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Abstrakt 

Fotoakustická spektroskopia je jedna z najmodernejších zobrazovacích metód a nachádza uplatnenie 

vo vedných odboroch ako medicína, biochémia, materiálová technológia a mnoho ďalších. Vďaka 

svojim vlastnostiam je fotoakustická spektroskopia veľmi vhodná špecificky pre medicínske účely. 

Táto metóda je neinvazívna a zároveň zaručuje vysokú presnosť zobrazenia. Za vysokú presnosť 

metóda vďačí pokročilým, časovo náročným  výpočtom, medzi ktoré patria operácie ako FFT a 

trilineárna interpolácia. Táto bakalárska práca sa zaoberá akceleráciou daných metód na grafickej 

karte. Naša implementácia naplno využíva rozličné vlastnosti moderných grafických kariet ako 

napríklad zdielaná pamäť alebo textúrový hardware. Implementáciu sme testovali na jednej z 

najvýkonnejších grafických kariet určených na high performance computing. Jednalo sa o kartu 

NVIDIA K20m. V tomto prostredí sa našej implementácií podarilo zrýchlit niektoré časti 

rekonštrukcie viac než 400-násobne. V jednorazovom móde rekonštrukcia trvala o niečo dlhšie než 

samotná MATLAB verzia. Je to spôsobené nutnosťou prevodu dát medzi prostredím  MATLAB a 

CUDA kódom, i keď sa podarilo znížiť veľkosť prenášaných dát o 37%. Spracovanie väčších dávok 

fotoakustických snímkov by ukázalo skutočný potenciál implementácie. 

 

Abstract 

The photoacoustic spectroscopy is a recently developed imaging method that finds applications in 

many scientific fields such as medicine, biochemistry, materials engineering and many others. The 

photoacoustic spectroscopy finds particularly nice applications in medicine due to its properties such 

as non-invasiveness, non-aggressiveness and great accuracy. The source of this accuracy lies in 

advanced time-consuming calculations including operations like FFT and trilinear interpolation. This 

thesis is dedicated to the acceleration of this technique on a graphics card. In our implementation, we 

have taken a full advantage of various features provided in modern GPUs such as shared memory and 

texture hardware. Our implementation has been tested on one of the most powerful GPU designed for 

high performance computing, namely NVIDIA K20m. In this environment, our application speeds up 

certain parts of reconstruction by a factor above 400. In a single run mode, the whole reconstruction 

runs a bit longer than the pure MATLAB version due to the necessity of transferring data between 

MATLAB and the CUDA code, although the developed approach reduced the data transfers between 

MATLAB and GPU by 37%. The real potential of the implementation reveals while processing large 

batches of photoacoustic images. 
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1 Introduction 

In this bachelors thesis we focus on possibilities of accelerating scientific computations by graphics 

processing unit. The term scientific computation in our case means reconstruction of tissue image 

obtained via photoacoustic spectroscopy. We use an open-source MATLAB toolbox k-Wave 

specially designed for purposes of tissue image reconstruction as a reference to validate our 

implementation. Our main goal is to design and implement efficient solution, which will lead to 

maximal acceleration of image reconstruction. To be able to perform such a task, it is essential to 

understand photoacoustic spectroscopy and study principles used in the k-Wave toolbox and 

MATLAB to reconstruct the image. The task also requires gathering knowledge about architecture of 

graphics processing unit in general and familiarization with possible means of programing of graphics 

processing unit. Afterwards, we have to fully understand principles and details of programing 

platform and design and implement solution according to gained knowledge. 

1.1 Photoacoustic spectroscopy 

Photoacoustic spectroscopy is based on photoacoustic effect discovered by Alexander Graham Bell in 

1880. Photoacoustic effect appears when electromagnetic energy is absorbed by a sample of matter, 

which results in heating and expansion.[2] This process can be measured as the ultrasonic waves are 

produced by rapid expanding matter. As a source of electromagnetic radiation is often used a laser 

and intensity has to vary, either periodically modify or pulse modify.[19] Photoacoustic effect can be 

used to determine certain features of examined sample. In biomedicine, Photoacoustic effect is used 

as a non-invasive imaging method. 

  For example, photoacoustic imaging is very useful in studies of a vascular system 

development of embryo in vivo, as it is a non-invasive, non-aggressive method. The vascular system 

imaging is possible by significant difference in light absorption of haemoglobin circulating in vessels 

and surrounding tissue.[19] This same principle is used in tumour angiogenesis monitoring because 

cancer tissue is largely supplied with blood vessels, which provides sufficient contrast to differentiate 

tumour and healthy tissue. The photoacoustic imaging can be used in many others diagnostic 

procedures, such as blood oxidation mapping, functional brain imaging and skin melanoma detection. 

1.2 The k-Wave toolbox 

The k-Wave is open source third party toolbox for MATLAB developed for simulation of 

photoacoustic wave fields in either homogeneous or heterogeneous material in one, two or three 

dimensions and reconstruction of wave fields obtained via photoacoustic spectroscopy.[16] To make 

photoacoustic spectroscopy efficient tool for research, medicine and industry it is essential to make k-

Wave a fast solution. Therefore, there is lot of focus on speed of simulation and reconstruction. In this 

matter, several significant measures were taken. 

  Photoacoustic wave equations are partial differential equations and they are used in 

simulation of wave fields in k-Wave. The most common numerical methods for solving partial 

differential equations are finite-difference, finite-element and boundary-element method.[16] 

Common methods achieved unsatisfying results in the simulation, as they were time-consuming. 

Major disadvantages of traditional methods are many grid points per wavelength and small time-step 
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size to minimize numerical error.  Therefore, pseudo-spectral and k-space methods were 

implemented. These methods have their own disadvantages, but disadvantages were suppressed by 

special techniques. The pseudo-spectral method is based on Fourier series, which can be efficiently 

calculated by fast Fourier transformation. Only two grid points per wavelength are needed when the 

pseudo-spectral method is used. The pseudo-spectral method brought improvement in a spatial 

domain. The k-space method is used to achieve improvement in time domain, because it allows 

greater time-steps while preserving accuracy.[16] 

 Quality of simulation is very important because same principles can be used in reconstruction 

of photoacoustic image, so quality of reconstruction is dependent on quality of simulation techniques. 

The k-Wave allows two methods Time Reversal Image Reconstruction for arbitrary sensor shape and 

One-Step Image Reconstruction for a planar measurement surface.[16] 

 Besides special methods implemented to improve application’s performance, there is also 

another way of increasing speed of algorithms. Parallelism and optimization techniques could be used 

to improve the performance. Acceleration on GPU is supposed to have a large impact on 

performance, as k-Wave is working with large amount of data. 

 

2 Graphic processing unit  

 At beginning of computer graphics all necessary calculations were done by central processing 

unit (CPU). As computer graphics became more complex CPU got overloaded with graphical 

computation and performance of CPU declined rapidly. This trend resulted in development of certain 

dedicated hardware for accelerating graphical computation. This kind of specific hardware is today 

commonly known as a graphical processor unit (GPU).  

