
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

40GBE SMĚROVAČ PRO OPERAČNÍ SYSTÉM GNU/LINUX
TOWARDS 40GBE GNU/LINUX ROUTER

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JOSEF LUŠTICKÝ
AUTHOR

VEDOUCÍ PRÁCE Ing. MATĚJ GRÉGR
SUPERVISOR

BRNO 2015

Abstrakt
Účelem této práce je popis protokolu 40Gb Ethernet, popis směrovacího procesu v jádře
Linux a navrhnout a provést testování výkonnosti směrování se síťovým adaptérem pro
40Gb Ethernet. Výsledky a nastavení pro získání maximální výkonnosti směrování jsou
dále popsány v této práci.

Abstract
The purpose of this thesis is to describe 40Gb Ethernet, describe routing process in the
Linux kernel and to design and perform benchmark of routing performance with a 40Gb
Ethernet network interface card. The results and system settings for achieving maximum
routing performance are further described in the thesis.

Klíčová slova
GNU, Linux, ethernet, směrovač, software, IP, síť, měření, propustnost, operační systém

Keywords
GNU, Linux, ethernet, router, software, IP, network, measurement, throughput, operating
system

Citace
Josef Luštický: Towards 40GbE GNU/Linux Router, diplomová práce, Brno, FIT VUT
v Brně, 2015

Towards 40GbE GNU/Linux Router

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Matěje Grégra.

. .
Josef Luštický
May 24, 2015

Poděkování
Děkuji vedoucímu práce Ing. Matějovi Grégrovi z FIT VUT za poskytnutí praktických
rad, vybaveného pracovního místa v laboratoři a pomoc při sestavování hardwaru. Děkuji
Ing. Viktorovi Pušovi, Ing. Štěpánovi Friedlovi a Ing. Martinovi Špinlerovi ze sdružení
CESNET a projektu Liberouter.org za poskytnutí měřícího vybavení. Děkuji Ing. Pavlovi
Kislingerovi z VUT za poskytnutí výkonného serveru.

© Josef Luštický, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Rozšířený abstrakt
Diplomová práce popisuje standard IEEE 802.3ba z roku 2010, který definuje protokol

40 a 100 Gigabit Ethernet, konkrétně se v kapitole 2 věnuje protokolu 40 Gb Ethernet,
jehož aplikace se dnes postupně dostává do praxe. V současnosti je provoz tohoto pro-
tokolu možný pouze na optických spojích, nicméně plánovaný standard IEEE 802.3bq počítá
i s provozem 40 Gb Ethernetu po metalickém vedení. 40 Gb Ethernet zůstává do značné
míry zpětně kompatibilní se staršími standardy Ethernetu, zejména formát rámce zůstal
zcela nezměněn. Mezi počítači využívajícími protokol 40 Gb Ethernetu tak může být v jed-
nom směru posíláno až přibližně 59 milionů rámců za sekundu o minimální velikosti 72
bajtů, nebo až přibližně 4,6 GB přenášených dat za sekundu při posílání rámců o max-
imální velikosti 1526 bajtů (bez rozšíření typu 802.1Q apod.).

Současný vývoj výkonu procesorů nestačí držet krok s narůstající rychlostí komunikačních
protokolů na linkové vrstvě ISO/OSI modelu. Zatímco rychlost procesorů se zdvojná-
sobí přibližně jednou za 2 roky, rychlost linkových protokolů se zdvojnásobí za 18 měsíců.
Při přenosu 59 milionů rámců za sekundu je interval mezi dvěma po sobě příchozími rámci
přibližně 16 nanosekund. Za tuto dobu musí být systém schopen daný rámec korektně
zpracovat, jinak hrozí jeho zahlcení dalším síťovým provozem.

Operační systém GNU/Linux se snaží držet krok se zrychlováním síťové komunikace
pomocí množství optimalizací. Kapitola 3 popisuje zpracování síťového provozu tímto op-
eračním systémem se zaměřením na směrování IP paketů. Síťový stack zodpovědný za zpra-
cování paketů a směrování je implementován v jádře opračního systému Linux. Síťový stack
jádra Linux používá pro reprezentaci síťových paketů strukturu sk buff ve všech vrstvách
síťového stacku. Při přechodu mezi jednotlivými vrstvami je předáván pouze ukazatel
na tuto strukturu s patřičným pozměněním hlaviček struktury dle dané vrstvy.

Při zpracování paketu vrstvou zodpovědnou za síťový protokol IP dochází ke zpracov-
ání na základě rozhodnutí směrovacího subsystému. Směrovací subsystém využívá interní
směrovací databázi (Forwarding Information Base) k rozhodnutí o následující funkci, která
bude daný paket zpracovávat. Forwarding Information Base je v Linuxu implentovaná po-
mocí struktury Trie. Linux využívá algoritmus Longest Prefix Match k prohledání této
struktury. Výsledkem rozhodnotí může být zahození paketu, předání funkci k lokálnímu
doručení nebo předání funkci ip forward, čímž dochází ke směrování daného paketu. Ob-
dobně funguje i směrování paketů protokolu IPv6.

Kromě tohoto zpracování, které je specifické pro směrování IP paketů, je zpracov-
ání síťového provozu spojeno s další režií jako je oznámení o příchozím paketu pomocí
přeřušení, počítání kontrolních součtů, přiřazení do front atd. O snížení této režie se snaží
jak vývojáři jádra pomocí mechanismů jako je NAPI nebo Generic Receive Offload, tak
výrobci síťových karet pomocí hardwarového počítání kontrolních součtů nebo podporou
vícefrontového zpracování. Právě podpora více front v síťových kartách umožnuje společně
s vlastnostmi sběrnice PCI-Express distribuování zpracování paketů na více procesorů a tím
škálování síťové propustnosti. Škálování je hlavním tématem současného vývoje a má ne-
jvětší vliv na celkovou propustnost systému.

Pro účely měření byla využita síťová karta Mellanox ConnectX-3 EN se 2 fyzickými
porty a hardwarový generátor síťového provozu Spirent. Kapitola 4 popisuje jakým způ-
sobem lze testování s poskytnutým hardwarem provést a jaká je možnost konfigurace
parametrů jádra Linuxu s ohledem na popsané zpracování paketů v předchozí kapitole.

Kapitola 5 popisuje postup zapojení a zprovoznění testovací sítě pro účely měření. In-
stalovaný operační systém je CentOS 7 s jádrem verze 3.10.0-123.20.1 a také upstream
jádrem verze 4.0.2. Dále je zde popsána konfigurace operačního systému, instalace nového

1

firmware síťové karty a konfigurace hardwarového generátoru paketů Spirent.
V kapitole 6 jsou prezentovány výsledky měření a vliv jednotlivých konfiguračních

možností na výkon směrování paketů v jádře Linux. Tyto výsledky jsou dále stručně ko-
mentovány v kapitole 7, kde jsou také shrnuty nabyté poznatky a identifikovány hlavní
problémy zamezující lepší propustnosti.

Součástí diplomové práce jsou i přílohy s návodem importování internetových směrovacích
záznamů z protokolu BGP, aktualizaci firmware síťové karty Mellanox ConnectX-3 EN
a stručný souhrn kroků pro dosažení maximálního výkonu směrování v operačním systému
GNU/Linux.

2

Contents

1 Introduction 5

2 40 Gigabit Ethernet 7
2.1 Frame rates . 9
2.2 Throughput . 10
2.3 Compatibility . 10

3 Networking in the Linux kernel 12
3.1 Socket buffer . 13
3.2 IP stack . 15
3.3 Routing subsystem . 17
3.4 Ingress traffic processing . 19
3.5 Egress traffic processing . 24
3.6 Multiqueue adapters and scaling . 26

4 Analysis 30
4.1 Hardware equipment . 30
4.2 Software equipment . 31
4.3 Benchmarking methodology . 32
4.4 Software settings . 34

5 Setup 39
5.1 Hardware and networking . 39
5.2 Software and firmware . 41
5.3 Spirent configuration . 42
5.4 Server configuration . 42

6 Measurements 45
6.1 CentOS 7 distribution kernel 3.10.0-123 . 45
6.2 Upstream mainline kernel 4.0.2 . 61
6.3 Settings influence . 63
6.4 BGP routes . 66
6.5 Summary . 68

7 Conclusion 69

A Populating kernel’s FIB with BGP routes 76

B Updating the Mellanox ConnectX-3 EN firmware 79

3

C General steps for maximum routing performance 81

4

Chapter 1

Introduction

The growth of Ethernet from 10 Mbit/s to 10 Gbit/s has already surpassed the growth of
microprocessor performance. The 40 Gigabit Ethernet makes the performance gap even
larger, but it is still the original Ethernet underneath - an old technology with a lot of com-
patibility issues for high-speed packet processing. The recent 40 and 100 Gigabit Ethernet
standard opens doors to high-speed networking, but it requires other parts of the network
to scale within.

The GNU/Linux operating system is used in a wide range of computers interconnected
with high-speed Ethernet. An important task of the Linux network stack is to forward traf-
fic. This is relevant especially when discussing core routers, which operate in the Internet
backbone. Forwarding occurs on Layer 3 of the ISO/OSI network model. The performance
of a software-based solution that uses GNU/Linux, cannot compete with commercial prod-
ucts that can count on the help of specialised hardware. However, various stack bypass
solutions have shown, that the Linux kernel is not using the CPU optimally.

The purpose of the thesis is to provide a comprehensive performance analysis of the
Linux kernel in IP packet forwarding. The 40 Gigabit Ethernet protocol is able to transmit
up to 59 million frames per second and 4.6 GB of L2 data per second. Such speed can
easily burden the CPU with a large amount of TCP/IP protocol processing required.

Apart from the 40 Gigabit Ethernet protocol itself, the packet processing in the Linux
kernel is described in the thesis. Since the emerge of 100 Mbps Ethernet, the Linux kernel
engineers have been optimising the network stack towards high-speed packet processing.
Hardware vendors have made various optimisations, which help the operating system to
lower the amount of processing required.

In the thesis, a high-end server with a 40 GbE network interface card and 2 Intel
Xeon CPUs was setup to measure the routing performance of the Linux kernel. The mea-
surements presented in this thesis demonstrate performance influences of various system
settings such as scaling mechanisms, Reverse path filtering or SELinux. The measurements
presented in this thesis also include comparison of IPv6 processing performance against
IPv4 processing performance. Additionally, the thesis presents the Linux routing perfor-
mance with imported routes from the Internet BGP protocol. At the time of writing, there
are approx. 538 000 routes announced in the public BGP, which leads to expensive software
lookups in the Forwarding Information Base of the Linux kernel.

Spirent hardware packet generator was used to generate the traffic and to collect the
results. Unfortunately, the measurements must have been configured manually, since the
provided Spirent does not contain licenses to automate the testing scenarios.

Measuring performance of the software IP routing using GNU/Linux-based operating

5

system with 40 Gigabit Ethernet can reveal bottlenecks that need to be eliminated on the
way to a full-speed 40 Gigabit TCP/IP processing. If the system processes packets on
Layer 3 fast enough, next step is to optimise higher layers of the network stack.

6

Chapter 2

40 Gigabit Ethernet

The 40 and 100 Gigabit Ethernet were ratified in 2010 as the IEEE 802.3ba standard [50].
These speeds open doors to significantly higher-capacity networks and enable networks
to scale in ways that were previously impossible. The 40 and 100 GbE operate in full
duplex mode only. This is also the first time two speeds have been included in an Ethernet
standard.

A rough estimate of the CPU processing required to handle a given Ethernet link speed
is that one hertz of CPU processing is required to send or receive one bit. This general rule
of thumb was first stated by PC Magazine in the mid 1990’s, and it is still used as a rule
of thumb today [1].

The core networking doubles its speed approximately every 18 months, whereas CPU
I/O performance doubles every 24 months. The growth of Ethernet speed has already
surpassed the growth of microprocessor performance [1]. Figure 2.1 shows, that the 802.3ba
Ethernet standard further extends the performance gap.

The 802.3ba standard specifies the physical coding sublayer that is common to both 40
and 100 Gb/s physical layer implementations [50]. This physical coding sublayer is known
as 40GBASE-R and 100GBASE-R. 802.3ba further specifies the following 40 GbE port
types. All of them use 4 fiber pairs and 40GBASE-R physical coding.

� 40GBASE-SR4 runs over multimode fiber with Short reach for at least 100 m range

� 40GBASE-LR4 runs over single mode fiber with Long reach, with the required oper-
ating range at least 10 km

� 40GBASE-CR4 is a Copper type over twinaxial cable

� 40GBASE-KR4 is a port type for bacKplanes

� 40GBASE-ER4 with an Extended operating range at least 30 km, which is currently
under discussion by the IEEE P802.3bm 40GBASE-ER4 Task Force [52].

The 40GBASE-SR4 runs on Quad (4-channel) Small Form Factor Pluggable (abbrevi-
ated as QSPF or QSPF+). QSPF is a high-density fiber connector with 12 strands of fiber.
Each channel has a dedicated transmit fiber and a dedicated receive fiber. The middle four
fibers remain unused [8]. The channel layout is shown in figure 2.2.

7

Figure 2.1: Network and CPU performance gap (source: [8])

Figure 2.2: IEEE 802.3 Ethernet Channel Layout (source: [8])

8

Figure 2.3: Ethernet frame format

2.1 Frame rates

At 40 Gigabits per second rate, it takes 8
40×109

= 0.2 ns to transfer a single octet. The time
to transfer a whole frame depends on its size. The standard Ethernet frame size remains
unchanged in the IEEE 802.3ba standard and is between 72 and 1526 octets. Frames are
separated by the Interframe gap (IFG) - a pause between two consecutive frames. In 40 and
100 Gigabit Ethernet, the length of IFG may vary due to clock tolerance and lane alignment
requirements, but it must be at least 1 octet. The mean length of IFG is 12 octets [50].

Figure 2.3 shows the Ethernet frame format with no extensions (e.g. 802.1Q VLAN
tag). Each frame starts with an 8-octet Preamble, which consists of a 7-octet pattern of al-
ternating 1 and 0 bits, and 1 octet of 1010 1011 value called Start of Frame Delimiter (SFD).
The SFD is designed to break the previous 7-octet pattern and to signal the start of the
actual frame [50].

The Destination MAC address, Source MAC address and Type or Length fields form the
link-layer Ethernet header. The Type or Length field represents Type in case of Ethernet
II (DIX) frame and Length in case of IEEE 802.3 frame. Both formats are in use today [5].

The Payload field represents the transferred Layer 3 data of a variable size. The size
of the data is bound by the standard Ethernet frame size and can be up to 1500 octets,
which is the Maximum Transmission Unit (MTU) of Ethernet [50]. Frame Check Sequence
(FCS) is a 4-octet cyclic redundancy code to check the integrity of the received frame.

The Preamble, FCS and IFG carry no data and provide a necessary overhead of 24 octets
for each frame. The size of this overhead is independent from the Payload size. Upon
arrival of a frame, the rest is transferred from a network adapter to the host CPU and
processed. The data in the Ethernet header (Source and Destination MAC addresses and
Type or Length) are used for L2 processing. The data in the Payload field are used for L3
processing (i.e. routing).

The maximum sized frame is 1538 octets including the Interframe gap (8-octet Preamble
+ 14-octet Ethernet header + 1500-octet Payload + 4-octet FCS + 12-octet Interframe
gap). At 40 Gbps rate, a traffic consisting of only the maximum sized frames of 1538
octets produces 40×109

1538×8 = 3 250 975 frames per second. In reference to the minimum frame

size of 84 octets including IFG, the 40 Gigabit Ethernet can transmit up to 40×109

84×8 =
59 523 809 frames per second.

Since each frame must be processed separately, such high frame rates require enormous
fast processing speed. Despite the continual frame rates increases, the 1500 byte Maximum
Transmission Unit (MTU) of Ethernet remains unchanged.

9

Extensions to allow larger frames were made by several vendors. The typical maximum
sized jumbo frames in use are 9 038 octets (carrying 9 000 octets of Payload) [2]. The
40 GbE transmits 40×109

9038×8 = 555 555 of such jumbo frames per second at full rate.

2.2 Throughput

With 40 GbE, not only the per frame processing became a concern. In case of the maximum
sized frames, 40 Gbps Ethernet NIC transfers 3 259 452 × 1514

.
= 4.6 GB/s of L2 data

(Ethernet header and Payload) to the host CPU. Since the frame overhead is independent
from its size, the efficiency of Ethernet drops significantly with smaller frames. In case of
the minimum sized frames, the transfer rate drops to 59 523 809 × 60

.
= 2.6 GB/s while

still operating at 40 Gbps rate. Such data rates require appropriate bus between the NIC
and the CPU to operate at full speed.

A single PCI-Express 2.0 lane provides throughput of 5 Gigatransfers per second in each
direction [39]. In this case, Gigatransfer per second is the same as gigabit per second, but
it also includes the bits that are lost as a result of the interface overhead. PCI-Express 2.0
uses 8b/10b coding, that is, 8 bits of data cost 10 bits to transfer (the same as in SATA
case) [20]. Therefore, the actual bandwidth is 500 MB/s per lane. A PCI-Express 2.0 link
with 8 lanes provides 4 GB/s throughput, which is not enough to transfer the 40 GbE
traffic between the NIC and the CPU. The widest 16-lanes link doubles the throughput to
8 GB/s, which is sufficient for a 40 GbE adapter.

PCI-Express 3.0 increases throughput to 8 Gigatransfers/s in each direction for a single
lane [39]. Additionally, it uses more efficient 128b/130b coding. This way, a bandwidth of
984.6 MB/s per lane is achieved, almost twice the PCI-Express 2.0. An 8-lane PCI-Express
3.0 link provides 7 876.8 MB/s bandwidth which is sufficient to handle 40 GbE traffic.

The above calculations do not include an additional overhead of the PCI-Express link
headers and signalling interrupts. The PCI-Express devices are required to support the
Message Signalled Interrupts (MSI) feature [39]. MSI is a technique to generate interrupts
by writing to a specified address, which has been written into the peripheral’s configuration
during initialisation. The interrupt signalling consists of sending a Write request over the
PCI-Express link to the specified address [35]. There can be up to 32 MSI interrupts
assigned to a single device, but the number of interrupts the device uses must be a power
of 2 [38].

MSI-X is an extension to the MSI mechanism, which introduces various new features.
MSI-X provides support for signalling an interrupt directly to a particular CPU and it
allows to use up to 2048 interrupts and the number of interrupts is not restricted to a
power of 2. This feature is used by modern 40 GbE adapters to spread the work related to
traffic processing among multiple CPUs. The device can use either MSI or MSI-X, but not
both simultaneously [38].

Although both PCI-Express 2.0 x16 and PCI-Express 3.0 x8 links can be used for 40 GbE
cards, NIC vendors tend to produce 40 GbE PCI 3.0 x8 adapters, because a PCI-Express
x8 adapter can be plugged into a x16 slot, but not the other way round [39]. An adapter
with less lanes saves both costs and troubles finding an empty x16 slot.

10

2.3 Compatibility

The previous 10 Gigabit Ethernet standard was ratified by the IEEE 802.3 Working Group
in 2002 [48]. As opposed to 40 GbE, the cabling plant of 10 GbE uses just a single pair
of fiber. In 2013, Cisco introduced a replacement that does not require a change to the
cabling plant and makes it possible to run 40 GbE over a single pair of multimode fiber [4].

Since its ratification in 2002, it took four years to standardise 10 GbE over copper
twisted pair 10GBASE-T in 2006 [49]. 10GBASE-T can run over a Category 6 cable within
the range of 55m. For full 100m range, a Category 6a cable is required [49]. One of the
previous barriers to 10GBASE-T adoption was the power consumption per port compared to
other 10 GbE variants. However, improvements in semiconductor manufacturing technology
significantly decreased power use to the point where it is no longer a concern. Nowadays,
10GBASE-T and Category 6A cabling costs less than optical fiber technology [32].

The 40 GbE over Category 8 copper twisted pair is currently being discussed by the
IEEE P802.3bq 40GBASE-T Task Force. The maximum range for 40GBASE-T is planned
to be just 30 meters [51]. Such range should be sufficient for most switch-to-server connec-
tions in data centres. Because of the shorter distance, the power consumption of 40GBASE-
T should be less than of 10GBASE-T [32].

40 Gigabit Ethernet is backward compatible with its predecessor. Due to concerns
around vendor and equipment interoperability, IEEE has determined they will not sup-
port or define Jumbo frames [2]. Modern 100Mbps or higher Ethernet also uses constant
signalling, which avoids the need for the preamble [59]. However, the frame format is pre-
served for today’s Ethernet transmission speeds to avoid making any changes. With the
upcoming 40GBASE-T variant, 10M/100M/1G/10G/40G link speed auto-negotiation can
be expected in the future.

The 40 Gigabit Ethernet protocol support was introduced in the Linux kernel by various
NIC vendors. Red Hat Enterprise Linux 7 supports 40 Gigabit network interface controllers
since its initial release [42]. Additional support was also introduced in RHEL 6.6 [41].

11

Chapter 3

Networking in the Linux kernel

The Linux kernel version 3.10 consists of nearly 17 million lines of code and the networking
is arguably half of the kernel. The GNU/Linux operating system is used in a wide range
of routers. Ranging from home and small office routers, to enterprise routers and core
high-speed routers on the Internet backbone [47].

In reference to the ISO/OSI layered model of network, the kernel does not handle any
layer above L4. Those layers (the session, presentation and application layers) are handled
solely by user-space applications. The physical layer (L1) is also not handled by the Linux
kernel, but by the network interface card [45]. Each layer is handled by its corresponding
subsystem in the kernel. Figure 3.1 shows the distribution of responsibilities for each layer
of the ISO/OSI model.

