VYSOKE UCENIi TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

N
%
S

FAKULTA INFORMACNICH TECHNOLOGII
USTAV POCITACOVYCH SYSTEMU

=/
FACULTY OF INFORMATION TECHNOLOGY

:[I[DEPARTMENT OF COMPUTER SYSTEMS

N
7

/ﬁ

RYCHLA REKONSTRUKCE OBRAZU TKANI S
VYUZITIM GRAFICKE KARTY

FAST TISSUE IMAGE RECONSTRUCTION USING A GRAPHICS CARD

BAKALARSKA PRACE
BACHELOR'S THESIS

AUTOR PRACE KRISTIAN KADLUBIAK
AUTHOR

VEDOUCI PRACE ING. JIRi JAROS, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt

Fotoakusticka spektroskopia je jedna z najmodernejsSich zobrazovacich metod a nachadza uplatnenie
vo vednych odboroch ako medicina, biochémia, materidlova technolégia a mnoho dalsich. Vd’aka
svojim vlastnostiam je fotoakustickd spektroskopia vel'mi vhodna $pecificky pre medicinske ucely.
Tato metdda je neinvazivna a zaroven zarucuje vysokl presnost’ zobrazenia. Za vysoku presnost’
metdda vd’aci pokrocilym, casovo narocnym vypoctom, medzi ktoré patria operacie ako FFT a
trilinearna interpolacia. Tato bakalarska praca sa zaobera akceleraciou danych metod na grafickej
karte. NaSa implementacia naplno vyuziva rozli¢né vlastnosti modernych grafickych kariet ako
napriklad zdielan4 pamait’ alebo textarovy hardware. Implementaciu sme testovali na jednej z
najvykonnejsich grafickych kariet ur¢enych na high performance computing. Jednalo sa o kartu
NVIDIA K20m. V tomto prostredi sa naSej implementacii podarilo zrychlit niektoré Casti
rekonstrukcie viac nez 400-nasobne. V jednorazovom mdde rekonstrukcia trvala o nie¢o dlhsie nez
samotna MATLARB verzia. Je to spdsobené nutnostou prevodu dat medzi prostredim MATLAB a
CUDA koédom, i ked’ sa podarilo znizit’ vel'kost’ prenaSanych dat o 37%. Spracovanie vacsich davok
fotoakustickych snimkov by ukazalo skuto¢ny potencial implementacie.

Abstract

The photoacoustic spectroscopy is a recently developed imaging method that finds applications in
many scientific fields such as medicine, biochemistry, materials engineering and many others. The
photoacoustic spectroscopy finds particularly nice applications in medicine due to its properties such
as non-invasiveness, non-aggressiveness and great accuracy. The source of this accuracy lies in
advanced time-consuming calculations including operations like FFT and trilinear interpolation. This
thesis is dedicated to the acceleration of this technique on a graphics card. In our implementation, we
have taken a full advantage of various features provided in modern GPUs such as shared memory and
texture hardware. Our implementation has been tested on one of the most powerful GPU designed for
high performance computing, namely NVIDIA K20m. In this environment, our application speeds up
certain parts of reconstruction by a factor above 400. In a single run mode, the whole reconstruction
runs a bit longer than the pure MATLAB version due to the necessity of transferring data between
MATLAB and the CUDA code, although the developed approach reduced the data transfers between
MATLAB and GPU by 37%. The real potential of the implementation reveals while processing large
batches of photoacoustic images.

Klicova slova

Fotoakusticka spektroskopia, rekonstrukcia obrazu, GPGPU, CUDA.

Keywords

Photoacoustics spectroscopy, image reconstruction, GPGPU, CUDA.

Citace

Kadlubiak Kristian: Fast Tissue Image Reconstruction Using a Graphics Card, bakalaiska prace,
Brno, FIT VUT v Brng, 2015

Fast Tissue Image Reconstruction Using a Graphics Card

Prohlaseni

Prohlasuji, Ze jsem tuto bakalaiskou praci vypracoval samostatné pod vedenim Ing. Jifi Jaros, PhD.
Uvedl jsem vSechny literarni prameny a publikace, ze kterych jsem cerpal.

Kiristian Kadlubiak
17.05.2015

Acknowledgement

This work was supported by the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national
budget of the Czech Republic via the Research and Development for Innovations Operational
Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large
Research, Development and Innovations Infrastructures (LM2011033).

I would like to thank my supervisor Ing. Jifi Jaros, Ph.D. for all his support and kind approach.

© Kristian Kadlubiak, 2015

Tato prace vznikla jako Skolni dilo na Vysokém uceni technickém v Brné, Fakulté informacnich
technologii. Prdce je chranena autorskym zakonem a jeji uziti bez udéleni opravnéni autorem je
nezakonné, s vyjimkou zakonem definovanych pripadi.

Contents

(01031115 11O OO OO T OO P U P R PR PP UPRUPPIOPN 1
O (113 (016 1B (o1 5o DSOS 3
1.1 PhOtOACOUSLIC SPECITOSCOPY .eevvrrerirrreereeieerrerreereeseeseesseesseessseasseessaesseesssesssesssessseesseesseessnes 3
1.2 The K-WaVe t00IDOX ..cuuiiueeiiiieiieieeiteertee ettt ettt et e b enee b seeenee e 3

2 GraphiC PIrOCESSING UNILeecvieriiereierieereerieeseeseesteaseeseeseesseesssesssessseessesssassssessssssseessessseessesssees 4
2.1 Main differences between GPU and CPUcccooiiiiiiiiiiiieeeeee e 4
8 € 15 € 2 o O TP 5
221 GPGPU framewWorkscoviiiiiiiieiieiee ettt e et 5

2.3 CUDA-capable GPU archit@CtUure...........ccceeueerieriieiieiieiiesite sttt ettt et 6
2.3.1 HOSE INEETTACE ... ettt ettt ettt sttt e be b e bt e sneas 7

232 (01070} <) 1= 1 TSP 7
233 I TN B T F: 1 o 3 SOOI 7
234 DEVICE MEIMOTYceiiieiieeiietteet ettt et ettt ettt st e sateete e bt e sbeesaeessteenbeeabeenseenseenseesneas 7
235 Streaming MUILIPTOCESSOTeeuvieiieiiertierite ettt ettt et e ste et e ebeesbeesaeesseesaeesneeenseeseens 7

2.4 CUDA thread execution MOeL..........cceeiuiiiiiiiiiiieieeeee et 8
24.1 QS 4115 OSSP 9
24.2 [55 1 OSSP 9
243 BIOCK ..ttt ettt et e et neeneenee e 9
244 41 T SRS 9
24.5 Warp and LANEccvviviieiieciiciieie ettt ettt a e b e e be et e baesabestbeerbeeareeraen 10

2.5 CUDA mMemMOTY MOUECL......cciiiiiiiiiiiiiiiieieeiteesieesitestesreereesreetteseresebeesseesseessaessaessaesssessnennns 10
2.5.1 GlODAL MEIMOTYiiviieiieiieciie ettt ettt e b e b e et e teestaestbeesseesbeessaessaessaessnessneenns 10
2.5.2 LOCAL INEIMOTYeviiviieiieiieiteeiteette ettt e sttestesebeeebeesbe e taesssessseesseessaessaessaessaesssessneanns 11
2.5.3 REZISLEIS 1eutiiiiieeiicieeitet ettt ettt e st e s eseb e e b e esb e e teesteestbessbessbeessaesaessaessnessneanns 11
254 Shared MEMOTYc.oiuiiiiiiiiieierteee ettt sttt st naes 11
2.5.5 TEXTULE TNCINIOTYeeiuiieeeiiieeeiiee ettt ettt ettt et e et e e sat e s beeesateesbteesabeesabeesbeeesabeeeaeeas 11
2.5.6 CONSLANE TNEINIOTYeeiuiiieiiieeeiieeeiee et e e tte et e e st e e teeeeabeesbeeessteesbteesabeesnteesnneeesseeenneeas 11

2.6 GPGPU Capabiliti€scccveeeiieiieriieiieiie ettt sttt ettt e seeessteesseenseenteesseessaessnesnnennns 12

3 MATLAB iMPlementation..........ccceerierierierieeiieieeiieseesteesetesereeseesseesseessaessnesssesssesnseesseesseesses 13
3.1 Identifying acceleration OPPOTtUNILIESc.eecveerrierurererrieeieerieesieesseesteseesseenseeseenseesseessnes 13
3.2 Trilinear iNteTPOLAtIONccueerviesiieriieeieeie ettt ettt et e st eebeesteesteessaesasesnseenseenseenseenseennnes 14
3.3 Fftshift and ifftshift.........ooooiiii e 16
3.4 Fast Fourier transformationc..ceceiirieniiieieiceieics ettt 16

4 IMPIEMENTALION .veivieiieitiicie et et eeee et e et e ebeebeesteesteestaeerbeesbeesseesseesssessseesseesseesssesssessseesseessessseans 17

6

4.1 COMIMON TEALTUIESceeiiiiiiiiiiiiieieieieeeeee ettt ettt eeee ettt e eee et eeeee et e eetaeeteseestessaeaesaessssssassssssssasesens 17

4.2 THE fIISt VETSION ...cuuiuieiiiiieieiteeitete sttt ettt sttt ettt et b et e st e st e e sbe et e sbeeseebeeneeneenee 18
4.2.1 Fast Fourier transformationccceoeiieieinienenee e 18
4.2.2 Fftshift and ifftshift.........cooeiiiiiii e 20
423 Trilinear interPOIAtIONciiiiiiiieeie ettt ete ettt b e e e e e seesraessnessneenns 22