 The GPU is an electronic circuit specially designed to accelerate creation of images in the 

display buffer which is then displayed on a video device. Modern GPU possess highly parallel 

architecture very efficient in calculations with a block of data up to 5 GB. This feature is widely used 

not only in computer graphics, but also in physical calculation, simulations and generally in a high-

performance computing. The first generation of GPU was designed as fixed-function accelerators 

with a limited set of instructions. This architecture proved itself insufficient as computer graphics 

being evolved over time. The need for programmable GPU resulted in the development of 

programmable GPUs. 

2.1 Main differences between GPU and CPU 

The main difference between CPU and GPU is in their architecture. Nowadays, CPU is composed of 

several cores, therefore a few different processes can run on CPU at a same time. CPU also contains 

great hierarchy of caches which makes them optimized for context switching and complex 

calculations. 
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 On the other hand GPU provide much greater level of parallelism and therefore much greater 

throughput. For example, GeForce GTX TITAN is equipped with 2688 cores capable of floating-

point operations compared to Intel Haswell architecture containing eight cores each of which is 

equipped with AVX2 capable of producing 32 floating-point operations per cycle.[8][14] We can see 

that there is significant difference in maximum count of operations per cycle for each architecture. 

However, we have to take in consideration that clock rate of GPU is about one third of CPU, 

depending on specific models. Despite this fact GPU can easily outperform CPU on specific type of 

problems. In fact theoretical single-precision performance of GPU GeForce GTX TITAN is about 5x 

greater than theoretical performance of Intel Haswell architecture. It is important to mention that GPU 

lacks optimizations like long pipelines and out of order execution important for general-purpose 

performance. Thus, not all problems are suitable to be accelerated on the GPU. 

 

2.2 GPGPU 

The term GPGPU stands for general purpose computing on graphics processing unit. The GPGPU is 

name given to  a concept in which GPU features are exploited to accelerate computations usually 

handled by the CPU. This concept is vastly used for an acceleration of calculation involved in fields 

like bioinformatics, molecular biology, image processing, particle physics and many others. 

2.2.1 GPGPU frameworks 

The GPGPU framework is platform which contains mechanisms that allows transferring computation 

on GPU. Two main platforms are open-source OpenCL framework and CUDA framework. 

 OpenCL is open-source standard for cross-platform parallel programing developed and 

maintained by Khronos group. Its main purpose is to enable writing applications that can be executed 

across heterogeneous devices such as CPU, GPU, digital signal processor, FPGA and many others. 

OpenCL can be used standard languages as C or C++ for programing purposes. OpenCL defines API 

to be able to control and execute code on various devices. It implies that key feature of OpenCL 

standard is compatibility with various devices created by various vendors. 

Figure 1 GPUs and CPUs performance benchmark [5] 
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 CUDA stands for compute unified device architecture. It is proprietary platform for parallel 

computing and programing model developed by graphics card vendor NVIDIA. It provides 

mechanisms to be able to write and execute applications, which exploit GPU to accelerate 

computations. Main advantage of CUDA results from fact that it is a proprietary platform and 

therefore CUDA is optimized for a use with NVIDIA GPUs. 

 All things considered, for purposes of this thesis we chose CUDA platform, because, as 

aforementioned, CUDA provide better results than OpenCL when used with NVIDIA graphic card 

present in our testing environment.  

 

2.3 CUDA-capable GPU architecture 

 CUDA is supported by four different microarchitectures: 

 Tesla microarchitecture firstly presented in 2006, with GeForce 8800 GTX 

 Fermi microarchitecture firstly presented in 2010, with GeForce GTX 480 

 Kepler microarchitecture firstly presented in 2012, with GeForce GTX 680 

 Maxwell microarchitecture firstly presented in 2014, with GeForce GTX 750 

 

Although, there is difference between each architecture, all architectures possess common hardware 

features: 

 Host interface that connects GPU with CPU via PCI express bus 

 Copy engines 

 DRAM adapter, which interconnect GPU and its device memory 

 Device memory and caches 

 Certain number execution units organized in so called streaming multiprocessors 

 Figure 2 GPU architecture of Kepler class [11] 
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2.3.1 Host interface 

Host interface is responsible for all communication between CPU and GPU. It includes reading of 

Command buffer which is special CPU memory area used to submit commands. Host interface is in 

charge of reading commands from this special memory area. Host interface also decodes and 

delegates commands further to GPU. 

2.3.2 Copy engine 

Copy engine is hardware capable of preforming memory transfers between CPU and GPU, while 

computation is being done on GPU. First microarchitectures do not feature a copy engines. Later on 

copy engines were only capable of transferring linear device memory. Today, GPUs are equipped 

with up to two copy engines, which can convert between CUDA arrays and linear memory. Two copy 

engines provide full-duplex memory transfers. 

2.3.3 DRAM adapter 

Memory operations bandwidth and latency have a great impact on GPU performance, therefore GPUs 

possess powerful DRAM interface, which provides bandwidth high above 100GB/s and includes 

hardware support for merging multiple memory operations. Earliest hardware required contiguous 

memory addresses and memory alignment. With introduction of SM 1.2 requirement for memory 

alignment was removed. However there is still a performance penalty. 

2.3.4 Device memory 

The device memory is an equivalent of RAM memory of CPU. In this memory all data transferred 

from CPU are stored. For example NVIDIA Tesla K20 is equipped with GDDR5 memory with 

capacity 5 GB and throughput of 208 GB/s.[9] The global memory is cumbersome and slow, 

therefore L2 cache is present in modern GPUs to enhance main memory performance. 

2.3.5 Streaming multiprocessor 

The main component of GPU is streaming multiprocessor (SM), which is in charge of all 

computations. Number of SMs on card is model-specific, but architecture of SM remains in the main 

the same. Each multiprocessor consists of: 

 Execution units capable of 32-bit integer, single-precision and double-precision floating-point 

arithmetic. 

 Special function units for computing single-precision approximations of mathematical 

functions (log, exp, sqrt, sin, cos, etc.) 

 Instruction cache, warp scheduler and dispatch unit for scheduling and dispatching instruction 

execution by execution units  

 Load/Store units  

 Register field for storing local variables 

 Shared memory with L1 cache for communication between threads and storing temporary 

result 

 Constant cache for broadcasting constant variable to each thread 



 8 

 Cache texture hardware with various functions (1D, 2D, 3D prefetching, interpolation etc.) 

 

2.4 CUDA thread execution model  

 Thread arrangement has a significant influence on execution time of application using 

CUDA. Arrangement of threads is specified by grid size and block size. The important aspect of 

thread execution model is the concept of warp. 

 

Figure 3 streaming multiprocessor architecture of Kepler class GPUs [10] 

Figure 4 CUDA thread execution model [12] 
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2.4.1   Kernel 

The kernel is equivalent of procedure found in common programing languages. Kernels are part of 

application that are computed on GPU. Kernels is declared by keyword __global__ . Launch of 

kernel is similar to traditional function or procedure call, only difference is presence of special triple 

angel bracket construction in which grid size and block size is specified. 