Figure 3.1: Linux kernel layers

Every received incoming frame is passed to the kernel. For a DMA-capable network
card, the kernel allocates a buffer from its memory (receive ring buffer) and passes its
descriptor to the device driver during the device initialisation. These descriptors are used
to store the frames received on the network card by using DMA transfers [46]. A buffer
descriptor indicates where the buffer resides in the kernel memory and how big the buffer
is. The purpose of the DMA transfer is to move data without CPU intervention. Once a

12

complete frame is transferred using a device DMA transfer, the device raises an interrupt
to inform the kernel about the received data [46].

Each received packet is then handled by a matching L3 protocol handler. An IPv4 packet
is handled by the ip rcv() function and an IPv6 packet by ipv6 rcv() [45]. Similarly, each
outgoing packet is passed downwards through the layers of the network stack. The device
driver is associated with a specific link type (e.g. Ethernet), so it knows how to interpret
the L2 header and extract the information about which L3 protocol is encapsulated [5].

Figure 3.2: Linux kernel traffic flow (source: [45])

Figure 3.2 shows an overview of the traffic flow in the Linux kernel described above.
Parts that are discussed in this thesis include the Forward path for IPv4 packets (routing),
Ingress traffic control, Egress traffic control and the Fastroute feature, which is mentioned
briefly as it is no longer supported [45]. The hardware of NICs, Neighboring and L4
protocols are not discussed in this thesis. As the packet passes through different layers of
the stack, the kernel manipulates it using an internal data structure, called socket buffer.
This structure contains the actual packet, but it is not copied between layers. Instead, a
pointer to the structure is passed when passing the packet through the stack [5].

3.1 Socket buffer

The socket buffer (struct sk buff, often abbreviated as skb) is an internal kernel data struc-
ture that represents an incoming or outgoing packet. The socket buffer struct sk buff is
defined in include/linux/skbuff.h of the kernel source code [22]. A single packet is always
stored in its own skb as the packet crosses through the kernel layers. Some members of the
skb are set sooner or later depending on the direction of the packet [45]. Listing 3.1 shows
a part of the struct sk buff definition.

13

s t r u c t s k bu f f {
. . .
s t r u c t sock * sk ;
s t r u c t n e t d ev i c e *dev ;
. . .
be16 p ro to co l ;

unsigned long s k b r e f d s t ;
. . .
s k bu f f d a t a t t a i l ;
s k bu f f d a t a t end ;
unsigned char *head ,

*data ;

s k bu f f d a t a t t ranspo r t heade r ;
s k bu f f d a t a t network header ;
s k bu f f d a t a t mac header ;
. . .

} ;

Listing 3.1: Notable members of struct sk buff

Every transmitted skb has an associated socket object *sk, which points to the socket that
the packet comes from. It is a network layer representation of sockets. If the packet is
forwarded, then sk is set to NULL, because it was not generated on the local host. For
incoming packets, the *dev member of skb structure points to the incoming network device,
and for outgoing packets to the outgoing network device [45].

The protocol member of skb represents the Type or Length field found in the Ethernet
header. If the value is less than 0x0600 then the frame is interpreted as an Ethernet II
frame and the field represents Type (e.g. 0x0800 in case of IP or 0x86DD in case of IPv6).
Otherwise it is interpreted as an 802.3 frame and the field represents Length. The be16
data type denotes a 2-byte Big Endian value [22].

The skb refdst member is not assigned immediately upon frame reception, but it is
assigned by a higher-layer protocol handler (e.g. in the IPv4 stack). The skb refdst member
is used to store a reference to the result of a routing decision, called destination entry object.
This object is created by the routing subsystem and it points to the next packet processing
function [45].

The head and end point to the beginning and end of the space allocated to the buffer,
whereas the data and tail are set while moving through the stack according to the layer
which currently processes the packet [5]. The sk buff data t data type is a typedef to either
char* or unsigned int. In the first case it is a direct pointer to the data, in the later case it
represents offset [22].

The mac header member is a link layer encapsulation and points to the start of the L2
header in the frame. Similarly there are network header and transport header members of
struct sk buff.

Figure 3.3 shows the discussed members of the struct sk buff and their relationship to
the Ethernet frame carrying a TCP/IP packet.

14

Figure 3.3: Socket buffer structure

According to the protocol member, a pointer to the skb of the received packet is passed
to a higher-layer protocol handler. In case of an IPv4 packet, it is the ip rcv() function,
which is part of the Linux IPv4 stack.

3.2 IP stack

The Linux IPv4 stack, or simply the IP stack, claims to be the most RFC-compliant network
stack available [27]. The functions found in the IPv4 stack are responsible for handling IPv4
packets only. IPv6 packets are handled by the IPv6 stack, which is different, however, most
of the principles of IPv4 processing, apply to IPv6 processing as well [45].

Figure 3.4 shows the core functions of the IP stack for ingress packet processing in
the Linux kernel. For the sake of simplicity, the figure shows no IPsec, Fragmentation or
IP-Options processing. The NF IP * items represent places where the Netfilter hooks can
be applied. Netfilter is an internal kernel framework for packet filtering, network address
translation, port translation, and more [60]. Netfilter can be manipulated from user-space
using the iptables utility.

The ip rcv() function performs mostly sanity checks - IP version, IP checksum and
header length are checked [22]. If the received packet passes all the checks, it proceeds
to the NF INET PRE ROUTING hook callback, if such callback is registered. If it was
not discarded by the netfilter hook, the skb associated with the packet is passed to the
ip rcv finish() function, where a lookup in the routing subsystem is performed. The routing
subsystem mainly assigns the skb→ skb refdst and it is further discussed in section 3.3.

Depending on the routing decision, the packet is either dropped with no further pro-
cessing or passed to the ip local deliver() function in case the local host is the destination,
or to the ip forward() function in case it needs to be forwarded [45]. Packets to be deliv-
ered on the local host are passed to a higher-layer protocol handler (e.g. TCP) for further
processing.

Packets that are going to be forwarded are passed to the ip forward() function. This

15

Figure 3.4: Ingress packet processing in the IPv4 stack

16

function checks and decrements the value of the Time To Live (ttl) field in the IPv4 header.
If it reaches 0, the packet is discarded and an ICMPv4 message with

”
TTL Count Exceeded“

code is sent back [45]. Moreover, each time a packet is being forwarded and the TTL is
decremented by 1, the checksum of the IPv4 header must be recalculated, as its value
depends on the IPv4 header, and the TTL is one of the IPv4 header members. These tasks
are done by the ip forward() function [45]. The output processing function for the skb is
further set to ip output(). The packet is then passed to the ip forward finish() function,
which updates forwarding statistics and invokes the output processing function [45].

The ip output() function updates transmission statistics and assigns the output device
to the skb→dev member. The packet is then passed to the ip finish output() function, which
must fragment the packet in case it is larger than the MTU of the skb→dev device. The
function further takes care of neighboring using Address Resolution Protocol (ARP) [22].
The neighboring subsystem is outside the scope of this thesis, but in case the link-layer ad-
dress of the destination is not known, the packet transmission can be significantly delayed.

3.3 Routing subsystem

Routing takes place on L3, so it is entirely kernel’s responsibility to forward packets to their
destination. For each packet, incoming or outgoing, a lookup in the routing subsystem is
performed [45]. The decision about whether a packet should be forwarded and which
interface it should be sent on is done based on the result of the lookup in the routing
subsystem. The routing subsystem is a component of the kernel’s IP stack and is responsible
for forwarding packets and maintaining the forwarding information base (FIB) [45].

Familiar routing daemons, such as Quagga or Bird, are entirely user-space applications.
They are not responsible for routing any packet. Instead, these routing daemons manipulate
the kernel’s FIB to contain the selected routes based on the routing protocol and algorithm
they use (OSPF link-state, BGP best path, etc.). To use these protocols and algorithms,
these user-space daemons usually maintain routing tables of their own, which should not
be confused with the FIB used by the kernel [45]. The kernel’s FIB is manipulated from
user-space either by ioctl() or by modern Netlink sockets [33].

Advanced routing topics, such as multipath and multicast routing are not covered in
this thesis. Multipath routing provides ability to add more than one nexthop to a route [45].
Otherwise only one nexthop can be specified for a destination. Multicast routing provides
ability to route packets destined to multicast addresses [45].

The Linux kernel supports up to 255 routing tables that can be used for policy routing.
However, the use of multiple routing tables can make a router very complex and therefore
policy routing is beyond the scope of this thesis. With no policy routing, there are two
routing tables created by the kernel while booting - the local FIB table and the main FIB
table. The local table contains routing entries of local addresses. Routing entries can be
added to the local table only by the kernel. Adding routing entries to the main table is
done by a system administrator or by routing daemons or as a result of an ICMP Redirect
message [45].

The routing entries of the kernel’s FIB table are organised as a Trie structure. The
routing lookup in the Linux kernel uses longest matching prefix lookup algorithm called
FIB TRIE (also known as LC-trie), which performs good for large routing tables. The
routing lookup can consume much of CPU time, depending on the size of the FIB table. It
can also consume much of the memory as the algorithm is rather complex [45].

17

A lookup is done by the fib lookup() function, defined in the include/net/ip fib.h file of
the kernel source code [22]. When the fib lookup() function finds a proper entry in the FIB
table, it builds a fib result object, which consists of various routing parameters, including
the next hop associated with the outgoing interface [45]. Listing 3.2 shows implementation
of fib lookup when multiple routing tables configuration is disabled.

i n t f i b l o okup (s t r u c t net *net , const s t r u c t f l ow i 4 * f l p , s t r u c t f i b r e s u l t *

r e s)
{
s t r u c t f i b t a b l e * t ab l e ;

t ab l e = f i b g e t t a b l e (net , RT TABLE LOCAL) ;
i f (! f i b t a b l e l o o kup (tab le , f l p , res , FIB LOOKUP NOREF))
re turn 0 ;

t ab l e = f i b g e t t a b l e (net , RT TABLE MAIN) ;
i f (! f i b t a b l e l o o kup (tab le , f l p , res , FIB LOOKUP NOREF))
re turn 0 ;

re turn −ENETUNREACH;
}

Listing 3.2: Implementation of the fib lookup() function

The flowi4 object consists of fields that are important to the IPv4 routing lookup
process, including the destination address, source address, Type of Service (TOS), and
more [45]. In fact the flowi4 object defines the key to the lookup in the routing tables. For
IPv6 there is a parallel object named flowi6. Both are defined in the include/net/flow.h file
of the kernel source code [22]. The fib lookup() function first searches the local FIB table.
If the lookup fails, it performs a lookup in the main FIB table [45]. If that fails as well, an
error code representing network unreachable is returned.

After a lookup is successfully done, a destination entry object is built and associated with
the skb [45]. The destination entry object is implemented by struct dst entry, defined in the
include/net/dst.h file of the kernel source code [22]. The result of the lookup is referenced
by the struct fib result *res pointer, which indirectly references the created dst entry object.

The most important members of the dst entry structure are two callbacks named input
and output. These callbacks are assigned to be proper handlers according to the routing
lookup result. For incoming unicast packets destined to the local host, the input callback
is set to ip local deliver(), and for incoming packets that should be forwarded, this input
callback is set to ip forward(). For a packet generated on the local machine and sent away,
the output callback is set to ip output() [45]. Listing 3.3 shows a part of the struct dst entry
definition.

s t r u c t d s t en t ry {
. . .
i n t (* input) (s t r u c t s k bu f f *) ;
i n t (* output) (s t r u c t s k bu f f *) ;
. . .

}

Listing 3.3: Destination callback members of struct dst entry

A reference to the dst entry, which was created as a result of the routing decision,
is assigned to the skb→ skb refdst member. The ip rcv finish() function further calls the

18

input callback which passes the skb either to the local host processing or to forwarding,
as described in section 3.2. In case of forwarding, the output callback is further set to the
ip output function by the ip forward finish(), as described in section 3.2,

In terms of performance, there is currently not much space for improvements as each
skb must be handled separately and must be passed to the described functions of the IP
stack. In kernels prior to 3.6, there was an IPv4 routing cache with a garbage collector [45].
The IPv4 routing cache was removed in kernel 3.6 (released in July 2012), as it proven to
be inefficient and vulnerable to DoS attacks [36].

There used to be a feature called Fastroute that allowed device drivers to route incoming
traffic during interrupt context using a small cache. The packets were forwarded to the
outgoing interface without having to pass through the higher layer (IP) [45]. However,
this feature is not compatible with other important features, such as Netfilter firewall or
advanced routing, for the simple reason that this low-level forwarding would bypass them.
Starting with the 2.6.8 kernel, Fastroute is no longer supported and its implementation was
removed from the Linux kernel [45].

As discussed above, the L3 packet processing and routing handle packets associated with
their own skb. However, the lower-layer part of the networking code can provide significant
improvements before the skb enters the ip rcv() function. The improvements depend on
how this code handles the ingress frames.

3.4 Ingress traffic processing

The traditional way of processing frames from NIC is interrupt-driven [45]. Each incoming
frame is an asynchronous event which raises a hardware interrupt. Interrupt handlers
run asynchronously with either the current interrupt level disabled or with all interrupts
disabled [34]. The handlers could interrupt other potentially important code, therefore they
need to run as quickly as possible. Interrupt handlers immediately respond to hardware
and perform time-critical actions, however, other less critical work should be deferred to a
later point when interrupts are enabled [34].

Upon frame reception, the hardware interrupt handler of the network adapter performs
the following immediate tasks: [5]

1. Copies the frame into an sk buff data structure. If DMA is used by the device, the
kernel needs only to initialise a buffer and pass its descriptors to the driver, which
instructs the device to use DMA. The received frame is then copied by a DMA transfer.

2. Initialises some of the sk buff members for later usage by upper network layers, notably
the protocol member, which identifies the higher-layer protocol handler and will play
a major role later.

3. Updates some other parameters private to the device, such as variables for statistical
purposes.

4. Signals the kernel about the new frame by scheduling the NET RX SOFTIRQ softirq
for execution.

To keep the execution of the handler as short as possible, further frame processing is
performed later in the NET RX SOFTIRQ routine. This softirq routine actually performs
an interrupt-related work not performed in the hardware interrupt handler [5]. The routine
further passes the received frame to the corresponding L3 protocol handler according to the

19

protocol member of the skb [34]. In case of IPv4, this is the ip rcv() function described in
section 3.3. Moreover, the softirq routine is threaded and can run concurrently on different
CPUs [34].

However, such method of packet processing became insufficient with the emerge of high-
speed network cards. Even a moderately busy interface can handle thousands of packets per
second and per-packet interrupts quickly overwhelm the processor with interrupt-handling
work [16]. On the way towards high-speed packet processing on the host CPU, packet
processing in the network stack must have been adapted.

NAPI (
”
New API“, though not so new anymore) is an interrupt mitigation mechanism

used with network devices [12]. NAPI mixes interrupts with polling and gives higher per-
formance under high traffic load than the old approach, by reducing significantly the load
on the CPU [5].

3.4.1 NAPI

NAPI was first introduced during the Linux kernel 2.5 development cycle as an exten-
sion to the device driver packet processing framework, which is designed to improve the
performance of high-speed networking [26].

A NAPI-compliant device driver must implement a poll() function used by the kernel
to fetch the received frames. The first frame received causes a hardware interrupt and
its handler to run as usual. In the handler, however, the driver disables interrupts from
the device and calls the netif rx schedule() function. This function adds the device to the
kernel’s poll list and schedules the NET RX SOFTIRQ routine. From now on, the task of
delivering more incoming frames from the device’s queue is delegated to the kernel [5].

In the NET RX SOFTIRQ routine, the kernel iterates over the polll list and calls the
poll() function of the device driver to fetch the frames from the device’s ingress queue
(receive ring buffer). The kernel fetches the packets and passes them to the higher-layer
protocol handler for further processing [45]. The poll() function is called with a maximum
number of packets (budget) it is allowed to feed into the kernel. It should process up to
that many packets and return [12]. Figure 3.5 shows the NAPI workflow described above.

When the kernel is ready to deal with more packets, the poll() function of the next device
in the poll list will be called. The scheduled devices are probed in a round-robin manner.
The total number of packets fetched from devices in the poll list is limited. If it was not suf-
ficient to serve all devices in the poll list and the kernel should release the CPU, the devices
have to wait for the next NET RX SOFTIRQ run [5]. The softirq NET RX SOFTIRQ
processing for NAPI-compliant drivers is implement by the net rx action() function defined
in net/core/dev.c [22]. The function overview is shown in figure 3.6.

When a device driver uses NAPI, it is up to the driver to implement any congestion
control mechanism. This is because ingress frames are kept in the NIC’s memory or in
the receive ring buffer managed by the driver, and the kernel cannot keep track of traffic
congestion [5]. When the host becomes congested, the packets are lost because of not
enough space in the ring buffer. The packets that are going to be lost are not fed into the
network stack, so they take no CPU time [44].

When a device cannot clear out its ingress queue in a single poll, it has to wait until the
next call. The kernel keeps calling the driver’s poll() function until it empties the device’s
ingress queue out [5]. At that point, there is no need anymore for polling. The device is
removed from the poll list and the device driver can re-enable interrupt notifications for the
device [5]. Nowadays, almost every driver supports the NAPI feature [45].

20

Figure 3.5: NAPI workflow

NAPI reduces interrupt load on the system and lowers the CPU utilisation under heavy
load, but it increases latency as packets are not processed as quickly [26]. User-space
applications that need the lowest possible latency and are willing to pay a cost of higher
CPU utilisation, can use a capability for busy polling on sockets (called Low Latency
Sockets), which was added in kernel 3.11 [45]. Low Latency Sockets eliminate the cost of
the interrupt and context switch and provide latency very close to the hardware latency [18].

In addition to NAPI, various offload engines were designed to take over some responsi-
bilities of the networking code and implement them in hardware.

3.4.2 Receive offloads

Network adapter vendors have been adding protocol support to their cards. This support
can vary from the simple (checksumming of packets, for example) through to full TCP/IP
implementations [11].

To mitigate CPU load spent on TCP overhead completely, the TCP Offload Engine
(TOE) is implemented in several NICs. TOE features a full TCP/IP implementation in
adapter, including the TCP connection management. However, Linux has never supported
the TOE features of any network cards [11]. Vendors have made modifications to the Linux
kernel to support TOE, and these changes have been submitted for kernel inclusion but
were rejected [27].

Linux kernel engineers currently feel that the full network stack offload that TOE pro-
vides has little merit [27]. TOE shorts out much of the Linux networking code, described
in the previous sections. In the process, it cuts out features like Netfilter, traffic control,
and more. The Linux networking stack is easy to fix when a bug or security issue comes
up [11]. If a security problem turns up in a TOE adapter, instead, there is very little which
can be done to fix it. Linux engineers claim that 100 Mbps TOE adapters (which used

21

Figure 3.6: Softirq NAPI routine net rx action (source: [5])

22

to be the bleeding-edge high speed) are now slower than the Linux networking stack. So
any performance advantage from TOE is a temporary thing, but once the TOE’s code is
merged, it must be supported. As a result of this, TOE support might become a long-term
maintenance burden [11].

Although inclusion of TOE support was rejected, there are ways to obtain TOE’s per-
formance without necessitating stateful support in the cards [11]. Everything that is worth-
while can be done with stateless offloads. One of the simplest stateless offload technique
is computing checksums in hardware. With receive (Rx) checksum offload, IP, TCP and
UDP checksums are checked in the hardware of the NIC upon frame reception.

While checksum offload provides some performance improvement, a large portion of
per-packet processing overhead remains. Each packet is passed through the entire IP stack,
as described in section 3.2. Dealing with each single packet takes a significant amount of the
CPU time, particularly on high-speed Ethernet links that can produce millions of packets
per second.

Given the importance of per-packet overhead, it makes sense to raise the MTU. However,
most connections of interest go across the Internet, and those are all bound by the lowest
MTU in the entire path. As noted in section 2.3, the IEEE has determined no support for
frames with MTU larger than 1500. Protocol-based mechanisms for MTU discovery exist,
but they do not work well on the Internet, because in particular, a lot of firewall setups do
not allow them to work [14].

If the kernel can not use a larger MTU, it can pretend that it is using a larger MTU.
An optimisation technique to pretend larger MTU is provided by the Large Receive Offload
(LRO). LRO merges packets of the same TCP flow together, creating one large super-frame,
before it is passed to the higher network layers [14]. Merging multiple packets and processing
them as a single packet reduces CPU overhead and thus improves performance [45]. The
merging can be done either in the driver or in the hardware. Even LRO emulation in the
driver has performance benefits [14].

Since LRO merges everything of the same TCP flow into one large super-frame, the
differences in the headers of these packets are lost [14]. If a system is acting as a router, it
should not be changing the headers on packets as they pass through, because it brakes the
end-to-end principle and can significantly impact performance [45].

A generic solution was introduced by the Generic Receive Offload (GRO) to mitigate the
problems of LRO. In GRO, the criteria for which packets can be merged is greatly restricted.
The MAC headers must be identical and only a few TCP or IP headers can differ - checksums
are necessarily different and the Identification field is allowed to increment [14]. As a result
of these restrictions, merged packets can be later resegmented losslessly and therefore the
GRO feature can be used by a system acting as a router without braking the end-to-end
principle [14]. However, GRO still requires the L4 protocol to have its own segmentation
support and it is currently restricted to TCP only [45].

When using GRO, merging packets of the same flow into one large super-frame must be
time-limited. In combination with NAPI, there is no need for any special waiting code - the
kernel already calls the driver’s poll method for new packets occasionally and processes them
in batches. Thus, GRO can simply be performed at NAPI poll time without introducing any
additional latency [14]. The GRO feature improves network performance and it deprecated
LRO in recent kernels [45]. Figure 3.7 shows comparison of ingress frames processing with
and without the above described offload mechanisms.

23

Figure 3.7: Receive offloads (source: [58])

3.5 Egress traffic processing

The previous sections described how the frame reception works and the processing path
when the routing subsystem decides to forward them. After the routing decision is made
and the skb is passed to the ip finish output() function, it is further passed back to the link
layer of the networking stack. This part of the Linux networking also provides interface to
the device drivers and handles traffic control [5].

