
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

FAST RECONSTRUCTION OF PHOTOACOUSTIC
IMAGES

BAKALÁŘSKÁ PRÁCE
BACHELOR‘S THESIS

AUTOR PRÁCE Filip Kukliš
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

RYCHLÁ REKONSTRUKCE FOTOAKUSTICKÝCH
OBRAZŮ
FAST RECONSTRUCTION OF PHOTOACOUSTIC IMAGES

BAKALÁŘSKÁ PRÁCE
BACHELOR‘S THESIS

AUTOR PRÁCE FILIP KUKLIŠ
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ JAROŠ, PhD.
SUPERVISOR

BRNO 2015

Abstrakt

Schopnost rekonstrukce fotoakustických obrazů je důležitým předpokladem pro studium měkkých

tkaniv, nebo vaskulárního a lymfatického systému v malém prostoru a ve vysokém rozlišení. V

současné době řešení vyžaduje enormní výpočetní výkon a je znatelně časově náročný. V této studii

by jsme rádi představili nové řešení, které by bylo mnohem rýchlejší a jednodušší na použití. Moje

řešení je až 20x rychlejší a potřebuje o čtyřicet procent méně paměti. Toto řešení může být lepší

alternativou pro vědce, kteří studují měkké tkáně pomocí fotoakustického zobrazování.

Abstract

The ability of reconstruction of photoacoustic images is important requirement to study soft tissues or

vascular and lymphatic systems in high resulution but in small space. Today solution needs extensive

computing power and it is noticeably time-consuming. In this study we would like to introduce a new

solution which would be a way much faster and easy to use. My solution is up to 20x faster and needs

forty percent less memory. This solution may be a better alternative for scietnist who study soft

tissues by photoacoustic imaging.

Klíčová slova

Fotoakustické zobrazování, Ultrazvuk, Vysoce-výkonné výpočty, Paralelné výpočty, Vektorizace

Keywords

Photoacoustic imaging, Ultrasonic, HighPerformanceComputing, Parallel computing, Vectorisation

Citace

Kukliš Filip: Fast Reconstruction of Photoacoustic Imaging, bakalářská práce, Brno, FIT VUT

v Brně, 2015

 4

Fast Reconstruction of Photoacoustic images

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením Ing. Jiřího Jaroše,

PhD.

Další informace mi poskytli Bradley Treeby, PhD. a Ben Cox, PhD.

Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

……………………

Filip Kukliš

16.05.2015

Poděkování

I would like to acknowledge the support of Jiri Jaros.

This work was supported by the IT4Innovations CentreofExcellenceproject(CZ.1.05/1.1.00/02.0070),

funded by the European Regional Development Fund and the national budget of the Czech Republic

via the Research and Development for Innovations Operational Programme, as well as Czech

Ministry of Education, Youth and Sports via the project Large Research, Development and

Innovations Infrastructures (LM2011033).

© Filip Kukliš, 2015

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních

technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je

nezákonné, s výjimkou zákonem definovaných případů..

 1

Obsah

Obsah .. 1

1 Introduction .. 3

2 Applycation and theorethical background ... 4

2.1 Photoacoustic tomography .. 4

2.2 Photoacoustic microscopy .. 5

2.3 Theory of photoacoustic imaging ... 6

3 Current implementation of Photoacoustic Imaging in Matlab ... 8

3.1 Detailed description and analysis ... 8

4 Analysis of the current implementation in Matlab ... 11

5 Implementation of a C++ solution ... 14

5.1 Program design and used libraries .. 17

5.1.1 Implementation and verification ... 17

5.1.2 HDF5 .. 17

5.1.3 OpenMP pragmas ... 17

5.2 Fourier transform – FFTW3 ... 18

5.2.1 Matlab implementation ... 18

5.2.2 C++ implementation ... 18

5.3 Shifts ... 19

5.3.1 Matlab implementation ... 19

5.3.2 C++ implementation ... 19

5.4 Trilinear interpolation ... 20

5.4.1 Matlab implementation ... 20

5.4.2 C++ implementation ... 20

6 Analysis.. 22

6.1 High performance fascilities ... 22

6.2 Software used for analysis .. 22

6.2.1 PAPI .. 22

6.2.2 INTEL Vtune .. 23

6.3 Analysis of each function ... 24

6.3.1 Function Sf .. 24

6.3.2 Multiplication of complex numbers .. 25

6.3.3 Shifts ... 26

6.3.4 FFT ... 27

6.3.5 Interp ... 29

 2

6.4 Analysis of whole computing ... 31

6.5 Analysis of whole program ... 33

7 Conlusion ... 35

 3

1 Introduction

The main goal of this study is to rewrite algorithm of reconstruction of photoacoustic imaging

implemented in Matlab as a part of international project K-Wave into C++ code as a hardware

friendly and parallel code. Our effort is a way more faster code with less demand to main computer

memory. We want to achieve this by simplifacation, parallelisation, vectorisation and code written for

the given hardware.

By Matlab you can compute almost every type of mathemathical or physical problem. Its main

advantage is complexity and portability to many platforms. On the other hand the main disadvantage

is mainly its price. Even if it uses very well optimized algorithms, its complexity may be an

disadvantage for specific problems, because it does not optimise code to actual hardware.

Our effort is to create hardware friendly C++ solution which is independent on Matlab. The

main advantage is that the code is implemented to concrete hardware, it know its architecture as a

structure of cache levels or main memory. Another advantage is that this algorithm can be specific to

one concrete computation, not every part have to be as complex as Matlab one. Often many images

are computed to create three-dimensional image or video from reconstructed images, therefore is

convenient that C++ solution can be also run on many compute nodes at once.

In the Figure 1 is shown output from photoacoustic imaging, three dimensional image of

melanoma in vivo. It requires huge computing power to create this image. We want to use as much

power as hardware provides to decrease computing time of photoacoustic imaging.