2.4.2  Grid 

The size of grid specifies number of blocks in three dimensions. The maximum size of the grid can be 

up to 65535 x 65535 blocks for 1.x computation capable hardware and 65535 x 65535 x 65535 blocks 

for 2.x computation capable hardware. The blocks within the grid tend to be assigned on different SM 

to maximize performance, although few different blocks can reside on the same SM. 

2.4.3  Block 

The block is abstraction of independent execution unit. It is a group of threads which are executed on 

the same SM. Block size can be also specified in three dimensions and the block can contain up to 

512 threads in total for 1.x computation capable hardware and 1024 threads in total for 2.x and above 

computation capable hardware. The CUDA provide mechanisms for inter-block communication and 

synchronization. 

2.4.4 Thread  

The thread is elementary part of execution. Each thread has its own unique Id within the block. 

Resolving global Id of the thread is essential, as it is only mechanism to assign correct portion of the 

work to the thread. To help resolving global Id of thread built-in variables of type dim3 are available 

from each thread. The dim3 type is composed with 3 integer variables each for one dimension: 

 gridDim specifies dimensions of the grid in the blocks 

 blockDim specifies dimensions of the block in threads 

 blockIdx specifies index of certain block within the grid 

 threadIdx specifies index of certain thread within the block 

Then statement for computing global index, supposing the grid and the block are defined only in one 

dimension, should look as follows: 

globalIdx = (blockIdx.x*blockDim.x) + threadIdx.x; 

If the grid and the block are both define in all three dimensions, indices have to be calculated 

separately for each dimension: 

idx_x = (blockIdx.x*blockDim.x) + threadIdx.x; 

idx_y = (blockIdx.y*blockDim.y) + threadIdx.y; 

idx_z = (blockIdx.z*blockDim.z) + threadIdx.z; 

Afterwards the global index is calculated using these indices. 

If there is a need to calculate flatten 3D index within block especially when accessing shared 

memory, it can be calculated as follows: 

localIdx = thredIdx.z*blockDim.y*blockDim.x +threadIdy*blockDim.x + 

threadIdx.x; 
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Sometimes there is more work for the kernel that can all thread in grid process in one run then the 

global index have to be recalculated calculated as follows: 

globalIdx += gridDim.x*blockDim.x; 

 

2.4.5 Warp and lane 

Threads are executed simultaneously SIMD-like in 32-thread packs called wraps. All of 32 threads 

execute the same instruction and there is only one active warp per SM. The warp id is called the lane. 

Both values warp id and lane id can be computed from the local id of the thread.   

warpId = localId / 32 

laneId = localId & 31 

Warps are the part of the mechanism of covering memory latencies. When one warp reaches an 

instruction resulting in, for example, global memory access, which can last for hundreds of clocks 

cycles, warp scheduler activate another warp until data transfer is over. 

 

2.5 CUDA memory model 

The CUDA platform offers developer various types of the memory whether it is physical or logical 

memory. Each of these memories serves different purpose and has its own advantages and 

disadvantages. 

2.5.1 Global memory 

It is a physical memory, which creates the main memory pool for GPU. It means that it is accessible 

from the each thread of the GPU. All data transferred from the CPU onto the GPU resides in this 

memory and therefore each application running on the GPU need to access global memory at some 

point. This memory has the greatest capacity and the lowest bandwidth compared to all other physical 

memories present in the GPU. For example NVIDIA Tesla K20 is equipped with the GDDR5 

memory with capacity 5 GB and throughput of 208 GB/s, as we mentioned in the section 4.1.  

 To reduce impact of the low bandwidth, global memory is accessed via the L2 cache and each 

SM is equipped with the L1 cache. By turning L1 caching on and off we can influence global memory 

load granularity. When L1 caching is enabled the size of memory transaction is 128B, when 

otherwise the size of transaction is 32B. These transactions are aligned to 128B or 32B respectively. 

As we mentioned in the section 2.4.5 SM has only one active warp at the time. When warp executed 

operation results in the global memory access, memory sub-system tries to merge memory transfers to 

as least transfers as possible. For example, the warp is requesting 32 consecutive 4B floats aligned 

to128B. Supposing L1 caching is turned on this 128 byte memory request will be satisfied in one 

global memory transfer. However, if memory request is not aligned to 128B, two memory transfers 

are needed. In the worst case, if each of 32 float are situated in different 128B blocks, transaction is 

satisfied with 32 global memory transfers. Therefore it is crucial to ensure sensible access pattern in 

the application in order to achieve maximum performance. Setting specific caching options can 

minimalize penalty for unpredictable access patterns.  
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2.5.2 Local memory 

The local memory is logical memory and it is used for the local variables when block request more 

space for its local variables than SM offers. This memory is accessible only by the thread and it is 

situated in global memory pool and therefore it has the same properties. 

2.5.3 Registers 

Each SM has its own field of registers. These registers are used to store local variables of each thread 

which resides on the SM and are accessible only by that thread. Register is the fastest memory type. 

2.5.4 Shared memory 

The shared memory is present on each SM and shares same memory pool with the L1 cache. Shared 

memory is accessible for each thread within the same block and it is often used as a mean of inter-

block communication. The shared memory is often used for reduction of the penalty caused by 

chaotic access pattern into the global memory. In order to reduce the penalty, block has to firstly load 

values from the global memory with coalesced access pattern, store them in the shared memory and 

then access the shared instead. However, shared memory bandwidth is also affected by unpredictable 

access pattern. For devices with the compute capability 2.x and above shared memory is divided into 

32 banks. In the shared memory, 32 consecutive 4-byte values are assigned to 32 banks. If each 

thread within the block request a value assigned to the different bank, transfer is done in one 

transaction. On the other hand, if we access shared memory with the stride equal to 2, it leads to 2-

way bank conflict. The two-way bank conflict is situation, where two different threads request values 

assigned to the same bank and therefore memory transfer is carried out in two transactions. In the 

worst case, 16-way bank conflict can occur and it results in 16 memory transactions. If all 32 threads 

of active warp request the value from the same bank, this request is satisfied in one transaction in the 

broadcast fashion. 

2.5.5 Texture memory 

This type of memory is located in the global memory, but it is cached and accessed via dedicated 

hardware present in each SM. This memory is accessible from each thread. The texture hardware has 

some interesting properties. It is able to perform interpolation in 1D, 2D or 3D and whenever some 

value is requested texture hardware also prefetches surrounding values based on their position in 1D, 

2D or 3D array. Due to prefetching, texture memory can be exploited to reduce impact of chaotic 

access pattern for specific applications. 

2.5.6 Constant memory 

The constant memory is special 64KB read-only memory. This memory is mot modifiable by kernel 

and therefore has to be initialized prior to the kernel launch. This memory is cached with dedicated 

cache and it is capable broadcast.  
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2.6 GPGPU capabilities 

This section presents benefits of using GPGPU concept to boosts up processing of data blocks. The 

GPU performance is compared with the CPU performance accelerated using MPI. The benchmark 

was performed on simple code multiplying two complex vectors. 

