorporated in the MCTS algorithm and it can be used
both in the playouts and within the game tree. Therefore three control schemes can be
established: a playout heuristic, a tree heuristic and a combined heuristic mixing the two
approaches together.

We can use Gibbs distribution to guide the random playouts, as described in the MAST
section, while weighted average as in RAVE can be used within the selection phase. Any
heuristic values must be normalized and scaled appropriately before use.

Experiments have shown, that good values for the τ parameter are somewhere between
0.5 and 2; τ = 1 was used. The equalization constant k was set to 5. These values are
different than in MAST and RAVE, because of the different distribution of values of the
action heuristic.

However, the tree heuristic scheme can be slightly improved as the value of the equiva-
lence parameter k is static throughout the game match, which is not optimal. As the game
progresses, the number of MCTS simulations is increasing from turn to turn, because they
are getting shorter and so the equivalence parameter should reflect this change.

What we typically want, is giving the heuristic relatively more influence, when the
number of simulations is low, but less influence as the number increases. This requirement
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is satisfied even with static value of k, however it does not scale properly as its influence
might be too much with low number of simulations and rather negligible with high number.

Following formula can be used to adjust the value of the equivalence parameter at the
beginning of each turn to reflect this trend:

k =

√
N

d

where N is the number of simulations done during the previous turn and d is a divisor
constant. When d is set to 20, the resulting value of equivalence parameter is 5 for 10000
simulations done, which can be considered as a standard value.

3.5 Additional Knowledge

This section describes, how an additional knowledge about the game can be used to
further improve properties of the heuristic in some situations. The additional knowledge
can be obtained either by formal proves [27, 10] or by looking up for certain syntactic
structures in GDL rules [16]. Additionally, a hypothesis can be formulated, that is verified
with certain probability in random game states.

3.5.1 Persistent Fluents

Simplest type of additional knowledge is information about fluent persistence. In case
this knowledge could be (automatically) inferred, the fuzzy evaluation function from Defi-
nition 2.1 is modified as follows:

eval(true(f), s) =


1 if f is true in s and f is persistent true

p if f is true in s and f is not persistent true

0 if f is false in s and f is persistent false

1− p otherwise

3.5.2 Fluent Modes

Fluent mode provides useful information, because it restricts the number of fluents with
the same name, arity and the same input arguments to at most one in any reachable game
state. Consider control/1 fluent with mode control(−). As there is no input argument,
this essentially means, that there is no more than one control/1 fluent in any given state.
Similarly for cell(1, 1, x), which has mode cell(+,+,−). The first two parameters are inputs,
so there can be at most one fluent of form cell(1, 1, p) in any reachable state for any arbitrary
p. Thus, any state in Tic Tac Toe can contain only one of the following fluents: cell(1, 1, x),
cell(1, 1, o), cell(1, 1, b) or none.

How can we use the fluent modes to improve the heuristic? Consider the fluents
cell(1, 1, x) and cell(1, 1, o), which are both true persistent. If one of those becomes true
in a state s, the other one must not hold in that state. Moreover, the other fluent
gets a new property, as it becomes false persistent from any state following the state
s. This can be reflected in the heuristic function, that cell(1, 1, x) will be replaced with
cell(1, 1, x) ∧ ¬cell(1, 1, o).

In general, any fluent f(x, y) in the heuristic formula will be replaced with f(x, y) ∧
¬
(
f(x, b1) ∨ . . . ∨ f(x, bn)

)
when f has a mode with x as input and y as output arguments

and f(x, b1), . . . , f(x, bn) are all the true persistent fluents of the form f(x, b) for any b 6= y.
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3.5.3 Move Preconditions

When computing a regression of a goal condition for a player p restricted to an action
a, we can use additional knowledge, that we have about the action a. As the heuristic will
be used to estimate values only of the actions, that are legal in a given state, we know, that
legal(p, a) must hold. With some luck, truth values of some fluents occurring in the legal
relation could be calculated. In particular, if there is only one legal(p, a) rule for the action
a and the player p and the body of this rule is a conjunction (which is by default), then all
the conjuncts must be also true to satisfy the final condition.

Once the truth value of some fluent is determined, then its mode can be used to infer
truth values of other fluents with the same name, arity and input arguments. Finally, all
the occurrences of this fluent can be replaced with the logic value assigned to it, which
results in a simplified formula.

Unfortunately, this improvement works only in certain games, because the legal condi-
tion is usually too complex to be able to find out truth values of any useful fluents. In most
cases, truth value of control fluent can be found easily, however this fluent usually does not
occur in the regression of a goal.

In the example of Tic Tac Toe, let us assume we want to compute precondition for the
move mark(1, 1) with the following legal relation for the player xplayer :

legal(xplayer,mark(1, 1)) :– true(cell(1, 1, b)). (3.14)

As the legal relation is very simple, it clear that true(cell(1, 1, b)) must hold any state,
where mark(1, 1) is the legal move to play. This allows simplifying the heuristic function
(3.13) as it was created in the section 3.2.1 to the much shorter formula (3.15):(

true(cell(2, 2, x)) ∧ true(cell(3, 3, x))
)
∨
(
true(cell(3, 1, x)) ∧ true(cell(2, 2, x)) ∧

true(cell(1, 3, x))
) (3.15)

3.5.4 Turn Taking Games

Another type of knowledge is the information, whether the game is turn taking or with
simultaneous moves, because special precautions can be taken in turn taking games. This
knowledge is already incorporated in the step 2(c) of the algorithm generating the heuristic.
While any does in the formula is replaced with either true or false in turn taking games
depending on its arguments, in case of simultaneous games, also unknown value can be
used, which introduces extra uncertainty into the heuristic formula.