 Figure 1: 3D photoacoustic imaging of melanoma in vivo.[7]

 4

2 Applycation and theorethical

background

A photoacoustic imaging is an emerging technique which can provide label-free non-invasive three-

dimensional image of the vasculature to the depths of several cm with a spatial resolution ranging

from tens to hundreds of microns (depending on the depth). It is based upon the generation of

ultrasound waves through the absorption of nanosecond laser pulses by light absorbing tissue

chromophores. The acoustic waves travel to the tissue surface where they are detected by an

ultrasound receiver array (Figure 2). From the detected signals, the three-dimensional (3-D) images

(which are proportional to the absorbed optical energy distribution) can be reconstructed. An image

reconstruction is based on the acoustic time reversal algorithm.[1]

2.1 Photoacoustic tomography

Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic tomography, is a

rapidly emerging imaging technique that holds great promise for biomedical applications. PAT is a

hybrid technique that exploits the high optical contrast of tissue with the high spatial resolution of

ultrasonic methods. The goal of PAT is to determine an estimate of an object’s spatially variant

absorbed optical energy density from measurements of pressure wave fields that are induced via the

thermoacoustic effect. Because the optical absorption characteristics of tissue vary strongly with

hemoglobin content, knowledge of the absorbed optical energy distribution can yield both structural

and functional information.[2]

Figure 2: Schematic illustration of photoacoustic imaging.

 5

2.2 Photoacoustic microscopy

Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects

optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes

advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit

(∼1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at

desired maximum imaging depths up to a few millimeters. Compared with backscattering-based

confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of

scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their

absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-

photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional,

molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments

in PAM, this Review discusses the key features of PAM implementations and their applications in

biomedical studies.[3] The scheme is in Figure 3.

Figure 3: Experimental set-up of dark field reflection mode PAM systém.[7]

 6

2.3 Theory of photoacoustic imaging

The standard imaging model for photoacoustic imaging is derived from the acoustic wave

equation in either the space–time or space–frequency domain. The space–frequency domain

representation p˜(r, ω) of the acoustic field is related to the space–time representation p(r, t) by a

Fourier transform, viz. Equation (1).

 𝑝̃(𝑟, 𝜔) = ∫ 𝑑𝑡 𝑝(𝑟, 𝑡)𝑒𝑖𝜔𝑡

∞
, (1)

where ω is the temporal frequency coordinate and r = (x, y, z).

In PAT applications, the acoustic field obeys an inhomogeneous Helmholtz equation:

 [∇2 + 𝑘2(𝑟)]𝑝(𝑟, 𝜔) =
𝑖𝜔𝛽

𝐶𝑃
𝐴(𝑟)𝐻(𝜔), (2)

where k(r) = ω/c(r) is the spatially varying wavenumber, c(r) is the local speed of sound, β is

the thermal expansion coefficient, CP is the specific heat capacity (at constant pressure), A(r) is the

absorbed optical energy density, and H(ω) describes the spectral content of the exciting optical or

microwave pulse. We will let A(x, y, z) denote A(r) expressed explicitly in Cartesian coordinates. The

pressure field away from the acoustic source can be expressed as

 𝑝̃(𝑟, 𝜔) =
𝑖𝜔𝛽𝐻(𝜔)

𝐶𝑃
∭ 𝑑3𝑟′𝐺(𝑟, 𝑟′, 𝜔)𝐴(𝑟′)

𝑉
, (3)

where G(r, r′, ω) is an appropriate Green function and V denotes the support volume

of A(r). Equation (3) represents an imaging model for PAT expressed in the temporal frequency

domain. For homogenous acoustic media, G(r,r′,ω)=eik∣r−r′∣∣4π∣r−r′∣∣. In general, the Green

function can only be found analytically when the speed-of-sound map possesses certain symmetries.

Otherwise, numerical methods must be employed to approximate the Green function needed to

specify the imaging model in Eq. (3).

The solution to the inverse problem for PAT, i.e., the estimation of A(r) based on knowledge

of p˜(r, ω) andH(ω), is based on Eq. (3) but also incorporates information about the measurement

geometry. In the case where the medium is acoustically homogeneous with the speed of sound c and

the measurement aperture corresponds to a plane, taken to be z = 0 without loss of generality, a

Fourier-transform-based solution to the inverse problem has been established. Let p̄ (kx, ky, ω) denote

the two-dimensional (2D) spatial Fourier transform of the pressure data p˜(x, y, z, ω) evaluated on the

measurement plane z = 0:

 𝑝̅(𝑘𝑥 , 𝑘𝑦, 𝜔) = ∬ 𝑑𝑥𝑑𝑦 𝑝̃(𝑥, 𝑦, 𝑧 = 0, 𝜔)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)

∞
. (4)

Similarly, let (kx, ky, kz) denote the 3D Fourier transform of A(x, y, z):

 7

 𝐴(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = ∭ 𝑑𝑥𝑑𝑦𝑑𝑧 𝐴(𝑥, 𝑦, 𝑧)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧)

∞
. (5)

It has been demonstrated that the values of (kx, ky, kz) that reside within a sphere of

radius ωc centered at the origin of 3D Fourier space can be determined from the measured pressure

data as

 𝐴 (𝑘𝑥 , 𝑘𝑦, √
𝜔2

𝑐2 − 𝑘2
𝑥 − 𝑘2

𝑦) =
−2𝐶𝑃𝑝̅(𝑘𝑥,𝑘𝑦,𝜔)

𝜔𝛽𝐻(𝜔)
 𝑋 √

𝜔2

𝑐2 − 𝑘2
𝑥 − 𝑘2

𝑦 , (6)

where effects related to the transducer response have been suppressed. One notes that

the kz coordinate of (kx, ky, kz) is found via a nonlinear mapping of kx, ky, and ω. From knowledge of

the estimated Fourier components, a low-pass-filtered estimate of A(r) can be determined by use of

the 3D inverse Fourier transform. In Section 3 a generalization of Eq. (6) is established for the case

where the optical absorber described by A(r) is embedded in a stratified planar acoustic medium. The

effects of the finite size of the detector and the finite length of the excitation pulse can be readily

included in the reconstruction algorithm as described in.[2]

 8

3 Current implementation of

Photoacoustic Imaging in Matlab

The code uses a k-space algorithm which performs (1) a Fourier transform on the data p_tyz along

both t, y, and z dimensions (into wavenumber-frequency space), (2) a mapping, based on the

dispersion relation for a plane wave in an acoustically homogeneous medium, from wavenumber-

frequency space to wavenumber-wavenumber space, and finally (3) an inverse Fourier transform back

from the wavenumber domain to the spatial domain. The result is an estimate of the initial acoustic

pressure distribution from which the acoustic waves originated.

