VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGI
USTAV POCITACOVE GRAFIKY A MULTIMEDII

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

MOBILE CLIENT SERVER APPLICATION

DIPLOMOVA PRACE
MASTER’S THESIS

AUTOR PRACE Bc. JAKUB DOHNAL
AUTHOR

BRNO 2015

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

NN

FAKULTA INFORMACNICH TECHNOLOGII
USTAV POCITACOVE GRAFIKY A MULTIMEDII

FACULTY OF INFORMATION TECHNOLOGY
fll DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

MOBILN| APLIKACE TYPU KLIENT/SERVER

MOBILE CLIENT SERVER APPLICATION

DIPLOMOVA PRACE
MASTER’'S THESIS

AUTOR PRACE Bc. JAKUB DOHNAL
AUTHOR

VEDOUCI PRACE Prof. Dr. Ing. PAVEL ZAMCIK,
SUPERVISOR

BRNO 2015

Abstrakt

Tato diplomova prace se zabyva vyvojem mobilni aplikace typu klient-server na platformeé
Windows Phone. Obsahuje popis platformy Window Phone, vyvojové prostiedi a jeho
nastroj pro ladéni a sledovani prostfedkt na této platformé. Rozebira architektury a pro-
tokoly vyuzivajici se pro model klient-server. Popisuje sdileni dat a zasilani zprav mezi
uzivateli klientem a serverem. Srovnava dostupné protokoly pro komunikaci. V dalsi kapi-
tole je vyuziti paméti na klientu pfi nedostupnosti pfipojeni k internetu. Zavér se vénuje
vizi dalsiho vyvoje projektu.

Abstract

This thesis is focused at the mobil client-server application development. First chapter con-
tains Windows Phone platform description, software development environment and tools
for debugging and monitoring resources. The Master’s thesis analyzes client-server archi-
tectures and protocols and discuss about users data sharing and instant messaging. Thesis
describes XMPP properties and utilization in this field. Thesis deals with using cache
memory for offline mode and in the end is vision of further development of the project.

Klic¢ova slova

Mobilni aplikace, Window phone, klient, server, notifikace, sdileni, mezipamé&t

Keywords

Mobile application, Window Phone, client, server, notification, sharing, cache

Citace

Jakub Dohnal: Mobile Client Server Application, diplomové prace, Brno, FIT VUT v Brné,
2015

Mbobile Client Server Application

Prohlaseni

Prohlasuji, Ze jsem tuto diplomovou praci vypracoval samostatné pod vedenim pana pro-
fesora Pavla Zemcika.

Dalsi informace mi poskytl Ing. Ale$ Lanik.

Uvedl jsem vSechny literarni prameny a publikace, ze kterych jsem cerpal.

Jakub Dohnal
May 27, 2015

Podékovani

Dékuji vedoucimu diplomové prace Prof. Dr. Ing. Pavelu Zemcikovi za cenné rady,
pripominky, metodické vedeni prace a za poskytnuti zarizeni k vyvoji aplikace. Dale dékuji
za odbornou pomoc, kterou mi poskytl Ing. Ales Léanik.

(© Jakub Dohnal, 2015.

Tato prdace vznikla jako skolni dilo na Vysokém uceni technickém v Brne, Fakulté in-
formacnich technologii. Prdce je chrdnéna autorskym zdkonem a jeji uZiti bez udélend
oprdvnéni autorem je nezdakonné, s viyjimkou zdkonem definovanych pripadi.

Contents

1 Introduction

2 Client Server model
2.1 Architecture and infrastructure design L oL oL

3 Communication

8

9

3.1 SOAP . . . e
3.2 XML-RPC e
3.3 REST . . oo e
3.4 XMPP . ..o

Windows Phone

4.1 Windows Phone tools
4.2 Push Notification

Current situation and work plan

Proposal

6.1 Decomposition oL
6.2 Communication
6.3 Database
Implementatio

7.1 Database
7.2 Communication v v v vt
7.3 User Interface
Testing

Conclusion

A CD content

19

22
22
23
23

30
30
31
32

37

38

41

Chapter 1

Introduction

Today we use mobile phones for calling and sending SMS, but also for gaming, surfing,
sending emails, reading news, checking bank accounts, etc. Due to hardware and internet
network evolution we can keep in touch and exchange information with another people or
just consume the content which is delivered to the phone by mobile network. This gives us
a significant platform for creating useful applications, and we can think of the phone as a
miniature computer.

This thesis describes architecture and infrastructure design of client/server model, pro-
poses communication structure between client (application) and server, and notes how the
application should work without connection to the server. Also it shows the creation of
such applications. It compares the client/server architectures and indicates tools and de-
velopment for the environment of Windows Phone platform.