In case we are not able to discover this information properly and a noop move cannot
be determined, we must assume that the game has simultaneous moves.
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Chapter 4

Implementation

In this chapter, I present an implementation of a new general game player. This includes
implementing the action heuristic that has been proposed earlier in this thesis, choosing a
good third party GGP framework and a reasoner, creating a MCTS algorithm with other
supporting concepts and integrating all the parts together.

At first, architecture of the player is described and the frameworks, on which it is built,
are characterized. Later, an implementation of both generation and evaluation of the action
heuristic is explained.

4.1 Frameworks

Developing a general game playing system from scratch is a very demanding task; espe-
cially when it comes to develop a custom reasoner. Luckily, a few frameworks that ease the
new agent creation exist, so all effort could be spent on developing a good agent function.

The agent, which is built in this thesis, uses components of the following game playing
systems:

• GGP-base [28] - a complete framework for a development of GGP agents, that is
designed in order to make the development of new agents as simple as possible. In
the simplest case, only the agent decision function needs to be implemented, while
other stuff such as network communication is completely handled by the framework
itself. It comes with a slow theorem prover reasoner.

• Fluxplayer [18] - an agent written in Prolog, that uses Prolog engine as a reasoner.
Fluxplayer is also known that it can prove certain properties of the game and then
uses them to its advantage [27, 10].

• Sancho player [29] - a complex agent built on the GGP-base framework. Although full
source code of the agent is available, the only part used in this thesis is the efficient
implementation of a propnet state machine.

4.1.1 GGP-base

In the GGP-base framework, a new player can be created by extending the class
StateMachineGamer and implementing some of the basic 8 methods. Notably, the following
functions are worth of closer look:

• getName – can return some fancy name of the player;
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• getInitialStateMachine – this function is used to choose the state machine imple-
mentation, which will be used to simulate the match. It should return a new object
that is subclass of the StateMachine class. By default, simple logic-based prover is
available, however Sancho player provides also an efficient propnet implementation;

• stateMachineMetaGame – called during the time assigned for start clock and can be
used by the player to analyse the game, initialize all structures and deliberate about
the game. The timeout parameter specifies a deadline, until this function must return;

• stateMachineSelectMove – this is the core function of each player, that is used to
deliberate about each turn in a game. It is called once per turn allowing play clock
to be used for deliberation. The function must return a move, that the player wishes
to play before the timeout specified as the first parameter expires;

• stateMachineStop – called, when the game match finishes normally;

• stateMachineAbort – similar to stateMachineAbort, but it is called, when the match
ends abruptly.

The GGP-base framework calls these functions automatically when necessary. Within
the StateMachineGamer class, the game can be simulated using the state machine created,
that provides handy functions to calculate state updates or legal moves and to verify ter-
minal or goal. The gamer automatically handles all communication with the game master
and it is responsible for keeping the current game state up to date.

4.2 Architecture

All general game players share the same basic architecture and consist of three basic
modules that can be implemented separately and reused again when developing a new agent.
These are:

• Networking – handles all communication with the game master;

• State machine – simulates the game;

• Artificial intelligence – the agent function, represents the agent’s logic.

In case of the agent, that is being developed, it was decided to split the implementation
into two logically divided parts. The core part is built on top of the GGP-base framework,
where the built-in logic-based reasoner was replaced with much faster propnet reasoner
from Sancho player. This part is entirely written in Java and it is responsible for MCTS
search and evaluation of the heuristic function. The second part is in charge of generating
the heuristic and it is built on Fluxplayer codebase, that is written in Prolog. This was
decided, because GDL as a logic language is a variant of Prolog and Prolog is well suited
for processing it, as it can handle any transformations of logic formulas efficiently. The
Fluxplayer codebase is used to ground game rules (as this is necessary to generate the
heuristic) plus it can also prove some interesting game properties, that can be later used.

Communication between the two parts is done via temporary files, as there is no need
for interactive communication, because the Prolog code is run only once at the beginning
of a match to generate the heuristic.
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Figure 4.1: Architecture of the agent.

The architecture of the agent is depicted on Figure 4.1. Grey components in the image
represent the parts that are being developed in this thesis.

The following search control schemes have been implemented to analyse different be-
haviour of the heuristic: playout, tree and a combined scheme. Moreover, I have imple-
mented also MAST, RAVE and MAST+RAVE players to have a comparison with well-
established concepts plus a non-heuristic player is also available.

4.3 Generating Heuristic

The heuristic is generated according to the algorithm, that has been described in the
section 3.2 with the difference, that the three steps are all done recursively in one pass.
In contrary with doing them one by one, this allows keeping the size of all intermediate
results within a manageable range, as the big expansion in the size of all formulas, which is
introduced in the first step, is being immediately reduced by performing the two remaining
steps.

The algorithm is implemented in Prolog, in the ECLiPSe Constraint Programming
System.

Game rules are loaded from a temporary file specified. Then, the rules are grounded
and the game is analysed for interesting properties by the Fluxplayer engine. Afterwards,
the heuristic is generated and exported into a file in GDL. This is done during start clock
at the beginning of each match.

During the processing, all formulas are represented as standard logic expressions in
Prolog. That is, conjunction is denoted by a comma, disjunction by a semicolon and
negation either by a tilde '~' or by '\+' symbol. Keywords in GDL are represented as
Prolog predicates, however 'd_' prefix is prepended. For instance, legal(xplayer,mark(1, 1))
becomes d_legal(xplayer, mark(1, 1)) in Prolog.

All the three improvements with use of additional knowledge are implemented as they
were described in the section 3.5. Moreover, all resulting formulas are optimized using
absorption law and all duplicate operands of conjunctions and disjunctions are detected
and removed (idempotence law). Especially these two optimizations are a little bit tricky
to do, when logic formulas are represented as standard Prolog expressions, because all
conjunctions and disjunctions with multiple inputs are constructed from multiple binary
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operators (taking two inputs). This hides certain properties of the formula and makes
the expression syntax tree deeper than necessary. For optimization purposes, consecutive
operations of the same type are grouped into one operation with multiple inputs.