Steps (1) and (3) can be performed efficiently using the fast Fourier transform (FFT); they are

therefore fastest when the number of samples and number of detector points are both powers of 2.

The mapping in step (2) requires an interpolation of the data from an evenly spaced grid of points in

the wavenumber-frequency domain to an evenly-spaced grid of points in the wavenumber-

wavenumber domain. The option 'Interp' may be used to choose the interpolation method.

 The physics of photoacoustics requires that the acoustic pressure is initially non-negative

everywhere. The estimate of the initial pressure distribution generated by this code may have negative

regions due to artefacts arising from differences between the assumed model and the real situation,

e.g., homogeneous medium vs. real, somewhat heterogeneous, medium; infinite measurement surface

vs. finite-sized region-of-detection, etc. A positivity (or non-negativity) condition can be enforced by

setting the optional 'PosCond' to true which simply sets any negative parts of the final image to

zero.

3.1 Detailed description and analysis

1 sf=c^2*sqrt((w/c).^2-kgrid.ky.^2-

kgrid.kz.^2)./(2*w);

2 sf(w == 0 & kgrid.ky == 0 & kgrid.kz == 0) = c/2;

3 p = sf.*fftshift(fftn(fftshift(p)));

4 p(abs(w) < (c*sqrt(kgrid.ky.^2 + kgrid.kz.^2))) = 0;

5 p = interp3(kgrid.ky, w, kgrid.kz, p, kgrid.ky,

w_new, kgrid.kz, interp_method);

6 p(isnan(p)) = 0;

7 p = real(ifftshift(ifftn(ifftshift(p))));

8 p = p((Nt + 1)/2:Nt, :, :);

9 p = 2*2*p./c;

Listing 1: Simplified Matlab code

 9

Line 1 and 2 : calculate the scaling factor using the value of kx, where kx = sqrt((w/c).^2

- kgrid.ky.^2 - kgrid.kz.^2) and then manually replacing the DC value with its limit

(otherwise NaN results).

Line 3 : compute the FFT of the input data p(t, y, z) to yield p(w, ky, kz) and scale.

Line 4 : exclude the inhomogeneous part of the wave.

Line 5: compute the interpolation from p(w, ky, kz) to p(kx, ky, kz); for a matrix

indexed as [M, N, P], the axis variables must be given in the order N, M, P

Line 6: set values outside the interpolation range to zero

Line 7: compute the inverse FFT of p(kx, ky, kz) to yield p(x, y, z)

Line 8: remove the left part of the mirrored data which corresponds to the negative part of the

mirrored time data

Line 9: correct the scaling - the forward FFT is computed with a spacing of dt and the reverse

requires a spacing of dz = dt*c, the reconstruction assumes that p0 is symmetrical about z, and

only half the plane collects data (first approximation to correcting the limited view problem)
(p_zxy)

 Figure 4: Input signal data recorded outside the tissue.

 10

 The input signal a is three-dimensional matrix

and can be seen in the Figure 4. Two

dimensions of the matrix are the data from the

sensor and the third is time. Resolution can be

upsampled by the nearest-neighbour

algorithm. It is shown that the quality of

reconstructed images depends on the input

resolution in the Figure 5, Fig. 6 and Fig. 7.

The difference in quality of the pictures can be

seen by eye. From the resulting quality we

want to aim on the 64x upsampled input data

and its reconstruction.

Figure 5: Result, reconstructed image of a mouse embryos in vivo.

Original input data 320x141x141.

Figure 6: Result, reconstructed image of a mouse embryos in vivo.

8x upsampled input data 639x281x281.

Figure 7: Result, reconstructed image of a mouse embryos in vivo. 64x

upsampled input data 1277x561x561.

 11

4 Analysis of the current

implementation in Matlab

The Matlab Profiler was used for the code analysis. The assumption was that with higher resolution of

the input data the computing time was longer and time of each function rised constantly. In this part

we want to find out functions where the most time was spent and the relation between computing time

and resolution used.

In the Figure 8 we can see that most time was spent on trilinear interpolation, more than thirty

percent for a non upsampled image. But the total time of computing is around six seconds, which is

so little that it is not worth to optimise the code at this resolution.

In the Figure 9 we can see that with higher resolution order of functions is completely different.

The most time was spent on forward and inverse Fourier transforms.

Figure 8: Output from Matlab profiler input resolution: 320x141x141

Figure 9: Output from Matlab profiler input resolution: 639x281x281

 12

In the Figure 10 we can see that most time was spent on trilinear interpolation again. Whole

computation lasts 885 seconds which is around fifteen minutes. Therefore we want to optimise the

code at this resolution. In this resolution reconstructed images look pretty good but computing time is

long.

Table 1: Dependence of computing time and memory demand at resolution

Resolution

of input data

Multiple of

resolution

Computing

time

Multiple

of time

Memory

demand

Multiple of

memory demand

320x141x141 1 x 6 s 1 x 2,7 GB 1 x

639x281x281 8 x 68 s 11.3 x 20 GB 7.4 x

1277x561x561 64 x 885 s 147.5 x 125 GB 46.3

Figure 10: Output from Matlab profiler input resolution: 1277x561x561

 13

In the Table 1 we can see the dependance of the computing time and memory needs on

resolution used. It is expected that the computing time will rise with resolution. With the higher

resolution increase of computing time is huge, it rises more than resolution of input data, which is

expected. On the other hand memory demand does not rise as fast as resolution, but is high enough to

attempt to reduce it.