In reference to the egress traffic processing, there are two important functions in this part
of the stack - dev queue xmit() and dev hard start xmit(). The ip finish output() function of
the IPv4 stack passes the outgoing skb to the dev queue xmit() function, which determines
whether the device is queueless of queueful. If the device is queueless, such as Loopback
or Virtual interface, then the skb is passed to dev hard start xmit() directly without any
traffic control mechanism involved. The dev hard start xmit() function further prepares the
skb for transmission and passes it to the transmission function of the device driver, which
instructs the device to transmit the frame on the wire [5].

If the device is queueful, such as almost any hardware network adapter, dev queue xmit()
executes the traffic control first [5]. The traffic control implemented in the Linux kernel
uses algorithms known as queuing disciplines (often abbreviated as qdisc) to arrange the
frames in the desired order for transmission [5]. Figure 3.8 shows a brief overview of this
part of the stack.

The Linux kernel supports various queuing disciplines, that can be configured by the
tc utility. The default queuing discipline for every network device is pfifo fast [45]. The
pfifo fast is a three-band First In First Out discipline. As long as there are packets waiting
in band 0, band 1 will not be processed. Similarly, packets from band 1 are always processed

24

Figure 3.8: Egress packet processing

25

before packets from band 2. Within each band, a simple FIFO rule apply. The kernel inserts
the packets to one of the band according to the Type of Service flag of the packet [46]. A
more detailed discussion of the traffic control and its queuing disciplines is outside the scope
of this thesis.

After the packet has been selected for transmission by the traffic control, it is passed
to the ndo start xmit() function, which is implemented by the device driver. The packet
is inserted to the hardware transmit queue by the driver and transmitted. The hardware
transmit queue is implemented as a ring buffer (TX ring) and the DMA controller of the
device uses it to fetch the egress frames [22].

The adapter uses interrupts to notify the kernel when the transmission fails or succeeds.
Similarly to NET RX SOFTIRQ, which performs an interrupt-related work for incoming
traffic, the NET TX SOFTIRQ softirq handles the interrupt-related work for outgoing traf-
fic. The transmission code uses the softirq to mitigate interrupts in a similar fashion as the
reception code. Because different instances of the same softirq handler can run concurrently
on different CPUs, networking code is both low latency and scalable [5].

3.5.1 Transmit offloads

Most of the adapters that support receive checksum offload also support its counter-part
transmission (Tx) checksum offload. Tx checksum offload calculates TCP/UDP and IP
checksums of the packets in the hardware before they are transmitted on the wire.

A counter-part of LRO is TCP Segmentation Offload (TSO). With a TSO-capable
adapter, the kernel can prepare much larger packets for outgoing data (e.g. up to 64KB
in case of IPv4) and the adapter will re-segment the data into smaller packets according
to the MTU [14]. TSO is well supported in Linux - for systems which are engaged mainly
in sending of data, it is sufficient to make 10 Gbps rate [14]. TSO reduces the necessary
CPU load, bus overhead, and cache impact to send a series of packets, but it still does not
require the adapter to actually know anything about specific TCP connections - the kernel
still has to deal with the TCP states and ACKs [11].

The TCP Segmentation Offload is designed to work with TCP exclusively. To mitigate
this issue, the Generic Segmentation Offload (GSO) was implemented. Performance im-
proves even if the feature is emulated in the driver [14]. Figure 3.9 shows comparison of
egress packet processing with and without the above described offload mechanisms.

3.6 Multiqueue adapters and scaling

One of the fundamental data structures in the networking subsystem is the transmit queue
associated with each device. As described in section 3.5, the core networking code will
call the driver’s ndo start xmit() function to let the driver know that a packet is ready
for transmission [13]. The driver feeds that packet into hardware’s transmit queue, which
results in a data structure which is shown in figure 3.10.

This scheme has worked well for years, but it does not map well to devices which have
multiple transmit queues. The multiqueue devices need each transmit queue to be scheduled
independently. 10 and 40 Gigabit Ethernet devices with multiple transmit queues are very
common [13].

To provide an independent scheduling of a transmit queue, a new netdev queue structure
is implemented in the Linux kernel. The netdev queue structure encapsulates all of the
information about a single transmit queue, and it is protected by its own lock. Multiqueue

26

Figure 3.9: Transmit offloads (source: [58])

Figure 3.10: Single queue device (source: [13])

27

Figure 3.11: Multiqueue device (source: [13])

device drivers set up an array of these structures according to the number of queues. The
mq (multiqueue) queueing discipline uses the array to attach a specific qdisc to each queue.
The mq discipline is a dummy scheduler, which is used by default for multiqueue devices
instead of the regular pfifo fast discipline [19]. Figure 3.11 shows the new data structure.

In addition to multiple transmit queues, modern high-speed network adapters support
multiple receive queues as well [54]. The principle described above also applies to the receive
queues in the Linux kernel. The multiqueue support allows to scale the network load in
multiprocessor systems. Such scaling is provided by processing each queue by a different
CPU [28]. The NIC distributes packets to the queues by applying a filter that assigns each
packet to one of the receive queues. The filter is a hash function (usually Toeplitz hash
algorithm) over the network and transport layer headers of the packet and a hash key, which
is stored in the NIC’s memory. This mechanism is generally known as Receive Side Scaling
(RSS) and its goal is to increase performance uniformly [28].

Network adapters that do not support RSS but have multiple receive queues can still
benefit from multiprocessor scaling by using Receive Packet Steering (RPS), which is a
software implementation of RSS [28]. However, there are some disadvantages of RPS against
the hardware-based RSS. The calculation of the hash requires accessing data from the packet
header. That access will necessarily involve one or more cache misses on the CPU running
the RPS code - that data was just put there by the network interface and thus cannot be
in any CPU’s cache [15]. Once the packet has been passed over to the CPU which will
be doing the real work, that cache miss overhead is likely to be incurred again. Moreover,
the targeted CPU is notified by an inter-processor interrupt, which introduces another
overhead. If the NIC supports RSS and it is configured to map each hardware receive
queue to a single CPU, then RPS is redundant and unnecessary [28].

The network transmission scaling is implemented by the Transmit Packet Steering in
the Linux kernel. Transmit Packet Steering (XPS) is a mechanism for intelligently selecting
which transmit queue to use when transmitting a packet on a multiqueue device [22]. To
accomplish this, there is a configurable mapping from CPU to hardware queues. The goal
of the mapping is usually to assign the queues exclusively to a subset of CPUs, which
reduces contention on the device queue lock since fewer CPUs contend for the same queue.
Contention can be eliminated completely if each CPU has its own transmit queue. Moreover,
the cache miss rate on transmit completion is also reduced since a particular CPU is serving

28

just a subset of transmit queues [28].
Apart from load distribution, the above described mechanism also minimise cache miss

rates when configured properly. The most significant is a cache miss of a hardware interrupt
handler for the particular queue, queue lock cache miss and packet metadata in its sk buff.
RPS and RFS were introduced in kernel version 2.6.35 and XPS in 2.6.38 [28].

To complete the list, there are two additional network scaling mechanisms implemented
in the Linux kernel - Receive Flow Steering and Accelerated Receive Flow Steering. Both
provide assigning incoming packets to the CPU that the destined user-space application
runs on. The difference between them is that the Accelerated Receive Flow Steering is
implemented in the NIC’s hardware, whereas Receive Flow Steering is a software imple-
mentation. Since these two mechanisms provide network scaling to user-space applications,
they will not be discussed further in this thesis [28].

29

Chapter 4

Analysis

Basically, there are three important parts needed to perform network benchmarks at full
40 Gbit speed - a network interface card with 40 Gigabit Ethernet support, a server com-
patible with the card and a packet generator capable of generating 40 Gbps network traffic.
A chosen distribution of the GNU/Linux operating system should contain a stable and
recent kernel that supports the 40 Gb Ethernet protocol, the network interface card and
the features described in chapter 3.

4.1 Hardware equipment

The network interface card used in the experiments is Mellanox ConnectX-3 EN QSPF
dual-port PCI-E 3.0 x8 MCX314A-BCBT [54]. The card was provided by the Faculty of
Information Technology, Brno University of Technology. Mellanox ConnectX-3 EN is an
adapter that can run 10 Gigabit Ethernet and 40 Gigabit Ethernet. It also supports non-
standard 56 Gbps link speed when connected to Mellanox switches. The card is PCI-Express
3.0 x8 compatible with support for previous PCI-Express versions. Mellanox ConnectX-3
EN is a multiqueue NIC with MSI-X support up to 16 receive queues per port featuring Re-
ceive Side Scaling with hashing support for both IPv4/IPv6 and TCP/UDP flows [56, 55].
Figure 4.1 shows the block diagram of the network interface card.

The Mellanox NIC requires PCI-Express 3.0 x8 slot to take full advantage of its speed.
Brno University of Technology provided a server with the Supermicro X10DRU-i+ moth-
erboard, which features PCI-Express 3.0 slots compatible with the Mellanox Connect-X 3
EN adapter [53]. The server is further equipped with two Intel Xeon E5-2660 v3 processors
at 2200MHz with 10 physical cores per CPU and 20 logical cores per CPU when Hyper-
Threading is enabled. Each CPU has 20 MB shared L3 cache and PCI Express 3.0 support
with up to 40 lanes. The processor features Direct Data I/O technology (also known as
Direct Cache Access), which optimises cache access for networking purposes by putting the
ingress packtes directly to the CPU cache [17].

There are various software frameworks for high-speed packet generation, such as pktgen1

or Netmap2. Pktgen is an upstream component of the Linux kernel, but at the time of
writing it is not capable of generating even full 10 GbE frame rate [43]. However, it can
be combined with other frameworks for fast packet processing, such as Intel’s Data Plane

1https://www.kernel.org/doc/Documentation/networking/pktgen.txt
2http://info.iet.unipi.it/~luigi/netmap/

30

https://www.kernel.org/doc/Documentation/networking/pktgen.txt
http://info.iet.unipi.it/~luigi/netmap/

Figure 4.1: Mellanox ConnectX-3 EN block diagram (source: [56])

Development Kit3. Netmap is not an upstream component, but it provides patches to the
Linux kernel. Netmap claims to generate 14.88 million frames per second, which is a full
frame rate of 10 Gigabit Ethernet [43]. However, Netmap was not tested against 40 GbE
full frame rate of 59.5 million frames per second, as calculated in section 2.1. Although both
frameworks seem promising, their benchmarking and description are outside the scope of
this thesis. Moreover, to perform the measurements with a software-based packet generator,
another GNU/Linux server and a 40 GbE NIC is needed.

Another solution is to use a hardware-based packet generator such as Spirent [9]. With
kind permission of CESNET, the Czech national research and education network operator,
the Spirent SPT-3U equipped with a combined 100Gb / 2x40Gb Ethernet module was used
to perform the measurements. The Spirent packet generator supports generation of custom
Layer 2-7 traffic, custom frame length and various predefined traffic patterns with variable
frame length called Internet Mix (iMix). These patterns represent a typical distribution
of frame lengths found in the Internet traffic and they can be further customised. Spirent
SPT-3U further supports configuration of custom frame rates and bandwidth use [9].

4.2 Software equipment

The Red Hat Enterprise Linux 7 operating system features 40 Gb Ethernet support and
the kernel based on upstream version 3.10 [42]. To avoid licensing fees, CentOS 7 can be
installed. CentOS 7 provides support for the 40 Gigabit Ethernet protocol and a binary
compatible kernel with RHEL 7 [57]. Since the kernel version 3.10 was released in 2013,
the latest upstream kernel can be installed to provide an additional comparison. The latest
upstream kernel can be either compiled directly from the source code or downloaded from
a third party repository. The ELRepo repository contains the kernel-ml package with the
latest upstream kernel version, which is 4.0.2 at the time of writing [40].

3http://dpdk.org/

31

http://dpdk.org/

Figure 4.2: RFC2544 test implementation (source: [6])

Mellanox ConnectX-3 EN is supported by the mlx4 driver found in the drivers/net/eth-
ernet/mellanox/mlx4 directory of the Linux kernel source code. It is the low level driver
implementation for the Connect-X adapters designed by Mellanox Technologies. Some
Connect-X adapters can operate as an InfiniBand adapter and as an Ethernet NIC. To ac-
commodate the two flavors, the driver is split into modules mlx4 core, mlx4 en and mlx4 ib.
The mlx4 core module handles low-level functions like device initialisation and firmware
commands processing. The mlx4 en module handles Ethernet specific functions and plugs
into the network device layer of the Linux kernel. Similarly, the mlx4 ib module handles
InfiniBand specific functions [55]. By default, the driver uses adaptive interrupt moderation
for the receive path, which adjusts the interrupt moderation to the traffic pattern [55].

Spirent TestCenter Application version 4.46 is provided to use the Spirent hardware
packet generator. The application allows to create virtual devices connected to selected
ports. The devices can use a full-featured IPv4 or IPv6 stack, including ARP/ND, ICMP,
TCP/UDP etc [10].

4.3 Benchmarking methodology

Procedures described by RFC 2544 can be used to measure routing performance of the
Linux kernel. RFC 2544 specifies the benchmarking methodology for network interconnect
devices. The ideal way to implement the series of tests described in RFC 2544 is to use a
tester with both transmitting and receiving ports. Connections are made from the sending
ports of the tester to the receiving ports of the device under test (DUT) and from the
sending ports of the DUT back to the tester [6]. Figure 4.2 shows the test implementation.

Since the tester both sends the test traffic and receives it back, after the traffic has been
forwarded by the DUT, the tester can easily determine if all of the transmitted packets were
received [6]. The Spirent TestCenter Application provides statistics about transmitted and
received frames, which can be used for this purpose.

4.3.1 Traffic generation

The RFC 2544 specifies the following frame sizes to be used on Ethernet: 64, 128, 256,
512, 1024, 1280 and 1518 [6]. However, at least 66 B frame size must be used in case of
transmitting UDP over IPv6 - the size of L2 header is 14, the size of CRC is 4, the size of
IPv6 header is 40 and the size of UDP header is 8.

In addition to the specified frame sizes, a custom frame size distribution can be defined

32

Figure 4.3: Yearly frame size distribution at AMS-IX (source: [31])

for the purpose of a real internet traffic simulation. The Amsterdam Internet Exchange
(AMS-IX) provides statistics of the frame size distribution in the Internet traffic [31]. Fig-
ure 4.3 shows yearly frame size distribution provided by AMS-IX. This distribution can be
configured in the Spirent TestCenter Application, however, to use the same iMix for both
IPv4 and IPv6, the minimum frame size must be increased to 66 as described above. To
avoid an unfair packet scheduling by the server, all packets should be assigned the same
Type of Service flag.

Unfortunately, the provided Spirent TestCenter Application does not contain license to
configure a device participating in TCP streaming. This constraint could be workarounded
by sending TCP packets with no flags set, however such configuration is also not possible.
The generated TCP packets always contain TCP SYN flag, which bypasses the Generic
Receive Offload described in subsection 3.4.2. Therefore, the TCP packet processing is the
same as in case of UDP.

The Spirent TestCenter Application allows to configure exact frame rate or bandwidth
use. The measurements should distinguish at least between 50 000 frames per second or 1%
of bandwidth use. Each measurement takes 60 seconds and it is repeated 3 times. If the
kernel is able to forward all frames in at least one of the 3 measurements, the measurement
is successful. This is to determine whether the kernel is able to forward such amount of
traffic. Some network unrelated tasks performed by the kernel may cause the inability to
forward all frames, such as gathering statistics, memory management, etc.

33

4.3.2 Statistics collection

The Spirent TestCenter Application is able to display counters of transmitted and received
frames on each interface. The counters can be used to determine whether all of the trans-
mitted packets on one interface were received on the other interface and hence successfully
forwarded by the server. Unfortunately, the provided Spirent TestCenter Application con-
tains no licence to perform the RFC 2544 throughput test automatically, so the measure-
ments must be configured manually in the Spirent TestCenter application. The manual
configuration consists of configuring the transmit rate, observing the packet counters and
comparing their values. If the server forwards packets without a single loss, the transmit
rate can be increased and the test repeated.

The proc filesystem provides access to several statistics as well. The network statistics
exported via proc filesystem can be found in the /proc/net directory. The files in this
directory are read-only and cannot be manipulated using the sysctl utility. There are 2
important files for the measurements - the fib trie and fib triestat. The fib trie file exports
the kernel’s Forwarding Information Base overview. The file describes both the Main and
Local FIBs, as described in section 3.3. The fib triestat file exports metadata of the FIB
trie structures, such as average depth, maximum depth, number of leaves, etc [22].

The CPU utilisation can be observed using the perf utility, which can be found in
the tools/perf directory of the Linux kernel source code. Although perf is included in the
Linux kernel source code, it must be installed separately on most GNU/Linux distributions,
including CentOS 7. To obtain additional statistics, such as PCI-Express utilisation or
memory utilisation, the Intel Performance Counter Monitor (PCM)4 can be used. The
PCM package is not included in the official CentOS 7 repository, but it can be compiled
directly from the source code. Non-maskable interrupt watchdog must be disabled in order
to run Intel PCM. The non-maskable interrupt watchdog can be disabled by writing

”
0“ to

the /proc/sys/kernel/nmi watchdog file.

4.4 Software settings

The CentOS 7 operating system features various components that influence forwarding
performance. The performance of the CentOS 7 distribution kernel is measured in this
thesis. Further measurements also take the latest upstream kernel 4.0.2 into account [22].

To measure a bare routing performance of the Linux kernel, the Netfilter and SELinux
components should be disabled. If disabling the Netfilter is not appropriate, the iptables
utility must be used to configure the Netfilter to allow IP forwarding, because the default
rules do not allow packet forwarding in CentOS 7. Additionally, SELinux should be disabled
to prevent performance decrease. SELinux in CentOS 7 uses Enforcing policy by default.
An influence of both the components on forwarding performance can be measured.

The Linux kernel features dynamic CPU frequency scaling. The CPUFreq governors
are policies that decide what frequency should be used. The performance governor should
be used during the measurements. The performance governor sets the CPU statically to
the highest frequency available. The default governor is powersave in CentOS 7, which sets
the CPU statically to the lowest frequency [7].

To change the Linux kernel compile-time configuration, the kernel must be recompiled.
The CentOS 7 kernel provides a fair amount of features that could break existing setups

4https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-
way-to-measure-cpu-utilization

34

https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
https://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization

when disabled. The default kernel compile-time configuration does not have to provide
the best routing performance, however, it is usually used in most scenarios and hence its
benchmark results are of interests for most people.

4.4.1 CentOS 7 kernel compile-time configuration

When the Linux kernel is compiled with support for symmetric multiprocessing with the
CONFIG SMP option and runs on a multiprocessor system, the code for receiving and
transmitting packets takes full advantage of that. Every modern GNU/Linux distribution
compiled for the AMD64 architecture has the option enabled, including the CentOS 7 [5].
Advanced networking features enabled in compile-time does not have to be used in run-time.
For example, the MULTIPLE IP TABLES support is enabled in the CentOS 7 distribution
kernel, however, since the measurements presented in this thesis use no policy routing, the
simple FIB lookup principle described in section 3.3 is still performed.

The CentOS 7 Linux kernel configuration has the CONFIG NO HZ FULL option en-
abled. That is, the system uses adaptive ticks and there are no regular interrupts from the
timer which would cause additional delays during the packet processing [24].

Apart from compile-time options, the Linux kernel configuration can be changed in
run-time. The proc and sys filesystems provide access to the kernel variables that influ-
ence packet processing. Tuning of these variables can provide a significant performance
improvement when configured properly.

4.4.2 Procfs settings

The variables exported via procfs are accessible as files under /proc in CentOS 7. The
variables in the /proc/sys directory can be manipulated by the sysctl utility as well. The
files in the /proc/sys/net directory are of interest for the experiments. This directory
includes the following subdirectories:

� /proc/sys/net/ipv4 - contains variables influencing the IPv4 protocol settings

� /proc/sys/net/ipv6 - contains variables influencing the IPv6 protocol settings

� /proc/sys/net/netfilter - contains variables influencing the netfilter settings, not dis-
cussed in this thesis

� /proc/sys/net/unix - contains variables influencing communication over unix sockets,
not discussed in this thesis

� /proc/sys/net/core - contains variables influencing low-level networking settings, in-
cluding parameters of NAPI, Low Latency Sockets, etc.

The most important setting for the routing performance measurements of the Linux ker-
nel is IPv4 forwarding. It can be enabled by writing

”
1“ to the /proc/sys/net/ipv4/ip forward

file. This variable is special - its change resets all IPv4 configuration parameters to their
default state [23]. The /proc/sys/net/ipv4/conf/ifname/forwarding file can be used to fur-
ther selectively enable or disable forwarding on a particular interface. Historically, some
of the files in /proc/sys/net/ipv4 also influence settings of L4 protocols, such as memory
limits, TCP Timestamping, Selective ACKs, etc. Although these files are located in the
ipv4 subdirectory, the L4 settings are independent on the underlying protocol. Most of

35

the Layer 4 settings are auto-tuned by the kernel itself and their description is outside the
scope of this thesis [45].

Files in the ipv6 directory influence the IPv6 protocol settings only. The IPv6 pro-
tocol is disabled in CentOS 7 on all interfaces by default. To enable the IPv6 protocol
on all interfaces, the variable accessible via /proc/sys/net/ipv6/conf/all/disable ipv6 must
be changed to

”
0“. Similarly, the /proc/sys/net/ipv6/conf/all/forwarding variable must

changed to
”
1“ to enable IPv6 forwarding on all interfaces. Both settings can be changed

on per-interface basis as well.
The /proc/sys/net/ipv4/route.max size sets the maximum number of IPv4 routes al-

lowed in the kernel. This is 2 147 483 647 by default in CentOS 7, which is enough for a
full BGP table, which contains approx. 538 000 prefixes at the time of writing [29]. The
/proc/sys/net/ipv6/route.max size sets the maximum number of IPv6 routes allowed in the
kernel. This is 4096 by default in CentOS 7, which must be raised for the measurements
involving IPv6 BGP routes. The number of IPv6 prefixes announced in the Internet is
approx. 22 000 at the time of writing [29].