4.3.1 Implementation in Prolog

The following code sample 4.1 shows, how the heuristic can be obtained in Prolog.
The variables Role and Move represent the role and the action for which the regression is
calculated, such as xplayer and mark(1, 1). At first, a goal for given role is picked and then
the heuristic is generated by regress_goal/3 function.

Listing 4.1: Getting a goal

1 Goal = d goa l ( Role , 100) ,
2 r e g r e s s g o a l ( Goal , d does ( Role , Move ) , H e u r i s t i c ) ,

The regress_goal/3 predicate recursively processes the goal formula. Notably, the first
rule of the simplified code snippet 4.2 performs a replacement of a fluent with the matching
next rule, which is the key step of the regression. Moreover, the ggp_ground_axiom/2

succeeds, when the first argument is a head of a rule in GDL and the second argument
unifies with a body of that rule.

Listing 4.2: Computing regression

1 r e g r e s s g o a l ( d true ( Fluent ) , Does , Return ) :− ! , %f l u e n t
2 r e p l a c e d o e s ( d next ( Fluent ) , Does , Return ) .
3 r e g r e s s g o a l ( true , , true ) :− ! . %t r u e
4 r e g r e s s g o a l ( f a i l , , f a i l ) :− ! . %f a l s e
5 r e g r e s s g o a l ( (X, Y) , Does , Return ) :− ! , %conjunc t ion
6 r e g r e s s g o a l (X, Does , XX) ,
7 r e g r e s s g o a l (Y, Does , YY) ,
8 eva luate and (XX, YY, Return ) .
9 r e g r e s s g o a l ( (X ; Y) , Does , Return ) :− ! , %d i s j u n c t i o n

10 r e g r e s s g o a l (X, Does , XX) ,
11 r e g r e s s g o a l (Y, Does , YY) ,
12 e v a l u a t e o r (XX, YY, Return ) .
13 r e g r e s s g o a l ((\+ X) , Does , Return ) :− ! , %negat ion
14 r e g r e s s g o a l (X, Does , Y) ,
15 eva lua te not (Y, Return ) .
16 r e g r e s s g o a l (X, Does , Return ) :− ! , %p r e d i c a t e
17 f indal l ( Axiom body , ggp ground axiom (X, Axiom body ) , Axioms ) ,
18 l i s t t o o r ( Axioms , Ors ) ,
19 r e g r e s s g o a l ( Ors , Does , Return ) .

When the regression is obtained, all occurrences of does must be evaluated in relation
to the current role and the action. This is implemented in the predicate replace_does/3,
whose incomplete implementation is shown in the listing 4.3. The missing rules are in
essence very similar to the lines 3 to 19 from the listing 4.2.

Listing 4.3: Replacing does

1 %matching r o l e and a c t i o n
2 r e p l a c e d o e s ( d does ( Role , Action ) , d does ( Role , Action ) , true ) :− ! .
3 %non matching a c t i o n
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4 r e p l a c e d o e s ( d does ( Role , ) , d does ( Role , ) , f a i l ) :− ! .
5 %non matching ro l e , turn t a k i n g game
6 r e p l a c e d o e s ( d does ( Role , Action ) , d does ( , ) , Return ) :−
7 i s o n l y o n e p l a y e r s c h o i c e , get noop move ( Role , Noop ) , ! ,
8 (Noop = Action −> Return = true ; Return = f a i l ) .
9 %non matching ro l e , s imul taneous move game

10 r e p l a c e d o e s ( d does ( , ) , d does ( , ) , unknown) :− ! .
11 %f l u e n t
12 r e p l a c e d o e s ( d true (X) , , d t rue (X) ) :− ! .
13 . . .

The last step of the algorithm is to simplify the formula using logic laws, which is
performed in the evaluate_and/3, evaluate_or/3 and evaluate_not/2 functions.

All the code listings above have been simplified in a way that they show only the
main idea, but they omit other advanced features such as caching, optimizations or use of
additional knowledge.

4.3.2 Precomputing Replacements

Because grounded game descriptions are much bigger than their non-grounded versions,
efficiency of the implementation is a serious concern. To make the algorithm reasonably fast,
it is necessary to avoid repeated work, which is achieved by caching intermediate results in a
hash map. However, this does not solve all the speed related problems. Consider following
example from the grounded description of the game Skirmish:

gen exists 54(a, 2, a, 2) :– does(white,move(wk, a, 1, a, 2)). (4.1)

gen exists 54(a, 2, a, 2) :– does(white,move(wr, a, 1, a, 2)). (4.2)

... (4.3)

gen exists 54(a, 2, a, 2) :– does(white,move(br, h, 2, a, 2)). (4.4)

The rule gen exists 54(a, 2, a, 2) was generated by the grounder and it has 76 realizations.
Then, during the heuristic generation process, it is scanned for any does, which is replaced
with boolean value depending on whether its arguments match the role and the action it is
currently regressed. This is done for every legal move and there are about 1729 potentially
legal moves for each role in Skirmish. As there are many more rules like this, it is clear,
that these calculations become soon too costly. Caching does not help here, as the result
might be potentially different for each legal move.

However, there is a room for improvement, as only one rule of those with the same head
is relevant for any given move, while the replacement in all the other rules produces false.
In the context, where multiple rules with same head are understood as a disjunction, rules
producing false as a result can be ignored. However it is not known before, which rules can
be skipped until they are evaluated, thus the idea is to find out which rules are relevant for
which moves in advance. This is done by calculating two possible results of the replacement
and keeping a set of relevant moves for each rule, where one result is valid for any move
from the set and the second is the result for moves that are not in the relevant set.