Two outcomes resulting from this analysis are important. The first finding is that the computing time

of functions does not rise linearly due to the fact that complexity of FFT is O(nlogn) and there are

higher requirements for the memory using higher resolution of input data. The second crucial point is

that four lines were selected which takes more than eighty percent of whole computing. These lines

can be seen in the Figure 10 as lines 186 195 170 and 175. Therefore, it is important to optimise these

lines for a better performance.

 14

5 Implementation of a C++ solution

A lot of tests have been performed to understand the behaviour of parallelized and vectorised code in

the different situations. For example working with data which fits in L1, L2 or L3 cache, working

with constant data but in the different number of iterations, loops with or without vectorization or

testing differences between #pragma omp for and manually written parallel loop with OpenMP.

These and many other tests have been done to gain expertise. Some of microbenchmark results are

shown in the following graphs. The axis Y represents the computing time and axis X represents a

number of cores. Both of them are in logarithmic scale. The presumption was that curve in these

graphs should fall linearly without waves.

 Figure 12: Ideal scaling at unused operations Figure 11: Test of used operations

 15

 In the Figure 11 it is shown what the ideal scaling should look like. This test proves that ideal

scaling can be achieved. However, in this case, there are data shared and only the computation is

distributed over cores. This type of operations we will not use. On the other hand in the Figure 12 it is

shown non-ideal graphs (with higher number of cores it takes more time to compute or a curve is not

linear), which should be caused by maximal memory bandwidth. There are operations which we will

use such a vector addition or searching in the array. There it is shown that real solutions never look

like an ideal graph in the following graph.

 Figure 13: Repeated iterations of vector addition

 In the Figure 13, time is measured for all from 1 to 16 cores. In this graph computing time of

vector addition is shown computed several times with more or less iterations. This test was done to

understand influence of thread creation on computing time. The divergence between the cores and a

curve, which is definitely not straight, can be seen. This appearance is caused by divisibility of data

by core numbers.

 16

 Figure 14: Vectorised vector addition

Figure 14 is very interesting. There is shown that the computing time of vector addition with

vectorization and vectors were selected to fit in L1, L2 or L3 cache. But the result looks like that there

is an error in the code. It was found that it is not an error. The vector addition is really fast by using

the vectorization, therefore the computer memory and threads creation decelerate it, insofar on one

core it can be faster than on sixteen cores. The first outcome of the tests is that sometimes it is not

necessary to parallel the code and the second one is that there are a lot of mistakes which can be made

in the parallelize code. However, many of them were detected in tests such as a first touch problem or

data antialiasing.

 17

5.1 Program design and used libraries

The C++ solution is implemented as a stand-alone program. An alternative was a mex function in

Matlab (built-in function). Its main advantage is passing arguments without saving them to hard

drive. A standalone program was choosen, because we wanted independence from Matlab. The

problem with passing arguments by hard disk can be eliminated by using a SSD (solid state drive) or

RAMDISK.

5.1.1 Implementation and verification

Method of implementation was make a set of unit tests and compare them to Matlab routines. At first

input arguments of the function were saved in Matlab to hard drive. After implementation in C++

saved arguments were used as input arguments of C++ solution. Output was also saved to hard drive

and then loaden in Matlab after function. By doing this the C++ solution was verificated. At the end

every function was optimised for hardwere to accelerate computation. After implementation,

verification and optimisation functions become part of whole program in C++.

The computation uses real and imaginary parts of complex numbers. These numbers are

stored in three-dimensional matrices. But there are saved as two-dimensional matrices. First

dimension is used to store three-dimensional matrix of real numbers and the second to store three-

dimensional matrix of imaginary part of complex numbers.

5.1.2 HDF5

HDF5 was used for passing arguments from Matlab to C++ code. HDF5 is a file format designed to

store and organize large amounts of numerical data. It is used for passing arguments from Matlab to a

stand-alone C++ program. It is supported by Matlab and there is a library for C++.

5.1.3 OpenMP pragmas

To parallelize and vectorize code these pragmas were mostly used:

 #pragma omp parallel for (1)

#pragma omp parallel for simd (2)

Pragma(1) commands to parallelize for loop and pragma(2) commands even to vectorize the code.

 18

5.2 Fourier transform – FFTW3

5.2.1 Matlab implementation

Y = fftn(X) returns the discrete Fourier transform (DFT) of X, computed with a

multidimensional fast Fourier transform (FFT) algorithm. The result Y is the same size as X.

Y = ifftn(X) returns the n-dimensional inverse discrete Fourier transform (DFT) of X, computed

with a multidimensional fast Fourier transform (FFT) algorithm. The result Y is the same size as X.

5.2.2 C++ implementation

The FFTW3 library was used for compute Fourier transforms in the new solution. It was choosen

because of its speed and simplicity.

The Fastest Fourier Transform in the West (FFTW) is a software library for computing discrete

Fourier transforms (DFTs) developed by Matteo Frigo and Steven G. Johnson at the Massachusetts

Institute of Technology.

FFTW is known as the fastest free software implementation of the Fast Fourier

transform (FFT) algorithm (upheld by regular benchmarks). It can compute transforms of real

and complex-valued arrays of arbitrary size and dimension in O(n log n) time.[5]

At the begining FFTW has to find an optimized plan by actually computing several FFTs and

measuring their execution time. This can take some time, with highest resolution it can be more than

twenty minutes. But whenever you create a plan, the FFTW planner accumulates wisdom, which is

information sufficient to reconstruct the plan. After planning, you can save this information to disk.

This wisdom have to be computed only once for given resolution and other times can be loaded from

disk.

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Linearithmic_function

 19

5.3 Shifts

5.3.1 Matlab implementation

Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving

the zero-frequency component to the center of the array. It is useful

for visualizing a Fourier transform with the zero-frequency
component in the middle of the spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For

matrices, fftshift(X) swaps the first quadrant with the third and the
second quadrant with the fourth.

For higher-dimensional arrays, fftshift(X) swaps "half-spaces"
of X along each dimension.