4.3 The SECONA VEISIONeeuiiiiiiiiiieiieie sttt ettt ettt sttt sbt et e et eete st et entesbe et e sbeeneenbeeneeneenne 25
43.1 Fftshif and ifftShift...........ccoiiiiiii e 25
43.2 Trilinear interPOIAtIONciiiiiiiieeie ettt ete ettt b e e e e e seesraessnessneenns 28

4.4 The third VETSION.....cc.ciiiiitieieitteiiete ettt b ettt et sbe et e beeseenbeeaeenee e 31
4.4.1 Trilinear interPOIAtIONcciuiiiieiieiie et et ete ettt e e e e e raesraesnneseneenns 31

4.5 DESCUSSION . .c..eeutiiitieeiteete ettt et ettt et et e bt e st e e sateeateeate e teesbeasseeeneeenseenseenseesseesntesnseenseeseans 34
(07073Te] 115107 o OO S SRR 36
RETEIEIICES ...ttt ettt ettt et et e te e s bt e s st e s ateeabe e bt e bt e sbtesatesnteenseenseens 38

1 Introduction

In this bachelors thesis we focus on possibilities of accelerating scientific computations by graphics
processing unit. The term scientific computation in our case means reconstruction of tissue image
obtained via photoacoustic spectroscopy. We use an open-source MATLAB toolbox k-Wave
specially designed for purposes of tissue image reconstruction as a reference to validate our
implementation. Our main goal is to design and implement efficient solution, which will lead to
maximal acceleration of image reconstruction. To be able to perform such a task, it is essential to
understand photoacoustic spectroscopy and study principles used in the k-Wave toolbox and
MATLAB to reconstruct the image. The task also requires gathering knowledge about architecture of
graphics processing unit in general and familiarization with possible means of programing of graphics
processing unit. Afterwards, we have to fully understand principles and details of programing
platform and design and implement solution according to gained knowledge.

1.1 Photoacoustic spectroscopy

Photoacoustic spectroscopy is based on photoacoustic effect discovered by Alexander Graham Bell in
1880. Photoacoustic effect appears when electromagnetic energy is absorbed by a sample of matter,
which results in heating and expansion.[2] This process can be measured as the ultrasonic waves are
produced by rapid expanding matter. As a source of electromagnetic radiation is often used a laser
and intensity has to vary, either periodically modify or pulse modify.[19] Photoacoustic effect can be
used to determine certain features of examined sample. In biomedicine, Photoacoustic effect is used
as a non-invasive imaging method.

For example, photoacoustic imaging is very useful in studies of a vascular system
development of embryo in vivo, as it is a non-invasive, non-aggressive method. The vascular system
imaging is possible by significant difference in light absorption of haemoglobin circulating in vessels
and surrounding tissue.[19] This same principle is used in tumour angiogenesis monitoring because
cancer tissue is largely supplied with blood vessels, which provides sufficient contrast to differentiate
tumour and healthy tissue. The photoacoustic imaging can be used in many others diagnostic
procedures, such as blood oxidation mapping, functional brain imaging and skin melanoma detection.

1.2 The k-Wave toolbox

The k-Wave is open source third party toolbox for MATLAB developed for simulation of
photoacoustic wave fields in either homogeneous or heterogeneous material in one, two or three
dimensions and reconstruction of wave fields obtained via photoacoustic spectroscopy.[16] To make
photoacoustic spectroscopy efficient tool for research, medicine and industry it is essential to make k-
Wave a fast solution. Therefore, there is lot of focus on speed of simulation and reconstruction. In this
matter, several significant measures were taken.

Photoacoustic wave equations are partial differential equations and they are used in
simulation of wave fields in k-Wave. The most common numerical methods for solving partial
differential equations are finite-difference, finite-clement and boundary-element method.[16]
Common methods achieved unsatisfying results in the simulation, as they were time-consuming.
Major disadvantages of traditional methods are many grid points per wavelength and small time-step

size to minimize numerical error. Therefore, pseudo-spectral and k-space methods were
implemented. These methods have their own disadvantages, but disadvantages were suppressed by
special techniques. The pseudo-spectral method is based on Fourier series, which can be efficiently
calculated by fast Fourier transformation. Only two grid points per wavelength are needed when the
pseudo-spectral method is used. The pseudo-spectral method brought improvement in a spatial
domain. The k-space method is used to achieve improvement in time domain, because it allows
greater time-steps while preserving accuracy.[16]

Quality of simulation is very important because same principles can be used in reconstruction
of photoacoustic image, so quality of reconstruction is dependent on quality of simulation techniques.
The k-Wave allows two methods Time Reversal Image Reconstruction for arbitrary sensor shape and
One-Step Image Reconstruction for a planar measurement surface.[16]

Besides special methods implemented to improve application’s performance, there is also
another way of increasing speed of algorithms. Parallelism and optimization techniques could be used
to improve the performance. Acceleration on GPU is supposed to have a large impact on
performance, as k-Wave is working with large amount of data.

2 Graphic processing unit

At beginning of computer graphics all necessary calculations were done by central processing
unit (CPU). As computer graphics became more complex CPU got overloaded with graphical
computation and performance of CPU declined rapidly. This trend resulted in development of certain
dedicated hardware for accelerating graphical computation. This kind of specific hardware is today
commonly known as a graphical processor unit (GPU).

The GPU is an electronic circuit specially designed to accelerate creation of images in the
display buffer which is then displayed on a video device. Modern GPU possess highly parallel
architecture very efficient in calculations with a block of data up to 5 GB. This feature is widely used
not only in computer graphics, but also in physical calculation, simulations and generally in a high-
performance computing. The first generation of GPU was designed as fixed-function accelerators
with a limited set of instructions. This architecture proved itself insufficient as computer graphics
being evolved over time. The need for programmable GPU resulted in the development of
programmable GPUs.

2.1 Main differences between GPU and CPU

The main difference between CPU and GPU is in their architecture. Nowadays, CPU is composed of
several cores, therefore a few different processes can run on CPU at a same time. CPU also contains
great hierarchy of caches which makes them optimized for context switching and complex
calculations.

On the other hand GPU provide much greater level of parallelism and therefore much greater
throughput. For example, GeForce GTX TITAN is equipped with 2688 cores capable of floating-
point operations compared to Intel Haswell architecture containing eight cores each of which is
equipped with AVX2 capable of producing 32 floating-point operations per cycle.[8][14] We can see
that there is significant difference in maximum count of operations per cycle for each architecture.
However, we have to take in consideration that clock rate of GPU is about one third of CPU,
depending on specific models. Despite this fact GPU can easily outperform CPU on specific type of
problems. In fact theoretical single-precision performance of GPU GeForce GTX TITAN is about 5x
greater than theoretical performance of Intel Haswell architecture. It is important to mention that GPU
lacks optimizations like long pipelines and out of order execution important for general-purpose
performance. Thus, not all problems are suitable to be accelerated on the GPU.

5000 7]

45007 GeForce GTX TITAN NVIDIA GPU SP

4000 -
= 3500
JE?' .
ol GeForce GTX 680
i 3000
S
é 2500
a .
8
© 2000
8 GeForce GTX 580
— 1500 - GeForce GTX 480 K20X

NVIDIA GPU DP
1000 - GeForce GTX 280 /
GeForce BBOD GTX Tesla C2075 Haswell
500 GeForce 7800 GTX) o Intel DP
GoForce 6800 Ultra T ouy Blopmiicid Sandy Brdge~ Ivy Bridge
0] wingrSg5oree FX 5800 Prescot crest Harpemw?ﬁ'alc OBOW:

2000 2002 2004 2006 2008 2010 2012 2014
Release date

Figure 1 GPUs and CPUs performance benchmark [5]

22 GPGPU

The term GPGPU stands for general purpose computing on graphics processing unit. The GPGPU is
name given to a concept in which GPU features are exploited to accelerate computations usually
handled by the CPU. This concept is vastly used for an acceleration of calculation involved in fields
like bioinformatics, molecular biology, image processing, particle physics and many others.

2.2.1 GPGPU frameworks

The GPGPU framework is platform which contains mechanisms that allows transferring computation
on GPU. Two main platforms are open-source OpenCL framework and CUDA framework.

OpenCL is open-source standard for cross-platform parallel programing developed and
maintained by Khronos group. Its main purpose is to enable writing applications that can be executed
across heterogeneous devices such as CPU, GPU, digital signal processor, FPGA and many others.
OpenCL can be used standard languages as C or C++ for programing purposes. OpenCL defines API
to be able to control and execute code on various devices. It implies that key feature of OpenCL
standard is compatibility with various devices created by various vendors.

CUDA stands for compute unified device architecture. It is proprietary platform for parallel
computing and programing model developed by graphics card vendor NVIDIA. It provides
mechanisms to be able to write and execute applications, which exploit GPU to accelerate
computations. Main advantage of CUDA results from fact that it is a proprietary platform and
therefore CUDA is optimized for a use with NVIDIA GPUs.

All things considered, for purposes of this thesis we chose CUDA platform, because, as
aforementioned, CUDA provide better results than OpenCL when used with NVIDIA graphic card
present in our testing environment.