This improvement does not work on all formulas as it covers only some simple cases,
however similar rules as above are very common in grounded game descriptions. A replace-
ment of does in the formula is then calculated just once instead of doing this separately
for each move.
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4.4 Evaluating Heuristic

Once the heuristic formula is generated, it can be evaluated using fuzzy logic and utilized
in the MCTS player. It is crucial to do the evaluation as fast as possible, as any slowdown
can easily counterweight gains of the heuristic function.

4.4.1 Propositional Networks

For the purpose of evaluating the heuristic, a propositional network representing the
heuristic formula is built. This has the advantage, that any duplicated parts of the formula
(and there are always many of them as formulas for similar moves have usually similar
subparts) are represented by the same component and evaluated just once.

There are two different representations of a propnet implemented in the player. First
implementation uses dynamic arrays and bidirectional (but oriented) bindings between com-
ponents. This implementation is well suited for further modifications of the propnet in mem-
ory, but it is slower on evaluation. This propnet can perform some simple optimizations
such as constant propagation. The second representation is more compact and perfor-
mance oriented and uses fixed size structures and one-way bindings between components,
so it cannot be modified once built.

The idea is to have the first type dynamic propnet and keep it optimized all the times,
while using the static propnet that is fast to evaluate and recreate it from the first propnet
every times it is modified. This way is the highest speed possible assured.

When the root state of a game tree is updated, it is checked whether any true or false
persistent fluents have already reached their persistent status. If so, then they are replaced
with true or false constants respectively and their values are further propagated through
the propnet. This results into much smaller network and faster evaluation as the match
progresses in some games.

4.4.2 Fuzzy Evaluation

For determining a value of a propnet component, lazy evaluation is used. That is
nothing is computed, when a new game state is loaded into the propnet, until the value
of such component is needed. An up-to-dateness of each component is represented by an
integer counter – the component value is considered to be current, if the value of its counter
is the same as the value of the global propnet counter. In such case, cached value is returned,
otherwise a new value is calculated recursively from other components.

The heuristic is evaluated for each legal move in any state that occurs during the playout
phase. When used within the game tree, it is evaluated and the results are stored in game
nodes. The evaluation happens only after the node is fully expanded.
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Chapter 5

Evaluation

The general game playing agent, that has been designed and implemented in previ-
ous chapters, is now compared with other solutions and GGP players. It is consecutively
matched against a non-heuristic MCTS player, against well-known MAST and RAVE
heuristic schemes and finally, it is compared with full-fledged GGP agents – Fluxplayer,
CadiaPlayer and Sancho; renowned agents that won the GGP AAAI competition at least
once. Finally, the results are evaluated with respect to the reasons that stand behind
and the agent’s strengths and weaknesses are identified. In the end, possibilities of future
development are discussed.

5.1 Test Setting

Three sets of experiments were run to test behaviour of the agent under different settings.
First, the agent was matched against a pure non-heuristic MCTS/UCT player using the
three aforementioned concepts of the action heuristic (playout, tree and combined heuristic)
with constant number of simulations per turn. Then, the playout, tree and combined
heuristic were matched against MAST, RAVE and MAST+RAVE players respectively as
examples of well-established control schemes. Constant time per turn was used in this
experiment. Finally, the player using the combined heuristic was opposed by full-fledged
GGP agents, namely by CadiaPlayer [22], Fluxplayer [18] and Sancho [29].

The values of search control parameters as used in the tests are shown in Table 5.1 and
they present the best known setting of the player. The values for MAST and RAVE were
set as recommended in [25].

Parameter Usage Value
C UCT constant MCTS 40
τ temperature playout heuristic 1
k equivalence parameter tree heuristic calculated dynamically
d divisor constant for k tree heuristic 20
τ temperature MAST 10
k equivalence parameter RAVE 1000

Table 5.1: Parameter values used in the tests.

Each of the first two experiments consist of 300 matches per game with each scheme; 150
matches per game were used in the last test set The tests were run on Linux with multicore
Intel Xeon 2.40 GHz processor with 4 GB memory limit and 1 CPU core assigned to each
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Game MCTS vs. Playout MCTS vs. Tree MCTS vs. Combi.
Battle 85.0 × 91.5 (±2.47) 88.5 × 95.6 (±1.61) 90.9 × 97.5 (±1.32)
Bidding Tic Tac Toe 42.8 × 57.2 (±3.21) 40.8 × 59.2 (±3.11) 39.3 × 60.7 (±3.49)
Blocker 55.3 × 44.7 (±5.63) 52.7 × 47.3 (±5.65) 49.0 × 51.0 (±5.66)
Breakthrough 47.3 × 52.7 (±5.65) 51.7 × 48.3 (±5.65) 52.3 × 47.7 (±5.65)
Checkers (small) 77.3 × 22.7 (±3.87) 50.2 × 49.8 (±4.37) 79.0 × 21.0 (±3.65)
Chinese Checkers 67.2 × 82.8 (±2.69) 74.5 × 75.4 (±2.84) 69.3 × 80.7 (±2.76)
Chinook 50.7 × 59.7 (±5.60) 51.7 × 57.0 (±5.62) 51.0 × 60.7 (±5.56)
Connect 4 65.2 × 34.8 (±5.12) 50.7 × 49.3 (±5.45) 62.0 × 38.0 (±5.15)
Criss Cross 61.3 × 63.8 (±4.24) 63.0 × 62.0 (±4.24) 62.0 × 63.0 (±4.24)
Ghost Maze 20.0 × 80.0 (±2.77) 19.3 × 80.7 (±2.94) 24.8 × 75.2 (±3.15)
Nine Board Tic Tac Toe 19.7 × 80.3 (±4.50) 33.7 × 66.3 (±5.35) 18.7 × 81.3 (±4.41)
Pentago 43.3 × 56.7 (±5.29) 28.8 × 71.2 (±4.66) 20.8 × 79.2 (±4.27)
Sheep and Wolf 58.7 × 41.3 (±5.57) 59.7 × 40.3 (±5.55) 65.0 × 35.0 (±5.40)
Skirmish 78.1 × 74.6 (±1.42) 79.3 × 77.0 (±1.53) 80.8 × 76.2 (±1.66)