The source IPv4 address validation is enabled by default in CentOS 7. This feature
is called Reverse path filtering (rp filter) in the Linux kernel and it prevents IP spoofing.
However, it introduces additional processing and thus it should be disabled during the
experiments. The rp filter can be disabled on a particular interface by writing

”
0“ to

/proc/sys/net/ipv4/conf/ifname/rp filter [23]. The rp filter for IPv6 is implemented in the
netfilter subsystem of the Linux kernel and thus it can be configured by ip6tables [22].

Files in core directory provide access to low-level variables of the networking code. There
are two parameters that influence NAPI processing. The /proc/sys/net/core/dev weight
file sets the maximum number of packets that a single device can feed to the kernel in
its poll() function. The default value is 64 in CentOS 7. This value can be increased
to allow the device to feed more packets at once. However, most of the drivers provide
their own limit which cannot be overwritten unless the code of the driver is changed. This
is the case of the mlx4 driver as well, which imposes the limit to 64 packets [22]. The
/proc/sys/net/core/netdev budget file sets the maximum number of packets taken from all
interfaces by a single net rx action() run. The interfaces which are registered to polling are
probed in a round-robin manner, as described in subsection 3.4.1. To allow the kernel to
spend more time on packet processing, the netdev budget value can be increased.

The proc filesystem further provides access to the IRQ settings and statistics. The
/proc/interrupts file exports a table of all registered interrupts and their respective counters
for each CPU. Each registered interrupt has its own IRQ number. On a multiprocessor
system the interrupt can be served by any of the present CPU if the physical bus supports
it. This is the case of the PCI-Express MSI-X feature, which allows to deliver an interrupt to
a specified CPU, as described in section 2.2. The /proc/interrupts file even allows to assign
IRQ to a CPU which is not directly connected to the PCI-Express, however this would lead
to additional overhead due to inter-processor interrupts and QPI communication. Routing
performance of such configuration can be measured.

Section 3.6 described how a network adapter with multiple queues allows to scale the
network traffic processing on a multi-processor system. Each queue has assigned its own
separate IRQ, thus it can be served by a particular CPU if configured properly. The
targeted CPU is defined using a mask written to the /proc/irq/NUMBER/smp affinity
file, or using a list of CPUs written to the /proc/irq/NUMBER/smp affinity list file. The
/proc/irq/default smp affinity file specifies a default mask of CPUs for newly registered
interrupts [37].

36

The Linux kernel does not set the IRQ mapping automatically. Instead, the user must
configure it manually. The irqbalance daemon reads the content of the /proc/interrupts file
and assigns the IRQ mappings according to the load. The irqbalance daemon is part of the
CentOS 7 and it is enabled by default. While the irqbalance can introduce some performance
advantage, it does not take scaling or CPU placements (NUMA) into account [25].

The CentOS 7 operating system further features the tuned utility in its default instal-
lation. The tuned allows user to switch between user definable tuning profiles. Several
predefined profiles are already included, such as network-throughput or network-latency.
However, none of the profiles influences the low-level packet processing parameters de-
scribed in chapter 3. Instead, the tuned focuses on L4 protocol parameters such as socket
memory options [21].

4.4.3 Sysfs settings

Apart from the proc filesystem, the Linux kernel provides another virtual filesystem found
under /sys in CentOS 7. The sys filesystem exports information about loaded modules,
including the parameters if a module takes any. The /sys/modules/mxl4 core/parameters
directory contains parameters used by the mlx4 core module. The msi x parameter is set to
1 by default, which means attempt to use MSI-X. The /sys/modules/mxl4 en/parameters
directory contains parameters used by the mlx4 en module. The udp rss parameter is set
to 1 by default, which enables RSS for incoming UDP traffic. There are more parameters
taken by both modules, but they are not discussed in this thesis. Further description of the
parameters can be found in the drivers/net/ethernet/mellanox/mlx4 directory of the Linux
kernel source code [22].

Each network interface is represented by a symlink in the /sys/class/net/ directory. The
symlinks point to the corresponding network device, which is represented as a directory in
sysfs. The scaling mechanisms described in section 3.6 can be set using the files exported
in /sys/class/net/ifname/queues. Each rx-xx subdirectory represents a single hardware
receive queue. The rx-xx/rps cpus file can be used to set a mask of CPUs serving interrupt
requests from a particular hardware queue. Since the Mellanox ConnectX-3 NIC supports
RSS, the RPS feature is disabled by default - each rps cpus is set to 0. Similary, the XPS
feature can be configured via tx-xx/xps cpus. The XPS configuration should be always
checked to reflect the IRQ affinity mappings configured via proc.

4.4.4 Ethtool settings

Ethtool is a standard Linux utility for manipulating network drivers and hardware, partic-
ularly for wired Ethernet devices. Supported offload features can be displayed using ethtool
--show-offload ifname. Listing 4.1 shows the output of ethtool --show-offload eth0, where
eth0 is the Mellanox ConnectX-3 adapter.

rx−checksumming : on
tx−checksumming : on
tx−checksum−ipv4 : on
tx−checksum−ip−g ene r i c : o f f [f i x e d]
tx−checksum−ipv6 : on
tx−checksum−f coe−c r c : o f f [f i x e d]
tx−checksum−sc tp : o f f [f i x e d]

s c a t t e r−gather : on
tx−s c a t t e r−gather : on
tx−s c a t t e r−gather− f r a g l i s t : o f f [f i x e d]

37

tcp−segmentation−o f f l o a d : on
tx−tcp−segmentat ion : on
tx−tcp−ecn−segmentat ion : o f f [f i x e d]
tx−tcp6−segmentat ion : on

udp−f ragmentat ion−o f f l o a d : o f f [f i x e d]
gener i c−segmentation−o f f l o a d : on
gener i c−r e c e i v e−o f f l o a d : on
la rge−r e c e i v e−o f f l o a d : o f f [f i x e d]
rx−vlan−o f f l o a d : on [f i x ed]
tx−vlan−o f f l o a d : on [f i x ed]
ntuple− f i l t e r s : o f f [f i x e d]
r e c e i v e−hashing : on
highdma : on [f i x ed]
rx−vlan− f i l t e r : on [f i x ed]
vlan−cha l l enged : o f f [f i x e d]
tx−l o c k l e s s : o f f [f i x e d]
netns−l o c a l : o f f [f i x e d]
tx−gso−robust : o f f [f i x e d]
tx−f coe−segmentat ion : o f f [f i x e d]
tx−gre−segmentat ion : o f f [f i x e d]
tx−ip ip−segmentat ion : o f f [f i x e d]
tx−s i t−segmentat ion : o f f [f i x e d]
tx−udp tnl−segmentat ion : o f f [f i x e d]
tx−mpls−segmentat ion : o f f [f i x e d]
fcoe−mtu : o f f [f i x e d]
tx−nocache−copy : on
loopback : o f f
rx−f c s : o f f [f i x e d]
rx−a l l : o f f [f i x e d]
tx−vlan−stag−hw−i n s e r t : o f f [f i x e d]
rx−vlan−stag−hw−parse : o f f [f i x e d]
rx−vlan−stag− f i l t e r : o f f [f i x e d]

Listing 4.1: Output of ethtool --show-offload for Mellanox ConnectX3 adapter

Selected offload features can be enabled by ethtool --offload devname feature on, or
disabled by ethtool --offload devname feature off. The features listed as [fixed] cannot be
changed on this particular NIC. The rest of the features can be changed, but the feature
name differs when executing ethtool --offload. For example, the rx-checksumming feature
is turned on by ethtool --offload eth0 rx on. Similarly, the scatter-gather feature is turned
on by ethtool --offload eth0 sg on. For more information about using ethtool, the man page
of ethool(8) should be consulted.

Listing 4.1 shows that all supported offload features not marked as [fixed] are enabled,
except the loopback option. However, the option is not used when processing network traffic
between two hosts [22]. This is the default configuration in the CentOS 7 operating system
with the Mellanox ConnectX-3 EN adapter.

38

Chapter 5

Setup

The basic setup consists of plugging the Mellanox ConnectX-3 NIC to the PCI-Express slot
of the server’s motherboard, cabling the server with the Spirent packet generator, installing
the CentOS 7 GNU/Linux distribution, assigning IP adresseses on all interconnected in-
terfaces and allowing IP forwarding. The CentOS 7 routing performance with the default
configuration can be measured afterwards.

Further setup includes setting the performance scaling governor for better CPU utilisa-
tion, disabling SELinux, disabling Netfilter and Reverse path filter, disabling the irqbalance
daemon and assigning IRQ affinity manually. These steps are focused on maximum perfor-
mance in frames per second statistic and on maximum CPU utilisation.

5.1 Hardware and networking

Figure 5.1 shows the block diagram of the Supermicro motherboard. The Intel Xeon E5-
2660 v3 processors were plugged into the CPU sockets. The Mellanox ConnectX-3 EN
adapter was plugged into the PCIE 3.0 x8 Upper slot, which is part of the WIO block.
The PCI-Express links are directly connected to the CPU 1 only. Communication with the
other CPU is performed over the QPI links. Thus, an interrupt request targeted to CPU 0
involves a necessary execution on CPU 1 as well.

The server was put to the same rack as the Spirent hardware generator. A pair of
2 metres long 40GBASE-SR4 multimode fiber cables with QSPF connectors was used to
connect Spirent with the Mellanox ConnectX-3 EN adapter.

IPv4 addresses from 192.0.2.0/24 (TEST-NET-1) block were assigned. IPv6 addresses
from 2001:db8::/32 range were assigned. Addresses within these blocks should not appear
on the public Internet and therefore they do not conflict with the prefixes from the Internet
BGP table [30] [3]. Figure 5.2 shows the addressing scheme used for the measurements.

39

Figure 5.1: Supermicro motherboard’s block diagram

40

Figure 5.2: Addressing scheme

5.2 Software and firmware

Base CentOS 7 was installed on the server. The operating system features Linux kernel
based on version 3.10 - the installed version is 3.10.0-123.20.1.el7.x86 64. The operating
system was updated with all updates available as of 1st May 2015. The upstream kernel
version 4.0.2 was additionally installed from the ELRepo repository [40].

The Linux kernel detects the Mellanox ConnectX-3 EN card automatically and loads
the mlx4 core and mlx4 en module. The mlx4 core module prints the detected PCI-Express
link parameters to the kernel’s message buffer. The buffer can be viewed using the dmesg
utility and its partial output is shown bellow:

mlx4 core 0 0 0 0 : 0 6 : 0 0 . 0 : PCIe l i n k speed i s 8 . 0GT/s , dev i c e supports 8 . 0GT/ s
mlx 4 core 0 0 0 0 : 0 6 : 0 0 . 0 : PCIe l i n k width i s x8 , dev i c e supports x8

The mlx4 core module further registers interrupts and prints the assigned IRQ numbers for
each queue to the kernel’s message buffer:

mlx4 core 0 0 0 0 : 0 6 : 0 0 . 0 : i r q 61 f o r MSI/MSI−X
mlx4 core 0 0 0 0 : 0 6 : 0 0 . 0 : i r q 62 f o r MSI/MSI−X
. . .
mlx 4 core 0 0 0 0 : 0 6 : 0 0 . 0 : i r q 90 f o r MSI/MSI−X

The driver uses either MSI or MSI-X feature of the PCI-Express bus, as described in
section 2.2. The MSI-X feature is used automatically if the system supports it, otherwise
the adapter uses MSI. The lspci -vv command can be used to check whether MSI-X is used.
Listing 5.1 shows a partial output of lspci for the Mellanox ConnectX-3 EN adapter. The
MSI-X capability is followed by an Enable flag which is followed with either

”
+“ (enabled)

or
”
-“ (disabled). Listing 5.1 shows that the system supports MSI-X and the adapter is

configured to use it.

06 : 0 0 . 0 Ethernet c o n t r o l l e r : Mellanox Techno log ie s MT27500 Family [ConnectX
−3]
. . .
C ap ab i l i t i e s : [9 c] MSI−X: Enable+ Count=128 Masked−

. . .
LnkCap : Port #8, Speed 8GT/s , Width x8 , ASPM L0s , Exit Latency L0 s

unl imited , L1 un l imi ted
. . .

Listing 5.1: Partial output of lspci -vv for Mellanox ConnectX-3 EN

41

Figure 5.3: AMS-IX iMix

Apart from the NIC driver, the Mellanox ConnectX-3 adapter uses its own proprietary
firmware. The firmware was updated to version 2.32.5100, which is the latest version
available as of 10th January 2015. The firmware is not a part of the Linux kernel and its
update procedure is described in appendix B.

5.3 Spirent configuration

Custom iMix, named AMS-IX, was configured according to the AMS-IX statistics described
in subsection 4.3.1. Figure 5.3 shows the configuration window for custom iMix definition
from the Spirent TestCenter Application. One device was configured on each interface and
it was assigned IPv4 and IPv6 addresses, as described in section 5.1. The Respond to ping
option was enabled to test the connection.

Two traffic patterns were configured for each IP version - one generates a single L4
flow and the other generates 32 L4 flows. The single flow traffic pattern uses IP addresses
according the scheme described in section 5.1 and UDP source and destination port 1024.
Each flow within the traffic pattern with 32 L4 flows uses different UDP source and des-
tination ports within range from 1024 up to 1055. The source and destination ports are
the same for each flow. The scheme is used for both IPv4 and IPv6 traffic patterns. The
purpose of the scheme is to use Receive Side Scaling to distribute the traffic to all CPUs
uniformly.

To test the routing performance of the Linux kernel with full BGP table, another traffic
pattern was configured. The pattern uses randomly generated IP destination address for
each packet to avoid having the previous lookup result cached. All traffic patterns can be
configured to generate fixed frame size or custom AMS-IX iMix.

5.4 Server configuration

The general system configuration used by default in all measurements consists of disabling
Netfilter, disabling SELinux, changing the scaling governor, disabling rp filter and config-
uring the IP addresses according to the scheme described in section 5.1. Additionally, the
system should run no unused services - CentOS 7 runs Postfix, Avahi daemon, Polkitd,
Tuned, Crond, NetworkManger, dbus, crond, rsyslogd and auditd by default. It is recom-
mended to disable all of these services for the performance reasons. Note that dbus may
still be activated if required by any of the user-space application the system runs. Beware
that disabling NetworkManager may cause no network connectivity. If the system uses
DHCP to obtain an IP address, the ifcfg network scripts or the /etc/rc.local script can be

42

used for this purpose. Execution of dhclient can be added to the /etc/rc.local file and the
file must be made executable by running chmod +x /etc/rc.local. The dhclient daemon
should be killed after it obtained an IP address to avoid sending DHCP Request packets
on other interfaces. The services can be disable using systemctl command, as the following
listing shows.

sy s t emct l d i s a b l e p o s t f i x avahi−daemon tuned crond po l k i t NetworkManager
auditd dbus cron r s y s l o g

reboot

The ps uax command can be further used to list running processes on the system.

The measurements were executed under the following conditions:
Netfilter was disabled completely:

sy s t emct l stop f i r ew a l l d
sy s t emct l d i s a b l e f i r ew a l l d # do not execute f i r ew a l l d on boot

SELinux was disabled by changing the SELINUX variable to disabled in /etc/syscon-
fig/selinux (default is Enforcing). The system must reboot to apply:

v i / e t c / s y s c on f i g / s e l i nux
SELINUX=di sab l ed

reboot

The scaling governor was changed for each CPU to performance (default is powersave):

echo performance | t e e / sys / dev i c e s / system/cpu/cpu [0−9]*/ cpufreq /
s c a l i n g gov e rno r

The rp filter was disabled on all interfaces (it should be disabled at least on the forwarding
interfaces):

echo 0 | t e e /proc / sys /net / ipv 4/ conf /*/ rp f i l t e r

It is suggested to disable the rp filter at boot time by putting the following lines to the
/etc/sysctl.conf file:

net . ipv 4 . conf . a l l . rp f i l t e r =0
net . ipv 4 . conf . d e f au l t . rp f i l t e r =0
net . ipv 4 . conf . l o . rp f i l t e r =0
net . ipv 4 . conf . enp129 s 0 . rp f i l t e r =0 # forward ing i n t e r f a c e 1
net . ipv 4 . conf . enp129 s 0d 1 . rp f i l t e r =0 # forwarding i n t e r f a c e 2

IPv6 was enabled on all interfaces (it must be enabled at least on the forwarding interfaces):

echo 0 > /proc / sys /net / ipv6 / conf / a l l / d i s a b l e i p v 6

IPv4 forwarding was enabled:

echo 1 > /proc / sys /net / ipv4 / ip fo rward

IPv6 forwarding was enabled on all interfaces (it must be enabled at least on the forwarding
interfaces):

echo 1 > /proc / sys /net / ipv6 / conf / a l l / forwarding

IPv4 neighbours were set:

ip neigh add 1 9 2 . 0 . 2 . 2 l l a dd r 0 0 : 1 0 : 9 4 : 0 0 : 0 0 : 0 1 dev enp6s0d1
ip neigh add 1 9 2 . 0 . 2 . 6 l l a dd r 0 0 : 1 0 : 9 4 : 0 0 : 0 0 : 0 2 dev enp6s0

43

IPv6 neighbours were set:

ip −6 neigh add 2001 : db8 : 1 : : 2 l l a dd r 0 0 : 1 0 : 9 4 : 0 0 : 0 0 : 0 3 dev enp6s0d1
ip −6 neigh add 2001 : db8 : 2 : : 6 l l a dd r 0 0 : 1 0 : 9 4 : 0 0 : 0 0 : 0 4 dev enp6s0

IPv4 addresses were assigned:

ip addr add 192 . 0 . 2 . 1 /30 broadcast 1 9 2 . 0 . 2 . 3 dev enp6s0d1
ip addr add 192 . 0 . 2 . 5 /30 broadcast 1 9 2 . 0 . 2 . 7 dev enp6s0

IPv6 addresses were assigned:

ip −6 addr add 2001 : db8 : 1 : : 1 / 6 4 dev enp6s0d1
ip −6 addr add 2001 : db8 : 2 : : 5 / 6 4 dev enp6s0

The routing performance of the upstream Linux kernel version 4.0.2 was further mea-
sured. The ELRepo was added to available repositories and the kernel was installed. The
instructions to add the ELRepo repository are provided by the elrepo.org site.1 Afterwards,
the kernel-ml package was installed:

yum −−enablerepo=e l repo−ke rne l i n s t a l l kerne l−ml

The kernel can be set as default in the bootloader configuration. The following command
prints all available kernels on the system:

grep ”submenu \ |ˆ\menuentry” /boot/grub2/grub . c f g | cut −d ” ’” −f 2
CentOS Linux , with Linux 4 .0 .2 −1 . e l 7 . e l r epo . x86 64
CentOS Linux , with Linux 3 . 10 . 0 −123 . 13 . 1 . e l 7 . x 86 64
CentOS Linux , with Linux 0−rescue−f 8351 e2baaac 42a285a6443a1 f 777333

The 4.0.2 kernel can be set as default by changing the configuration of grub2:

grub2−set−de f au l t ’CentOS Linux , with Linux 4 .0 .2 −1 . e l 7 . e l r epo . x 86 64 ’

The routes announced in public BGP were imported to the kernel’s FIB to perform
additional measurements. Appendix A describes the step-by-step instructions on how to
obtain the BGP table and import it to the FIB. Any additional system settings for a
particular measurement are described next to the result.

1http://elrepo.org/

44

http://elrepo.org/

Chapter 6

Measurements

The results presented in this thesis are based on the setup and basic settings described in
chapter 5. The CentOS 7 operating system was installed on the server with two Intel Xeon
E5-2660 v3 CPUs and Mellanox ConnectX-3 EN 40 Gbps Ethernet adapter, as described in
section 4.1. Each measurement put the server under 60 seconds of constant unidirectional
traffic load, as described in section 4.3. The bandwidth use is configured in frames per
second with a unit of margin 50 000. If the bandwidth use reaches 39.40 Gbps (98.50%)
then the link is considered as saturated. The measurements with 32 flows use different
UDP source and destination ports for each flow, as described in section 5.3.

6.1 CentOS 7 distribution kernel 3.10.0-123

The CentOS 7 distribution kernel version 3.10.0-123.20.1.el7.x86 64 was used in the mea-
surements presented in this section.

6.1.1 Measurement 1 - default configuration - single IPv4 flow

The first measurement shows the routing performance with IP addresses assigned, IP for-
warding enabled and Netfilter rules flushed.

The IP addresses were assigned as described in section 5.4. The IP forwarding was
enabled by echoing

”
1“ to the /proc/sys/net/ipv4/ip forward file and the Netfilter rules

were flushed using iptables -F, because the default rules do not allow forwarding.

Frame size % of link bandwidth frame rate
64 0.59% 0.24 Gb/s 350 000
594 4.30% 1.72 Gb/s 350 000
1518 10.77% 4.31 Gb/s 350 000
AMS-IX 5.33% 2.13 Gb/s 350 000

6.1.2 Measurement 2 - default configuration - 32 IPv4 flows

Since the Linux kernel scaling mechanisms described in section 3.6 are based on processing
each flow by a different CPU, the routing performance of the default configuration was
tested against 32 IPv4 flows.

45

Frame size % of link bandwidth frame rate
64 2.69% 1.08 Gb/s 1 550 000
594 19.65% 7.86 Gb/s 1 600 000
1518 49.22% 19.69 Gb/s 1 650 000
AMS-IX 24.34% 9.74 Gb/s 1 600 000

As expected, the scaling mechanisms help to increase the routing performance of the Linux
kernel. The scaling mechanisms perform better when forwarding larger frames. This may be
caused by differences in memory management allocations, since the memory management
is common for all CPUs present in the system.

6.1.3 Measurement 3 - single IPv4 flow

Unlike the previous measurements, the following measurements use the complete setup de-
scribed in section 5.4 to increase the throughput.