Benchmark specification 

CPU:[7] 

 dual eight-core 2.4 GHz Intel Sandy Bridge E5-2665 Processor 

 peak performance 38.4 GFLOPS per core 

 256 KB L2 cache per core 

 20 MB L3 cache per processor 

 processor memory bandwidth 51.2 GB/s 

GPU:[13] 

 NVIDIA GeForce GTX 580 

 512 CUDA cores 

 Fermi class computation capability 2.0 

 peak performance 1581.1 GFLOPS 

 768KB L2 cache 

 1.5 GB GDDR5 memory 

 memory bandwidth 192.4 GB/s  

 

Figure 5 performance comparison of complex vector multiplication  

 

In Figure 5 red and blue lines represent performance of the GPU. We can see that GPU reaches peak 

performance for vectors consisting of 65536 elements. The size of input of this vector is 512KB and 

therefore, whole input is present in the L2 cache of GPU. For vector size 393214, we can see dramatic 

decrease in the performance. It is due to fact that for this vector size, input is no longer present in the 

L2 and it has to be accessed through the global memory. We can deduce that the performance is 

bottlenecked by global memory bandwidth. Green line represents CPU code accelerated using OMP. 
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The CPU code reaches its peak performance at vector size 393214. Input size for this vector size is 

about 3MB and it can reside entirely in L2 cache of the CPU. The CPU performance exhibits the 

same behaviour as the GPU. This behaviour is known as a memory bond problem. The peak 

performance of GPU is more than 2x higher than the peak performance of CPU. 

 

3 MATLAB implementation 

3.1 Identifying acceleration opportunities 

It is essential to identify proper candidates for the GPU acceleration in order to effectively accelerate 

a reconstruction script. Figure 6 is profile of reconstruction script. From knowledge gained via 

profiling, we should be able to identify acceleration opportunities which will lead to best results. 

Besides accelerating operations themselves, we also have to design our implementation is such way 

that it will require as few data transfers as possible. 

 We also have to take into consideration the number of operation which will be accelerated, as 

a process of proper implementation and tuning of GPU codes can be very time-consuming. We have 

to consider whether effort needed to implement operation does not exceed the possible benefits.  

 

  

 The Figure 6 shows that time spent in the different parts of the script is not evenly distributed, 

which is positive, because tasks where time spent in the different sections is evenly distributed are 

more difficult to accelerate and requires complex knowledge about a problem.  

  Lines 261, 285, 219 from figure consume 67.6 % of overall computation time and include just 

several operations. Therefore, they are suitable candidates and their acceleration on the GPU can lead 

to significant speedup. It in our case speed-up cannot exceed 3x. 

The line 261from Figure 6 consists of operations: 

 interp3 – trilinear interpolation 

The line 285 from Figure 6 consists of operations: 

 real – extraction of real part from complex array 

 ifftshift – circular shift of array in each dimension 

 ifftn – inverse fast Fourier transformation 

Figure 6 MATLAB profile 
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The line 219 from Figure 6 consists of operations: 

 sf.* - element-wise matrix multiplication 

 fftshift – circular shift of array in each dimension (invers to ifftshift) 

 fftn – fast Fourier transformation 

 We will focus primarily on the function interp3, as it takes up 31% of the overall time 

itself and has the greatest influence on the overall performance.  

 In next section operations interp3, fftshif, ifftshift, fftn, ifftn will be 

closely discussed. Operations real and sf.* are omitted since being trivial. 

3.2 Trilinear interpolation 

 

The interpolation is method to estimate a value of a point if the function value is known only for 

surrounding points and not for the desired point itself. There are many types of interpolations and the 

most common and basic interpolation is linear. If interpolated function is linear then the value 

obtained via linear interpolation is exact, otherwise it provides only estimation. Linear interpolation is 

widely used in many fields to estimate values because of its simplicity and a low computation cost.     

 

 

Linear interpolation can be calculated as follows:[17] 

suppose linear function 

    ( ) (1) 

 

and two given points    and   , then value in point   equal to  

  ( )    (   )      (2) 

 

where 

   
    

     
 (3) 

 

Figure 7 linear interpolation 
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In general, interpolation of high dimensional function can be performed as a set of normal linear 

interpolations in each dimension respectively. In case of image reconstruction the function is 3D. The 

principles of linear interpolation applied on a volume are called trilinear interpolation.  

 

Suppose we have given a cube of points:     ,     ,     ,     ,     ,     ,     ,     , and values in 

these points            according to Figure 8 

 

 

then interpolated value   of point   which is situated inside of cube can be calculated as follows: 

 

         (    )           

         (    )           

         (    )           

         (    )           

(4) 

 

where  

     
        

           
 (5) 

 

 

       (    )          

       (    )          

(6) 

where 

 

 

    
        

           
 

(7) 

 
 

     (    )         
(8) 

where  

     
        

           
 (9) 

 

Figure 8 decomposed trilinear interpolation 
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 Very similar solution consisting of seven separated linear interpolations is used in the 

MATLAB function interp3. It is very straightforward approach which does not requires 

complicated calculations and therefore, it is suitable to be implemented on the GPU. 

3.3 Fftshift and ifftshift 

Opereations fftshift and ifftshift are MATLAB functions closely associated with fast 

Fourier transformation. They ensure correct run of functions like fftn and ifftn. These functions 

are used both prior to and after fast Fourier transformation. Both shifts swap first half with second 

half for 1D array, swap quadrants as shown on Figure 9 for 2D array and swap octets for 3D array. 

Operation fftshift is inverse to itself when all dimensions are even, otherwise, ifftshift is 

invers function to fftshift function. If x is an 1D array and the size of array is odd 

fftshift(fftshift(x))   x.  It is also possible to think of both shifts for higher dimensions 

as composition of 1D shifts. For example 2D shift can be obtain as shown on Figure 9 by applying 1D 

shift on each row along y-axis and then applying 1D shift on each column along x-axis. 

 
Main difference between fftshif and ifftshift, as aforementioned, is how shifts behave when 

the number of elements in dimension is odd. The effect of these functions can be described as 

follows:  

Suppose x is vector of numbers 

fftshift(x) = vect_shl (x,floor(x.len/2)); 

ifftshift(x) = vect_shr (x,floor(x.len/2));    

 

3.4   Fast Fourier transformation 

 

The concept of DFT (discrete Fourier transformation) is largely used in many signal and image 

processing application. It is a process of transformation of a signal from a time domain to a frequency 

domain. It means that an infinite periodical signal has only few coefficients in the discrete Fourier 

series. Therefore, it is an efficient way to store, manipulate and reconstruct signals in the computer 

science. 

 

DFT is calculated as follows: [4] 

 For series of   complex numbers             

Figure 9 fftshift decomposition 



 17 

    ∑     
   

   
 

   

   

 (10) 

 

 From equation 10, it is clear that for each of   elements there has to be   addition and   

evaluation of inside of a sum. It implies that computational complexity of DFT is  (  ). 