55.1 × 60.2 (±1.30) 53.2 × 62.8 (±1.28) 54.6 × 61.9 (±1.30)

Table 5.2: Tournament using the playout, tree and combined heuristic against pure MCTS
player with fixed number of simulations.

agent. Rules for all the games tested come the Tiltyard GGP server [30] and they can be
found on the CD attached. Rules for particularly interesting games are also explained in
Appendix A. The opposing GGP agents were run using their default settings, however when
multithreading was enabled, it was limited to one CPU core to allow the same computing
power for all the players. All the agents were used in the latest version available.

MCTS/UCT, RAVE, MAST and all the three action heuristic players share the same
base implementation of the MCTS algorithm, therefore the test results should give good
evidence about contribution of different heuristic schemes.

5.2 Playing Strength

The tables 5.2 to 5.4 show the average scores reached by the agents along with a 95 %
confidence interval under the three aforementioned test settings. Bold numbers indicate
significant win ratio for the highlighted agent. Also note that not all the games tested are
zero sum games.

5.2.1 Comparison with MCTS/UCT

Table 5.2 contains results for a tournament against non-heuristic MCTS player. In
this experiment, all players were allowed to perform 10000 MCTS simulations per turn not
limiting them by any time constraint.

The game with the strongest position of the combined scheme is Nine Board Tic Tac
Toe with a score 81 (±4.4) against 19; it is also good in Pentago, Ghost Maze and Bidding
Tic Tac Toe. On the other hand, it is particularly bad in Checkers and Connect4, but closer
look reveals, that this is only because of the playout heuristic, while the tree heuristic has
not much influence in these games. The playout heuristic follows the similar trend as the
combined scheme. On the other hand, the tree heuristic scheme performs significantly
better than the pure MCTS in 5 games, significantly worse only in Sheep and Wolf and it
has rather no effect in the remaining games.

36



Game MAST vs. Playout RAVE vs. Tree M+R vs. Combi.
Battle 94.7 × 98.8 (±0.80) 85.7 × 91.2 (±2.07) 90.0 × 92.3 (±1.53)
Bidding Tic Tac Toe 29.2 × 70.8 (±4.61) 30.0 × 70.0 (±4.43) 22.0 × 78.0 (±4.36)
Blocker 52.0 × 48.0 (±5.65) 52.0 × 48.0 (±5.65) 54.7 × 45.3 (±5.63)
Breakthrough 67.7 × 32.3 (±5.29) 48.0 × 52.0 (±5.65) 72.3 × 27.7 (±5.06)
Checkers (small) 84.3 × 15.7 (±3.28) 48.5 × 51.5 (±4.37) 83.0 × 17.0 (±3.42)
Chinese Checkers 84.0 × 66.0 (±2.64) 75.8 × 74.0 (±2.84) 81.2 × 68.3 (±2.75)
Chinook 64.3 × 43.7 (±5.52) 55.0 × 59.0 (±5.60) 69.3 × 42.3 (±5.40)
Connect 4 62.8 × 37.2 (±5.28) 54.8 × 45.2 (±5.31) 67.3 × 32.7 (±5.06)
Criss Cross 62.5 × 62.5 (±4.24) 62.5 × 62.5 (±4.24) 62.5 × 62.5 (±4.24)
Ghost Maze 25.2 × 74.8 (±2.87) 27.8 × 72.2 (±3.30) 30.8 × 69.2 (±3.22)
Nine Board Tic Tac Toe 35.0 × 65.0 (±5.40) 33.3 × 66.7 (±5.33) 25.0 × 75.0 (±4.90)
Pentago 37.3 × 62.7 (±4.90) 28.2 × 71.8 (±4.55) 24.0 × 76.0 (±4.47)
Sheep and Wolf 67.3 × 32.7 (±5.31) 53.0 × 47.0 (±5.65) 70.7 × 29.3 (±5.15)
Skirmish 84.8 × 80.8 (±1.59) 79.5 × 71.3 (±1.49) 87.4 × 74.7 (±1.48)

60.8 × 56.5 (±1.34) 52.4 × 63.0 (±1.30) 60.0 × 56.5 (±1.34)

Table 5.3: Tournament against MAST, RAVE and MAST+RAVE players with constant
time per turn.

It is also worth mentioning, how the results in the combined control scheme are con-
nected to the playout and the tree heuristic. It seems, the influence of the playout heuristic
on the overall result is much higher. Especially, when it is useless or even misleading, then
the combined result is dragged down by it (Checkers, Connect4). It seems that the playout
heuristic is more vulnerable, while the tree heuristic control scheme can recover when the
heuristic is misleading. Thus, it is essential for the playout heuristic to be good, if it is
used.

An interesting example is Bidding Tic Tac Toe – a game, where two players are bidding
coins in order to mark a cell on a Tic Tac Toe board. The key property of this game is the
bidding part, the game can be easily lost by doing wrong bids, even when the markers are
placed in good positions on the board. The action heuristic does not help in any way with
the bidding, it only helps to arrange markers in a line. In spite of this, all the heuristic
agents still have significant advantage in this game. One explanation is that when a player
wins a bid, it can actually use its move well which makes especially the playouts more
reliable.