2.3 CUDA-capable GPU architecture

CUDA is supported by four different microarchitectures:
e Tesla microarchitecture firstly presented in 2006, with GeForce 8800 GTX
e Fermi microarchitecture firstly presented in 2010, with GeForce GTX 480
e Kepler microarchitecture firstly presented in 2012, with GeForce GTX 680
e Maxwell microarchitecture firstly presented in 2014, with GeForce GTX 750

Although, there is difference between each architecture, all architectures possess common hardware
features:

e Host interface that connects GPU with CPU via PCI express bus

e Copy engines

e DRAM adapter, which interconnect GPU and its device memory

e Device memory and caches

e Certain number execution units organized in so called streaming multiprocessors

Sojjenung oo

e Aoy

:
z
£
3
-
g
:

Figure 2 GPU architecture of Kepler class [11]

2.3.1 Host interface

Host interface is responsible for all communication between CPU and GPU. It includes reading of
Command buffer which is special CPU memory area used to submit commands. Host interface is in
charge of reading commands from this special memory area. Host interface also decodes and
delegates commands further to GPU.

2.3.2 Copy engine

Copy engine is hardware capable of preforming memory transfers between CPU and GPU, while
computation is being done on GPU. First microarchitectures do not feature a copy engines. Later on
copy engines were only capable of transferring linear device memory. Today, GPUs are equipped
with up to two copy engines, which can convert between CUDA arrays and linear memory. Two copy
engines provide full-duplex memory transfers.

2.3.3 DRAM adapter

Memory operations bandwidth and latency have a great impact on GPU performance, therefore GPUs
possess powerful DRAM interface, which provides bandwidth high above 100GB/s and includes
hardware support for merging multiple memory operations. Earliest hardware required contiguous
memory addresses and memory alignment. With introduction of SM 1.2 requirement for memory
alignment was removed. However there is still a performance penalty.

2.3.4 Device memory

The device memory is an equivalent of RAM memory of CPU. In this memory all data transferred
from CPU are stored. For example NVIDIA Tesla K20 is equipped with GDDRS5 memory with
capacity 5 GB and throughput of 208 GB/s.[9] The global memory is cumbersome and slow,
therefore L2 cache is present in modern GPUs to enhance main memory performance.

2.3.5 Streaming multiprocessor

The main component of GPU is streaming multiprocessor (SM), which is in charge of all
computations. Number of SMs on card is model-specific, but architecture of SM remains in the main
the same. Each multiprocessor consists of:
e Execution units capable of 32-bit integer, single-precision and double-precision floating-point
arithmetic.
e Special function units for computing single-precision approximations of mathematical
functions (log, exp, sqrt, sin, cos, etc.)
e Instruction cache, warp scheduler and dispatch unit for scheduling and dispatching instruction
execution by execution units
e Load/Store units
e Register field for storing local variables
e Shared memory with L1 cache for communication between threads and storing temporary
result
e Constant cache for broadcasting constant variable to each thread

e Cache texture hardware with various functions (1D, 2D, 3D prefetching, interpolation etc.)

Instruction Cache
Warp Scheduler ‘Warp Scheduler ‘Warp Scheduler
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispaten Dispatch
e -+ e - - S - -

Register Flle (65,536 x 32-bit)

a2 s 3 3 s = 3
Gora| [Core Gos - Lot SFU [Gors [Gore

Cora| [Core cors - sFu
Corn| Cora Coe -
Caral |Cora o -

Core Core

cors - cors
Interconnect Network
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Tex Tex
Tex Tex

Figure 3 streaming multiprocessor architecture of Kepler class GPUs [10]

2.4 CUDA thread execution model

Thread arrangement has a significant influence on execution time of application using
CUDA. Arrangement of threads is specified by grid size and block size. The important aspect of
thread execution model is the concept of warp.

Grid

Block (0, 0) | Block (1, 0) | Block (2, 0)

Block (0, 1) Block (1, 1) |"Block (2, 1)

Block (1, 1)

Figure 4 CUDA thread execution model [12]

2.4.1 Kernel

The kernel is equivalent of procedure found in common programing languages. Kernels are part of
application that are computed on GPU. Kernels is declared by keyword global . Launch of
kernel is similar to traditional function or procedure call, only difference is presence of special triple
angel bracket construction in which grid size and block size is specified.

2.4.2 Grid

The size of grid specifies number of blocks in three dimensions. The maximum size of the grid can be
up to 65535 x 65535 blocks for 1.x computation capable hardware and 65535 x 65535 x 65535 blocks
for 2.x computation capable hardware. The blocks within the grid tend to be assigned on different SM
to maximize performance, although few different blocks can reside on the same SM.

243 Block

The block is abstraction of independent execution unit. It is a group of threads which are executed on
the same SM. Block size can be also specified in three dimensions and the block can contain up to
512 threads in total for 1.x computation capable hardware and 1024 threads in total for 2.x and above
computation capable hardware. The CUDA provide mechanisms for inter-block communication and
synchronization.

2.4.4 Thread

The thread is elementary part of execution. Each thread has its own unique Id within the block.
Resolving global Id of the thread is essential, as it is only mechanism to assign correct portion of the
work to the thread. To help resolving global Id of thread built-in variables of type dim3 are available
from each thread. The dim3 type is composed with 3 integer variables each for one dimension:

e gridDim specifies dimensions of the grid in the blocks

blockDim specifies dimensions of the block in threads

blockldx specifies index of certain block within the grid

threadldx specifies index of certain thread within the block

Then statement for computing global index, supposing the grid and the block are defined only in one
dimension, should look as follows:
globalldx = (blockIdx.x*blockDim.x) + threadIdx.x;

If the grid and the block are both define in all three dimensions, indices have to be calculated
separately for each dimension:

idx x = (blockIdx.x*blockDim.x) + threadIdx.x;

idx:y = (blockIdx.y*blockDim.y) + threadIdx.y;

idx z = (blockIdx.z*blockDim.z) + threadIdx.z;

Afterwards the global index is calculated using these indices.
If there is a need to calculate flatten 3D index within block especially when accessing shared
memory, it can be calculated as follows:

localldx = thredIdx.z*blockDim.y*blockDim.x +threadIdy*blockDim.x +
threadIdx.x;

Sometimes there is more work for the kernel that can all thread in grid process in one run then the
global index have to be recalculated calculated as follows:
globalldx += gridDim.x*blockDim.x;

2.4.5 Warp and lane

Threads are executed simultaneously SIMD-like in 32-thread packs called wraps. All of 32 threads
execute the same instruction and there is only one active warp per SM. The warp id is called the lane.
Both values warp id and lane id can be computed from the local id of the thread.

warpId = locallId / 32

laneId = localld & 31
Warps are the part of the mechanism of covering memory latencies. When one warp reaches an
instruction resulting in, for example, global memory access, which can last for hundreds of clocks
cycles, warp scheduler activate another warp until data transfer is over.

2.5 CUDA memory model

The CUDA platform offers developer various types of the memory whether it is physical or logical
memory. Each of these memories serves different purpose and has its own advantages and
disadvantages.

2.5.1 Global memory

It is a physical memory, which creates the main memory pool for GPU. It means that it is accessible
from the each thread of the GPU. All data transferred from the CPU onto the GPU resides in this
memory and therefore each application running on the GPU need to access global memory at some
point. This memory has the greatest capacity and the lowest bandwidth compared to all other physical
memories present in the GPU. For example NVIDIA Tesla K20 is equipped with the GDDRS
memory with capacity 5 GB and throughput of 208 GB/s, as we mentioned in the section 4.1.

To reduce impact of the low bandwidth, global memory is accessed via the L2 cache and each
SM is equipped with the L1 cache. By turning L1 caching on and off we can influence global memory
load granularity. When L1 caching is enabled the size of memory transaction is 128B, when
otherwise the size of transaction is 32B. These transactions are aligned to 128B or 32B respectively.
As we mentioned in the section 2.4.5 SM has only one active warp at the time. When warp executed
operation results in the global memory access, memory sub-system tries to merge memory transfers to
as least transfers as possible. For example, the warp is requesting 32 consecutive 4B floats aligned
to128B. Supposing L1 caching is turned on this 128 byte memory request will be satisfied in one
global memory transfer. However, if memory request is not aligned to 128B, two memory transfers
are needed. In the worst case, if each of 32 float are situated in different 128B blocks, transaction is
satisfied with 32 global memory transfers. Therefore it is crucial to ensure sensible access pattern in
the application in order to achieve maximum performance. Setting specific caching options can
minimalize penalty for unpredictable access patterns.

10

2.5.2 Local memory

The local memory is logical memory and it is used for the local variables when block request more
space for its local variables than SM offers. This memory is accessible only by the thread and it is
situated in global memory pool and therefore it has the same properties.

2.5.3 Registers

Each SM has its own field of registers. These registers are used to store local variables of each thread
which resides on the SM and are accessible only by that thread. Register is the fastest memory type.

2.5.4 Shared memory

The shared memory is present on each SM and shares same memory pool with the L1 cache. Shared
memory is accessible for each thread within the same block and it is often used as a mean of inter-
block communication. The shared memory is often used for reduction of the penalty caused by
chaotic access pattern into the global memory. In order to reduce the penalty, block has to firstly load
values from the global memory with coalesced access pattern, store them in the shared memory and
then access the shared instead. However, shared memory bandwidth is also affected by unpredictable
access pattern. For devices with the compute capability 2.x and above shared memory is divided into
32 banks. In the shared memory, 32 consecutive 4-byte values are assigned to 32 banks. If each
thread within the block request a value assigned to the different bank, transfer is done in one
transaction. On the other hand, if we access shared memory with the stride equal to 2, it leads to 2-
way bank conflict. The two-way bank conflict is situation, where two different threads request values
assigned to the same bank and therefore memory transfer is carried out in two transactions. In the
worst case, 16-way bank conflict can occur and it results in 16 memory transactions. If all 32 threads
of active warp request the value from the same bank, this request is satisfied in one transaction in the
broadcast fashion.