Y = ifftshift(X) swaps the left and right halves of the vector X. For matrices, ifftshift(X) swaps the

first quadrant with the third and the second quadrant with the fourth. If X is a multidimensional
array, ifftshift(X) swaps "half-spaces" of X along each dimension.

5.3.2 C++ implementation

The first implementation was that the matrix was passed by pragma for and for each element was

computed position of another element. Between these two cells data was swapped. This whole

function was parallelized.

The implementation was ten time faster, but I wanted to try another implementation. In the

second implementation the data was not swapped between two elements of the matrix but whole

matrix lines were divided in half and this whole half of the line, whole vectors was swapped. For that

reason the function memcpy() was used, copying the whole vector from one part of the memory to

another. However this implementation was as fast as the first one. This is due to the fact that this

function is memory bound. With higher number of cores or with less computations the time do not

have to necessarily decrease.

At the end, the first implementation was choosen since it has a simpler code and comparable

performance. Two instanses of the routine swapping two matrices(real and imaginary part) at the

same time and two instanses swap only one matrix at the time.

 20

5.4 Trilinear interpolation

Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid.

It approximates the value of an intermediate point (x, y, z) within the local axial

rectangular prism linearly, using data on the lattice points. For an arbitrary,unstructured mesh (as used

in finite element analysis), other methods of interpolation must be used; if all the mesh elements

are tetrahedra (3D simplices), then barycentric coordinates provide a straightforward procedure.[6]

5.4.1 Matlab implementation

Vq = interp(X,Y,Z,V,Xq,Yq,Zq)

returns interpolated values of a function of

three variables at specific query points using

linear interpolation. The results always pass

through the original sampling of the

function. X, Y, and Z contain the coordinates

of the sample points. V contains the

corresponding function values at each sample

point. Xq, Yq, and Zq contain the coordinates

of the query points.

5.4.2 C++ implementation

After understanding that the data is

interpolated only in one direction (in one

coordinate axis) the decision was not to

implement a complex trilinear interpolation or

to use existing algorithm or existing C++

library, but the custom solution. The not

 21

complex solution was proposed. This solution can not be used as fully working trilinear interpolation

and it will be used only for this project.

For every point in the three-dimensional matrix the new interpolated value has to be computed.

The matrix is passed point by point by parallelized for loop and for every point there is a search

of new dimension of the point. Linear search algorithm was used for searching. If the search was

succesfull, then the calculation of the point interpolation is done. If the search was not succesfull the

point does not have an interpolated value and the result should be NaN(not a number). But instead of

NaN, zero was the result in my implementation, because of the fact that in Matlab is NaN overwritten

by zero after interpolation.

This implementation was only two and half times faster than the Matlab implementation.

Therefore the linear search was replaced by the Binary search algorithm. After some tests and

analyzes the dimension was searched from the end of the vector by linear searching algorithm. This

time the code was more than twelve times faster.

This implemenation can not be used as fully working interpolation, but does what exectly has

to do. The solution is parallelized but was not vectorized, because of condition in search.

 22

6 Analysis

6.1 High performance fascilities

All work was done on Anselm, a supercomputer cluster in Ostrava, Czech Republic. The Anselm

cluster consists of 209 compute nodes, totaling 3 344 compute cores with 15TB RAM and giving

over 94 Tflop/s theoretical peak performance. Each node is a power-ful x86-64 computer, equipped

with 16 cores, at least 64GB RAM and 500GB hard drive.[4]

The compute node used for testing consists of two eight-core Intel Sandy Bridge E5-2740

processor and 96GB memory. Processors support Advanced Vector Extensions (AVX) 256-bit

instruction set.

Intel Sandy Bridge E5-2470 Processor

 eight-core

 speed: 2.4 GHz, up to 3.1 GHz using Turbo Boost Technology

 peak performance: 18.4 Gflop/s per core

 caches:

o L2: 256 KB per core

o L3: 20 MB per processor

 memory bandwidth at the level of the processor: 38.4 GB/s

6.2 Software used for analysis

6.2.1 PAPI

PAPI (Performance Application Programming Interface) provides the tool designer and application

engineer with a consistent interface and methodology for use of the performance counter hardware

found in most major microprocessors. PAPI enables software engineers to see, in near real time, the

relation between software performance and processor events.

PAPI was used to measure various performance indicators such as time, FLOPS(FLoating-point

OperationsPerSecond) or distribution of load on CPU cores.

 23

Table 2: List of used PAPI events

PAPI Event Description

PAPI_FP_OPS Floating point operations

PAPI_DP_OPS Double precision operations

PAPI_TOT_CYC Total cycles

PAPI_TOT_INS Instructions completed

PAPI_L3_TCA Level 3 total cache accesses

PAPI_L3_TCM Level 3 total cache misses

PAPI_L3_TMR Level 3 total miss ratio

MEM_BANDW Memory bandwidth

MFLOPS Million floating point operations per second

VEC_MFLOPS Vectorised MFLOPS

6.2.2 INTEL Vtune

VTune Amplifier assists in various kinds of code profiling including stack sampling, thread

profiling and hardware event sampling. The profiler result consists of details such as time spent in

each sub routine which can be drilled down to the instruction level. The time taken by the instructions

are indicative of any stalls in the pipeline during instruction execution. The tool can be also used to

analyze thread performance. The new GUI can filter data based on a selection in the timeline.

 24

6.3 Analysis of each function

6.3.1 Function Sf

Sf function is rewrited line 1 from Matlab:

 sf = c^2*sqrt((w/c).^2 - kgrid.ky.^2 - kgrid.kz.^2)./(2*w); (1)

The whole computing was parallelized and but not vectorised because of condition in the

computing. In the Table 2 is shown output from PAPI. MFLOPS are not very high, althought the

computing time of C++ solution is more than seventy-five times faster than Matlab solution, 135

seconds in Matlab versus 1.8 second in C++.