In general, it can be said, that the heuristic player performs very well in any Tic Tac
Toe-like games, as they contain many persistently true fluents and thus the heuristic leads
the player to the goal more directly.

5.2.2 Comparison with RAVE and MAST

Table 5.3 shows results for matches played against MAST, RAVE and MAST+RAVE.
Although MAST and MAST+RAVE outperform the playout and the combined heuristic
in most of the games, a good position is still held in Pentago or Nine Board Tic Tac Toe.
The heuristic performs surprisingly well against RAVE with just one significant loss.

By comparing the tables 5.2 and 5.3, we see that the action heuristics perform well
against MAST and RAVE in the same games (with exception of Chinese Checkers) in
which they did well against a pure MCTS/UCT player. This suggests, that this approach
is complementing MAST and RAVE by improving performance in games in which MAST
and RAVE do not seem to have much positive effect.
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Game Cadia vs. Combi. Flux vs. Combi. Sancho vs. Combi.
Battle 27.7 × 90.9 (±3.02) 68.4 × 85.1 (±3.78) 83.3 × 92.7 (±2.62)
Bidding Tic Tac Toe 31.3 × 68.7 (±6.70) 0.0 ×100.0 (±0.00) 79.7 × 20.3 (±4.14)
Blocker 42.0 × 58.0 (±7.90) 36.7 × 63.3 (±7.71) 45.3 × 54.7 (±7.97)
Breakthrough 35.3 × 64.7 (±7.65) 0.7 × 99.3 (±1.30) 99.3 × 0.7 (±1.30)
Checkers (small) 44.3 × 55.7 (±7.31) 47.3 × 52.7 (±7.08) 75.3 × 24.7 (±5.60)
Chinese Checkers 42.7 × 99.3 (±1.56) 54.3 × 87.3 (±3.05) 81.3 × 55.7 (±3.27)
Chinook 33.6 × 68.5 (±7.52) 11.3 × 56.0 (±6.51) 95.3 × 6.0 (±3.59)
Connect 4 42.7 × 57.3 (±7.47) 9.3 × 90.7 (±4.37) 93.0 × 7.0 (±3.92)
Criss Cross 57.5 × 67.5 (±5.95) 56.0 × 69.0 (±5.91) 68.0 × 57.0 (±5.94)
Ghost Maze 73.3 × 26.7 (±3.99) 59.0 × 41.0 (±5.47) 73.7 × 26.3 (±4.10)
Nine Board Tic Tac Toe 17.3 × 82.7 (±6.06) 0.7 × 99.3 (±1.30) 26.7 × 73.3 (±7.08)
Pentago 8.3 × 91.7 (±4.17) 3.7 × 96.3 (±2.94) 74.0 × 26.0 (±6.18)
Sheep and Wolf 27.3 × 72.7 (±7.13) 53.3 × 46.7 (±7.98) 93.3 × 6.7 (±3.99)
Skirmish 15.7 × 69.9 (±2.14) 75.7 × 72.5 (±3.22) 83.1 × 68.4 (±2.15)

35.7 × 69.6 (±1.76) 34.0 × 75.7 (±1.68) 76.5 × 37.1 (±1.64)

Table 5.4: Tournament against CadiaPlayer, Fluxplayer and Sancho using the combined
heuristic with constant time per turn.

5.2.3 Comparison with Other Players

The combined heuristic agent outperforms both CadiaPlayer and Fluxplayer with sig-
nificant advantage. The only game, where these two agents were able to reach significant
win ratio is Ghost Maze, which is ironically one of the games, where the combined heuristic
agent performed well in other tests. However, the agent is dominated by Sancho with an
average score 37 against 77. The combined heuristic agent seems to be completely hopeless
in Breakthrough, Sheep and Wolf , Chinook and Connect 4 against Sancho, but as in other
tests, it is able to win in Nine Board Tic Tac Toe with a significant gap.

This can be considered as a good result, as Sancho is currently the world’s best GGP
player winning the latest GGP AAAI competition in 2014; and CadiaPlayer is the only
player, that won this competition three times, although it is no longer maintained. On
the other hand, the results would be different, if multithreading was allowed, as both
CadiaPlayer and Sancho support parallelization, however extending the agent with it should
be straightforward.

During the tests, CadiaPlayer was crashing constantly in Battle, Chinese Checkers and
Skirmish; while Fluxplayer was producing frequent timeouts.

5.3 Time Spent on Evaluating the Heuristic

Table 5.5 shows how much time during the game time was spent on evaluating the
heuristic and the time needed to generate the heuristic functions for each game. These
numbers do not include the time required for grounding the game description. However,
most general game players use grounded game descriptions for reasoning nowadays, such
that grounding needs to be done anyway.