 Modern day application however requires computation of the DFT on large amount of data in 

the order of millions and for this purpose, traditional DFT is unacceptable. FFT (fast Fourier 

transformation) is an ideal solution. Most common algorithm of FFT, Cooley-Tukey algorithm, 

exhibits computational complexity  (      ).[3] 

 

4 Implementation 

In this section we will discuss a design, an implementation and achievements. The development of 

application is divided into versions and so is this section. For every version, we separately discuss 

each operation and provide partial benchmarks and results. 

4.1 Common features 

These common features apply to all further algorithms and results, if not stated otherwise. 

 In application, axes are oriented as can be seen on Figure 10. Axes x, y and z refer to depth, 

width and height of volume respectively. All data are stored in flatten 3D array in row-major order. 

 

 All results presented in the section 4 are measured without any overheads, that means that 

time does not include memory transfers, memory allocation time and so on. Only exception is the 

MATLAB embedded GPU acceleration, where the MATLAB provides no way to exclude overheads.  

 RMSD and RMS values are used to calculate an error of interpolation and they can be 

calculated as follows:[6] 

suppose   is a signal obtained by implemented interpolation and     is a referential signal  

 

       √
∑ (       )

  
   

 
 (11) 

Figure 10 axis orientation 
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      √
∑     

  
   

 
 (12) 

 

 

 

The MATLAB version:  

 R2014a-EDU 

The CUDA version: 

 6.5 

The benchmarks specification: 

The CPU: (7) 

 dual eight-core 2.3 GHz Intel Sandy Bridge E5-2665 Processor 

 peak performance 32.4 GFLOPS per core 

 256 KB L2 cache per core 

 20 MB L3 cache per processor 

 processor memory bandwidth 38.4 GB/s 

The GPU: (6) 

 NVIDIA Tesla K20 

 2496 CUDA cores 

 Kepler class computation capability 3.5 

 peak performance 3950 GFLOPS 

 5 GB GDDR5 memory 

4.2 The first version 

 

In first version, we applied a naïve approach to the design and implementation of desired operations. 

We used the knowledge obtained by studying principles and the MATLAB implementation of 

functions. 

4.2.1 Fast Fourier transformation 

 

The fast Fourier transformation is a complex problem including complex mathematics and recursion. 

We decided not to try “reinvent a wheel”, as it may result in either failure of whole application or 

unsatisfying performance of application. 

 We came to conclusion that best solution is to use cuFFT library. We have chosen this library 

because of its simple interface and optimized performance. This library is capable 1D, 2D and 3D 

complex-to-complex, complex-to-real and real-to-complex transformations and the size of input data 
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is limited only by the memory of graphics card, as cuFFT is based on divide-and-conquer principle 

presented in Cooley-Tukey algorithm. (11)     

 On the other hand, there are several drawbacks of the library. For example, cuFFT algorithm 

is not designed in way that it can take all advantages of advanced modern day FFT algorithms. 

Another disadvantage is that cuFFT shows peak performance on problems of size the power of 2. 

 Unfortunately, real data obtained by photoacoustic spectroscopy are not of size the power of 2 

in real cases.  

The benchmark specification: 

The CPU: 

  2.67 GHz Intel Xeon quad-core 5550 

GPUs: 

 NVIDIA Tesla C2050 

 NVIDIA Tesla C1060 

 

Figure 11 performance comparison of cuFFT [15] 

 

In Figure 11, we can see a blue line which represents performance of standard implementation using 

Intel math kernel library (MKL). We can see no significant change of the performance for presented 

transform sizes. Peak performance is about 50 GFLOPS. Green and yellow lines represent the 

performance of cuFFT library on two GPUs and effect of ECC (error correction code). The 

performance varies with the transform size. It is due to fact that cuFFT recursively divides transform 

into factors of the initial size. The performance of cuFFT is dependent on these factors. However, 

peak performance of cuFFT on Tesla C2050 is around 275 GFLOPS which is 5.5x higher than the 

peak the performance of CPU. 

 In conclusion, the benchmark proved that use of cuFFT library can provide solid performance 

boost to the calculation and therefore it was chosen as a final version of operations fftn and ifftn 

used in our application. Fast Fourier transformation will be no longer mentioned in further sections. 
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4.2.2 Fftshift and ifftshift 

As mentioned in section 3.3, effect of operation fftshift and ifftshift on 3D space can be 

achieved by applying 1D shifts step-by-step in each dimension. 

 Therefore, we can assume that simple 1D shift CPU code would be similar to a pseudocode as 

follows: 

suppose x is array of integers 

for(i=0;i<x.len/2;i++) 

{ 

 Swap(x[i],x[i+x.len/2]); 

} 

Inplementation 

 This 1D code can be easily parallelized and transformed onto the GPU. Each thread calculates 

it’s index and offset_index by adding x.len/2 to index and then swap an element 

x[index] with an element x[offset index]. For this operation, the kernel has to run with 

only x.len/2 of threads. 

 To turn 1D principle into 3D, we have to add few mechanisms to be able to perform 1D shift 

along desire axis. Solution is straightforward, we replace array length with size of dimension and 

because we are working with flatten 3D array, we have to change calculation of both index and 

offset_index. The index is calculated as follows: 

 

index = z*volume.width*volume.depth + y*volume.depth + x; 

 

where x, y, z are coordinates of the requested point. In real GPU kernel, x, y and z  are replaced with 

thread indices calculated as mentioned in section 2.4.4. Then if we want to compute offset index 

properly, we have to add dim.size/2 multiplied by a stride in particular dimension. The stride is 

distance in flatten 3D array between two neighbouring points along dimension. For example, the 

stride in z-dimension is volume.width*volume.depth. Again, number of kernel threads 

needed to perform 3D shift along one dimension is matrix.size/2. To obtain overall effect we 

had to implement three CUDA kernels working in each dimension, as 3D shift can be composed with 

1D shifts in each dimension according to section 3.3. 

 The greatest complication became reaching shifting effect instead of swapping effect when 

seize of dimension was odd. 

Suppose we have vector of number: 

0 1 2 3 4 5 6 

If we apply fftshift without odd dimension issue properly treated output will be:  

0 1 2 3 4 5 6 

3 4 5 0 1 2 6 

To obtain proper result in case of odd dimension each thread of kernel has to load the value             

x[offset index + stride] into temporary variable, store the value x[index] to 

x[offset index] and afterwards stores the value in temporary variable to x[index]. Outcome 

of this operation is as follows:   

0 1 2 3 4 5 6 

4 5 6 0 1 2 6 
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We can see that modified fftshift still leaves wrong value at the end of the vector. To eliminate 

this effect, we had to take some measures before and after operation itself. Due to lack of global 

synchronization, two other kernels were implemented for each dimension. These kernels are launched 

in case of odd dimension size. First kernel creates a backup of middle values, in 3D space it is a plane 

perpendicular to respective axis with respective coordinate equal to floor(dim.size/2). Second 

kernel stores values to end of the vector, in 3D at the perpendicular plane with respective coordinate 

equal to dim.size -1. After implementation of all modification we were able to obtain correct 

result:  

0 1 2 3 4 5 6   3 

 4 5 6 0 1 2 3   3  

  To implement ifftshift we used the identical approach with few differences. The main 

kernel loads value x[offset index] into temporary variable an then stores value x[index] to 

x[offset index + stride]. The kernel prior to the main kernel creates backup of values 

situated at end of vector, in 3D the perpendicular plane with respective coordinate equal to 

dim.size -1. And then the kernel launched after the main kernel stores backed up values in the 

middle of vector, in 3D space it is plane perpendicular to axis with respective coordinate equal to 

floor(dim.size/2). 