Frame size % of link bandwidth frame rate
64 1.68% 0.67 Gb/s 1 000 000
594 12.28% 4.91 Gb/s 1 000 000
1518 30.76% 12.30 Gb/s 1 000 000
AMS-IX 15.22% 6.09 Gb/s 1 000 000

The Linux kernel is able to forward 1 million IPv4 packets per second on a single core.
The following partial output of the /proc/interrupts file shows the interrupt mapping:

. . . CPU8 CPU9 CPU10 CPU11 CPU12 . . .
178 : . . . 0 0 255725 0 0 . . . enp129s0−0
179 : . . . 0 0 0 0 0 . . . enp129s0−1
180 : . . . 0 0 0 0 0 . . . enp129s0−2
181 : . . . 0 0 0 0 0 . . . enp129s0−3
182 : . . . 0 0 0 0 0 . . . enp129s0−4
183 : . . . 0 0 0 0 0 . . . enp129s0−5
184 : . . . 0 0 0 0 0 . . . enp129s0−6
185 : . . . 0 0 0 0 0 . . . enp129s0−7
186 : . . . 0 0 0 0 0 . . . enp129s0d1−0
187 : . . . 0 0 0 0 0 . . . enp129s0d1−1
188 : . . . 0 0 0 0 0 . . . enp129s0d1−2
189 : . . . 0 0 0 0 0 . . . enp129s0d1−3
190 : . . . 0 0 0 0 0 . . . enp129s0d1−4
191 : . . . 0 0 313670 0 0 . . . enp129s0d1−5
192 : . . . 0 0 0 0 0 . . . enp129s0d1−6
193 : . . . 0 0 0 0 0 . . . enp129s0d1−7

All packets are assigned to a single queue, in this case the queue number 5 (enp129s0d1
is the receiving interface). The smp affinity files show that the Linux kernel automatically
assigned each interrupt to the CPUs 10-19 and 30-39.

cat /proc / i r q /178/ smp a f f i n i t y l i s t
10−19,30−39

cat /proc / i r q /179/ smp a f f i n i t y l i s t
10−19,30−39

. . .
cat /proc / i r q /193/ smp a f f i n i t y l i s t
10−19,30−39

46

The lscpu utility or the Intel Performance Counter Monitor can be used to verify that the
CPUs 10-19 and 30-39 are logical cores of the CPU in Socket 1. The CPU in this socket is
directly connected to the PCI-Express link, as shown in figure 5.1.

The perf utility can be used to list the functions utilising the CPU 10.

pe r f top −C 10
11.42% [ke rne l] [k] f i b t a b l e l o o kup
9.62% [ke rne l] [k] r aw sp i n l o ck
6.65% [ke rne l] [k] mlx4 en xmit
4.84% [ke rne l] [k] memcpy
4.03% [ke rne l] [k] mlx4 en comple te rx desc
3.61% [ke rne l] [k] c h e c k l e a f . i s r a . 7
3.52% [ke rne l] [k] m l x4 en f r e e t x d e s c . i s r a . 22
3.42% [ke rne l] [k] m lx4 en proc e s s rx cq
3.16% [ke rne l] [k] m lx4 en po l l t x cq
2.89% [ke rne l] [k] put compound page
2.72% [ke rne l] [k] dev queue xmit

The kernel spends most of the time on FIB lookup, which is performed by the fib table lookup
function described in section 3.3, and on locking.

The following listing shows the cache utilisation on all CPUs present in the system.

L3MISS : L3 cache misse s
L2MISS : L2 cache misse s (i n c l ud ing other core ’ s L2 cache * h i t s *)
L3HIT : L3 cache h i t r a t i o (0 .00−1.00)
L2HIT : L2 cache h i t r a t i o (0 .00−1.00)
L3CLK : r a t i o o f CPU cy c l e s l o s t due to L3 cache misse s (0 .00−1.00) , in some

ca s e s could be >1.0 due to a h igher memory la t ency
L2CLK : r a t i o o f CPU cy c l e s l o s t due to miss ing L2 cache but s t i l l h i t t i n g

L3 cache (0 .00−1.00)
L3OCC : L3 occupancy (in KBytes)

Core (SKT) | L3MISS | L2MISS | L3HIT | L2HIT | L3CLK | L2CLK | L3OCC

0 0 4052 23 K 0.83 0 .26 0 .19 0 .18 120
1 0 52 1542 0 .97 0 .14 0 .03 0 .17 80
2 0 37 1458 0 .97 0 .14 0 .02 0 .17 200
3 0 42 1489 0 .97 0 .14 0 .02 0 .13 0
4 0 36 1460 0 .98 0 .15 0 .02 0 .16 0
5 0 223 1695 0 .87 0 .22 0 .00 0 .00 80
6 0 4 542 0 .99 0 .13 0 .00 0 .12 40
7 0 4 539 0 .99 0 .12 0 .00 0 .12 0
8 0 4 533 0 .99 0 .12 0 .00 0 .11 0
9 0 20 589 0 .97 0 .10 0 .02 0 .11 40
10 1 1179 2608 K 1.00 0 .88 0 .00 0 .04 240
11 1 129 586 0 .78 0 .11 0 .16 0 .13 0
12 1 7 531 0 .99 0 .12 0 .01 0 .16 0
13 1 446 2223 0 .80 0 .14 0 .06 0 .05 80
14 1 7 531 0 .99 0 .14 0 .01 0 .12 0
15 1 7 535 0 .99 0 .13 0 .01 0 .13 0
16 1 6 534 0 .99 0 .13 0 .01 0 .12 0
17 1 16 675 0 .98 0 .17 0 .01 0 .12 0
18 1 10 534 0 .98 0 .13 0 .01 0 .12 0
19 1 24 607 0 .96 0 .11 0 .02 0 .10 0
20 0 175 1090 0 .84 0 .07 0 .08 0 .14 0
21 0 9 598 0 .98 0 .13 0 .01 0 .18 0

47

22 0 80 974 0 .92 0 .14 0 .01 0 .03 0
23 0 10 583 0 .98 0 .13 0 .01 0 .10 0
24 0 15 831 0 .98 0 .12 0 .01 0 .17 0
25 0 41 582 0 .93 0 .13 0 .03 0 .11 0
26 0 4 513 0 .99 0 .13 0 .00 0 .13 0
27 0 5 534 0 .99 0 .13 0 .01 0 .14 40
28 0 5 534 0 .99 0 .12 0 .01 0 .12 40
29 0 34 659 0 .95 0 .12 0 .03 0 .12 0
30 1 102 603 0 .83 0 .12 0 .16 0 .17 40
31 1 12 627 0 .98 0 .34 0 .01 0 .15 120
32 1 37 544 0 .93 0 .12 0 .05 0 .16 0
33 1 11 584 0 .98 0 .13 0 .01 0 .16 40
34 1 7 528 0 .99 0 .14 0 .01 0 .17 40
35 1 8 541 0 .99 0 .16 0 .01 0 .17 0
36 1 8 541 0 .99 0 .12 0 .01 0 .16 0
37 1 11 541 0 .98 0 .13 0 .02 0 .17 40
38 1 11 553 0 .98 0 .12 0 .01 0 .16 0
39 1 2105 4296 0 .51 0 .65 0 .13 0 .03 480

−−−
SKT 0 4852 40 K 0.88 0 .21 0 .03 0 .05 640
SKT 1 4143 2624 K 1.00 0 .87 0 .00 0 .04 1080
−−−
TOTAL * 8995 2664 K 1.00 0 .87 0 .00 0 .04 N/A

The CPU 10 is performing the work related to TCP/IP processing. Most of the cache misses
are L2 miss, but there are also L3 misses. The number of L3 misses is greatly reduced by
the Intel Data Direct I/O technology, as described in section 4.1. The L2 hit ratio is 88%,
while L3 hit ration is almost 100%. Other CPUs are in idle state, except for CPU 0, which
is running the Intel PCM and prints the output.

6.1.4 Measurement 4 - 32 independent IPv4 flows

This measurement can be compared with Measurement 2, except that the irqbalance dae-
mon is disabled. Therefore, the IRQ mapping is left untouched in its default state.

Frame size % of link bandwidth frame rate
64 1.26% 0.50 Gb/s 750 000
594 12.28% 4.91 Gb/s 800 000
1518 24.61% 9.84 Gb/s 800 000
AMS-IX 15.22% 6.09 Gb/s 800 000

When forwarding IP packets from multiple IPv4 flows on a single CPU, the routing per-
formance of the Linux kernel drops by 20% against forwarding a single IPv4 flow. The fol-
lowing listing shows that the packets are uniformly distributed among all hardware queues.
However, the interrupts are not distributed among CPUs.

. . . CPU8 CPU9 CPU10 CPU11 CPU12 . . .
178 : . . . 0 0 474701 0 0 . . . enp129s0−0
179 : . . . 0 0 0 0 0 . . . enp129s0−1
180 : . . . 0 0 0 0 0 . . . enp129s0−2
181 : . . . 0 0 0 0 0 . . . enp129s0−3
182 : . . . 0 0 0 0 0 . . . enp129s0−4
183 : . . . 0 0 0 0 0 . . . enp129s0−5
184 : . . . 0 0 0 0 0 . . . enp129s0−6
185 : . . . 0 0 0 0 0 . . . enp129s0−7
186 : . . . 0 0 317322 0 0 . . . enp129s0d1−0

48

187 : . . . 0 0 317648 0 0 . . . enp129s0d1−1
188 : . . . 0 0 317231 0 0 . . . enp129s0d1−2
189 : . . . 0 0 317384 0 0 . . . enp129s0d1−3
190 : . . . 0 0 317114 0 0 . . . enp129s0d1−4
191 : . . . 0 0 317291 0 0 . . . enp129s0d1−5
192 : . . . 0 0 317190 0 0 . . . enp129s0d1−6
193 : . . . 0 0 317964 0 0 . . . enp129s0d1−7

Each receive queue triggers roughly the same number of interrupts as in the previous mea-
surement, but overall the NIC triggers much more interrupts. The kernel spends more time
on running the interrupt service routine code. Apart from servicing interrupts, the kernel
must fetch the packets from different ingress queues, which in turn may need additional
locking.
The following listing shows partial output of perf:

pe r f top −C 10
12.07% [ke rne l] [k] r aw sp i n l o ck
8.68% [ke rne l] [k] f i b t a b l e l o o kup
5.01% [ke rne l] [k] mlx4 en xmit
4.63% [ke rne l] [k] m lx4 en proc e s s rx cq
3.64% [ke rne l] [k] n e t i f r e c e i v e s k b c o r e
3.49% [ke rne l] [k] memcpy
3.08% [ke rne l] [k] i r q e n t r i e s s t a r t
2.68% [ke rne l] [k] mlx4 eq in t
2.33% [ke rne l] [k] m lx4 en po l l t x cq
2.24% [ke rne l] [k] i p r o u t e i n pu t n o r e f

The kernel spends most of the time on locking and FIB table lookup.

6.1.5 Measurement 5 - single IPv4 flow over QPI

In this measurement, the kernel is instructed to use the CPU 9 for processing the RX
interrupts. The logical CPU 9 resides in Socket 0, which is not directly connected to the
PCI-Express link. The softirq and forwarding code runs on CPU 9. To achieve this, the
QPI links between CPUs must be used, as described in section 5.1. The following command
maps the interrupts to CPU 9.

f o r i in ‘ seq 178 193 ‘ ; do echo 9 > /proc / i r q /$ i /smp a f f i n i t y l i s t ; done

The results are presented by the table bellow.

Frame size % of link bandwidth frame rate
64 1.09% 0.44 Gb/s 650 000
594 7.98% 3.19 Gb/s 650 000
1518 19.99% 8.00 Gb/s 650 000
AMS-IX 9.89% 3.96 Gb/s 650 000

The routing performance drops by 35% when it is performed by a CPU not directly con-
nected to the PCI-Express link with the NIC. This is a significant performance drop.
Moreover, the following listing shows that the CPU 10 must be also involved, as it commu-
nicates with the CPU 9 over the QPI.

49

L3MISS : L3 cache misse s
L2MISS : L2 cache misse s (i n c l ud ing other core ’ s L2 cache * h i t s *)
L3HIT : L3 cache h i t r a t i o (0 .00−1.00)
L2HIT : L2 cache h i t r a t i o (0 .00−1.00)
L3CLK : r a t i o o f CPU cy c l e s l o s t due to L3 cache misse s (0 .00−1.00) , in some

ca s e s could be >1.0 due to a h igher memory la t ency
L2CLK : r a t i o o f CPU cy c l e s l o s t due to miss ing L2 cache but s t i l l h i t t i n g

L3 cache (0 .00−1.00)
L3OCC : L3 occupancy (in KBytes)

Core (SKT) | L3MISS | L2MISS | L3HIT | L2HIT | L3CLK | L2CLK | L3OCC

0 0 6209 24 K 0.75 0 .32 0 .19 0 .12 480
1 0 13 546 0 .98 0 .12 0 .01 0 .14 640
2 0 154 4746 0 .97 0 .16 0 .03 0 .18 40
3 0 16 1452 0 .99 0 .14 0 .01 0 .15 0
4 0 68 1164 0 .94 0 .25 0 .00 0 .00 80
5 0 10 537 0 .98 0 .13 0 .01 0 .14 160
6 0 5 538 0 .99 0 .13 0 .01 0 .14 0
7 0 10 543 0 .98 0 .12 0 .01 0 .13 0
8 0 10 548 0 .98 0 .11 0 .01 0 .11 0
9 0 2002 K 2798 K 0.28 0 .74 0 .20 0 .02 2360
10 1 790 12 K 0.94 0 .14 0 .08 0 .24 4640
11 1 29 985 0 .97 0 .12 0 .02 0 .15 0
12 1 22 569 0 .96 0 .11 0 .02 0 .09 0
13 1 325 2112 0 .85 0 .15 0 .05 0 .06 40
14 1 238 1328 0 .82 0 .16 0 .05 0 .05 120
15 1 28 526 0 .95 0 .16 0 .02 0 .07 40
16 1 32 572 0 .94 0 .13 0 .02 0 .07 0
17 1 27 563 0 .95 0 .11 0 .02 0 .08 0
18 1 20 563 0 .96 0 .12 0 .01 0 .09 40
19 1 30 606 0 .95 0 .11 0 .02 0 .09 40
20 0 158 1017 0 .84 0 .07 0 .08 0 .13 40
21 0 10 553 0 .98 0 .13 0 .02 0 .20 0
22 0 10 739 0 .99 0 .10 0 .01 0 .16 40
23 0 7 574 0 .99 0 .13 0 .01 0 .18 0
24 0 10 578 0 .98 0 .14 0 .01 0 .16 0
25 0 4 535 0 .99 0 .14 0 .01 0 .16 0
26 0 11 551 0 .98 0 .12 0 .01 0 .16 0
27 0 11 550 0 .98 0 .13 0 .01 0 .13 0
28 0 10 560 0 .98 0 .13 0 .01 0 .14 0
29 0 97 5729 0 .98 0 .07 0 .00 0 .05 0
30 1 185 911 0 .80 0 .08 0 .10 0 .12 0
31 1 19 572 0 .97 0 .11 0 .02 0 .13 0
32 1 15 556 0 .97 0 .13 0 .02 0 .13 80
33 1 23 591 0 .96 0 .13 0 .02 0 .12 40
34 1 21 555 0 .96 0 .12 0 .01 0 .09 0
35 1 21 539 0 .96 0 .15 0 .02 0 .09 120
36 1 23 555 0 .96 0 .13 0 .02 0 .09 0
37 1 63 684 0 .91 0 .18 0 .01 0 .02 0
38 1 16 555 0 .97 0 .14 0 .01 0 .10 0
39 1 4826 7108 0 .32 0 .52 0 .24 0 .02 0

−−
SKT 0 2009 K 2844 K 0.29 0 .73 0 .20 0 .02 3840
SKT 1 6753 32 K 0.79 0 .26 0 .10 0 .08 5160
−−
TOTAL * 2015 K 2877 K 0.30 0 .73 0 .19 0 .02 N/A

50

CPU 9 performs the actual forwarding, while CPU 10 is busy with the QPI communication
overhead. As a result of this, performing the actual forwarding by a CPU connected over
the QPI decreases the routing performance significantly.

The use of QPI links is shown by the listing bellow.

I n t e l (r) QPI data t r a f f i c e s t imat ion in bytes (data t r a f f i c coming to CPU/
socket through QPI l i n k s) :

QPI0 QPI1
−−−
SKT 0 90 M 90 M
SKT 1 70 M 71 M
−−−
Total QPI incoming data t r a f f i c : 323 M
QPI data t r a f f i c /Memory c o n t r o l l e r t r a f f i c : 0 .39

The following listings shows the output of the perf utility for CPU 9 and CPU 10.

pe r f top −C 9
21.25% [ke rne l] [k] r aw sp i n l o ck
11.61% [ke rne l] [k] memcpy
6.69% [ke rne l] [k] f i b t a b l e l o o kup
6.60% [ke rne l] [k] s k b g r o r e s e t o f f s e t
4.55% [ke rne l] [k] udp g ro r e c e i v e
3.96% [ke rne l] [k] mlx4 en xmit
3.44% [ke rne l] [k] m lx4 en proc e s s rx cq
2.93% [ke rne l] [k] m lx4 en po l l t x cq

pe r f top −C 10
9.77% [ke rne l] [k] f i n d bu s i e s t g r oup
3.47% [ke rne l] [k] cpumask next and
3.01% [ke rne l] [k] r aw sp i n l o ck
2.93% [ke rne l] [k] kt ime get
2.59% [ke rne l] [k] mlx4 en DUMP ETH STATS
2.58% [ke rne l] [k] r u n t im e r s o f t i r q
2.36% [ke rne l] [k] i d l e c pu
2.22% [ke rne l] [k] s c h edu l e

Apart from locking and the actual FIB lookup, the CPU 9 is also busy with memcpy which
may be caused by the overhead of the QPI communication.

6.1.6 Measurement 6 - 32 IPv4 flows with irqbalance daemon

The measurement includes the irqbalance daemon enabled. The irqbalance daemon is re-
sponsible for dynamically assigning the interrupts to CPUs using the files found under
/proc/irq/NUMBER/smp affinity, as described in subsection 4.4.2.

Frame size % of link bandwidth frame rate
64 8.99% 3.60 Gb/s 5 350 000
594 68.15% 27.26 Gb/s 5 550 000
1518 98.50% 39.40 Gb/s 3 202 210
AMS-IX 88.25% 35.30 Gb/s 5 800 000

The scaling mechanisms of the Linux kernel take advantage of interrupt assignment done
by the irqbalance daemon. The server is able to route almost 36 Gbps of the simulated

51

AMS-IX internet traffic. The measurement further confirms that the scaling mechanisms
are sensitive to the frame size. The measurement featuring 1518 octet frames was config-
ured to use 98.5% of the link bandwidth.
The following listing shows that the irqbalance daemon assigned IRQs to CPUs 11-18, 30
and 33-39. The CPUs 12-19 are serving RX interrupts, while the CPUs 30-39 are serving
TX interrupts (en29d1 represents the receiving interface).

52

C
P
U
12
C
P
U
13
C
P
U
14
C
P
U
15
C
P
U
16
C
P
U
17
C
P
U
18
C
P
U
19

C
P
U
30

C
P
U
33

C
P
U
34

C
P
U
35

C
P
U
36

C
P
U
37

C
P
U
38

C
P
U
39

1
7
8
:

0
0

0
0

0
0

0
0

0
2
9
2
4
4
8

0
0

0
0

0
0
en
2
9
−
0

1
7
9
:

0
0

0
0

0
0

0
0

0
0
2
9
2
9
7
8

0
0

0
0

0
en
2
9
−
1

1
8
0
:

0
0

0
0

0
0

0
0

0
0

0
2
9
2
6
9
8

0
0

0
0
en
2
9
−
2

1
8
1
:

0
0

0
0

0
0

0
0

0
0

0
0
2
8
6
4
3
5

0
0

0
en
2
9
−
3

1
8
2
:

0
0

0
0

0
0

0
0

0
0

0
0

0
2
8
2
4
4
9

0
0
en
2
9
−
4

1
8
3
:

0
0

0
0

0
0

0
0

0
0

0
0

0
0
2
8
8
8
3
9

0
en
2
9
−
5

1
8
4
:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3
2
7
9
0
1
en
2
9
−
6

1
8
5
:

0
0

0
0

0
0

0
0
3
2
5
9
3
5

0
0

0
0

0
0

0
en
2
9
−
7

1
8
6
:
5
3
1
4
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
en
2
9
d
1
−
0

1
8
7
:

0
5
3
0
9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
en
2
9
d
1
−
1

1
8
8
:

0
0
3
9
9
7
8

0
0

0
0

0
0

0
0

0
0

0
0

0
en
2
9
d
1
−
2

1
8
9
:

0
0

0
4
0
4
8
4

0
0

0
0

0
0

0
0

0
0

0
0
en
2
9
d
1
−
3

1
9
0
:

0
0

0
0
4
0
0
7
2

0
0

0
0

0
0

0
0

0
0

0
en
2
9
d
1
−
4

1
9
1
:

0
0

0
0

0
3
9
9
8
2

0
0

0
0

0
0

0
0

0
0
en
2
9
d
1
−
5

1
9
2
:

0
0

0
0

0
0
4
0
4
8
8

0
0

0
0

0
0

0
0

0
en
2
9
d
1
−
6

1
9
3
:

0
0

0
0

0
0

0
4
3
2
6
2

0
0

0
0

0
0

0
0
en
2
9
d
1
−
6

53

The listing bellow shows the cache use.