Table 3: PAPI output, function: Sf

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_DP_OPS 813M 811M 809M 808M 807 806

PAPI_TOT_CYC 2102M 2179M 2175M 2247M 2781M 2792M

PAPI_L3_TMR 14.3% 12% 12% 13% 14% 12.8%

MFLOPS 0.000100556 8.88892e-05 3.66668e-05 9.88892e-05 3.33334e-05 0.000106667

VEC_MFLOPS 437 436 435 435 434 433

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_DP_OPS 805M 805M 804M 805M 806M 807M

PAPI_TOT_CYC 2823M 2773M 2809M 2787M 2272M 2192M

PAPI_L3_TMR 14% 12.4% 14.8% 11.9% 12.5% 13.5%

MFLOPS 3.44e-05 9.16e-05 6.00e-05 1.26e-04 8.61e-05 5.44e-05

VEC_MFLOPS 433 433 433 433 433 434

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_DP_OPS 808M 809M 811M 812M 12934M

PAPI_TOT_CYC 2824M 2790M 2279M 2196M 40029M

PAPI_L3_TMR 14.1% 13.8% 13.4% 12.1% 13.1625%

MFLOPS 17.11e-04 1.27e-04 8.94e-05 5.50e-05 0.0013

VEC_MFLOPS 434 435 436 437 6950

sf :: wall time 1.79999 s

 25

6.3.2 Multiplication of complex numbers

In function Complex, the multiplication of complex numbers is implemented. The matrix sf

computed in function Sf and output of fftshift and fft are multiplicated.

p = sf.*fftshift….;

In the Table 3 we can see that FLOPS are not very high again. It is due to fact that there is too

many accesses to main memory to only one operation. But C++ solution is many time faster than

Matlab solution again.

Table 4: PAPI output, function: Complex

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_DP_OPS 326M 336M 337M 339M 328M 337M

PAPI_TOT_CYC 4437M 4580M 4564M 4583M 4593M 4586M

PAPI_L3_TMR 18.3% 18.5% 18.5% 18.6% 18.7% 18.4%

MFLOPS 2.48e-05 4.86e-05 2.37e-05 3.92e-05 2.76e-05 4.75e-05

VEC_MFLOPS 198.371 204.41 204.802 206.193 199.272 204.723

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_DP_OPS 336M 339M 329M 327M 339M 329M

PAPI_TOT_CYC 4582M 4582M 4597M 4601M 4583M 4599M

PAPI_L3_TMR 18.4% 18.5% 18.6% 18.5% 18.6% 18.7%

MFLOPS 3.70e-05 5.19e-05 4.75e-05 5.02e-05 3.42e-05 2.48e-05

VEC_MFLOPS 204.202 206.014 199.711 199.013 205.99 199.875

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_DP_OPS 327M 339M 327M 328M 5331M

PAPI_TOT_CYC 4596M 4573M 4594M 4574M 73231M

PAPI_L3_TMR 18.5% 18.6% 18.5% 18.7% 18.5368%

MFLOPS 4.97e-05 5.08e-05 3.42e-05 1.87e-05 0.000610968

VEC_MFLOPS 198.624 206.148 198.712 199.454 3235.51

complex :: wall time 1.64792 s

 26

6.3.3 Shifts

The Matlab functions fftshift() and ifftshift() were implemented as four functions,

because of the fact that each of these functions occurs in Matlab code twice. The first time the

function shifts whole complex numbers, real and imaginary parts and the second time only real part of

complex number. The wall time of the first function is higher than others because of clearing

imaginary part of matrix. In the Table 4 is shown that shifts are limited by memory bandwidth.

Actually memory bandwidth is slightly higher than maximal bandwidth by processor, it is due to

CPU caches.

Table 5: PAPI output, function: fftshift

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_L3_TCA 17.16M 16.60M 16.61M 167.42M 14.77M 16.62M

PAPI_L3_TCM 5.78M 5.63M 5.61M 5.68M 5.22M 5.66M

PAPI_TOT_CYC 3061M 3038M 2990M 3025M 3536M 3037M

PAPI_L3_TMR 33.7% 33.9% 33.8% 34% 35.3% 34%

MEM_BANDW 5300MB/s 5300MB/s 5300MB/s 5300MB/s 5300MB/s 5300MB/s

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_L3_TCA 14.81M 14.72M 16.07M 15.98M 16.07M 14.22M

PAPI_L3_TCM 5.17M 5.22M 5.47M 5.44M 5.46M 5.11M

PAPI_TOT_CYC 3512M 3537M 3037M 3038M 3032M 3539M

PAPI_L3_TMR 34.9% 35.5% 34.1% 34.1% 34% 36%

MEM_BANDW 5300MB/s 5300MB/s 5300MB/s 5300MB/s 5300MB/s 5300MB/s

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_L3_TCA 14.42M 14.35 14.28M 14.26M 247.7M

PAPI_L3_TCM 5.12M 5.09M 5.12M 5.13M 85.99M

PAPI_TOT_CYC 3532M 3529M 3538M 3528M 52517M

PAPI_L3_TMR 35.5% 35.5% 35.9% 36% 34.76%

MEM_BANDW 5300MB/s 5300MB/s 5300MB/s 5300MB/s 84 800MB/s

--
fftshifts :: wall time 3.80506 s, 1.26279 s, 1.25682 s, 1.28368 s

--

 27

6.3.4 FFT

Forward and inverse Fourier transforms(fftn(), ifftn()) are implemented by FFTW3 library

and reaches around 4500 MFLOPS on one core which can see in Table 5 and Table 6 is nearly

maximum you can get by real application. It is well optimised and with this dimensions of matrix it is

maximal performance.