The time required to generate the action heuristic is relatively small for the games
tested, except for Checkers with almost 15 seconds and Battle with 13 seconds. However,
the time spent on evaluating the heuristic is more important. While it is almost negligible
for the tree heuristic, it ranges from 5 to 70 % depending on the game for the playout
and combined heuristic. The table also shows ratio between the time needed to run 10000
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Cost Time spent on heuristic Relative number of simuls.
Game of gen. Playout Tree Combi. Playout Tree Combi.
Battle 13.0 s 45.8 % 0.0 % 45.6 % 54.5 % 99.5 % 54.4 %
Bidding Tic Tac Toe 0.2 s 19.2 % 0.3 % 18.6 % 97.3 % 105.1 % 96.8 %
Blocker 0.2 s 49.2 % 0.1 % 47.4 % 51.0 % 96.1 % 53.0 %
Breakthrough 3.5 s 58.5 % 0.1 % 58.4 % 40.9 % 104.0 % 41.0 %
Checkers (small) 14.8 s 27.9 % 0.1 % 27.7 % 70.0 % 103.1 % 70.6 %
Chinese Checkers 0.1 s 8.9 % 0.1 % 8.8 % 86.2 % 101.5 % 85.8 %
Chinook 2.5 s 9.5 % 0.0 % 9.5 % 105.9 % 102.8 % 106.1 %
Connect 4 1.6 s 61.9 % 1.9 % 60.7 % 60.4 % 115.2 % 69.5 %
Criss Cross 2.7 s 5.9 % 0.6 % 6.3 % 92.0 % 102.7 % 94.9 %
Ghost Maze 0.2 s 49.6 % 0.8 % 48.9 % 55.9 % 102.6 % 57.9 %
Nine Board Tic Tac Toe 4.0 s 54.2 % 0.7 % 53.4 % 88.9 % 104.6 % 93.7 %
Pentago 1.2 s 73.9 % 0.4 % 73.9 % 30.8 % 101.0 % 30.9 %
Sheep and Wolf 3.4 s 16.3 % 0.1 % 16.3 % 83.2 % 102.2 % 83.0 %
Skirmish 6.8 s 28.6 % 0.1 % 28.6 % 68.7 % 100.2 % 69.0 %

Table 5.5: Cost of generating the action heuristic, percentage of the game time spent on
evaluating it and relative number of simulations compared to the non-heuristic player.

game simulations by the pure and the heuristic players. Surprisingly, these numbers do not
always correspond with the percentage of the game time spent on the evaluation, because
the heuristic makes the simulations effectively shorter and thus taking less time. A good
example of this behaviour is in Nine Board Tic Tac Toe, where about 50 % of the game
time is spent on evaluating the heuristic, but the number of simulations performed by such
player is only about 10 % lower. Moreover, the combined heuristic player won 81 % of the
matches against pure MCTS/UCT.

5.4 Testing with More Games

The agent was able to generate action heuristic for 113 games out of 127 available on the
Tiltyard gaming server. Of those 14 games that failed, 5 cases failed because of inability
to ground the game rules. Others games failed mostly because the goal condition was
particularly complex.

A game that showed to be most problematic is Othello, because the grounded version
of the goal is extremely big. Other games that failed include different versions of Chess,
Amazons and Hex. On the other hand, there are some games, where the grounded game
description is still rather big, but the goal condition itself is relatively simple. In this case,
the action heuristic was generated successfully. Examples of such games are Breakthrough
or Skirmish.

5.5 Summary and Future Work

The heuristic was utilized in the agent in three different search control schemes for
MCTS and its effectiveness was demonstrated by comparing it with a pure MCTS/UCT,
RAVE and MAST players. The combined heuristic agent outperform these players in well-
known games like Nine Board Tic Tac Toe and Battle and with an exception of MAST
player also in Pentago and Bidding Tic Tac Toe; however it shows significant loss ratio in
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Checkers and Connect 4. When compared with other agents, the combined heuristic player
can beat CadiaPlayer and Fluxplayer, but it loses against Sancho.

As it can be noted, the player performs well in any Tic Tac Toe-like games. At least
partly this behaviour can be explained by the fact that these games typically contain many
persistent fluents which are used to improve the heuristic. Thus, one idea for improving
the quality of the heuristic in other games is to use more feature discovery techniques, such
as the ones described in [16] or [18].

We can also see that the percentage of the time spent on evaluating the heuristic within
the game tree is negligible, while it is significant when used in playouts. Naturally, this
supports an idea to use more complex and more accurate heuristic within the tree control
scheme, while less accurate and a lightweight version of it in the playout. Pruning of the
heuristic formula could be used to only include the most relevant features in order to reduce
the evaluation time, because it seems that some parts of the formula are triggered only in
some relatively rare game states and do not contribute much to the overall result. However
the question is, whether the simplified version will be good enough for playouts, as the
playout heuristic seems to be prone to be misleading. As it has the most influence on the
overall performance, this behaviour should be further investigated.

A possible cause for the high influence of the playout heuristic can be wrongly estimated
value of τ constant. Further experiments should be therefore conveyed to investigate,
whether increasing its value makes the heuristic less aggressive and thus possibly yielding
better results in the combined scheme.

Another idea for future work would be to regress the goal condition by more than one
step, however special care has to be taken to not increase the evaluation time too much.
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Conclusion

In this thesis, I give insights into the world of General Game Playing (GGP) agent
systems; into the world, where agents have to understand formal description of a game in
order to be able to play it. At first, it is explained, what general game players are and what
are their peculiarities. Large part of the first chapter is devoted to the syntax and semantics
of the Game Description Language (GDL), as it is crucial for such agents to understand
game rules. I also define what kind of games is GDL capable to describe.

Later, I describe Monte Carlo tree search algorithm (MCTS) and give reasons, why it
is so popular among current players. Moreover, this thesis gives a brief overview about
well-known heuristic functions that can further improve its performance.

The third chapter is the core of this thesis, as I propose here a general method of creating
a heuristic function. This is an action evaluation function, which means that it can be well
incorporated into the MCTS algorithm plus it is based on a goal heuristic and as such it
directly leads a player towards fulfilling a game goal. It can be used both withing a game
tree and in playouts. The heuristic is generated from a goal condition using regression
before the game starts, while it is evaluated during play time with fuzzy logic. Moreover, I
give some examples of use of additional knowledge about the game that improves properties
of the heuristic.

The following chapter is purely devoted to the implementation of a full-fledged GGP
agent. While the heuristic generation part of the agent is written in Prolog, which is well
suited for processing logic formulas; the heuristic evaluation part and the MCTS algorithm
is implemented in Java with an aid of a GGP-base framework. I use a propositional network
to evaluate the heuristic formula in the highest speed possible.