L3MISS : L3 cache misse s
L2MISS : L2 cache misse s (i n c l ud ing other core ’ s L2 cache * h i t s *)
L3HIT : L3 cache h i t r a t i o (0 .00−1.00)
L2HIT : L2 cache h i t r a t i o (0 .00−1.00)
L3CLK : r a t i o o f CPU cy c l e s l o s t due to L3 cache misse s (0 .00−1.00) , in some

ca s e s could be >1.0 due to a h igher memory la t ency
L2CLK : r a t i o o f CPU cy c l e s l o s t due to miss ing L2 cache but s t i l l h i t t i n g L

3 cache (0 .00−1.00)

Core (SKT) | L3MISS | L2MISS | L3HIT | L2HIT | L3CLK | L2CLK | L3OCC

0 0 1076 11 K 0.91 0 .17 0 .01 0 .01 120
1 0 574 4139 0 .86 0 .12 0 .10 0 .14 40
2 0 241 1421 0 .83 0 .18 0 .12 0 .12 0
3 0 658 11 K 0.94 0 .09 0 .07 0 .24 0
4 0 19 580 0 .97 0 .14 0 .02 0 .12 0
5 0 78 363 0 .79 0 .25 0 .03 0 .03 0
6 0 65 710 0 .91 0 .15 0 .04 0 .10 40
7 0 19 544 0 .97 0 .12 0 .02 0 .10 40
8 0 13 648 0 .98 0 .11 0 .01 0 .08 0
9 0 32 582 0 .95 0 .11 0 .02 0 .08 0
10 1 1007 3598 0 .72 0 .06 0 .72 0 .37 40
11 1 4452 3802 K 1.00 0 .45 0 .00 0 .10 40
12 1 4932 3770 K 1.00 0 .42 0 .00 0 .10 240
13 1 6273 4131 K 1.00 0 .51 0 .00 0 .09 40
14 1 5086 4211 K 1.00 0 .52 0 .00 0 .09 80
15 1 4762 4211 K 1.00 0 .50 0 .00 0 .10 80
16 1 4453 4111 K 1.00 0 .54 0 .00 0 .09 80
17 1 4680 4124 K 1.00 0 .56 0 .00 0 .09 160
18 1 4737 4275 K 1.00 0 .48 0 .00 0 .10 80
19 1 105 573 0 .82 0 .18 0 .18 0 .17 0
20 0 170 979 0 .83 0 .06 0 .07 0 .10 40
21 0 16 692 0 .98 0 .10 0 .01 0 .12 0
22 0 12 570 0 .98 0 .12 0 .01 0 .13 0
23 0 15 839 0 .98 0 .10 0 .01 0 .13 0
24 0 13 532 0 .98 0 .16 0 .02 0 .14 0
25 0 22 441 0 .95 0 .21 0 .01 0 .06 0
26 0 14 540 0 .97 0 .14 0 .02 0 .13 0
27 0 9 516 0 .98 0 .15 0 .01 0 .13 0
28 0 268 2659 0 .90 0 .09 0 .10 0 .18 40
29 0 239 916 0 .74 0 .15 0 .10 0 .06 0
30 1 1238 2816 K 1.00 0 .60 0 .00 0 .27 680
31 1 54 560 0 .90 0 .25 0 .09 0 .19 80
32 1 3416 9666 0 .65 0 .20 0 .72 0 .27 40
33 1 14 K 3887 K 1.00 0 .64 0 .00 0 .27 640
34 1 16 K 3969 K 1.00 0 .63 0 .00 0 .27 960
35 1 15 K 3881 K 1.00 0 .64 0 .00 0 .27 960
36 1 14 K 3878 K 1.00 0 .63 0 .00 0 .27 880
37 1 14 K 3920 K 1.00 0 .63 0 .00 0 .27 440
38 1 17 K 4014 K 1.00 0 .63 0 .00 0 .27 600
39 1 2106 2853 K 1.00 0 .60 0 .00 0 .28 1240

−−
SKT 0 3553 41 K 0.91 0 .13 0 .01 0 .03 320
SKT 1 141 K 61 M 1.00 0 .57 0 .00 0 .14 7360
−−
TOTAL * 144 K 61 M 1.00 0 .57 0 .00 0 .14 N/A

54

The measurement featuring 1518 octet frames is the first measurement saturating the
40 Gbps Ethernet connection. Intel PCM can be used to monitor the PCI-Express utilisa-
tion:

Skt | PCIe Rd (B) | PCIe Wr (B)
0 5270 K 86 K
1 11 G 5422 M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
* 11 G 5422 M

The PCI-Express link could be saturated when forwarding bidirectional traffic - the PCI-
Express 3.0 x8 throughput is 7 876.8 MB/s as calculated in section 2.2. Note, that there
seems to be a bug in Intel PCM related to displaying the PCIe Read bandwidth - it always
shows double the expected value (11 Gigabytes does not make sense).

6.1.7 Measurement 7 - 32 IPv4 flows with manual IRQ affinity mappings

While irqbalance mapped the interrupts intelligently, it is always worth checking the map-
pings. The dynamic mappings made by the irqbalance daemon can change during the
run-time, which may lead to unpredictable performance drops.
The following listing shows the interrupt mapping scheme used during this measurement.
Unlike the mapping assigned by the irqbalance daemon, this mapping targets both RX and
TX interrupts to 8 CPUs only. Additionally, Transmission Packet Steering (XPS) mecha-
nism was configured to maps each exclusively to a single CPUs, as described in section 3.6.

echo 1 > /proc / i r q / d e f au l t smp a f f i n i t y # mask f o r new r e g i s t e r e d i r q s
echo 0 | t e e /proc / i r q /*/smp a f f i n i t y l i s t # as s i gn a l l IRQs to CPU 0

echo 18 > /proc / i r q /177/smp a f f i n i t y l i s t # as s i gn mlx4−async IRQ to CPU 18

echo 10 > /proc / i r q /178/smp a f f i n i t y l i s t # enp129 s0−0 IRQ to CPU 10
echo 11 > /proc / i r q /179/smp a f f i n i t y l i s t
echo 12 > /proc / i r q /180/smp a f f i n i t y l i s t
echo 13 > /proc / i r q /181/smp a f f i n i t y l i s t
echo 14 > /proc / i r q /182/smp a f f i n i t y l i s t
echo 15 > /proc / i r q /183/smp a f f i n i t y l i s t
echo 16 > /proc / i r q /184/smp a f f i n i t y l i s t
echo 17 > /proc / i r q /185/smp a f f i n i t y l i s t # enp192 s0−7 IRQ to CPU 17

echo 10 > /proc / i r q /186/smp a f f i n i t y l i s t # enp192 s 0d1−0 IRQ to CPU 10
echo 11 > /proc / i r q /187/smp a f f i n i t y l i s t
echo 12 > /proc / i r q /188/smp a f f i n i t y l i s t
echo 13 > /proc / i r q /189/smp a f f i n i t y l i s t
echo 14 > /proc / i r q /190/smp a f f i n i t y l i s t
echo 15 > /proc / i r q /191/smp a f f i n i t y l i s t
echo 16 > /proc / i r q /192/smp a f f i n i t y l i s t
echo 17 > /proc / i r q /193/smp a f f i n i t y l i s t # enp192 s 0d1−7 IRQ to CPU 17

c l e a r XPS on both i n t e r f a c e s
echo ”0” | t e e / sys / c l a s s / net /enp192 s 0/ queues /tx−*/xps cpus
echo ”0” | t e e / sys / c l a s s / net /enp192 s 0d1/ queues /tx−*/xps cpus

use the IRQ mask to a s s i gn XPS
cat /proc / i r q /178/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−0/xps cpus
cat /proc / i r q /179/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−1/xps cpus
cat /proc / i r q /180/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−2/xps cpus
cat /proc / i r q /181/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−3/xps cpus

55

cat /proc / i r q /182/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−4/xps cpus
cat /proc / i r q /183/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−5/xps cpus
cat /proc / i r q /184/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−6/xps cpus
cat /proc / i r q /185/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0/ queues /tx−7/xps cpus

cat /proc / i r q /186/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−0/xps
cpus

cat /proc / i r q /187/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−1/xps
cpus

cat /proc / i r q /188/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−2/xps
cpus

cat /proc / i r q /189/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−3/xps
cpus

cat /proc / i r q /190/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−4/xps
cpus

cat /proc / i r q /191/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−5/xps
cpus

cat /proc / i r q /192/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−6/xps
cpus

cat /proc / i r q /193/smp a f f i n i t y > / sys / c l a s s / net /enp129 s 0d1/ queues /tx−7/xps
cpus

The mlx4 driver uses combined interrupts for RX and TX, therefore each mapped CPU
serves RX and TX interrupts for the same packets. Such mapping should lead to a better
cache utilisation than in the previous measurement.

Frame size % of link bandwidth frame rate
64 8.99% 3.60 Gb/s 5 350 000
594 68.15% 27.26 Gb/s 5 550 000
1518 99.60% 39.40 Gb/s 3 202 210
AMS-IX 88.25% 35.30 Gb/s 5 800 000

The throughput performance with manual IRQ mappings is equal to the mappings set
by the irqbalance daemon. The measurement was also configured to use 128, 256, 512, 768,
1024 and 1280 byte sized frames and the following graph presents the results.

56

The system is able to perform forwarding at nearly line rate speed with frames 1024 B
and larger. The following listing shows the actual interrupt mappings obtained from the
/proc/interrupts file.

57

C
P
U
10

C
P
U
11

C
P
U
12

C
P
U
13

C
P
U
14

C
P
U
15

C
P
U
16

C
P
U
17

C
P
U
18

1
7
8
:
2
9
8
7
1
7

0
0

0
0

0
0

0
0
en
p
1
2
9
s0
−
0

1
7
9
:

0
2
9
4
2
6
4

0
0

0
0

0
0

0
en
p
1
2
9
s0
−
1

1
8
0
:

0
0

2
9
1
5
0
2

0
0

0
0

0
0
en
p
1
2
9
s0
−
2

1
8
1
:

0
0

0
2
9
6
5
1
4

0
0

0
0

0
en
p
1
2
9
s0
−
3

1
8
2
:

0
0

0
0

3
0
2
5
8
8

0
0

0
0
en
p
1
2
9
s0
−
4

1
8
3
:

0
0

0
0

0
2
9
4
0
1
7

0
0

0
en
p
1
2
9
s0
−
5

1
8
4
:

0
0

0
0

0
0

2
9
4
3
1
4

0
0
en
p
1
2
9
s0
−
6

1
8
5
:

0
0

0
0

0
0

0
3
0
2
0
8
8

0
en
p
1
2
9
s0
−
7

1
8
6
:
4
0
2
8
6
3

0
0

0
0

0
0

0
0
en
p
1
2
9
s0
d
1
−
0

1
8
7
:

0
4
1
1
6
6
8

0
0

0
0

0
0

0
en
p
1
2
9
s0
d
1
−
1

1
8
8
:

0
0

4
1
6
1
6
4

0
0

0
0

0
0
en
p
1
2
9
s0
d
1
−
2

1
8
9
:

0
0

0
4
2
2
0
2
3

0
0

0
0

0
en
p
1
2
9
s0
d
1
−
3

1
9
0
:

0
0

0
0

4
2
1
8
0
5

0
0

0
0
en
p
1
2
9
s0
d
1
−
4

1
9
1
:

0
0

0
0

0
4
1
5
7
5
9

0
0

0
en
p
1
2
9
s0
d
1
−
5

1
9
2
:

0
0

0
0

0
0

4
0
2
9
1
8

0
0
en
p
1
2
9
s0
d
1
−
6

1
9
3
:

0
0

0
0

0
0

0
4
1
3
2
9
9

0
en
p
1
2
9
s0
d
1
−
7

58

The RX and TX interrupts are spread across 8 CPUs. The advantage of this mapping
against the mapping done by the irqbalance daemon is that it requires half the CPUs and
the IRQ serving should cause fewer cache misses as well. The listing bellow shows the cache
statistics.

L3MISS : L3 cache misse s
L2MISS : L2 cache misse s (i n c l ud ing other core ’ s L2 cache * h i t s *)
L3HIT : L3 cache h i t r a t i o (0 .00−1.00)
L2HIT : L2 cache h i t r a t i o (0 .00−1.00)
L3CLK : r a t i o o f CPU cy c l e s l o s t due to L3 cache misse s (0 .00−1.00)
L2CLK : r a t i o o f CPU cy c l e s l o s t due to miss ing L2 cache (0 .00−1.00)
L3OCC : L3 occupancy (in KBytes)

Core (SKT) | L3MISS | L2MISS | L3HIT | L2HIT | L3CLK | L2CLK | L3OCC
0 0 5799 33 K 0.82 0 .24 0 .19 0 .18 0
1 0 122 2488 0 .95 0 .15 0 .03 0 .14 0
2 0 374 3928 0 .90 0 .19 0 .00 0 .00 0
3 0 8 532 0 .98 0 .15 0 .01 0 .08 80
4 0 6 519 0 .99 0 .16 0 .00 0 .08 0
5 0 13 540 0 .98 0 .13 0 .01 0 .07 0
6 0 12 552 0 .98 0 .14 0 .01 0 .07 0
7 0 12 560 0 .98 0 .14 0 .01 0 .08 120
8 0 9 547 0 .98 0 .13 0 .01 0 .08 0
9 0 25 593 0 .96 0 .13 0 .02 0 .08 0
10 1 9527 6014 K 1.00 0 .51 0 .00 0 .14 1080
11 1 9633 6096 K 1.00 0 .52 0 .00 0 .14 1280
12 1 9440 6257 K 1.00 0 .53 0 .00 0 .15 1280
13 1 9349 6069 K 1.00 0 .54 0 .00 0 .14 960
14 1 9147 6007 K 1.00 0 .50 0 .00 0 .14 1000
15 1 9270 6043 K 1.00 0 .52 0 .00 0 .15 1160
16 1 9382 6230 K 1.00 0 .52 0 .00 0 .15 1560
17 1 9249 6055 K 1.00 0 .56 0 .00 0 .14 920
18 1 1395 8002 0 .83 0 .15 0 .29 0 .29 40
19 1 198 1129 0 .82 0 .12 0 .13 0 .14 0
20 0 171 1042 0 .84 0 .08 0 .07 0 .11 40
21 0 35 1176 0 .97 0 .16 0 .02 0 .17 0
22 0 24 715 0 .97 0 .13 0 .01 0 .11 40
23 0 18 537 0 .97 0 .15 0 .01 0 .09 0
24 0 5 536 0 .99 0 .16 0 .00 0 .09 0
25 0 11 533 0 .98 0 .14 0 .01 0 .08 0
26 0 15 541 0 .97 0 .14 0 .01 0 .08 0
27 0 11 538 0 .98 0 .16 0 .01 0 .09 0
28 0 14 547 0 .97 0 .15 0 .01 0 .09 0
29 0 46 672 0 .93 0 .12 0 .03 0 .10 0
30 1 557 1200 0 .54 0 .34 0 .03 0 .01 0
31 1 181 612 0 .70 0 .21 0 .26 0 .14 40
32 1 192 604 0 .68 0 .23 0 .25 0 .12 0
33 1 246 634 0 .61 0 .22 0 .31 0 .12 0
34 1 202 622 0 .68 0 .22 0 .28 0 .15 0
35 1 144 599 0 .76 0 .25 0 .20 0 .15 0
36 1 127 620 0 .80 0 .22 0 .17 0 .15 0
37 1 142 619 0 .77 0 .20 0 .21 0 .16 40
38 1 132 685 0 .81 0 .11 0 .13 0 .15 0
39 1 308 921 0 .22 0 .43 0 .38 0 .02 360

−−
SKT 0 6730 50 K 0.87 0 .21 0 .03 0 .04 280
SKT 1 85 K 48 M 1.00 0 .52 0 .00 0 .14 9720
−−
TOTAL * 92 K 48 M 1.00 0 .52 0 .00 0 .14 N/A

59

As expected, the total cache miss count is lower with the manual IRQ mappings.
The manual mappings are the best IRQ affinity settings in terms of number of CPUs used,
cache use and predictability.

6.1.8 Measurement 8 - single IPv6 flow

The measurement serves as a comparison between IPv4 and IPv6 processing performance.
The measurement can be directly compared to Measurement 3.

Frame size % of link bandwidth frame rate
78 1.76% 0.71 Gb/s 900 000
594 11.05% 4.42 Gb/s 900 000
1518 27.68% 11.07 Gb/s 900 000
AMS-IX 13.69% 5.48 Gb/s 900 000

The IPv6 processing performance is 10% lower than the IPv4 processing performance when
forwarding traffic on a single core.
The following listing shows the output of the perf utility:

pe r f top −C 10
11.75% [ke rne l] [k] i p 6 t d o t ab l e
10.37% [ke rne l] [k] r aw sp i n l o ck
8.43% [ke rne l] [k] f i b 6 l ookup
4.93% [ke rne l] [k] ip6 fo rward
3.66% [ke rne l] [k] f i b 6 g e t t a b l e
3.48% [ke rne l] [k] i p 6 r c v f i n i s h
3.40% [ke rne l] [k] bu i l d skb
3.26% [ke rne l] [k] n e t i f r e c e i v e s k b c o r e
3.01% [ke rne l] [k] mlx4 en comple te rx desc
3.00% [ke rne l] [k] raw read unlock bh
2.65% [ke rne l] [k] m lx4 en proc e s s rx cq
2.62% [ke rne l] [k] d s t r e l e a s e

As in the case of IPv4, the CPU spends most of the time on the actual lookup and locking.

6.1.9 Measurement 9 - 32 IPv6 flows with manual IRQ affinity mappings

The measurement can be directly compared to Measurement 7.

Frame size % of link bandwidth frame rate
78 5.88% 2.35 Gb/s 3 000 000
594 36.84% 14.74 Gb/s 3 550 000
1518 98.50% 39.40 Gb/s 3 202 210
AMS-IX 54.77% 21.91 Gb/s 3 600 000

The measurement featuring 1518 octet frames was configured to use 98.50% of the link
bandwidth. The result shows a significant performance drop when routing multiple IPv6
flows.
This performance drop can be investigated by changing the number of UDP flows to 8 and
observing the interrupt distribution. The following listing shows the partial output of the
/proc/interrupts file when routing 8 flows.

. . . CPU12 CPU13 CPU14 CPU15 CPU16 CPU17 CPU18 . . .
178 : . . . 0 0 0 0 0 0 0 . . . enp129s0d1−0
179 : . . . 0 0 0 0 0 0 0 . . . enp129s0d1−1

60

180 : . . . 0 0 0 0 0 0 0 . . . enp129s0d1−2
181 : . . . 0 32513 0 0 0 0 0 . . . enp129s0d1−3
182 : . . . 0 0 0 0 0 0 0 . . . enp129s0d1−4
183 : . . . 0 0 0 0 0 0 0 . . . enp129s0d1−5
184 : . . . 0 0 0 0 0 0 0 . . . enp129s0d1−6
185 : . . . 0 0 0 0 0 33543 0 . . . enp129s0d1−7
186 : . . . 0 0 0 0 0 0 0 . . . enp129s0−0
187 : . . . 0 0 0 0 0 0 0 . . . enp129s0−1
188 : . . . 0 0 0 0 0 0 0 . . . enp129s0−2
189 : . . . 0 19384 0 0 0 0 0 . . . enp129s0−3
190 : . . . 0 0 0 0 0 0 0 . . . enp129s0−4
191 : . . . 0 0 0 0 0 0 0 . . . enp129s0−5
192 : . . . 0 0 0 0 0 0 0 . . . enp129s0−6
193 : . . . 0 0 0 0 0 19576 0 . . . enp129s0−7

In contrast to IPv4, the RSS does not distribute IPv6 packets uniformly. As a result of this,
the routing performance of IPv6 protocol is lower than in case of IPv4. The traffic is also not
distributed uniformly when routing 32 flows, however, this issue cannot be detected from
reading the /proc/interrupts file due to interrupt mitigation mechanism used by NAPI, as
described in subsection 3.4.1.

6.2 Upstream mainline kernel 4.0.2

The following measurements use the upstream Linux kernel downloaded form elrepo, as
described in 4.2. This is the latest upstream kernel version as of 6th May 2015.

6.2.1 1 IPv4 flow

Frame size % of link bandwidth frame rate
AMS-IX 15.22% 6.09 Gb/s 1 000 000

Routing performance of the Linux kernel version 4.0.2 on a single core is the same as
the CentOS 7 distribution kernel 3.10.0-123. The following listing shows the output of the
perf tool.

pe r f top −C 10
11.25% [ke rne l] [k] r aw sp i n l o ck
9.69% [ke rne l] [k] f i b t a b l e l o o kup
5.58% [ke rne l] [k] mlx4 en xmit
4.87% [ke rne l] [k] memcpy
4.65% [ke rne l] [k] m lx4 en proc e s s rx cq
2.98% [ke rne l] [k] put compound page
2.73% [ke rne l] [k] n e t i f r e c e i v e s k b c o r e
2.64% [ke rne l] [k] m lx4 en po l l t x cq
2.43% [ke rne l] [k] i p r o u t e i n pu t n o r e f
2.15% [ke rne l] [k] i p r c v

As in case of the CentOS 7 distribution kernel, the FIB table lookup and locking take most
of the CPU’s time.

6.2.2 32 IPv4 flows

The measurement uses manual IRQ affinity mappings and it can be directly compared to
Measurement 7.

61

Frame size % of link bandwidth frame rate
AMS-IX 86.73% 34.70 Gb/s 5 700 000

The upstream kernel 4.0.2 performs approx. 2% slower than the CentOS 7 distribution
kernel.

6.2.3 32 IPv4 flows on 16 queues

The measurement uses the ethtool utility to configure the Mellanox ConnectX-3 EN adapter
to use 16 receive queues per each port. The network adapter supports up to 16 receive
queues per port with RSS, as described in section 4.1.

e th t oo l −L enp129s0 rx 16
e th t oo l −L enp129s0d1 rx 16

The following table shows the result.

Frame size % of link bandwidth frame rate
AMS-IX 81.40% 32.56 Gb/s 5 350 000

Although the networking code runs on 16 logical CPUs simultaneously, the performance
is lower than in case of using 8 queues only. This may be caused by the overhead of the
Hyper-Threading technology.

6.2.4 Single IPv6 flow

The measurement can be directly compared to Measurement 8.