 To be able to handle complex output of FFT two other sets of kernels were created to preform 

fftshift and ifftshift on complex data. 

Results 

 

Figure 12 performance comparison of fftshift v.1 
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Figure 13 performance comparison of complex fftshift v.1 

Discusion 
1
 

In Figure 12 and Figure 13 the blue line represents our implementation. We can see that the blue line 

has almost same behaviour as red line representing the MATLAB native implementation. We can 

notice that the performance of our implementation drops in cases where the size of input is not equal 

to the power of 2. This is due to not coalesced memory access. Green line represents the MATLAB 

embedded GPU acceleration and we can notice that for input sizes up to 2097152 elements, 

performance is almost identical. It is most probably caused by the internal overhead in the MATLAB. 

For the real data of size 11806256 elements, MATLAB embedded GPU acceleration provides best 

results and our implementation falls behind. In fact, the difference of performance between our 

implementation and MATLAB embedded GPU acceleration is in order of magnitude.  

 Figure 12 and Figure 13 also shows that there is almost no difference between performance of 

float fftshif and complex fftshift in our implementation.  

Main advantages: 

 Simple implementation, no need for special mathematical functions 

 In situ solution (if we omit temporary arrays)  

Main disadvantages: 

 Many kernels have to be launched to perform single operation 

All things considered, the concept has to be changed from the scratch in further versions. 

4.2.3 Trilinear interpolation 

Outcome of trilinar interpolation can be obtained by composing seven linear interpolations and can be 

decomposed into several equations from section 14. This straightforward approach, as 

aforementioned, is ideal to be implemented on the GPU, because this approach only uses simple 

mathematical operations as multiplication, division and addition. 

                                                      
1
  We only provide benchmarks and discussion to fftshift. All discussed features are also valid for 

ifftshif.  
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 Implementation 

Suppose seven matrices with same size: 

smp_x, smp_y, smp_z, val, intrp_x, intrp_y, intrp_z; 

Matrices smp_x, smp_y and smp_z contains x-, y- and z- coordinates of sample points 

respectively. Coordinates has a constant spacing. 

Matrix val contains sampled (function) values in sample points. This matrix correlates with matrices 

smp_x, smp_y and smp_z. 

Matrices intrp_x, intrp_y and intrp_z contains x-, y- and z- coordinates of points in 

which trilinear interpolation has to be carried out. 

We divide the sample points into sub-cubes of size 2 x 2 x 2. Each thread operates with one sub-cube. 

It means that each thread has to load eight values from val and coordinates in each of eight sample 

point. From the fact that all coordinates has the constants step in between we can deduce that the sub-

cube creates a real geometrical cube. Therefore, there is no need to load all eight coordinates in each 

dimension, as cube with size 2x2x2 contains only two different values in one dimension. Each thread 

calculates the index into matrices smp_x, smp_y, smp_z and val. No special calculation of 

index including stride or offset has to be implemented, because sub-cubes of this size overlap 

perfectly.  Each thread has to load two coordinates of the sample points in each dimension and eight 

values from the flatten 3D array: 

x0 = smp_x[index];  

x1 = smp_x[index + stride_in_x]; 

etc. 

 

c000 = val[index]; 

c100 = val[index + stride_in_x]; 

c010 = val[index + stride_in_y]; 

c110 = val[index + stride_in_y + stride_in_x]; 

etc. 

After this step, each thread properly sets up all variables of regarding its sub-cube. Every thread then 

has to process each interpolation point stored in arrays intrp_x, intrp_y and intrp_z, 

because more than one point can appear inside of the sub-cube.  

 To speed up this process of iteration trough each interpolation point, each block has three 

arrays of shared memory buff_x, buff_y and buff_z with the size equal to count of threads per block. 

Firstly, all threads read different values from global memory according to thread’s local index. Local 

index can be calculated in a way shown in section 2.4.4. Then each thread stores value loaded from 

global memory into shared memory using the same local index. This way with only few load and 

store operations kernel has as many points ready to be process, as there are threads per block.  After 

all load and store operation, kernel has to call a block-scope barrier by __syncthreads to prevent 

reading of shared memory before all validate data are properly stored. The barrier call is must because 

as mentioned in section 2.4.5 there is no guarantee on sequential order of warps execution. 

 After shared memory is filled with valid data, each thread iterates through all points in shared 

memory and calculates interpolated value of point. The kernel takes advantages of shared memory 

broadcast capability. When all threads within the warp request the value assigned to the same bank of 

shared memory, this memory request is satisfied in one go in broadcast fashion. The calculation of the 

interpolation is based on equations 4-9. The condition determining whether the point lies within the 

sub-cube operated by the thread or not is present at the very end of the calculation. The location of the 

condition prevents a massive divergence within warp even at a cost of some unnecessary calculations. 

The condition itself is based on equations 5, 7 and 9, where all coefficients   ,    and    has to be 
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from interval 〈   〉 in case where the point lies within the sub-cube. If the condition holds true, the 

thread write back the interpolated value to the global memory. After this section, kernel has to use 

barrier to ensure that all work on current data in the shared memory has been done and the shared 

memory can be overwritten by new data. This principle is repeated until all interpolation points are 

processed. 

Results 

 

Figure 14 performance comparison of interpolation v.1 

Figure 16 GPU efficiency and occupancy 

 

Discussion  

In Figure 14, the blue line represents implemented GPU kernel. The kernel performance fall way 

behind both native MATLAB implementation represent by red line and MATLAB embedded GPU 

accelerated implementation represented by green line. The implementation exhibits a quadratic 

computational complexity. The elapsed time to compute a real data input was about 2.5 hours and 

achieved performance was only 1,3 Kpoints interpolated per second. Compared to 47.2 Mpoints 

interpolated per second achieved by the MALTAB embedded GPU acceleration on the real data 

sample, our implementation reaches only 0,003% of its performance. From Figure 15, we can deduce 
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that the main reason of slow run of the application is an execution dependency. Execution 

dependences are inevitable part of the kernel. They create a large portion of the stall reasons mainly 

due to the number of the operations. In further versions it is necessary to reduce the amount of the 

mathematical operation to achieve a better performance. Figure 16 shows that the kernel has almost 

optimal global memory access pattern. Poor global store efficiency is caused by irregular stores. In 

Figure 16 we can see that there is a space for an improvement in accessing shared memory, which can 

result in a speedup. However, improvement of the shared memory access will not bring a radical 

change to the performance. We can also see that the implementation does not allow a full utilization 

of GPU due to a number of registers per kernel. This condition is also inevitable. 