Table 6: PAPI output, function: fft

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_FP_OPS 10816M 10815M 10815M 10816M 10815M 10815M

PAPI_DP_OPS 14780M 14773M 14786M 14784M 14791M 14784M

PAPI_TOT_CYC 14902M 13798M 12778M 13537M 13799M 13759M

MFLOPS 1900 1900 1900 1900 1900 1900

VEC_MFLOPS 2600 2600 2600 2600 2600 2600

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_FP_OPS 10815M 10816M 10814M 10815M 10815M 10814M

PAPI_DP_OPS 14779M 14772M 14783M 14777M 14786M 14781M

PAPI_TOT_CYC 13759M 13803M 14589M 13797M 13795M 13525M

MFLOPS 1900 1900 1900 1900 1900 1900

VEC_MFLOPS 2600 2600 2600 2600 2600 2600

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_FP_OPS 10815M 10812M 10815M 7166M 169397M

PAPI_DP_OPS 14779M 13357M 14774M 10197M 231915M

PAPI_TOT_CYC 13422M 13428M 13798M 9858M 216333M

MFLOPS 1900 1900 1900 1260 29 800

VEC_MFLOPS 2600 2600 2600 1790 40 800

fft :: wall time 5.68 s

 28

Table 7: PAPI output, function: ifft

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_FP_OPS 10593M 10593M 10593M 10595M 10595M 10595M

PAPI_DP_OPS 14534M 14539M 14540M 14538M 14536M 14537M

PAPI_TOT_CYC 12855M 12750M 12850M 12848M 12845M 12818M

MFLOPS 2300 2300 2300 2300 2300 2300

VEC_MFLOPS 3160 3160 3160 3160 3160 3160

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_FP_OPS 10596M 10596M 10595M 10595M 10591M 10596M

PAPI_DP_OPS 14536M 14536M 14535M 14535M 14535M 14536M

PAPI_TOT_CYC 12762M 12846M 12845M 12850M 12850M 12850M

MFLOPS 2300 2300 2300 2300 2300 2300

VEC_MFLOPS 3160 3160 3160 3160 3160 3160

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_FP_OPS 10596M 10595M 10596M 9712M 168652M

PAPI_DP_OPS 14533M 14537M 14531M 12920M 230963M

PAPI_TOT_CYC 12851M 12838M 12851M 12138M 204653M

MFLOPS 2300 2300 2300 2300 36 700

VEC_MFLOPS 3160 3160 3160 3160 50 200

ifft :: wall time 4.6 s

 29

6.3.5 Interp

Two prototypes were implemented. In the second onen early six times less instructions were executed

by the turning of the direction of search. It is shown in Table 7 and Table 8. Load distribution on CPU

cores is not as good as by FFTW3 but it is still good enough. It is more than twelve times faster than

interpolation in Matlab(interp()). The FLOPS performance is nearly maximum you can get

without vectorisation.

Table 8: PAPI output, function: interp

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_FP_OPS 211973M 204085M 202294M 200712M 199370M 198302M

PAPI_DP_OPS 492M 485M 489M 492M 494M 495M

PAPI_TOT_CYC 345G 333G 330G 328G 326G 324G

PAPI_TOT_INS 846G 815G 808G 801G 796G 791G

MFLOPS 1705.08 1641.63 1627.23 1614.5 1603.71 1595.11

VEC_MFLOPS 3.9607 3.9019 3.9364 3.9585 3.977 3.9886

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_FP_OPS 197547M 197151M 197157M 197564M 198328M 199404M

PAPI_DP_OPS 496M 497M 497M 496M 496M 494M

PAPI_TOT_CYC 323G 322G 324G 323G 324G 326G

PAPI_TOT_INS 789G 787G 789G 789G 792G 796G

MFLOPS 1589.04 1585.86 1585.9 1589.17 1595.32 1603.98

VEC_MFLOPS 3.9972 4.0052 4.0048 3.9973 3.9899 3.9755

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_FP_OPS 200754M 202341M 204139M 206118M 3217247M

PAPI_DP_OPS 491M 488M 485M 480M 7875M

PAPI_TOT_CYC 330G 330G 333G 336G 5266G

PAPI_TOT_INS 804G 808G 815G 823G 12857G

MFLOPS 1657.93 1614.83 1627.61 1642.07 25879

VEC_MFLOPS 3.9544 3.9303 3.903 3.8652 63.3467

interp :: wall time 124.319 s

 30

Table 9: PAPI output, function: interp

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_FP_OPS 38692M 36484M 35588M 34898M 34390M 34045M

PAPI_DP_OPS 492M 484M 488M 491M 493M 495M

PAPI_TOT_CYC 75328M 72495M 71305M 70464M 69966M 69385M

PAPI_TOT_INS 147G 140G 137G 135G 134G 133G

MFLOPS 1427.91 1346.36 1307.39 1313.32 1269.12 1256.42

VEC_MFLOPS 18.1805 17.8887 18.0135 18.1306 18.2068 18.287

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_FP_OPS 33840M 33751M 33752M 33844M 34053M 34400M

PAPI_DP_OPS 496M 497M 497M 496M 494M 493M

PAPI_TOT_CYC 69439M 69575M 70133M 69546M 69430M 70174M

PAPI_TOT_INS 132G 132G 133G 132G 133G 134G

MFLOPS 1248.82 1245.56 1245.61 1248.94 1256.67 1269.58

VEC_MFLOPS 18.3352 18.3522 18.3608 18.307 18.2601 18.2124

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_FP_OPS 34914M 35610M 36510M 37638M 562416M

PAPI_DP_OPS 491M 488M 484M 480M 7866M

PAPI_TOT_CYC 72241M 71650M 72498M 74429M 1138066M

PAPI_TOT_INS 137G 138G 140G 144G 2188G

MFLOPS 1288.51 1314.18 1347.43 1388.99 20755.3

VEC_MFLOPS 18.1299 18.021 17.8836 17.7503
290.319

interp :: wall time 27.2208 s

 31

6.4 Analysis of whole computing

In the Table 9 it is shown that the load distribution of the whole computing is good. Despite of

the fact that a part of computing only works with memory the computer performance is reasonably

high.