Frame size % of link bandwidth frame rate
AMS-IX 13.69% 5.48 Gb/s 900 000

The single flow routing performance is the same as in case of the CentOS 7 distribution
kernel. The following listing shows the output of the perf tool.

pe r f top −C 10
9.43% [ke rne l] [k] r aw sp i n l o ck
6.29% [ke rne l] [k] f i b 6 l o okup 1
5.49% [ke rne l] [k] m lx4 en proc e s s rx cq
4.12% [ke rne l] [k] mlx4 en xmit
3.62% [ke rne l] [k] memcpy
3.09% [ke rne l] [k] m lx4 en po l l t x cq
3.06% [ke rne l] [k] i p 6 p o l r o u t e . i s r a . 44
2.84% [ke rne l] [k] i r q e n t r i e s s t a r t
2.22% [ke rne l] [k] d s t r e l e a s e
2.10% [ke rne l] [k] n e t i f r e c e i v e s k b c o r e
2.08% [ke rne l] [k] l o c a l b h e n a b l e i p
1.81% [ke rne l] [k] bu i l d skb
1.71% [ke rne l] [k] ip6 fo rward
1.69% [ke rne l] [k] i pv6 r cv

6.2.5 32 IPv6 flows

The measurement can be directly compared to Measurement 9.

62

Frame size % of link bandwidth frame rate
AMS-IX 54.77% 21.91 Gb/s 3 600 000

As in Measurement 9, the low performance is caused by the RSS distribution done by
the network adapter.

6.3 Settings influence

There are various system settings, which can impact the routing performance of the GNU/Linux-
based system. The influence of some the most interesting settings is demonstrated by the
following measurements.

6.3.1 Disabled Hyper-Threading

The measurement features routing of a single IPv4 flow with the Hyper-Threading technol-
ogy disabled.

Frame size % of link bandwidth frame rate
64 1.93% 0.77 Gb/s 1 150 000
594 14.12% 5.65 Gb/s 1 150 000
1518 35.37% 14.15 Gb/s 1 150 000
AMS-IX 17.50% 7.00 Gb/s 1 150 000

A single core routing performance increases by 15% with disabled Hyper-Threading.
Routing of 32 IPv4 flows with manual IRQ affinity mappings was tested to investigate how
is the routing performance influenced when the networking code runs on multiple cores with
Hyper-Threading disabled.

Frame size % of link bandwidth frame rate
64 9.07% 3.63 Gb/s 5 400 000
594 68.77% 27.51 Gb/s 5 600 000
1518 98.50% 39.40 Gb/s 3 202 210
AMS-IX 89.77% 35.91 Gb/s 5 900 000

Disabled Hyper-Threading provides only 2% performance increase when routing the AMS-
IX traffic on multiple cores. The logical cores which are not utilised do not decrease perfor-
mance significantly, which means that Hyper-Threading is highly optimised on Intel Xeon
E5-2660 v3.

6.3.2 Netdev budget

The measurement features increased netdev budget NAPI parameter from its default value
of 300 to 3 000. The parameter is described in section 3.4. The netdev budget can be
configured using procfs.

echo 3000 > /proc / sys /net / core / netdev budget

The following table shows the results.

Frame size % of link bandwidth frame rate
AMS-IX 88.25% 35.30 Gb/s 5 800 000

63

Increasing the netdev budget has no influence on routing performance, which means that
the raise softirq mechanism is highly optimised.

6.3.3 Reverse path filter

The measurement features Reverse path filter enabled, which is described in subsection 4.4.2.
The rp filter can be enabled via procfs.

echo 1 | t e e /proc / sys /net / ipv 4/ conf /*/ rp f i l t e r

The following table shows the results.

Frame size % of link bandwidth frame rate
AMS-IX 55.54% 22.21 Gb/s 3 650 000

The rp filter introduces a significant performance drop of about 37%. The following listing
shows the output of the perf utility.

pe r f top −C 10
39.88% [ke rne l] [k] f i b t a b l e l o o kup
8.35% [ke rne l] [k] c h e c k l e a f . i s r a . 7
6.43% [ke rne l] [k] r aw sp i n l o ck
2.94% [ke rne l] [k] mlx4 en xmit
2.40% [ke rne l] [k] memcpy
2.32% [ke rne l] [k] n e t i f r e c e i v e s k b c o r e
2.18% [ke rne l] [k] m lx4 en proc e s s rx cq
2.14% [ke rne l] [k] f i b v a l i d a t e s o u r c e
1.40% [ke rne l] [k] i p r o u t e i n pu t n o r e f

The fib table lookup is performed twice for each packet and it is therefore taking much
more of the CPU time. There is also new fib validate source function, which calls the
actual fib table lookup.

In bidirectional routing with Reverse path filter enabled, it may be worth changing the
default RSS hash key to a symmetric one. The RSS hash key is a taken as input by the
Toeplitz hash function, as described in section 3.6. A symmetric RSS key would lead to
processing both directions of the same flow on the same CPU, therefore the result of the
fib table lookup could be fetched from the CPU’s cache [61].

6.3.4 SELinux

The measurement features enabled SELinux in Enforcing mode, which can be set in the
/etc/sysconfig/selinux file.

Frame size % of link bandwidth frame rate
AMS-IX 80.64% 32.26 Gb/s 5 300 000

SELinux negatively impacts the routing performance by approx. 8.6%.

6.3.5 Firewall

The measurement features enabled Netfilter and 10 000 filtering rules inserted. The follow-
ing commands were used to setup the measurement.

sy s t emct l s t a r t f i r ew a l l d
i p t a b l e s −F

64

f o r i in ‘ seq 10001 20000 ‘ ; do i p t a b l e s −A INPUT −p udp −−dport $ i −j DROP;
done

The firewalld loads Netfilter modules automatically.

lsmod | grep nf
n f connt ra ck ipv6 18738 5
n f d e f r a g i p v 6 34651 1 n f connt ra ck ipv6
n f na t i pv6 13279 1 i p 6 t ab l e na t
n f connt ra ck ipv4 14862 4
n f d e f r a g i p v 4 12729 1 n f connt ra ck ipv4
n f na t i pv4 13263 1 i p t ab l e n a t
n f na t 21798 4 n f na t ipv4 , n f na t ipv6 , i p6 tab l e na t ,

i p t ab l e n a t
n f connt rack 101024 8 nf nat , n f na t ipv4 , n f na t ipv6 , xt conntrack ,

i p6 tab l e na t , i p t ab l e na t , n f connt rack ipv4 , n f connt ra ck ipv6

The following table shows the results.

Frame size % of link bandwidth frame rate
AMS-IX 88.25% 35.30 Gb/s 5 800 000

The table above shows that 10 000 filtering rules have no impact on throughput. The
following listing shows the output of the perf utility.

pe r f top −C 10
16.37% [ke rne l] [k] f i b t a b l e l o o kup
11.48% [ke rne l] [k] r aw sp i n l o ck
6.20% [ke rne l] [k] m lx4 en proc e s s rx cq
5.33% [ke rne l] [k] memcpy
3.86% [ke rne l] [k] kmem cache al loc
2.90% [ke rne l] [k] c h e c k l e a f . i s r a . 7
2.89% [ke rne l] [k] i p t d o t a b l e
2.57% [ke rne l] [k] mlx4 en xmit
2.42% [ke rne l] [k] m l x 4 e n a l l o c f r a g s

The ipt do table function is responsible for the actual filtering.

6.3.6 NAT

The measurement features a simple Network Address Translation using Netfilter’s MAS-
QUERADE, which was configured using iptables.

i p t a b l e s −t nat −A POSTROUTING −o enp129s0 −j MASQUERADE

lsmod | grep nf
n f connt ra ck ipv4 14862 1
n f d e f r a g i p v 4 12729 1 n f connt ra ck ipv4
n f na t i pv4 13263 1 i p t ab l e n a t
n f na t 21798 3 ipt MASQUERADE, n f na t ipv4 , i p t ab l e n a t
n f connt rack 101024 5 ipt MASQUERADE, nf nat , n f na t ipv4 ,

i p t ab l e na t , n f connt ra ck ipv4

The following table shows the results.

Frame size % of link bandwidth frame rate
AMS-IX 65.43% 26.17 Gb/s 4 300 000

65

The performance decreased by approx. 25% when performing Network Address Transla-
tion using MASQUERADE. Additionally, Netfilter provides other types of Network Ad-
dress Translation such as SNAT or SAME, however, their description and benchmarking
are outside the scope of this thesis. The following listing shows the output of the perf tool.

pe r f top −C 10
12.71% [ke rne l] [k] f i b t a b l e l o o kup
10.84% [ke rne l] [k] r aw sp i n l o ck
6.05% [ke rne l] [k] memcpy
5.13% [ke rne l] [k] n f x f rm me harder
4.19% [ke rne l] [k] m lx4 en proc e s s rx cq
2.71% [ke rne l] [k] mlx4 en xmit
2.43% [ke rne l] [k] i p r o u t e i n pu t n o r e f
2.14% [ke rne l] [k] n f i t e r a t e
2.07% [ke rne l] [k] c h e c k l e a f . i s r a . 7
2.02% [ke rne l] [k] n e t i f r e c e i v e s k b c o r e

The nf xfrm me harder function is responsible for the actual address translation.

6.4 BGP routes

The following measurement is performed with the Internet routes obtained from RIPE’s
BGP data. The data contains 538 738 routes at the time of writing. The complete setup of
loading the routes into the kernel’s FIB is described in appendix A. The FIB statistics are
exported via the /proc/net/fib triestat file, as described in subsection 4.3.2. The following
listing shows the content of the file after loading the Internet routes to the kernel’s FIB.

Basic i n f o : s i z e o f l e a f : 40 bytes , s i z e o f tnode : 40 bytes .
Main :
Aver depth : 2 .43
Max depth : 8
Leaves : 503308
P r e f i x e s : 538739
In t e r na l nodes : 114429
1 : 58727 2 : 26171 3 : 14805 4 : 7315 5 : 4240 6 : 2103 7 : 1065 8 : 2

17 : 1
Po inte r s : 995794

Nul l p t r s : 378058
Total s i z e : 61373 kB

Counters :
−−−−−−−−−
ge t s = 14129134
backtracks = 1913823
semantic match passed = 15973885
semantic match miss = 0
nu l l node h i t= 1360956
skipped node r e s i z e = 0

Local :
Aver depth : 3 .08
Max depth : 4
Leaves : 12
P r e f i x e s : 13
I n t e r na l nodes : 7
1 : 6 3 : 1

Po inte r s : 20

66

Null p t r s : 2
Total s i z e : 2 kB

Counters :
−−−−−−−−−
ge t s = 13959019
backtracks = 15201204
semantic match passed = 103193
semantic match miss = 0
nu l l node h i t= 8238092
skipped node r e s i z e = 0

Each generated packet is assigned a random destination IP address, as described in sec-
tion 5.3. Such configuration avoids having the previous lookup result in the CPU’s cache.

Frame size % of link bandwidth frame rate
AMS-IX 77.60% 30.95 Gb/s 5 100 000

As it was expected, the routing performance decreases when performing lookups for many
destination addresses. The performance drop is approx. 12%. The following listing shows
the cache utilisation.

L3MISS : L3 cache misse s
L2MISS : L2 cache misse s (i n c l ud ing other core ’ s L2 cache * h i t s *)
L3HIT : L3 cache h i t r a t i o (0 .00−1.00)
L2HIT : L2 cache h i t r a t i o (0 .00−1.00)
L3CLK : r a t i o o f CPU cy c l e s l o s t due to L3 cache misse s (0 .00−1.00)
L2CLK : r a t i o o f CPU cy c l e s l o s t due to miss ing L2 cache (0 .00−1.00)
L3OCC : L3 occupancy (in KBytes)

Core (SKT) | L3MISS | L2MISS | L3HIT | L2HIT | L3CLK | L2CLK | L3OCC
0 0 4048 16 K 0.75 0 .40 0 .18 0 .11 360
1 0 574 3257 0 .82 0 .17 0 .00 0 .00 160
2 0 515 4977 0 .90 0 .13 0 .06 0 .10 40
3 0 5 539 0 .99 0 .11 0 .00 0 .12 40
4 0 5 526 0 .99 0 .13 0 .00 0 .11 0
5 0 5 532 0 .99 0 .12 0 .00 0 .10 0
6 0 4 548 0 .99 0 .11 0 .00 0 .09 0
7 0 4 541 0 .99 0 .12 0 .00 0 .09 0
8 0 6 548 0 .99 0 .11 0 .00 0 .08 40
9 0 21 550 0 .96 0 .13 0 .01 0 .07 40
10 1 1410 K 9962 K 0.86 0 .47 0 .09 0 .14 2480
11 1 1400 K 9901 K 0.86 0 .46 0 .09 0 .14 2160
12 1 1396 K 9872 K 0.86 0 .46 0 .09 0 .14 2200
13 1 1396 K 9897 K 0.86 0 .47 0 .09 0 .14 2000
14 1 1402 K 9872 K 0.86 0 .46 0 .09 0 .14 2720
15 1 1395 K 9861 K 0.86 0 .49 0 .09 0 .14 2160
16 1 1409 K 9827 K 0.86 0 .48 0 .09 0 .14 2200
17 1 1402 K 9867 K 0.86 0 .46 0 .09 0 .14 2240
18 1 398 827 0 .52 0 .07 0 .43 0 .11 0
19 1 200 891 0 .78 0 .07 0 .08 0 .09 0
20 0 213 675 0 .68 0 .09 0 .11 0 .06 0
21 0 7 656 0 .99 0 .09 0 .01 0 .13 0
22 0 6 747 0 .99 0 .07 0 .00 0 .12 40
23 0 13 548 0 .98 0 .12 0 .01 0 .12 0
24 0 4 543 0 .99 0 .14 0 .00 0 .11 40
25 0 5 529 0 .99 0 .13 0 .00 0 .10 80
26 0 25 761 0 .97 0 .09 0 .02 0 .13 0
27 0 5 707 0 .99 0 .09 0 .00 0 .12 0

67

28 0 5 716 0 .99 0 .09 0 .00 0 .11 0
29 0 45 643 0 .93 0 .11 0 .03 0 .09 0
30 1 362 704 0 .49 0 .22 0 .33 0 .06 40
31 1 206 643 0 .68 0 .21 0 .24 0 .12 0
32 1 187 644 0 .71 0 .18 0 .22 0 .12 0
33 1 188 635 0 .70 0 .38 0 .24 0 .13 0
34 1 193 619 0 .69 0 .20 0 .27 0 .14 0
35 1 208 614 0 .66 0 .11 0 .34 0 .15 40
36 1 184 639 0 .71 0 .21 0 .26 0 .15 0
37 1 194 642 0 .70 0 .19 0 .26 0 .13 0
38 1 181 616 0 .71 0 .09 0 .23 0 .13 0
39 1 22 K 29 K 0.24 0 .16 0 .85 0 .06 200

−−
SKT 0 5515 35 K 0.84 0 .28 0 .02 0 .03 840
SKT 1 11 M 79 M 0.86 0 .47 0 .09 0 .14 18440
−−
TOTAL * 11 M 79 M 0.86 0 .47 0 .09 0 .14 N/A

The FIB table lookup introduces about 1.4 million L3 cache misses per second on each
logical CPU, which is the source of the performance drop.

6.5 Summary

The Linux kernel is able to forward up to 5.9 million frames per second with the system
settings used in the measurements, while the default configuration limits the performance to
1.6 million frames per second. The most significant performance drop is caused by the Re-
verse path filtering feature, which requires to perform the FIB lookup twice for each packet.
Disabling the Hyper-Threading technology provides a negligible performance improvement.
The FIB lookup with imported prefixes from the BGP table does not introduce a large
performance drop thanks to the CPU’s 20 MB L3 cache. Figure 6.1 shows the presented
results. Further performance improvement may require Linux kernel recompilation.

Figure 6.1: Measurements overview

68

Chapter 7

Conclusion

The thesis provides description of the principles behind packet processing in the Linux
kernel, as well as a general description of the 40 Gigabit Ethernet protocol and its per-
formance limitation. An advanced knowledge of the principles described in the thesis is
required to perform the correct system settings for maximum routing performance with the
GNU/Linux operating system.

The CentOS 7 operating system was installed to perform the measurements. The sys-
tem features Linux kernel based on version 3.10. Additionally, upstream kernel 4.0.2 was
installed. The Linux kernel routing performance was measured under different scenarios,
including simulation of a real internet traffic, based on the data provided by the Amsterdam
Internet Exchange. A custom frame-size distribution was configured for this purpose and
used in the experiments.

40Gbit software router with GNU/Linux may provide a reasonable alternative to pro-
prietary hardware-based routers. There are several settings of the default installation which
negatively impact routing performance. The thesis describes how to adjust the settings for
the purpose of maximum throughput.

The overall routing performance of the Linux kernel is sufficient for routing 35.91 Gbps
of the simulated Internet traffic on a general purpose Intel Xeon CPU, that is 5.9 million
frames per second. The CPU features 8 physical cores and the Hyper-Threading technology
(16 logical cores). The Mellanox ConnectX-3 EN adapter is able to scale the packet
processing up to 16 cores, however, the measurements show that utilising 8 cores performs
slightly better. Since the packet processing is highly optimised in terms of cache hit ratio,
this may be a constraint of the Hyper-Threading technology. The measurement involving
the Internet BGP routes shows, that the Linux kernel is sufficient for routing 30.95 Gbps
of the simulated Internet traffic, that is 5.1 million frames per second.

The Linux kernel uses advantage of its scaling mechanisms to perform well in network
processing, however, a single-core packet processing must be improved to achieve better
results. The Linux kernel is able to route approx. 1 150 000 frames per second using a
single physical core. This is also the limitation of a single network flow processing, since
the scaling mechanisms implemented in the Linux kernel and network adapters are based
on processing each flow by a different CPU.

The thesis can be further extended through a comparison against hardware-based routers.
The future work may compare latency, throughput or power consumption of both systems.
Additionally, various user-space frameworks focused on improving the GNU/Linux network
performance may be evaluated, such as Data Plane Development Kit. Further work ex-
tending the thesis may include comparison of the frameworks with the presented results.

69

70

Bibliography

[1] 10 Gigabit Ethernet Alliance. TCP/IP offload Engine TOE.
http://www.10gea.org/whitepapers/tcpip-offload-engine-toe/, 2010
[cit. 2014-09-01].

[2] Ethernet Alliance. Ethernet Jumbo Frames.
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-

Jumbo-Frames-v0-1.pdf, 2009 [cit. 2014-09-02].

[3] J. Arkko, M. Cotton, and L. Vegoda. Ipv4 address blocks reserved for documentation.
http://www.rfc-editor.org/rfc/rfc5737.txt, 2010 [cit. 2015-02-02].

[4] E. Banks. 40GbE Over A Single MMF Pair? With QSFP-40G-SR-BD, You Can.
http://ethancbanks.com/2013/11/09/40gbe-over-a-single-mmf-pair-with-

qsfp-40g-sr-bd-you-can/, 2013 [cit. 2014-09-23].

[5] C. Benvenuti. Understanding Linux Network Internals. O’Reilly Media, 2005.
ISBN-978-0-596-00255-8.

[6] S. Bradner and J. McQuaid. Benchmarking methodology for network interconnect
devices. http://www.rfc-editor.org/rfc/rfc2544.txt, 1999 [cit. 2015-02-08].

[7] D. Brodowski. Linux cpufreq gvoernors - information for users and developers.
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt, 2014
[cit. 2015-02-10].

[8] G. Chanda. The Market Need for 40 Gigabit Ethernet.
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-

6500-series-switches/white_paper_c11-696667.pdf, 2012 [cit. 2014-09-24].

[9] Spirent Communications. Spirent spt-3u.
http://www.spirent.com/Ethernet_Testing/Platforms/3U_Chassis, 2015
[cit. 2015-01-08].

[10] Spirent Communications. Spirent testcenter.
http://www.spirent.com/Ethernet_Testing/Software/TestCenter, 2015
[cit. 2015-03-03].

[11] J. Corbet. Linux and TCP offload engines. http://lwn.net/Articles/148697/,
2005 [cit. 2014-09-03].

[12] J. Corbet. Reworking NAPI. http://lwn.net/Articles/214457/, 2006
[cit. 2014-10-01].

71

http://www.10gea.org/whitepapers/tcpip-offload-engine-toe/
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.rfc-editor.org/rfc/rfc5737.txt
http://ethancbanks.com/2013/11/09/40gbe-over-a-single-mmf-pair-with-qsfp-40g-sr-bd-you-can/
http://ethancbanks.com/2013/11/09/40gbe-over-a-single-mmf-pair-with-qsfp-40g-sr-bd-you-can/
http://www.rfc-editor.org/rfc/rfc2544.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11-696667.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11-696667.pdf
http://www.spirent.com/Ethernet_Testing/Platforms/3U_Chassis
http://www.spirent.com/Ethernet_Testing/Software/TestCenter
http://lwn.net/Articles/148697/
http://lwn.net/Articles/214457/

[13] J. Corbet. Multiqueue networking. http://lwn.net/Articles/289137/, 2008
[cit. 2015-01-05].

[14] J. Corbet. JLS2009: Generic receive offload. https://lwn.net/Articles/358910/,
2009 [cit. 2014-09-01].

[15] J. Corbet. Receive packet steering. http://lwn.net/Articles/362339/, 2009
[cit. 2015-01-06].

[16] J. Corbet. Low-latency Ethernet device polling.
http://lwn.net/Articles/551284/, 2013 [cit. 2014-09-03].

[17] Intel Corporation. Intel xeon processor e5-2660 v3.
http://ark.intel.com/products/64584/Intel-Xeon-Processor-E5-2660-20M-

Cache-2_20-GHz-8_00-GTs-Intel-QPI, 2014 [cit. 2015-01-08].

[18] J. Cummings and E. Tamir. Open Source Kernel Enhancements for Low Latency
Sockets using Busy Poll.
http://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/open-source-kernel-enhancements-paper.pdf, 2013 [cit. 2014-10-08].