Advantages: 

 Relatively simple and straightforward implementation 

Disadvantages: 

 Unacceptable run time for the real data even with some optimizations 

 Numerous memory accesses and calculations 

 Solution does not allow full utilization of GPU 

From discussed results it is clear that in order to improve the performance the number of memory 

accesses and calculations has to be dramatically decreased. 

4.3 The second version 

The discussion of results of first version apparently shows that design of the implementation has to be 

radically changed in order to provide satisfying results. 

4.3.1 Fftshif and ifftshift 

The main disadvantage of previous version of fftshif and ifftshift was the number of 

kernels needed to successfully preform the transformation. Each operation required at least three 

kernels. It means that all memory accesses and calculations had to be preform three times. And if we 

take in consideration that a launch of kernel takes some time on itself, it is clear that concept of 

multiple kernels is definitely not suitable.  

Implementation 

Completely different approach was adopted for this version. It is approach that combines all required 

steps from previous version in one kernel. To this purpose a new method of calculating 

offset_index was developed which puts all steps needed in the previous version the into one 

kernel. The offset index is in current version calculated as flows: 

Suppose flatten 3D array mtx 

shift_in_x = (idx.x + ceil(dim_x.size/2)) mod dim_x.size; 

shift_in_y = (idx.y + ceil(dim_y.size/2)) mod dim_y.size; 

shift_in_z = (idx.z + ceil(dim_z.size/2)) mod dim_z.size; 

offset_index = shift_in_z*mtx.width*mtx.depth; 

offset_index += shift_in_y*mtx.depth; 

offset_index += shift_in_x; 
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If offset_index is calculated this way, it tells the thread which value is supposed to appear on the 

position defined by the index after fftshift. However lack of the global synchronization prevents 

the kernel from working in situ. Therefore, kernel has to work with two disjoined spaces. 

 To make this principle works as ifftshif instead of fftshift all what has to be done is 

to replace the function ceil with the function floor. 

 

Results 

 

Figure 17 performance comparison of fftshift v.2 

    

   

Figure 18 performance comparison of complex fftshift v.2  
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Figure 19 performance comparison of different versions 

 

 

Discussion
2
 

It can be sad that this implementation achieves a satisfying performance. In Figure 17 and Figure 18 

there is the blue line representing computation time of our implementation, the red line representing 

                                                      
2
 We only provide benchmarks and discussion to fftshift. All discussed features are also valid for 

ifftshif. 
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native MATLAB implementation and the green line representing MATLAB embedded GPU 

acceleration. The difference between the MATLAB performance and implemented GPU kernel 

performance is in the order of magnitude for real data sample. We can also state that for the real data 

kernel provide performance comparable to MATLAB embedded GPU acceleration. Performance of 

the MATLAB embedded GPU acceleration is dragged down by the internal overhead for input sizes 

below 118062256 elements. In Figure 21, we can see that utilization level of the hardware by 

arithmetic operations is high. Moreover, the main stall reason is busyness of pipe according to Figure 

20.  From this information we can deduce that implementation is bottlenecked by the high utilization 

of the execution unit by the operation modulo. It would be possible to adopt advanced techniques to 

replace the modulo operation.  

 Figure 22 shows importance of the kernel acceleration based upon their potential benefit to 

the overall performance. We can see that shift operations themselves have no significant effect on 

overall performance according to Figure 22. 

 

Advantages: 

 Only one kernel is needed to perform the operation 

Disadvantages: 

 Usage of time consuming operation (modulo) 

 Operation is not performed in situ 

 After considering an impact which has the performance of fftshift and ifftshift on 

the overall performance of application, decision was made not to continue in the development of 

fftshift and ifftshift GPU acceleration. This is final version of fftshift and 

ifftshift implementation used in the application and therefore fftshift and ifftshift 

will be no longer mentioned in further sectionss. 

4.3.2 Trilinear interpolation 

As mentioned in the section 4.2.3, the previous version of trilinear interpolation has the unacceptable 

performance. It was result of its quadratic computational complexity, which was caused by fact that 

for   sample points and   interpolation points each of   threads has to iterate trough   points. This 

afterward led to numerous global memory accesses. Therefore this approach is inapplicable. 

Implementation 

For this version the concept was completely reversed. In this version we take full advantage of texture 

hardware present in each SM. As mentioned in section 2.3.5 texture hardware is capable of trilinear 

interpolation and it is also equipped with the cache. This type of memory is the best solution for 

unpredictable access pattern. Unlike previous version, each thread now operates with only one 

interpolation point. Values in original sample points are stored in a 3D cudaArray and accessed via 

texture hardware.  

 Suppose same matrices from section 4.2.3. From experiences with sample points we know 

that matrices smp_x, smp_y and smp_z contain only as much different values as size of respective 

dimension. For example, each plane of smp_y, which is perpendicular to y-axis, contains same 

values. Distance between two different values in matrices smp_x, smp_y and smp_z is equal to stride 

in particular dimension. What is more, all values have same spacing and are sorted in ascending 

order.  
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Figure 23 MATLAB matrix data layout 

The attempt to reduce memory accesses cerates complication because values in texture memory are 

indexed in x-, y- and z-axis in intervals <0,val.depth-1>,<0,val.width-1> and 

<0,val.hight-1> respectively and do not correspond to its sample points coordinates. Therefore 

each kernel has to pre-calculate texture indices according to its interpolation point as follows: 

step_y = (smp_y[1*stride_in_y] - smp_y[0]); 

texture_index_y = (interp_y – smp_y[0])/step_y; 

 

According to Figure 23, suppose interp_y  is equal to 1. If we remap interp_y into the interval 

〈   〉 using this method, remapped value is equal to 1.41. 

 

Figure 24 remapping of indices 

   

To be able to calculate texture indices kernel only need initial value of sample points coordinates and 

the respective spacing, this way we are able to reduce input data size by 37%. When indices are 

calculated for each dimension, each thread uses these indices to obtain interpolated value from the 
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texture. To this purpose tex3D function is used. Providing indices passed to function are not 

integers, it returns hardware interpolated value. Afterwards each thread stores this value to respective 

position in the global memory. 

Results 

 

Figure 25 performance comparison of interpolation v.2  

 

Figure 26 performance comparison of different versions 
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Figure 27 memory transfer details 

Discussion 

In Figure 25, the blue line represents our implementation, the red line represents native MATLAB 

version and the green line represents MATLAB embedded GPU acceleration. Based on the presented 

results, this version of interpolation provides outstanding performance, which is incomparable to both 

MATLAB implementation and MATLAB GPU acceleration. According to results achieved for the 

real data sample, show in Figure 25, it can be estimated that the kernel is capable of processing 4.3 

Gpoints per second and  MATLAB embedded GPU acceleration achieves throughput of 47.2 Mpoints 

per second. Our implementation has 91x greater performances than MATLAB using GPU. Error of 

this implementation is 8.64 using the RMSD. The RMS of referential signal produced by MATLAB 

is 874.3. The error of this method is 0.98% compared to referential signal. 