Finally, the agent using three heuristic schemes is tested in different settings in 14 games
to demonstrate its effectiveness. First, it is compared against pure non-heuristic player;
second, it is matched with well-established RAVE and MAST heuristic schemes and finally,
it is opposed with other full-fledged GGP agents, namely with CadiaPlayer, Fluxplayer
and Sancho. The agent performs very well in well-known games like Nine Board Tic Tac
Toe (with 81 % win ratio) or Pentago, but it shows significant loss ratio in Checkers and
Connect 4. In average, it performs significantly better than pure MCTS and RAVE scheme,
but it is somewhat worse than MAST scheme. When compared with other agents, it clearly
wins over Fluxplayer and CadiaPlayer, but loses against Sancho, which is a good result, as
Sancho is currently the world’s best GGP agent. The agent has also shown capability to
generate the heuristic for vast majority of games that are publicly available.

Future work should investigate regression of a goal formula by more than one step.
Moreover, additional feature discovery techniques can be implemented, as it was shown,
that additional knowledge helps to improve the heuristic formula. However special care
has to be taken not to increase the time required for evaluation and therefore some kind
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of pruning of the heuristic formula should be involved. This can be possibly done by
eliminating fluents that do not contribute much to the overall result.

Upon the results of this thesis, I have collaborated on the following paper that has been
submitted to the GIGA15 conference:

• Michal Trutman and Stephan Schiffel. Creating action heuristics for general game
playing agents. Technical report, Reykjav́ık University, 2015. Submitted to GIGA15.
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List of Abbreviations

Acronym Meaning Explanation

AI Artificial Intelligence An antelligence exhibited by software
agents.

AAAI Association for the Advance-
ment of Artificial Intelligence

A conference, where annual GGP competi-
tion is held.

GDL Game Description Language A formal language for describing game rules.

GGP General Game Playing An approach to game playing without know-
ing game rules beforehand.

KIF Knowledge Interchange For-
mat

An alternate syntax for GDL used for com-
munication between players.

MAST Move-Average Sampling Tech-
nique

An action heuristic based on average move
value.

MCTS Monte Carlo Tree Search A simulation based state space search algo-
rithm.

PAST Predicate-Average Sampling
Technique

An action heuristic based on average value
of move-fluent pairs.

Propnet Propositional Network An alternate representation of game rules.

RAVE Rapid Action Value Estima-
tion

An action heuristic used within a MCTS
game tree.

SLD Selective Linear Definite (Res-
olution)

A method of finding answers to Prolog
queries.

UCT Upper Confidence Bounds
Applied to Trees

A method of setting a trade-off between ex-
ploration and exploitation in MCTS.
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Appendix A

Game Rules

This appendix contains summary of rules of the games used in the thesis. Formal
description of the rules in GDL can be found on the attached CD or on the Tiltyard
gaming server [30]. All the following games are two player games.

A.1 Tic Tac Toe

Tic Tac Toe is a turn-taking game played on a rectangular 3×3 board. The game starts
with an empty board. A player in its turn marks any empty cell with its symbol (that is
with x for player X and with o for player O). A player, who first arranges 3 of its markers
in a line, wins. The game results in a draw, when none manages to build a line and the
board is full.

A.2 Bidding Tic Tac Toe

The goal of this game is the same as in simple Tic Tac Toe, however players bid coins
in order to mark a cell on a board. The bids occur simultaneously. Winning a bid allows
the player to mark an empty cell in the next turn, however the amount of coins he bid is
transferred to the other player. Players start the game with 3 coins.

A.3 Pentago

Pentago is a variant of Tic Tac Toe, but it is played on a 6×6 board, that is split into
4 sub-boards, each having 3×3 cells. Players take turns, however each turn consists of two
sub-turns. First, the player can rotate one of the sub-boards around its centre clockwise
or anti-clockwise; second, it can mark any empty cell with its marker. A player, who first
manages to build a line of five markers, wins.

A.4 Nine Board Tic Tac Toe

This game, as its name suggests, consists of 9 ordinary Tic Tac Toe boards arranged in
a 3×3 array. Players take turns making marks in the Tic Tac Toe boards. However, the
board, where a mark can be placed must have the same coordinates as the cell, where the
last mark was placed. The usual 3-in-a-row arrangement of marks in any of the 9 ordinary
boards wins.
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A.5 Breakthrough

This game is played on a standard 8×8 chessboard, with each player having one side.
Players start with 16 pawns on their side of a board. A player in its turn can move one of its
pieces by one square forward or diagonally, where diagonal moves can capture opponent’s
piece. A player, whose pawn first reaches the opposite side of the board, wins.

A.6 Skirmish

Skirmish is a Chess-like game, where players start with a king, a rook, two knights and
four pawns. The pieces can move in the same way as in Chess and players get score by
capturing opponent pieces. The game is over, when one of the players has no more pieces
left.

A.7 Blocker

Blocker is a simple simultaneous move game played on a rectangular 4×4 board. There
are two different roles in this game: blocker and crosser. The aim of crosser is to connect
the right and the left side of the board together with a line consisting of adjacent cells,
while blocker tries to prevent this. Both players mark an empty cell in each turn; in case
of both of them trying to mark the same cell, blocker takes priority.
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Appendix B

CD Content

The attached CD contains the following directory structure:

• \paper\ – source code of the paper submited to GIGA15 conference

• \results\ – logs from the tests performed

• \rules\ – rules in GDL of the games used

• \src\ – source code of the agent

• \src\ggp\ – source of the agent (in Java)

• \src\ggp-sancho\ – source of Sancho module (including GGP-base framework)

• \src\fluxplayer\ – source of Fluxplayer module

• \src\fluxplayer\src\tester\michal\ – source of the agent (in Prolog)

• \thesis\ – source code of this thesis
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