2.5.5 Texture memory

This type of memory is located in the global memory, but it is cached and accessed via dedicated
hardware present in each SM. This memory is accessible from each thread. The texture hardware has
some interesting properties. It is able to perform interpolation in 1D, 2D or 3D and whenever some
value is requested texture hardware also prefetches surrounding values based on their position in 1D,
2D or 3D array. Due to prefetching, texture memory can be exploited to reduce impact of chaotic
access pattern for specific applications.

2.5.6 Constant memory

The constant memory is special 64KB read-only memory. This memory is mot modifiable by kernel
and therefore has to be initialized prior to the kernel launch. This memory is cached with dedicated
cache and it is capable broadcast.

11

2.6 GPGPU capabilities

This section presents benefits of using GPGPU concept to boosts up processing of data blocks. The
GPU performance is compared with the CPU performance accelerated using MPI. The benchmark
was performed on simple code multiplying two complex vectors.
Benchmark specification
CPU:[7]

e dual eight-core 2.4 GHz Intel Sandy Bridge E5-2665 Processor

e peak performance 38.4 GFLOPS per core

e 256 KB L2 cache per core

e 20 MB L3 cache per processor

e processor memory bandwidth 51.2 GB/s

GPU:[13]

e NVIDIA GeForce GTX 580

e 512 CUDA cores

e Fermi class computation capability 2.0
e peak performance 1581.1 GFLOPS

e 768KB L2 cache

e 1.5 GB GDDRS memory

e memory bandwidth 192.4 GB/s

Complex vectors multipication
140

== CUDA Interleaved

120 format . A
== CUDA Split format //\\
100 t CPU using OMP // \\
80 \
60
| S --

40 /
20 {

0 T T T T T
1024 8192 65536 393214 4194304 67108864

vector size

GFLOPS

Figure 5 performance comparison of complex vector multiplication

In Figure 5 red and blue lines represent performance of the GPU. We can see that GPU reaches peak
performance for vectors consisting of 65536 elements. The size of input of this vector is 512KB and
therefore, whole input is present in the L2 cache of GPU. For vector size 393214, we can see dramatic
decrease in the performance. It is due to fact that for this vector size, input is no longer present in the
L2 and it has to be accessed through the global memory. We can deduce that the performance is
bottlenecked by global memory bandwidth. Green line represents CPU code accelerated using OMP.

12

The CPU code reaches its peak performance at vector size 393214. Input size for this vector size is
about 3MB and it can reside entirely in L2 cache of the CPU. The CPU performance exhibits the
same behaviour as the GPU. This behaviour is known as a memory bond problem. The peak
performance of GPU is more than 2x higher than the peak performance of CPU.

3 MATLAB implementation

3.1 Identifying acceleration opportunities

It is essential to identify proper candidates for the GPU acceleration in order to effectively accelerate
a reconstruction script. Figure 6 is profile of reconstruction script. From knowledge gained via
profiling, we should be able to identify acceleration opportunities which will lead to best results.
Besides accelerating operations themselves, we also have to design our implementation is such way
that it will require as few data transfers as possible.

We also have to take into consideration the number of operation which will be accelerated, as
a process of proper implementation and tuning of GPU codes can be very time-consuming. We have
to consider whether effort needed to implement operation does not exceed the possible benefits.

Lines where the most time was spent

Line Mumbker | Code Calls | Total Time | % Time | Time Plot
261 p o= interp3(kgrid.ky, w, kgrid... |1 1677 s 31.1%
285 p = real(iffrshifr(iffin(iffrs... |1 1075 13.9% ml

2139 p o= sf.*ffishife(ffon{ffrshifr... |1 0,398 < legk |mH

189 st = chZ2¥%sgrof (wsc). A2 - kogri... |1 05581 s 10.8% M|

228 plabs(w) < (c¥sgrofkgrid.ky. .. 1 0,369 ¢ 6.8% [|

All other lines 0.793 s 14.7% '
Totals 53925 100%

Figure 6 MATLAB profile

The Figure 6 shows that time spent in the different parts of the script is not evenly distributed,
which is positive, because tasks where time spent in the different sections is evenly distributed are
more difficult to accelerate and requires complex knowledge about a problem.

Lines 261, 285, 219 from figure consume 67.6 % of overall computation time and include just
several operations. Therefore, they are suitable candidates and their acceleration on the GPU can lead
to significant speedup. It in our case speed-up cannot exceed 3x.

The line 261from Figure 6 consists of operations:

e interp3 —trilinear interpolation

The line 285 from Figure 6 consists of operations:

e real —extraction of real part from complex array
e ifftshift — circular shift of array in each dimension

e 1fftn —inverse fast Fourier transformation

13

The line 219 from Figure 6 consists of operations:

e sf.* -element-wise matrix multiplication
e fftshift — circular shift of array in each dimension (invers to ifftshift)

e fftn — fast Fourier transformation

We will focus primarily on the function interp3, as it takes up 31% of the overall time
itself and has the greatest influence on the overall performance.

In next section operations interp3, fftshif, ifftshift, fftn, ifftn will be
closely discussed. Operations real and sf . * are omitted since being trivial.

3.2 Trilinear interpolation

The interpolation is method to estimate a value of a point if the function value is known only for
surrounding points and not for the desired point itself. There are many types of interpolations and the
most common and basic interpolation is linear. If interpolated function is linear then the value
obtained via linear interpolation is exact, otherwise it provides only estimation. Linear interpolation is
widely used in many fields to estimate values because of its simplicity and a low computation cost.

vl

v0

x0 x x1

Figure 7 linear interpolation

Linear interpolation can be calculated as follows:[17]

suppose linear function

y=f) (1

and two given points x0 and x1, then value in point x equal to

f(x)=y0(1—m)+ylm (2

where
X —x0
m= x1 —x0

3)

14

In general, interpolation of high dimensional function can be performed as a set of normal linear
interpolations in each dimension respectively. In case of image reconstruction the function is 3D. The
principles of linear interpolation applied on a volume are called trilinear interpolation.

Suppose we have given a cube of points: Pygg, P1oo> Po1o> Pi10> Poo1s Pio1> Po11> P111, and values in

these points Cygq ... €111 according to Figure 8

111

oot Cinn
01

Cﬂlﬂ

Cono c Cio0
Figure 8 decomposed trilinear interpolation
then interpolated value C of point P which is situated inside of cube can be calculated as follows:

Coo = Cooo * (1 —dx) + Cypp * dx
C10 = Co10 * (1 —dx) + Cyq0 * dx

4)
Cor = Coo1 * (1 —dx) + Cyp1 *dx
C11 = Co1p * (1 —dx) + Cyqq *dx
where
dx = —— %)
PiooX — Pooox
Co = Coo* (1 —dy) + Cip*dy (6)
C;=Cop*(1—dy)+ Cyy*xdy
where
Py — Pyooy (7)
dy= ———
Po10Y — Poooy
3
C=Co*x(1—dz)+ C,+dz
where
Pz — Pyooz
dz = 000 ©)

Poo1Z — Ppgoz

15

Very similar solution consisting of seven separated linear interpolations is used in the
MATLAB function interp3. It is very straightforward approach which does not requires
complicated calculations and therefore, it is suitable to be implemented on the GPU.

3.3 Fftshift and ifftshift

Opereations fftshiftand ifftshift are MATLAB functions closely associated with fast
Fourier transformation. They ensure correct run of functions like fftn and 1 £ftn. These functions
are used both prior to and after fast Fourier transformation. Both shifts swap first half with second
half for 1D array, swap quadrants as shown on Figure 9 for 2D array and swap octets for 3D array.
Operation fftshift is inverse to itself when all dimensions are even, otherwise, 1 fftshift is
invers function to fftshift function. If x is an 1D array and the size of array is odd

fftshift (fftshift (x)) # x. Itisalso possible to think of both shifts for higher dimensions
as composition of 1D shifts. For example 2D shift can be obtain as shown on Figure 9 by applying 1D
shift on each row along y-axis and then applying 1D shift on each column along x-axis.

Figure 9 fftshift decomposition

Main difference between fftshif and ifftshift, as aforementioned, is how shifts behave when
the number of elements in dimension is odd. The effect of these functions can be described as
follows:

Suppose x is vector of numbers

fftshift(x) = vect shl (x,floor(x. len/2));

ifftshift(x) = vect shr (x,floor (x.len/2));

3.4 Fast Fourier transformation

The concept of DFT (discrete Fourier transformation) is largely used in many signal and image
processing application. It is a process of transformation of a signal from a time domain to a frequency
domain. It means that an infinite periodical signal has only few coefficients in the discrete Fourier
series. Therefore, it is an efficient way to store, manipulate and reconstruct signals in the computer
science.

DFT is calculated as follows: [4]
For series of N complex numbers xg, X; ... Xy_1

16

N-1 _
_ogikn
X, = Z Xp e N (10)
n=0

From equation 10, it is clear that for each of N elements there has to be N addition and N
evaluation of inside of a sum. It implies that computational complexity of DFT is O (n?).

Modern day application however requires computation of the DFT on large amount of data in
the order of millions and for this purpose, traditional DFT is unacceptable. FFT (fast Fourier
transformation) is an ideal solution. Most common algorithm of FFT, Cooley-Tukey algorithm,
exhibits computational complexity O(n logn).[3]

4 Implementation

In this section we will discuss a design, an implementation and achievements. The development of
application is divided into versions and so is this section. For every version, we separately discuss
each operation and provide partial benchmarks and results.