 In Figure 26, the blue line represents current version of implementation and the red line 

previous version. The figure demonstrates performance growth in current version. For the real data 

sample previous implementation only reaches the throughput of 1,3 Kpoints per second, where this 

implementation reaches the throughput of 4,3 Gpoints per second. The performance of current version 

is 3,307,692x greater compared to previous version. The main reason of this growth is dramatic 

reduction of number of operations and memory accesses. This version also reduces the amount of 

data needed to be transferred onto GPU, which lower overall run length.  

 On the other hand, as we can see in Figure 27, time to initialize the cudaArray with real data 

sample drags down overall speed-up of this version. 

Advantages: 

 Good precision 

 Great speed 

 Reduction of input by 37%  

Disadvantages: 

 Need to initialize cudaArray 

4.4 The third version 

In previous version some interesting results were achieved. It presented few techniques and principles 

which were proven usable. It also sets the trend which should be followed in future design. 

4.4.1  Trilinear interpolation 

Design of this implementation takes fully advantage of achievements and discoveries gained in 

previous development. The design combines computation method of first version with logic of second 

version to produce implementation with great performance. 
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Implementation 

Only difference between current and previous implementation is that in this version the interpolation 

is calculated using equations 4 - 9. Therefore this method does not need to initialize the cudaArray. 

As shown in section 4.3.2, each matrix of sample points coordinates contains only a fragment of 

different values compared to all elements in matrix. Function values defined in sample points are 

stored in 1D texture to reduce impact of unpredictable global memory access pattern. 

 After kernel is launched, each thread loads coordinates of respective interpolation point. Afterwards 

coordinates are remapped to obtain texture indices for each dimension respectively using method 

described in section 4.3.2. In most cases these indices are not integers. If the thread takes whole 

number part of indices and uses them to obtain the signal value, thread is guaranteed to obtain the 

value of point      from Figure 8. What is more decimal parts of indices serve as coefficients 

otherwise obtained with equations 5, 7 and 9.  After the thread calculates indices of point     , all 

values needed to compute trilinear interpolation are loaded from the texture memory. Then the 

interpolation is calculated in the same way as in section 4.2.3.  

 

Figure 28 effect of whole number part of indices (4) 
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Discussion 

This implementation meets all requirements previously set. It reaches considerable performance 

without using texture hardware for interpolation. In Figure 29 our implementation is represented with 

the blue line, the MATLAB implementation is represented with the red line and the MATLAB 

embedded GPU implementation is represented with the green line. We can see that our 

implementation has greatest performance compared to MATLAB implementations. It can be 

estimated that for the real data sample the kernel is able to interpolate 4.1 Gpoints per second. 

Compared to the MATLAB GPU implementation 47.2 Mpoints per second throughput, our 

implementation achieves 86.8x greater performance. The error of this implementation is 12.9 using 

the RMSD. The RMS of referential signal produced by MATLAB is 874.3. Therefore, error of this 

method is 1.47% compared to referential signal. 

In Figure 30, current implementation is represented by the blue line and previous implementation is 

represented by the red line. There is almost no difference between performances of both 
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implementations. For the real data sample current version achieve 94.3% of performance of previous 

version. 

The kernel exhibits good occupancy and global memory efficiency, as it may be seen in Figure 32. 

Most significant stall reasons are execution and memory dependences, which are inevitable. 

Advantages: 

 Relatively great speedup achieved 

Disadvantages: 

 Grater error compared to previous version 

In conclusion, there is not many possible ways to significantly speed up this particular 

implementation. Since kernel provides significant acceleration it is used in the application. 

 

4.5 Discussion  

This section is dedicated to presentation of overall results and achievements.  

 

Figure 33 performance of implementations of line 285  

Discussion to Figure 33 can be found in section 4.4.1. 
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In figure 34 and Figure 34 our implementation is represented by the blue line, the MATLAB 

implementation is represented by the red line and the MATLAB GPU implementation is represented 

by the green line. We can see that our implementation provides the best performance for input sizes 

that are power of 2. It is due to fact that that cuFFT library achieves best results for such sizes. Using 

data presented earlier in section 4.3.1, we can estimate that cuFFT takes up to 82% of run-time of 

these lines and therefore performance is strongly dependant on cuFFT library performance. Based on 

f and Figure 34, we can say that the performance of our implementation is at least comparable with 

MATLAB embedded GPU acceleration.  

 Considering results for real data sample, application provide 9.4x speed-up compared to the 

MATLAB implementation for line 261 and 17.5x speed-up for line 219. 

 The most notable improvement in terms of performance was achieved for line 285. This is 

positive aspect because line 285 was most time consuming line in reconstruction script. It took up to 
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31% of overall time to compute line. Therefore these achievements should result in notable speed-up 

of whole reconstruction. 

 

Figure 356 overall results 

From Figure 35, we can say that our implementation has outstanding computation performance. Our 

implementation is about 20x faster than native MATLAB implementation and about 2.3x faster than 

the MATLAB embedded GPU acceleration in computing accelerated part of script.  

 On the other hand, Figure 356 also shows that for real purposes the implementation requires 

great amount of overhead and data transfers to run correctly and therefore does not provide overall 

acceleration of implementation. The main reason of poor overall performance is data transfers to and 

from application, despite fact that since second version of trilinear interpolation application need only 

63% of former input size.   

 In conclusion, we discover that our implementation is not suitable to accelerate a single image 

reconstruction. It would be much more efficient to use the implementation in batch fashion where all 

images have same dimensions and properties. This would mean that five out of six data matrices 

needed to reconstruct image would be constant for all of images. Another way of harnessing full 

potential of the implementation is to create standalone application independent of the MATLAB.  

   

5 Conclusion 

If we sum up achieved results, we can state that our implementation fulfilled every goal set. It 

managed to accelerate selected calculations, needed in image reconstruction, approximately 20 times. 

The greatest acceleration was achieved for trilinear interpolation, the most time-consuming operation 

in the reconstruction. In fact, our implementation managed to accelerate trilinear interpolation on real 

data by factor 452. It can be considered outstanding performance boost, if we take in consideration 

that theoretical performance of used GPU is only 6.5 times greater than theoretical performance of the 

CPU. The approach used in our implementation also reduced amount of the input data by 37%. Each 

stage of development revealed different aspect of the GPU programing. Therefore, we were able to 

better understand certain details of the GPU programing and come up with solutions that improved 

the performance. Our implementation can find application in many scientific researches using 
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photoacoustic spectroscopy as a tool. Supposing it is used in batch mode, our implementation is able 

to turn image reconstruction, which was formerlly matter of days, into image reconstruction which is 

matter of hours. The main drawback of our application is a dependency on the MATLAB. This 

dependency implies that large amount of data have to be at some point transferred between the 

MATLAB and our application. In fact, these data transfers are so time-consuming that application 

used in a single mode does not provide any acceleration. For further development, we suggest 

disposing of dependency on MATLAB.   
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