Table 10: PAPI output, whole computing

 THREAD0 THREAD1 THREAD2 THREAD3 THREAD4 THREAD5

PAPI_FP_OPS 60205M 58002M 57104M 56410M 55905M 55566M

PAPI_DP_OPS 30961M 30963M 30965M 30961M 30958M 30959M

PAPI_TOT_CYC 126G 125G 122G 122G 121G 123G

MFLOPS 1297.52 1250.05 1230.7 1215.73 1204.85 1197.54

VEC_MFLOPS 614.731 614.76 614.807 614.733 614.664 614.69

 THREAD6 THREAD7 THREAD8 THREAD9 THREAD10 THREAD11

PAPI_FP_OPS 55359M 55270M 55271M 55362M 55569M 55918M

PAPI_DP_OPS 30966M 30958M 30960M 30966M 30965M 30958M

PAPI_TOT_CYC 123G 123G 123G 123G 121G 121G

MFLOPS 1193.08 1191.17 1191.18 1193.15 1197.6 1205.13

VEC_MFLOPS 614.833 614.669 614.706 614.828 614.81 614.673

 THREAD12 THREAD13 THREAD14 THREAD15 TOTAL

PAPI_FP_OPS 56433M 57126M 58032M 51904M 899445M

PAPI_DP_OPS 30959M 30963M 30951M 24753M 489173M

PAPI_TOT_CYC 126G 123G 125G 117G 1972G

MFLOPS 1216.24 1231.17 1250.68 1118.63 19384.4

VEC_MFLOPS 614.688 614.771 614.523 491.469 9712.35

kpr :: wall time 46.4004 s

Table 10 shows comparation between the Matlab solution and the new C++ solution. The C++

solution is up to twenty times faster than Matlab solution with 64x upsampled input data. Also the

memory consumption is less up to around fourty percent.

 32

 Table 11: Comparation of Matlab and C++ solution

In the Figure 15 is shown concurrency and scalability of threads(1, 2, 4, 8, 16) in computing for

64x 8x and 1x upsampled data. Time decrease almost linearly with more threads. The computing on

sixteen cores is around eleven time faster than on one core.

MATLAB solution

Input data scale Computing time Memory allocation

1x 6 s 2.7 GB

4x 68 s 20 GB

64x 885 s 125 GB

C++ solution

Input data scale Computing time Memory allocation

1x 0.45 s 1.1 GB

4x 4.7 s 8.5 GB

64x 46.4 s 67.5 GB

Figure 15 – Strong scaling

 33

6.5 Analysis of whole program

This histogram in Figure 16 represents a breakdown of the Elapsed Time. It vusializes the

percentage of the wall time the specific number of threads were running simultaneously. Threads are

considered running if they are either actually running on a CPU or are in the runnable state in the OS

scheduler. Essentially, Thread Concurrenci is a measurement of the number of threads that were not

waiting. Thread Concurrency may be higher than CPU usage if threads are in the runnable state and

not consuming CPU time.

This histogram in Figure 17 represents a breakdown of the Elapsed time. It vusalizes what

percentage of the wall time the sepcific number of CPUs were running simultaneously. CPU Usage

may be higher than thread concurrency if a thread is executing code on a CPU while i tis logically

waiting.

The first column in Figure 16 and image Figure 17is caused by the fact that this analysis is done to

whole program not just computing. The init() function have to wait to I/O operations such a load

input arguments from hard drive. Program loading more than 30GB of input arguments which lasts

around 60 seconds at HDD speed 500MB per second.

 Figure 16: Thread concurrency histogram

 Figure 17: CPU usage histogram

 34

In the Figure 18 is shown histogram represenating CPU time of each function and its thread

concurrency. At the most time concurrency of threads is ideal.

 Figure 18: Thread concurrency top-down tree

In the Figure 19 is shown histogram represenating wait time of each function. The functions

waiting to I/O operations or to fork threads. The main computation does not wait which is ideal.

 Figure 19: Waiting time of threads

 35

7 Conlusion

This study has shown that photoacoustic imaging implemented in Matlab can be accelerated

and optimised by using hardware-friendly code.

C++ solution can be up to twenty times faster than Matlab solution with fourty percent less

demand on main memory. The real acceleration depends on used input resolution, the acceleration is

higher at higher resolution It reaches seven to ten percent of theorethical performance of CPU, which

can be improved by vectorisation other functions, but theorethical maximum of CPU performance can

be achieved only by LINPACK not by the real program.

As mentioned the computing may be accelerated by vectorisation non vectorised functions, but

reduce loading time of input arguments, which takes a lot of time will be more important. The loading

time of input arguments from hard drive takes more time than whole reconstruction of photoacoustic

images. Reduce the size of input arguments can be achieved by rewriting another part of Matlab

solution and computing input arguments in C++ solution istead of loading them from hard drive.

The main contribution of this study is ability to obtain high resolution images of the

vasculature or soft tissues many times faster than reference solution in Matlab. The work will be used

as a part of international project k-Wave.

 36

References

[1] Laufer, J., Norris, F., Cleary, J., Zhang, E., Treeby, B., Cox, B., Johnson, P., Scambler,

P., Lythgoe, M. and Beard, P.: In vivo photoacoustic imaging of mouse embryos. London,

University College London, 2012.

[2] Schoonover W. R., ANASTASIO A. M.: Image reconstruction in photoacoustic

tomography involving layered acoustic media. National Center for Biotechnology

Information, 2011.

[3] Yao, J. and Wang, L. V,: Photoacoustic microscopy. Laser & Photon. 2013. Rev.,

7: 758–778. doi: 10.1002/lpor.201200060

[4] Introduction. Anselm cluster documentation [online]. [ref. 2015-01-21]. Avialable from:

<https://docs.it4i.cz/anselm-cluster-documentation>

[5] Introduction. FFTW [online]. [ref. 2015-05-06]. Avialable from: <http://www.fftw.org/>

[6] Muljadi, P. Interpolation [online]. [ref. 2015-05-06]. Avialable from:

<https://books.google.sk/books?id=PdT7PQPy83YC>

[7] Zhang, H. F.: Functional photoacoustic microscopy for high-resolution and

noninvasive in vivo imaging. Nature Biotechnology, 2006.

https://docs.it4i.cz/anselm-cluster-documentation
http://www.fftw.org/
https://books.google.sk/books?id=PdT7PQPy83YC

 37

Seznam příloh
Příloha 1. CD (Manál, zdrojové kódy, BP v elektronickej podobe)