4.1 Common features

These common features apply to all further algorithms and results, if not stated otherwise.
In application, axes are oriented as can be seen on Figure 10. Axes X, y and z refer to depth,
width and height of volume respectively. All data are stored in flatten 3D array in row-major order.

Figure 10 axis orientation

All results presented in the section 4 are measured without any overheads, that means that
time does not include memory transfers, memory allocation time and so on. Only exception is the
MATLAB embedded GPU acceleration, where the MATLAB provides no way to exclude overheads.

RMSD and RMS values are used to calculate an error of interpolation and they can be
calculated as follows:[6]
suppose x is a signal obtained by implemented interpolation and ref is a referential signal

RMSD = \] ?zl(xi_refi)z (11)

n

17

RMS = M (12)
«} n

The MATLAB version:
e R2014a-EDU

The CUDA version:

e 65
The benchmarks specification:
The CPU: (7)

e dual eight-core 2.3 GHz Intel Sandy Bridge E5-2665 Processor
e peak performance 32.4 GFLOPS per core

e 256 KB L2 cache per core

e 20 MB L3 cache per processor

e processor memory bandwidth 38.4 GB/s

The GPU: (6)

e NVIDIA Tesla K20

e 2496 CUDA cores

e Kepler class computation capability 3.5
e peak performance 3950 GFLOPS

e 5 GB GDDRS5 memory

4.2 The first version

In first version, we applied a naive approach to the design and implementation of desired operations.
We used the knowledge obtained by studying principles and the MATLAB implementation of
functions.

4.2.1 Fast Fourier transformation

The fast Fourier transformation is a complex problem including complex mathematics and recursion.
We decided not to try “reinvent a wheel”, as it may result in either failure of whole application or
unsatisfying performance of application.

We came to conclusion that best solution is to use cuFFT library. We have chosen this library
because of its simple interface and optimized performance. This library is capable 1D, 2D and 3D
complex-to-complex, complex-to-real and real-to-complex transformations and the size of input data

18

is limited only by the memory of graphics card, as cuFFT is based on divide-and-conquer principle
presented in Cooley-Tukey algorithm. (11)

On the other hand, there are several drawbacks of the library. For example, cuFFT algorithm
is not designed in way that it can take all advantages of advanced modern day FFT algorithms.
Another disadvantage is that cuFFT shows peak performance on problems of size the power of 2.

Unfortunately, real data obtained by photoacoustic spectroscopy are not of size the power of 2
in real cases.

The benchmark specification:

The CPU:

e 2.67 GHz Intel Xeon quad-core 5550
GPUs:

e NVIDIA Tesla C2050

e NVIDIA Tesla C1060

Single Precision FFT

Gflops -m-Tesla C2050 (ECC off)
=#=Tesla C2050 (ECC on)
300 Tesla C1060

MKL 4 Threads
250

200
150
100

50

o o Q‘b

NS
Ll o’?‘ o
0y %

Transform Size

Figure 11 performance comparison of cuFFT [15]

In Figure 11, we can see a blue line which represents performance of standard implementation using
Intel math kernel library (MKL). We can see no significant change of the performance for presented
transform sizes. Peak performance is about 50 GFLOPS. Green and yellow lines represent the
performance of cuFFT library on two GPUs and effect of ECC (error correction code). The
performance varies with the transform size. It is due to fact that cuFFT recursively divides transform
into factors of the initial size. The performance of cuFFT is dependent on these factors. However,
peak performance of cuFFT on Tesla C2050 is around 275 GFLOPS which is 5.5x higher than the
peak the performance of CPU.

In conclusion, the benchmark proved that use of cuFFT library can provide solid performance
boost to the calculation and therefore it was chosen as a final version of operations £ftn and ifftn
used in our application. Fast Fourier transformation will be no longer mentioned in further sections.

19

4.2.2 Fftshift and ifftshift

As mentioned in section 3.3, effect of operation £ftshift and ifftshift on 3D space can be
achieved by applying 1D shifts step-by-step in each dimension.

Therefore, we can assume that simple 1D shift CPU code would be similar to a pseudocode as
follows:
suppose X is array of integers
for (i=0;i<x.len/2;i++)

{
Swap (x[1],x[i+x.len/2]);

}

Inplementation

This 1D code can be easily parallelized and transformed onto the GPU. Each thread calculates
it’s index and offset index by adding x.len/2 to index and then swap an element
x [index] with an element x [offset index] . For this operation, the kernel has to run with
only x.len/2 of threads.

To turn 1D principle into 3D, we have to add few mechanisms to be able to perform 1D shift
along desire axis. Solution is straightforward, we replace array length with size of dimension and
because we are working with flatten 3D array, we have to change calculation of both index and
offset index. The index is calculated as follows:

index = z*volume.width*volume.depth + y*volume.depth + x;

where x, y, z are coordinates of the requested point. In real GPU kernel, x, y and z are replaced with
thread indices calculated as mentioned in section 2.4.4. Then if we want to compute offset index
properly, we have to add dim. size/2 multiplied by a stride in particular dimension. The stride is
distance in flatten 3D array between two neighbouring points along dimension. For example, the
stride in z-dimension is volume.width*volume.depth. Again, number of kernel threads
needed to perform 3D shift along one dimension is matrix.size/2. To obtain overall effect we
had to implement three CUDA kernels working in each dimension, as 3D shift can be composed with
1D shifts in each dimension according to section 3.3.

The greatest complication became reaching shifting effect instead of swapping effect when
seize of dimension was odd.
Suppose we have vector of number:

012 345¢6

If we apply £ftshift without odd dimension issue properly treated output will be:
T2 25k

25012k

To obtain proper result in case of odd dimension each thread of kernel has to load the value
x[offset index + stride] into temporary variable, store the value x[index] to
x[offset index] and afterwards stores the value in temporary variable to x [index]. Outcome
of this operation is as follows:

T 213[25 6]
[F56]0 L 26k

20

We can see that modified £ftshift still leaves wrong value at the end of the vector. To eliminate
this effect, we had to take some measures before and after operation itself. Due to lack of global
synchronization, two other kernels were implemented for each dimension. These kernels are launched
in case of odd dimension size. First kernel creates a backup of middle values, in 3D space it is a plane
perpendicular to respective axis with respective coordinate equal to f1oor (dim.size/2). Second
kernel stores values to end of the vector, in 3D at the perpendicular plane with respective coordinate
equal to dim.size -1. After implementation of all modification we were able to obtain correct
result:

|01 2/345 6] 3
[4 5060101 23 3

To implement 1 fftshift we used the identical approach with few differences. The main
kernel loads value x [offset index] into temporary variable an then stores value x [index] to
x[offset index + stride]. The kernel prior to the main kernel creates backup of values
situated at end of vector, in 3D the perpendicular plane with respective coordinate equal to
dim.size -1. And then the kernel launched after the main kernel stores backed up values in the
middle of vector, in 3D space it is plane perpendicular to axis with respective coordinate equal to
floor (dim.size/2).

To be able to handle complex output of FFT two other sets of kernels were created to preform
fftshift and ifftshift on complex data.

Results

Fftshift v.1
100

== Fftshift v.1

-
(==

== Fftshift MATLAB

time in miliseconds
k.

e
—

0.01
[§ D A 6
g\2 281 AQ9 \\5’1\ 116 \03(;’\\ 161\A‘ %%Qgﬂ ™ \51 \\%0615

number of elements

Figure 12 performance comparison of fftshift v.1

21

Complex fftshift v.1
100

=¢=—TFtshift v.1
=—Fftshift MATLAB
Fftshift MATLAB GPU

—_
(=]

time in miliseconds
.

e
e

0.01
A
sV 8l 490 s 168 ot S g0 2091\52 \\%06156

number of elements

Figure 13 performance comparison of complex fftshift v.1

Discusion !

In Figure 12 and Figure 13 the blue line represents our implementation. We can see that the blue line
has almost same behaviour as red line representing the MATLAB native implementation. We can
notice that the performance of our implementation drops in cases where the size of input is not equal
to the power of 2. This is due to not coalesced memory access. Green line represents the MATLAB
embedded GPU acceleration and we can notice that for input sizes up to 2097152 elements,
performance is almost identical. It is most probably caused by the internal overhead in the MATLAB.
For the real data of size 11806256 elements, MATLAB embedded GPU acceleration provides best
results and our implementation falls behind. In fact, the difference of performance between our
implementation and MATLAB embedded GPU acceleration is in order of magnitude.
Figure 12 and Figure 13 also shows that there is almost no difference between performance of

float fftshif and complex fftshift in our implementation.
Main advantages:

e Simple implementation, no need for special mathematical functions

e [n situ solution (if we omit temporary arrays)

Main disadvantages:
e Many kernels have to be launched to perform single operation

All things considered, the concept has to be changed from the scratch in further versions.

4.2.3 Trilinear interpolation

Outcome of trilinar interpolation can be obtained by composing seven linear interpolations and can be
decomposed into several equations from section 14. This straightforward approach, as
aforementioned, is ideal to be implemented on the GPU, because this approach only uses simple
mathematical operations as multiplication, division and addition.

' We only provide benchmarks and discussion to £ ftshift. All discussed features are also valid for
ifftshif.

22

Implementation

Suppose seven matrices with same size:

smp x, smp y, smp z, val, intrp x, intrp y, intrp z;

Matrices smp x, smp y and smp z contains X-, y- and z- coordinates of sample points
respectively. Coordinates has a constant spacing.

Matrix val contains sampled (function) values in sample points. This matrix correlates with matrices
smp_X, smp_y and smp_z.

Matrices intrp x, intrp y and intrp z contains X-, y- and z- coordinates of points in
which trilinear interpolation has to be carried out.