[19] A. Duyck and P. Waskiewicz. HOWTO for multiqueue network device support.
https://www.kernel.org/doc/Documentation/networking/multiqueue.txt, 2014
[cit. 2014-12-01].

[20] N. Edwards. Theoretical vs. Actual Bandwidth: PCI Express and Thunderbolt.
http://www.tested.com/tech/457440-theoretical-vs-actual-bandwidth-pci-

express-and-thunderbolt/, 2013 [cit. 2014-09-25].

[21] Jan Kaluza et al. tuned. https://fedorahosted.org/tuned/, 2014 [cit. 2014-12-30].

[22] L. Torvalds et al. Linux kernel source code version 3.10.61.
http://www.kernel.org/, 2014.

[23] L. Torvalds et al. /proc/sys/net/ipv4/* Variables.
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt, 2014
[cit. 2015-03-03].

[24] L. Torvalds et al. NO HZ: Reducing Scheduling-Clock Ticks.
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt, 2014
[cit. 2015-04-04].

[25] P. Holasek et al. irqbalance source code version 1.0.8.
https://github.com/Irqbalance/irqbalance/tree/v1.0.8, 2014 [cit. 2014-12-30].

[26] Linux Foundation. Napi.
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi„
2009 [cit. 2014-08-30].

[27] Linux Foundation. TOE.
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe,
2009 [cit. 2014-10-08].

72

http://lwn.net/Articles/289137/
https://lwn.net/Articles/358910/
http://lwn.net/Articles/362339/
http://lwn.net/Articles/551284/
http://ark.intel.com/products/64584/Intel-Xeon-Processor-E5-2660-20M-Cache-2_20-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64584/Intel-Xeon-Processor-E5-2660-20M-Cache-2_20-GHz-8_00-GTs-Intel-QPI
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/open-source-kernel-enhancements-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/open-source-kernel-enhancements-paper.pdf
https://www.kernel.org/doc/Documentation/networking/multiqueue.txt
http://www.tested.com/tech/457440-theoretical-vs-actual-bandwidth-pci-express-and-thunderbolt/
http://www.tested.com/tech/457440-theoretical-vs-actual-bandwidth-pci-express-and-thunderbolt/
https://fedorahosted.org/tuned/
http://www.kernel.org/
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://github.com/Irqbalance/irqbalance/tree/v1.0.8
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe

[28] T. Herbert and W. de Bruijn. Scaling in the Linux Networking Stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt, 2014
[cit. 2014-12-01].

[29] G. Huston. Bgp analysis reports. http://bgp.potaroo.net/index-bgp.html, 2015
[cit. 2015-03-20].

[30] G. Huston, A. Lord, and P. Smith. Ipv6 address prefix reserved for documentation.
http://tools.ietf.org/html/rfc3849, 2004 [cit. 2015-02-02].

[31] AMS IX. Frame size distribution. https://ams-
ix.net/technical/statistics/sflow-stats/frame-size-distribution, 2015
[cit. 2015-01-30].

[32] P. Kish. 10GBASE-T Today or 40GBASE-T Tomorrow.
http://www.belden.com/blog/datacenters/10GBASE-T-Today-or-40GBASE-T-

Tomorrow.cfm, 2014 [cit. 2014-09-23].

[33] O. Lichtner. Networking Subsystem Configuration Interface, 2014.
http://www.fit.vutbr.cz/study/DP/DP.php.cs?id=16789.

[34] R. Love. Linux Kernel Development Second Edition. Sams Publishing, 2005.
ISBN-0-672-32720-1.

[35] Xillybus Ltd. Down to the TLP: How PCI express devices talk (Part I). http:
//xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1,
2014 [cit. 2014-09-03].

[36] D. Miller. Removing The Linux Routing Cache.
http://vger.kernel.org/~davem/columbia2012.pdf, 2012 [cit. 2014-09-04].

[37] I. Molnar and M. Krasnyansky. Smp irq affinity.
https://www.kernel.org/doc/Documentation/IRQ-affinity.txt, 2014
[cit. 2015-03-14].

[38] T. Nguyen and M. Wilcox. The MSI Driver Guide HOWTO.
https://www.kernel.org/doc/Documentation/PCI/MSI-HOWTO.txt, 2008
[cit. 2015-01-28].

[39] PCI-SIG. PCI Express Base Specification Revision 3.0. http://komposter.com.ua/
documents/PCI_Express_Base_Specification_Revision_3.0.pdf, 2010
[cit. 2014-09-25].

[40] The ELRepo Project. Elrepo.org kernel-ml. http://elrepo.org/tiki/kernel-ml,
2014 [cit. 2015-03-29].

[41] Red Hat Inc. Red Hat Enterprise Linux 6.6 Beta Now Available for Testing. https:
//www.redhat.com/archives/rhelv6-announce/2014-August/msg00000.html,
2014 [cit. 2014-09-24].

[42] Red Hat Inc. Red hat enterprise linux 7.0 release notes.
https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/index.html, 2014
[cit. 2014-09-24].

73

https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://bgp.potaroo.net/index-bgp.html
http://tools.ietf.org/html/rfc3849
https://ams-ix.net/technical/statistics/sflow-stats/frame-size-distribution
https://ams-ix.net/technical/statistics/sflow-stats/frame-size-distribution
http://www.belden.com/blog/datacenters/10GBASE-T-Today-or-40GBASE-T-Tomorrow.cfm
http://www.belden.com/blog/datacenters/10GBASE-T-Today-or-40GBASE-T-Tomorrow.cfm
http://www.fit.vutbr.cz/study/DP/DP.php.cs?id=16789
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1
http://vger.kernel.org/~davem/columbia2012.pdf
https://www.kernel.org/doc/Documentation/IRQ-affinity.txt
https://www.kernel.org/doc/Documentation/PCI/MSI-HOWTO.txt
http://komposter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf
http://komposter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf
http://elrepo.org/tiki/kernel-ml
https://www.redhat.com/archives/rhelv6-announce/2014-August/msg00000.html
https://www.redhat.com/archives/rhelv6-announce/2014-August/msg00000.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/index.html

[43] L. Rizzo. The netmap project. http://info.iet.unipi.it/~luigi/netmap/, 2012
[cit. 2014-07-15].

[44] R. Rosen. Linux Kernel Networking.
http://www.haifux.org/lectures/172/netLec.pdf, 2007 [cit. 2014-09-02].

[45] R. Rosen. Linux Kernel Networking - Implementation and Theory. Apress, 2014.
ISBN-978-1-4302-6197-1.

[46] S. Seeth and M. Venkatesulu. TCP/IP Architecture, Design, and Implementation in
Linux. John Wiley and Sons, 2008. ISBN-978-0470-14773-3.

[47] S. Shankland. Linux development by the numbers: Big and getting bigger.
http://www.cnet.com/news/linux-development-by-the-numbers-big-and-

getting-bigger/, 2013 [cit. 2014-09-01].

[48] IEEE Computer Society. IEEE Std 802.3ae-2002.
http://standards.ieee.org/getieee802/download/802.3ae-2002.pdf, 2002
[cit. 2014-09-16].

[49] IEEE Computer Society. IEEE Std 802.3an-2006.
http://standards.ieee.org/getieee802/download/802.3an-2006.pdf, 2006
[cit. 2014-09-16].

[50] IEEE Computer Society. IEEE Std 802.3ba-2010.
http://standards.ieee.org/getieee802/download/802.3ba-2010.pdf, 2010
[cit. 2014-09-03].

[51] IEEE Computer Society. IEEE P802.3bq 40GBASE-T Task Force.
http://www.ieee802.org/3/bq/, 2013 [cit. 2014-09-23].

[52] IEEE Computer Society. IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task
Force. http://www.ieee802.org/3/bm/, 2014 [cit. 2014-09-23].

[53] Supermicro. X10DRU-i+ User’s manual. https:
//www.supermicro.com/products/motherboard/Xeon/C600/X10DRU-i_.cfm, 2014
[cit. 2015-01-07].

[54] Mellanox Technologies. ConnectX-3 EN - Ethernet Adpater Cards Product Brief.
http://www.mellanox.com/related-

docs/prod_adapter_cards/PB_ConnectX3_EN_Card.pdf, 2014 [cit. 2014-09-03].

[55] Mellanox Technologies. MLNX EN for Linux User Manual Rev 2.2-1.0.1.
http://www.mellanox.com/related-

docs/prod_software/Mellanox_EN_for_Linux_User_Manual_v2_2-1_0_1.pdf,
2014 [cit. 2014-09-03].

[56] Mellanox Technologies. ConnectX-3 EN. http://www.mellanox.com/related-
docs/prod_silicon/ConnectX3_EN_Silicon.pdf, 2015 [cit. 2015-05-13].

[57] The CentOS Project. Centos 7.0.1406 release notes.
http://wiki.centos.org/Manuals/ReleaseNotes/CentOS7, 2014 [cit. 2015-01-12].

74

http://info.iet.unipi.it/~luigi/netmap/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.cnet.com/news/linux-development-by-the-numbers-big-and-getting-bigger/
http://www.cnet.com/news/linux-development-by-the-numbers-big-and-getting-bigger/
http://standards.ieee.org/getieee802/download/802.3ae-2002.pdf
http://standards.ieee.org/getieee802/download/802.3an-2006.pdf
http://standards.ieee.org/getieee802/download/802.3ba-2010.pdf
http://www.ieee802.org/3/bq/
http://www.ieee802.org/3/bm/
https://www.supermicro.com/products/motherboard/Xeon/C600/X10DRU-i_.cfm
https://www.supermicro.com/products/motherboard/Xeon/C600/X10DRU-i_.cfm
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_EN_for_Linux_User_Manual_v2_2-1_0_1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_EN_for_Linux_User_Manual_v2_2-1_0_1.pdf
http://www.mellanox.com/related-docs/prod_silicon/ConnectX3_EN_Silicon.pdf
http://www.mellanox.com/related-docs/prod_silicon/ConnectX3_EN_Silicon.pdf
http://wiki.centos.org/Manuals/ReleaseNotes/CentOS7

[58] Network Security Toolkit. LAN Ethernet Maximum Rates, Generation, Capturing
and Monitoring. http://wiki.networksecuritytoolkit.org/nstwiki/index.php/
LAN_Ethernet_Maximum_Rates,_Generation,_Capturing_%26_Monitoring, 2011
[cit. 2015-02-03].

[59] Treyl. Anatomy of an Ethernet Frame. https://communities.netapp.com/blogs/
ethernetstorageguy/2009/09/12/anatomy-of-an-ethernet-frame, 2009
[cit. 2014-09-23].

[60] H. Welte and P. Ayuso. The netfilter.org project. http://www.netfilter.org/,
2014 [cit. 2014-09-12].

[61] S. Woo and K. Park. Scalable tcp session monitoring with symmetric receive-side
scaling. http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf, 2015
[cit. 2015-05-08].

75

http://wiki.networksecuritytoolkit.org/nstwiki/index.php/LAN_Ethernet_Maximum_Rates,_Generation,_Capturing_%26_Monitoring
http://wiki.networksecuritytoolkit.org/nstwiki/index.php/LAN_Ethernet_Maximum_Rates,_Generation,_Capturing_%26_Monitoring
https://communities.netapp.com/blogs/ethernetstorageguy/2009/09/12/anatomy-of-an-ethernet-frame
https://communities.netapp.com/blogs/ethernetstorageguy/2009/09/12/anatomy-of-an-ethernet-frame
http://www.netfilter.org/
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Appendix A

Populating kernel’s FIB with BGP
routes

RIPE Network Coordination Centre provides BGP data on its website.1 The BGP measure-
ment presented in this thesis uses the data of RIPE NCC Amsterdam from 9th December
2014. The actual data can be obtained from the RIPE NCC’s site.2

The BGP data is in MRT Routing Information Export Format, which is described in
RFC 6396. The data can be obtained from the Quagga routing daemon using dump bgp
routes command. RIPE NCC provides bgpdump utility to parse this file to a human-
readable text file. To build bgpdump on CentOS 7 issue the following commands:

yum i n s t a l l bz ip2−deve l z l i b−deve l # dependenc ies
wget http ://www. r i s . r i p e . net / source /bgpdump/libbgpdump −1 . 4 . 9 9 . 1 3 . tgz
ta r x f libbgpdump −1 . 4 . 9 9 . 1 3 . tgz
cd libbgpdump −1 .4 .99 .13
. / c on f i gu r e
make
make example # needed p r i o r make i n s t a l l
make i n s t a l l

Note that make example is required prior to make install. Afterwards, bgpdump command
should be available (installed to /usr/local/bin/bgpdump). The Makefile also supports
make rpm target to generate rpm package (a wrong date in specfile needs to be corrected).

The bgpdump utility can parse the downloaded latest-bview.gz file directly (even with-
out extracting first). The following command extracts individual destination networks from
the BGP data file and writes them to destinations file.

bgpdump l a t e s t−bview . gz | grep ’PREFIX’ | grep ’ \ . ’ | sed ’ s /PREFIX: \ (.*\)
/\1/ ’ | uniq > d e s t i n a t i o n s

The number of routes corresponds to the number of prefixes announced on the Internet.
Note that the first destination entry is default route 0.0.0.0/0 and the file also contains
subnets such as 10.0.0.0/8 or 192.168.0.0/16, which you may want to remove from the file
prior to the next step. Basically, you want to remove all the local routes from the generated
file. The local routes can be displayed using the following command.

ip route show tab l e l o c a l | grep ’ˆ l o c a l ’

1http://www.ripe.net/data-tools/stats/ris/ris-raw-data
2http://data.ris.ripe.net/rrc00/latest-bview.gz

76

http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://data.ris.ripe.net/rrc00/latest-bview.gz

If you are connected remotely, such as through SSH, you must also remove routes to your
local PC, which would break the existing connection when misconfigured. In case of the
provided server’s connection, the destinations file must not contain 195.113.0.0/16 prefix
The destinations file was obtained by running the following command:

bgpdump l a t e s t−bview . gz | grep ’PREFIX’ | grep ’ \ . ’ | sed ’ s /PREFIX: \ (.*\)
/\1/ ’ | grep −v ’ 195 . 1 13 . 0 . 0 /16 ’ uniq > d e s t i n a t i o n s

The destinations file can be used to insert the router to the kernel’s FIB table by ip
route add command. To insert subnets from the destinations file to the kernel’s FIB, the
following C program was written. The neighbours of the local router, which are used to
forward the packets, are specified in the gateways array. This array needs to be adjusted
prior to executing. The destination subnets are then inserted to kernel’s FIB via these
neighbours. The program takes a single argument, path to the destinations file generated
as described above. Note the execlp() function call on line 57, which performs the route
insertions.

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3 #inc lude <uni s td . h>
4 #inc lude <errno . h>
5 #inc lude <sys /wait . h>
6
7 #i f ! de f i n ed (ARRAY SIZE)
8 #de f i n e ARRAY SIZE(x) (s i z e o f ((x)) / s i z e o f ((x) [0]))
9 #end i f
10
11 /* Def ine your gateway IP addre s s e s */
12 char *gateways [] = { ” 1 9 2 . 0 . 2 . 6 ” } ; // , ”193 . 160 . 39 . 1” } ; // , e t c . } ;
13
14 i n t main (i n t argc , char *argv [])
15 {
16 char *gw ;
17 char *buf ;
18 s i z e t s i z e = 64 ;
19 i n t i = 0 ;
20
21 i f (argc != 2)
22 {
23 f p r i n t f (s tde r r , ”Usage : %s d s t f i l e \n” , argv [0]) ;
24 re turn EXIT FAILURE;
25 }
26
27 FILE * f = fopen (argv [1] , ” r ”) ;
28 i f (f == NULL)
29 {
30 f p r i n t f (s tde r r , ”%s %d\n” , argv [1] , LINE) ;
31 re turn EXIT FAILURE;
32 }
33
34 buf = mal loc (64) ;
35 i f (buf == NULL)
36 {
37 f p r i n t f (s tde r r , ”%s %d\n” , argv [0] , LINE) ;
38 f c l o s e (f) ;
39 re turn EXIT FAILURE;
40 }
41

77

42 s s i z e t l en ;
43 whi l e ((l en = g e t l i n e (&buf , &s i z e , f)) > 5) // get d e s t i n a t i on subnets
44 {
45 buf [len −1] = ’ \0 ’ ;
46 gw = gateways [i % ARRAY SIZE(gateways)] ;
47 p i d t pid = fo rk () ;
48 i f (pid == −1)
49 {
50 f p r i n t f (s tde r r , ”%s %d\n” , argv [0] , LINE) ;
51 f c l o s e (f) ;
52 f r e e (buf) ;
53 re turn EXIT FAILURE;
54 }
55 e l s e i f (pid == 0) // ch i l d
56 {
57 p r i n t f (” ip route add %s v ia %s \n” , buf , gw) ;
58 exec lp (” ip ” , ” ip ” , ” route ” , ”add” , buf , ” v ia ” , gw , NULL) ;
59 }
60 e l s e // parent
61 {
62 wait (NULL) ; // wait f o r c h i l d
63 }
64 i++; // move to next gw
65 }
66 f c l o s e (f) ;
67 f r e e (buf) ;
68 re turn EXIT SUCCESS ;
69 }

The scripts and programs shown above can be found on the CD attached to this thesis.

78

Appendix B

Updating the Mellanox
ConnectX-3 EN firmware

The firmware can be updated using the Mellanox Firmware Tools (MFT), which can be
downloaded from the Mellanox management tools site.1 Installation of Mellanox Firmware
Tools is described in MTF User Manual available at the Mellanox documentation site.2

The installation consists of unpacking the downloaded MFT archive and running the
install.sh script. This will install kernel-mft and mft packages. The kernel-mft package
contains required low-level kernel drivers, whereas the mft package contains utilities which
use these drivers. To start the Mellanox Software Tools service, which also loads the
kernel drivers, run mst start. Afterwards, the utilities from the mft package can be used,
including the mlxfwmanager for updating the firmware. The mlxfwmanager displays various
information about the adapter, including the firmware version.

The newest firmware for the Mellanox ConnectX-3 adapters can be downloaded from
the Mellanox firmware site.3 Unzip the firmware and use the mlxfwmanager -u command
in the same directory where the firmware was unzipped. This will update the firmware.
After the update is complete, reboot is required to take effect.

Listing B.1 shows the output of the firmware update procedure using the mlxfwmanager
-u command. The current firmware version is 2.31.5050, whereas the newer firmware placed
in the current working directory is of version 2.32.5100. The mlxfwmanager pci utility can
be used to query the adapter information without starting the mst service.

1http://www.mellanox.com/page/management_tools
2http://www.mellanox.com/related-docs/MFT/MFT_user_manual.pdf
3http://www.mellanox.com/page/firmware_table_ConnectX3EN

79

http://www.mellanox.com/page/management_tools
http://www.mellanox.com/related-docs/MFT/MFT_user_manual.pdf
http://www.mellanox.com/page/firmware_table_ConnectX3EN

[root@server]# mlxfwmanager −u
Querying Mellanox dev i c e s f irmware . . .

Device #1:
−−−−−−−−−−

Device Type : ConnectX3
Part Number : MCX314A−BCB Ax
Desc r ip t i on : ConnectX−3 EN network i n t e r f a c e card ; 40GigE ; dual−port

QSFP; PCIe 3 .0 x8 8GT/ s ; RoHS R6
PSID : MT 1090110023
PCI Device Name : /dev/mst/mt4099 pc i c r 0
Port1 MAC: f 452145 e6c70
Port2 MAC: f 452145 e6c71
Vers ions : Current Ava i l ab l e
FW 2.31 . 5050 2 . 32 . 5100
PXE 3 .4 . 0225 3 . 4 . 0306

Status : Update r equ i r ed

−−−−−−−−−
Found 1 dev i ce (s) r e qu i r i n g f irmware update . . .

Perform FW update ? [y/N] : y
Device #1: Updating FW . . . Done

Restart needed f o r updates to take e f f e c t .

Listing B.1: Firmware update procedure

80

Appendix C

General steps for maximum
routing performance

� the networking code does not benefit from Hyper-Threading, disable it

� determine how many RX queues does the NIC support by
”
ethtool --show-channels

ifname“ and use all of them using
”
ethtool --set-channels ifname rx num“, beware

that RSS usually limits addressing IRQs to power of 2 CPUs

� disable irqbalance daemon and assign each IRQ exclusively to a single CPU via
/proc/irq/NUMBER/smp affinity list or /proc/irq/NUMBER/smp affinity

� set the number of TX queues the same as RX queues by
”
ethtool --set-channels ifname

tx num“ and assign exclusive mapping of each queue to a single CPU

� disable all daemons such as avahi, dbus, NetworkManager, etc.

� check for disabled offloads by
”
ethtool --show-offload ifname“ and enable all of them

� disable SELinux in /etc/sysconfig/selinux (and reboot to apply)

� disable Netfilter if appropriate

� set performance scaling governor for all CPUs

� disable rp filter on all forwarding interfaces by writing
”
0“ to

/proc/sys/net/ipv4/conf/ifname/rp filter, beware that this might be required to set
at boot time using the /etc/sysctl.conf file (use perf top to check)

� avoid using DHCP and ARP/ND protocols, use static addressing and neighboring
configuration instead

81

	Introduction
	40 Gigabit Ethernet
	Frame rates
	Throughput
	Compatibility

	Networking in the Linux kernel
	Socket buffer
	IP stack
	Routing subsystem
	Ingress traffic processing
	Egress traffic processing
	Multiqueue adapters and scaling

	Analysis
	Hardware equipment
	Software equipment
	Benchmarking methodology
	Software settings

	Setup
	Hardware and networking
	Software and firmware
	Spirent configuration
	Server configuration

	Measurements
	CentOS 7 distribution kernel 3.10.0-123
	Upstream mainline kernel 4.0.2
	Settings influence
	BGP routes
	Summary

	Conclusion
	Populating kernel's FIB with BGP routes
	Updating the Mellanox ConnectX-3 EN firmware
	General steps for maximum routing performance