We divide the sample points into sub-cubes of size 2 x 2 x 2. Each thread operates with one sub-cube.
It means that each thread has to load eight values from val and coordinates in each of eight sample
point. From the fact that all coordinates has the constants step in between we can deduce that the sub-
cube creates a real geometrical cube. Therefore, there is no need to load all eight coordinates in each
dimension, as cube with size 2x2x2 contains only two different values in one dimension. Each thread
calculates the index into matrices smp x, smp y, smp z and val. No special calculation of
index including stride or offset has to be implemented, because sub-cubes of this size overlap
perfectly. Each thread has to load two coordinates of the sample points in each dimension and eight
values from the flatten 3D array:

x0 = smp x[index];

x1l = smp x[index + stride in x];

etc.

c000 = wval[index];

cl00 = val[index + stride in x];

c010 = vallindex + stride in y];

cl1l0 = vallindex + stride in y + stride in x];
etc.

After this step, each thread properly sets up all variables of regarding its sub-cube. Every thread then
has to process each interpolation point stored in arrays intrp x, intrp y and intrp z,
because more than one point can appear inside of the sub-cube.

To speed up this process of iteration trough each interpolation point, each block has three
arrays of shared memory buff x, buff y and buff z with the size equal to count of threads per block.
Firstly, all threads read different values from global memory according to thread’s local index. Local
index can be calculated in a way shown in section 2.4.4. Then each thread stores value loaded from
global memory into shared memory using the same local index. This way with only few load and
store operations kernel has as many points ready to be process, as there are threads per block. After
all load and store operation, kernel has to call a block-scope barrier by syncthreads to prevent
reading of shared memory before all validate data are properly stored. The barrier call is must because
as mentioned in section 2.4.5 there is no guarantee on sequential order of warps execution.

After shared memory is filled with valid data, each thread iterates through all points in shared
memory and calculates interpolated value of point. The kernel takes advantages of shared memory
broadcast capability. When all threads within the warp request the value assigned to the same bank of
shared memory, this memory request is satisfied in one go in broadcast fashion. The calculation of the
interpolation is based on equations 4-9. The condition determining whether the point lies within the
sub-cube operated by the thread or not is present at the very end of the calculation. The location of the
condition prevents a massive divergence within warp even at a cost of some unnecessary calculations.
The condition itself is based on equations 5, 7 and 9, where all coefficients dx, dy and dz has to be

23

from interval (0,1) in case where the point lies within the sub-cube. If the condition holds true, the
thread write back the interpolated value to the global memory. After this section, kernel has to use
barrier to ensure that all work on current data in the shared memory has been done and the shared
memory can be overwritten by new data. This principle is repeated until all interpolation points are
processed.

Results

Interpolation v.1
10000000

== Interpolation v.1 /
1000000 +
= Interpolation /
100000 + MATLAB
Interpolation /
10000 T MATLAB GPU /
1000 / /'—
100

g
=
3 e
§ 10 444:E=="!!-=:::1‘;::::::;-ll-----|'i"' =
B =
k- -
g 0.1 T T T T T T T T T
= 1 g 6 Y > A A » L 6
= 5\ \2% A0 X\Sq 32“6 \0301 261\A %%091 2991\5 \\%0615
number of elements
Figure 14 performance comparison of interpolation v.1
Efficiency
Global Load Efficiency 99.3% igii;”cm"

not
selected

memory
throttle

constant
pipe
busy

Global Store Efficiency & 21.2%
Shared Efficiency @ 50%
Warp Execution Efficiency 99.7%

execution
Non-Predicated Warp Execut 99.7% dependency

Occupancy
other
Achieved & 49 ,.9% synchronization
Theoretical 50% texture
memory
Limiter Registers dependency
Figure 16 GPU efficiency and occupancy Figure 15 stall reasons
Discussion

In Figure 14, the blue line represents implemented GPU kernel. The kernel performance fall way
behind both native MATLAB implementation represent by red line and MATLAB embedded GPU
accelerated implementation represented by green line. The implementation exhibits a quadratic
computational complexity. The elapsed time to compute a real data input was about 2.5 hours and
achieved performance was only 1,3 Kpoints interpolated per second. Compared to 47.2 Mpoints
interpolated per second achieved by the MALTAB embedded GPU acceleration on the real data
sample, our implementation reaches only 0,003% of its performance. From Figure 15, we can deduce

24

that the main reason of slow run of the application is an execution dependency. Execution
dependences are inevitable part of the kernel. They create a large portion of the stall reasons mainly
due to the number of the operations. In further versions it is necessary to reduce the amount of the
mathematical operation to achieve a better performance. Figure 16 shows that the kernel has almost
optimal global memory access pattern. Poor global store efficiency is caused by irregular stores. In
Figure 16 we can see that there is a space for an improvement in accessing shared memory, which can
result in a speedup. However, improvement of the shared memory access will not bring a radical
change to the performance. We can also see that the implementation does not allow a full utilization
of GPU due to a number of registers per kernel. This condition is also inevitable.

Advantages:

e Relatively simple and straightforward implementation

Disadvantages:

e Unacceptable run time for the real data even with some optimizations
e Numerous memory accesses and calculations
e Solution does not allow full utilization of GPU

From discussed results it is clear that in order to improve the performance the number of memory
accesses and calculations has to be dramatically decreased.

4.3 The second version

The discussion of results of first version apparently shows that design of the implementation has to be
radically changed in order to provide satisfying results.

4.3.1 Fftshif and ifftshift

The main disadvantage of previous version of fftshif and ifftshift was the number of
kernels needed to successfully preform the transformation. Each operation required at least three
kernels. It means that all memory accesses and calculations had to be preform three times. And if we
take in consideration that a launch of kernel takes some time on itself, it is clear that concept of
multiple kernels is definitely not suitable.

Implementation

Completely different approach was adopted for this version. It is approach that combines all required
steps from previous version in one kernel. To this purpose a new method of calculating
offset index was developed which puts all steps needed in the previous version the into one
kernel. The offset index is in current version calculated as flows:

Suppose flatten 3D array mtx

shift in x

(idx.x + ceil(dim x.size/2)) mod dim x.size;

shift in y (idx.y + ceil(dim y.size/2)) mod dim y.size;

shift in z = (idx.z + ceil(dim_z.size/2)) mod dim z.size;
offset index = shift in z*mtx.width*mtx.depth;

offset index += shift in y*mtx.depth;

offset index += shift in x;

25

If offset index is calculated this way, it tells the thread which value is supposed to appear on the
position defined by the index after £ftshift. However lack of the global synchronization prevents
the kernel from working in situ. Therefore, kernel has to work with two disjoined spaces.

To make this principle works as 1 fftshif instead of fftshift all what has to be done is

to replace the function ceil with the function floor.

Results
Fftshift v.2
100
== Fftshift v.2
8 1o | —WFfishift MATLAB
S Fftshift MATLAB GPU
= 1 . 2
=
g
g ol
0.01
o
0.001
q 6 \ d A A 6
LR R S CLA VAL Y LN A Sl LN A \\%0615
number of elements
Figure 17 performance comparison of fftshift v.2
Complex fftshift v.2
100

0.1

0.01

0.001 T T T T T T T T T

=@— Fftshift v.2 /
10 -

time in miliseconds
—

=== Fftshift MATLAB ‘/./
[4 . ’

2 'y 6 1\ 6 1\ A " 9)
5y P AQ() \\5 3’[‘ \630 ,16’1\ %%()91 1091 \5 \ \%0615
number of elements

Figure 18 performance comparison of complex fftshift v.2

26

Fftshif v.1 vs fftshift v.2

100
lo | —*—Ffishiftv.2 A
"‘é == Fftshift v.1)/./
Q
172}
=
g
g 0.1
)
£
~ 0.01
' ——
0.001 T T T T T T T T T
\2 1 6 1\ 6 1\ A o 50 56
5 \2 A0 WS et NN 260 230? 2091\ \\%0({2
number of elelments
Figure 19 performance comparison of different versions
memary)
dependency execution
High dependency
- texture
=)) instruction
synchronization
3 y fetch
= other
2
N led i
-E pipe not
o busy selected
s memory
= throttle
Low constant
Load/Store Control-Flow
Figure 21 hardware utilization level Figure 20 stall reasons
-Results =
Rank | Description
108 [4 kernel instances] void radixM kernel<unsigned int=37, radixM float>(fftDirection t, unsigned
25 [2 kernel instances] void radixM kernel<unsigned int=11, radixM fleoat=(fftDirection t, unsigned
17 [1 kernel instances] interp(float const *, float const *, float const *, float2*, dimDesc_t, flo
11 [2 kernel instances] void spRadix@084A::kernellTex<fftDirection t=-1=(Complex<float=*, unsigned
11 [2 kernel instances] void spRadix@@84A::kernellTex<fftDirection t=1>(Complex<float>*, unsigned i
7 [1 kernel instances] full fftshift(float2*, float2*, float*, dimDesc_t, dimDesc t, dimDesc_t)
6 [1 kernel instances] fftshift(float*, float2*, dimDesc t, dimDesc t, dimDesc t)
6 [1 kernel instances] full ifftshift(float2*, float2+*, dimDesc t, dimDesc_t)
6 [1 kernel instances] ifftshift(float2+#, float*, dimDesc_t, dimDesc t)
5 [1 kernel instances] void spRadix8849B::kernel3Tex<fftDirection t=-1=(Complex<float=*, unsigned
5 [1 kernel instances] void spRadixB@49B::kernel3Tex<fftDirection t=1>(Complex<float>*, unsigned i
Figure 22 impact of kernel acceleration on overall performance
. e 2
Discussion

It can be sad that this implementation achieves a satisfying performance. In Figure 17 and Figure 18
there is the blue line representing computation time of our implementation, the red line representing

> We only provide benchmarks and discussion to £ ftshi ft. All discussed features are also valid for

ifftshi

f.

27

native MATLAB implementation and the green line representing MATLAB embedded GPU
acceleration. The difference between the MATLAB performance and implemented GPU kernel
performance is in the order of magnitude for real data sample. We can also state that for the real data
kernel provide performance comparable to MATLAB embedded GPU acceleration. Performance of
the MATLAB embedded GPU acceleration is dragged down by the internal overhead for input sizes
below 118062256 elements. In Figure 21, we can see that utilization level of the hardware by
arithmetic operations is high. Moreover, the main stall reason is busyness of pipe according to Figure
20. From this information we can deduce that implementation is bottlenecked by the high utilization
of the execution unit by the operation modulo. It would be possible to adopt advanced techniques to
replace the modulo operation.

Figure 22 shows importance of the kernel acceleration based upon their potential benefit to
the overall performance. We can see that shift operations themselves have no significant effect on
overall performance according to Figure 22.

Advantages:
e Only one kernel is needed to perform the operation

Disadvantages:
e Usage of time consuming operation (modulo)
e Operation is not performed in situ

After considering an impact which has the performance of fftshift and ifftshift on
the overall performance of application, decision was made not to continue in the development of
fftshift and ifftshift GPU acceleration. This is final version of fftshift and
ifftshift implementation used in the application and therefore fftshift and ifftshift
will be no longer mentioned in further sectionss.

4.3.2 Trilinear interpolation

As mentioned in the section 4.2.3, the previous version of trilinear interpolation has the unacceptable
performance. It was result of its quadratic computational complexity, which was caused by fact that
for N sample points and M interpolation points each of N threads has to iterate trough M points. This
afterward led to numerous global memory accesses. Therefore this approach is inapplicable.

Implementation

For this version the concept was completely reversed. In this version we take full advantage of texture
hardware present in each SM. As mentioned in section 2.3.5 texture hardware is capable of trilinear
interpolation and it is also equipped with the cache. This type of memory is the best solution for
unpredictable access pattern. Unlike previous version, each thread now operates with only one
interpolation point. Values in original sample points are stored in a 3D cudaArray and accessed via
texture hardware.

Suppose same matrices from section 4.2.3. From experiences with sample points we know
that matrices smp_X, smp_y and smp_z contain only as much different values as size of respective
dimension. For example, each plane of smp y, which is perpendicular to y-axis, contains same
values. Distance between two different values in matrices smp X, smp_y and smp_z is equal to stride
in particular dimension. What is more, all values have same spacing and are sorted in ascending
order.

28

Matrix mchadmg v cooerdmates

-2 4 o

24
]
24 -
74]
:]
T4 2.4
0
24
- 2.4
24 |0 a
-2 i 24
24 - >
.. 0
2.4 24
]
_—

stride in v dimension
Figure 23 MATLAB matrix data layout

The attempt to reduce memory accesses cerates complication because values in texture memory are
indexed in x-, y- and z-axis in intervals <0,val.depth-1>,<0,val.width-1> and
<0,val.hight-1> respectively and do not correspond to its sample points coordinates. Therefore
each kernel has to pre-calculate texture indices according to its interpolation point as follows:
step y = (smp y[l*stride in y] - smp y[0]);

texture index y = (interp y — smp y[0])/step y;

According to Figure 23, suppose interp y isequalto 1. If we remap interp vy into the interval
(0,2) using this method, remapped value is equal to 1.41.

Before remapping After remapping

24 24 0 1 1.41 2

Figure 24 remapping of indices

To be able to calculate texture indices kernel only need initial value of sample points coordinates and
the respective spacing, this way we are able to reduce input data size by 37%. When indices are
calculated for each dimension, each thread uses these indices to obtain interpolated value from the

29

texture. To this purpose tex3D function is used. Providing indices passed to function are not
integers, it returns hardware interpolated value. Afterwards each thread stores this value to respective
position in the global memory.

Results
Interpolation v.2
10000
=== nterpolation v.2
1% e nterpolation MATLAB
nterpolation /A.—
B 100 + . A
S == Interpolation MATLAB
_g 10 + GPU
£ P
s b7
= /
£ o1
0.01 "#P—/
0-00 1 T T T T T T T T T
g 6 A > \ A 6
5\1 \"L% AQ() \\51 ?’1’] 6 \0’50" 262\A %%0912 ” 091 \5’1 X %0615
number of elements
Figure 25 performance comparison of interpolation v.2
Interpolation v.2 vs interpolation v.1
10000000
1000000 =&—Interpolation v.2
100000 == Interpolation v.1
'g 10000
§ 1000
E 100
g 10
E
0.1
0.01 & < S
0.001

N2 R p00 RE A 6® \030"\ 162\AA %%Q‘)'ﬂ 29 \51\\%%256
number of elements

Figure 26 performance comparison of different versions

30

Start 863.895 ms (863,89

End 874.174 ms (874,17
Duration 10,279 ms (10,279,
Size 101.632 MB
Throughput 9.887 GB/s
~ Memory Type
Source Device
Destination Array

Figure 27 memory transfer details

Discussion

In Figure 25, the blue line represents our implementation, the red line represents native MATLAB
version and the green line represents MATLAB embedded GPU acceleration. Based on the presented
results, this version of interpolation provides outstanding performance, which is incomparable to both
MATLAB implementation and MATLAB GPU acceleration. According to results achieved for the
real data sample, show in Figure 25, it can be estimated that the kernel is capable of processing 4.3
Gpoints per second and MATLAB embedded GPU acceleration achieves throughput of 47.2 Mpoints
per second. Our implementation has 91x greater performances than MATLAB using GPU. Error of
this implementation is 8.64 using the RMSD. The RMS of referential signal produced by MATLAB
is 874.3. The error of this method is 0.98% compared to referential signal.

In Figure 26, the blue line represents current version of implementation and the red line
previous version. The figure demonstrates performance growth in current version. For the real data
sample previous implementation only reaches the throughput of 1,3 Kpoints per second, where this
implementation reaches the throughput of 4,3 Gpoints per second. The performance of current version
is 3,307,692x greater compared to previous version. The main reason of this growth is dramatic
reduction of number of operations and memory accesses. This version also reduces the amount of
data needed to be transferred onto GPU, which lower overall run length.

On the other hand, as we can see in Figure 27, time to initialize the cudaArray with real data
sample drags down overall speed-up of this version.

Advantages:

e Good precision

e (Great speed

e Reduction of input by 37%

Disadvantages:
e Need to initialize cudaArray

4.4 The third version

In previous version some interesting results were achieved. It presented few techniques and principles
which were proven usable. It also sets the trend which should be followed in future design.

4.4.1 Trilinear interpolation

Design of this implementation takes fully advantage of achievements and discoveries gained in
previous development. The design combines computation method of first version with logic of second
version to produce implementation with great performance.

31

Implementation

Only difference between current and previous implementation is that in this version the interpolation
is calculated using equations 4 - 9. Therefore this method does not need to initialize the cudaArray.
As shown in section 4.3.2, each matrix of sample points coordinates contains only a fragment of
different values compared to all elements in matrix. Function values defined in sample points are
stored in 1D texture to reduce impact of unpredictable global memory access pattern.

After kernel is launched, each thread loads coordinates of respective interpolation point. Afterwards
coordinates are remapped to obtain texture indices for each dimension respectively using method
described in section 4.3.2. In most cases these indices are not integers. If the thread takes whole
number part of indices and uses them to obtain the signal value, thread is guaranteed to obtain the
value of point Pyog from Figure 8. What is more decimal parts of indices serve as coefficients
otherwise obtained with equations 5, 7 and 9. After the thread calculates indices of point Pyqg, all
values needed to compute trilinear interpolation are loaded from the texture memory. Then the
interpolation is calculated in the same way as in section 4.2.3.

Indices Whole number part of indices

S /
/ v

s

Figure 28 effect of whole number part of indices (4)

Results

Interepolation v.3

10000 .
=== Interpolation v.3

1000 == Interpolation MATLAB

—é 100 Interpolation MATLAB
g GPU
2 10
E
Q
£ 01
0.01 >—
0.001

6 > A 6
s\2 8l a0 (5T 168 0T g g9 1091\5? \\%0615
number of elements
Figure 29 performance comparison of inpterpolation v.3

32

Inperpolation v.3 vs interpolation v.2

10
“é == Interpolation
s 1 v.3
2 .
= == Interpolation
g v.2
£ 0.1
o
£
0.01
0.001
P 1l 6 Y D Y Ak L L 6
5\ 23 A9 NGt 16 \0301 A %%092 2097 \3 \\%967’5
number of elements
Figure 30 performance comparison of different versions
— . execution
< Efficiency dependency
Global Load Efficiency 81.9%
L instruction
Global Store Efficiency 88.6% fetch
Shared Efficiency n/a Qﬁected
3 : Memory
Warp Execution Efficiency : 97.8% throttle
Non-Predicated Warp Execut: 93.2% constant
memory
= Occupancy dependency
Achieved 69.4% .
synchronization
Theoretical 75% texture
Figure 32 GPU efficiency and occupancy Figure 31 stall reasons
Discussion

This implementation meets all requirements previously set. It reaches considerable performance
without using texture hardware for interpolation. In Figure 29 our implementation is represented with
the blue line, the MATLAB implementation is represented with the red line and the MATLAB
embedded GPU implementation is represented with the green line. We can see that our
implementation has greatest performance compared to MATLAB implementations. It can be
estimated that for the real data sample the kernel is able to interpolate 4.1 Gpoints per second.
Compared to the MATLAB GPU implementation 47.2 Mpoints per second throughput, our
implementation achieves 86.8x greater performance. The error of this implementation is 12.9 using
the RMSD. The RMS of referential signal produced by MATLAB is 874.3. Therefore, error of this
method is 1.47% compared to referential signal.

In Figure 30, current implementation is represented by the blue line and previous implementation is
represented by the red line. There is almost no difference between performances of both

33

implementations. For the real data sample current version achieve 94.3% of performance of previous

version.

The kernel exhibits good occupancy and global memory efficiency, as it may be seen in Figure 32.
Most significant stall reasons are execution and memory dependences, which are inevitable.
Advantages:

Relatively great speedup achieved

Disadvantages:

Grater error compared to previous version

In conclusion, there is not many possible ways to significantly speed up this particular
implementation. Since kernel provides significant acceleration it is used in the application.

4.5

Discussion

This section is dedicated to presentation of overall results and achievements.

10000

1000

e
-

time in miliseconds

0.01

0.001

Line 285

=—CUDA
=#—-MATLAB
MATLAB GPU

¢

6 X 6
5\ \1%’1 A9 \\5'1 A o1 6% \030’1 \ o 61\A %%Qc)’ﬂ 7,09’1 \52 \\%0615
number of elements

Figure 33 performance of implementations of line 285

Discussion to Figure 33 can be found in section 4.4.1.

34

Line 261

1000
——CUDA
100 —#-MATLAB
2 MATLAB GPU
5 2
210
E , :
£ 1
Q
£
0.1
‘ ﬂ
0.01

6 D X 6
511 \®] A9 \\‘ﬂ\ 16 \0301\ ,L()q,\Af %%Qg'ﬂ 209 152 \\%%15

number of elements

Figure 34 performance of implementations of line 261

Line 219
1000

=¢—CUDA
100 =—MATLAB
MATLAB GPU
10 /
1
0.1
———

0.01

time in miliseconds

g\] 4096 \\51\ "57:‘6% \0501\) @@A %%ngﬂ 2091\51 \\%36156
number of elements

Figure 345 performance of implementations of line 219

In figure 34 and Figure 34 our implementation is represented by the blue line, the MATLAB
implementation is represented by the red line and the MATLAB GPU implementation is represented
by the green line. We can see that our implementation provides the best performance for input sizes
that are power of 2. It is due to fact that that cuFFT library achieves best results for such sizes. Using
data presented earlier in section 4.3.1, we can estimate that cuFFT takes up to 82% of run-time of
these lines and therefore performance is strongly dependant on cuFFT library performance. Based on
f and Figure 34, we can say that the performance of our implementation is at least comparable with
MATLAB embedded GPU acceleration.

Considering results for real data sample, application provide 9.4x speed-up compared to the
MATLAB implementation for line 261 and 17.5x speed-up for line 219.

The most notable improvement in terms of performance was achieved for line 285. This is
positive aspect because line 285 was most time consuming line in reconstruction script. It took up to

35

31% of overall time to compute line. Therefore these achievements should result in notable speed-up
of whole reconstruction.

Overal reconstruction duration

10 -
m MATLAB GPU acceleration mE MATLAB = CUDA 51517
3.9421
3.1269

3
b=
S

= 1
g

0.1 -

accelerated part entire reconstruction

Figure 356 overall results

From Figure 35, we can say that our implementation has outstanding computation performance. Our
implementation is about 20x faster than native MATLAB implementation and about 2.3x faster than
the MATLAB embedded GPU acceleration in computing accelerated part of script.

On the other hand, Figure 356 also shows that for real purposes the implementation requires
great amount of overhead and data transfers to run correctly and therefore does not provide overall
acceleration of implementation. The main reason of poor overall performance is data transfers to and
from application, despite fact that since second version of trilinear interpolation application need only
63% of former input size.

In conclusion, we discover that our implementation is not suitable to accelerate a single image
reconstruction. It would be much more efficient to use the implementation in batch fashion where all
images have same dimensions and properties. This would mean that five out of six data matrices
needed to reconstruct image would be constant for all of images. Another way of harnessing full
potential of the implementation is to create standalone application independent of the MATLAB.

5 Conclusion

If we sum up achieved results, we can state that our implementation fulfilled every goal set. It
managed to accelerate selected calculations, needed in image reconstruction, approximately 20 times.
The greatest acceleration was achieved for trilinear interpolation, the most time-consuming operation
in the reconstruction. In fact, our implementation managed to accelerate trilinear interpolation on real
data by factor 452. It can be considered outstanding performance boost, if we take in consideration
that theoretical performance of used GPU is only 6.5 times greater than theoretical performance of the
CPU. The approach used in our implementation also reduced amount of the input data by 37%. Each
stage of development revealed different aspect of the GPU programing. Therefore, we were able to
better understand certain details of the GPU programing and come up with solutions that improved
the performance. Our implementation can find application in many scientific researches using

36

photoacoustic spectroscopy as a tool. Supposing it is used in batch mode, our implementation is able
to turn image reconstruction, which was formerlly matter of days, into image reconstruction which is
matter of hours. The main drawback of our application is a dependency on the MATLAB. This
dependency implies that large amount of data have to be at some point transferred between the
MATLAB and our application. In fact, these data transfers are so time-consuming that application
used in a single mode does not provide any acceleration. For further development, we suggest
disposing of dependency on MATLAB.

37

6 References

1. AMD. OpenCL™: The Future of Accelerated Application Performance Is Now. Amd.com.
[Online] 2011. [Cited: 3 18, 2015.]
https://www.amd.com/Documents/FirePro_OpenCL_Whitepaper.pdf.

2. BELL, Alexander G. On the production and reproduction of sound by light. American Journal
of Science. 1880,118. ISSN: 0002-9599

3. COOLEY, James W. and John W.TUKEY. An algorithm for the machine calculation of
complex Fourier series. Mathics of Computation. 1965, 19. ISSN: 0025-5718

4. FOURIER, Joseph. Théorie analytique de la chaleur. Paris : Firmin Didot Pére et Fils, 1822.
OCLC 2688081.

5. GALLQY, Michael. CPU vs GPU performance. Michaelgalloy.com. [Online] 2012. [Cited: 5 5,
2015.] http://michaelgalloy.com/wp-content/uploads/2013/06/cpu-vs-gpu.png.

6. HYNDMAN, Rob J. and Anne B. KOHLER. Another look at measures of forecast accuracy.
International Journal of Forecasting. Vol. 22. ISSN: 0169-2070

7. 1T4l. Anselm cluster documentation. /t4i.cz. [Online] 2015. [Cited: 3 17, 2015.]
https://docs.it4i.cz/anselm-cluster-documentation.

8. KENNEDY and MIKE. Intel Haswell. Research.engineering. wustl.edu. [Online] [Cited: 3 11,
2015.] http://research.engineering.wustl.edu/~songtian/pdf/intel-haswell.pdf.

9. LEVITES, Julia and Stephen JONES. Iside Kepler: world’s fastest and most efficient
accelerator. On-demand.gputechconf.com. [Online] [Cited: 4 20, 2015.] http://on-
demand.gputechconf.com/gtc-express/2012/presentations/inside-tesla-kepler-k20-family.pdf.

10. NVIDA. Kepler SMX architecture. Custompcreview.com. [Online] 2012. [Cited: 3 30, 2015.]
http://www.custompcreview.com/wp-content/uploads/2014/02/nvidia-smx-architecture-block-
diagram-kepler.jpg.

11. NVIDIA. GeForce GTX 680 block diagram. Pcmag.com. [Online] 2012. [Cited: 3 14, 2015.]
http://wwwS5.pcmag.com/media/images/285620-nvidia-geforce-gtx-680-block-diagram.jpg.

12. NVIDIA. CUDA thread execution model. 2015. 3dgep.com. [Online] [Cited: 4 5, 2015.]
http://3dgep.com/wp-content/uploads/2011/11/grid-of-thread-blocks.png.

13. NVIDIA. GeForce GTX 580 specifications. Geforce.co.uk. [Online] 2011. [Cited: 4 20, 2015.]
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-580/specifications.

14. NVIDIA. GeForce GTX TITAN specifications. Geforce.co.uk. [Online] 2015. [Cited: 4 20,
2015.] http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-titan/specifications.

38

15.

16.

17.

18.

19.

NVIDIA. Tesla C2050 performance benchmarks. siliconmechanics.com. [Online] [Cited: 5 10,
2015.] http://www.siliconmechanics.com/files/C2050Benchmarks.pdf.

TREEBY, Bradley and B. T. COX. k-Wave: MATLAB toolbox for the simulationand
reconstruction of photoacoustic wave fields. Journal of Biomedical Optics. 15,2010. ISSN:
1083-3668

WAGNR, Rick. Multi-linear interpolation. bmia.bmt.tue.nl. [Online] [Cited: 1 13, 2015.]
http://bmia.bmt.tue.nl/people/BRomeny/Courses/8C080/Interpolation.pdf.

WILT, N. The CUDA handbook: comprehensive guide to GPU programing. Boston : Addison-
Wesley, 2011. ISBN-13: 978-0321809469.

ZHANG, H. F. et al. Functional photoacoustic microscopy for high-resolution and noninvasive

in vivo imaging. Nature Biotechnology. 24, 2006. ISSN: 1087-0156

39