Development of such applications depends on the mobile network infrastructure. In the
past, mobile applications used mainly local content without internet connection or they
were getting content from servers. With the development of network infrastructure, user-
created data can be sent to the server. In the past, the content was mainly textual. Today
it is possible to stream a video from a server to an application, and from an application to
the server.

The implementation is a real application intended for specific field, and it does not
discuss only the theory, but also the practical use.

The goal of this thesis is to select a suitable application that should use sharing content
between the application throw a server, and exchanging data with a server, e.g. of image
and texts. We will get acquainted with mobile application development in Windows Phone
environment. A method of implementation and testing will be chosen. The application
or its necessary fragment will be implemented to test the above mentioned principles of
communication and notifications.

Chapter 2 describes client/server model, its architecture options, and existing protocols
for communication between the client and the server. The Windows Phone platform and
developers tools are described in Chapter 4. In Chapter 5, work plan and comparison of
current technologies and specifications of the final application are given.

Chapter 2

Client Server model

It is the network structure separating a client and a server. The client can be understood
as the application running on end devices. This kind of model is called application server
model. The application communicates with the server via network, and usually the server
is connected to the Internet. The application is an active element and initiates communica-
tion, or registers here the client’s network location for addressing from the server, and the
server mainly responses on application requests. This model has usually only one server
which is uniquely addressed. On the server, some services are running which is a layer for
serving data for example from database to application, depending on the requests. How-
ever, applications are numerous and can run on different hardware and software platforms.
Communication between an application and a server is clearly specified by API. This model
is widely used in applications that use the network. For applications, content or multiplayer
games are shared [5].

An important stage in design is to determinate the system architecture and define the
underlying infrastructure [1].

2.1 Architecture and infrastructure design

The architecture is the arrangement of a client platform, server platform and network,
and the outline split of functionality and data (presentation, application and database
components) between client and server platforms.[2] Architecture of a client/server system
can be defined in a number of different ways [2]. The differences between the varieties can
be seen in how the presentation, application and database components of the system are
distributed between the client and server platform:

1. Distributed presentation
2. Separate presentation

3. Separate database

4. Distributed application
5. Distributed database

6. Distributed application and database

Client

Network

Server

CLIENT

Request

Response

Figure 2.1:

Client /server connection |

Sevver

]

Database

Presentation

Presentation

Presentation

Presentation

Presentation

Presentation

Application Application Application Application
Database Database
Presentation
Application Application Application Application
Database Database Database Database Database Database
Distributed Separate Separate Distributed Distributed Distributed
presentation presentation database application database application

Figure 2.2: Categories of client/server architecture [2]

and database

Distributed presentation

The presentation component is split between the client platform and the server platform,
with application and database components located entirely on the server platform. An
example of such a system is the applications displaying remote desktop [2].

Separate presentation

The presentation component is located entirely on the client, and application and database
components are located entirely on the server. Common example is X Window System
presentation, driven from a remote application [2].

Separate database

Presentation and application components are located entirely on the client platform and
database is on the server. The most common client/server architecture is used by many
vendors of DBMS and user tools. An example is Executive Information System (EIS) where
data from a corporate database can be accessed using off-the-shelf analyses tools or custom
applications [2].

Distributed application

Presentation and part of application are located on the client, and the database and the
rest of the application are located on the server. The application functionality can be split
vertically or horizontally. Vertical split is when each function is entirely on one of client or
server. Where some parts of the functionality are on the client and communicate with the
other part on the server, it is horizontal split [2].

Distributed database

This includes both presentation and application entirely on the client platform, with the
database split between platforms. Data can be split vertically or horizontally or replicated.
Distributed database split vertically distribute different tables on each platform. Horizon-
tally split database distributes different rows from tables on different platform. Only some
data on both platforms can be replicated [2].

Distributed application and database

It’s combination of the distributed application and distributed database architecture. Ap-
plication and database are split across platforms and presentation is entirely on the client

[2]-

Client cache

Applications with client-server model are dependent on network connectivity. An appli-
cation without client cache cannot be used if internet connection is unavailable. If the
application has a client cache, it can serve data to user without internet connection. There
are more methods to cache data on client. The basic one is to save response in serialized
form on unique request to memory or to persistent storage with expiration date. Request
can be cached only if has always same response. The cache has Key/Value format.

Another way is to store deserialized data on client in database. Application fetches data
for display from database. If user wants to update or added data. At first, local database is
updated, and after that it is uploaded to the server. This model gets application powerful
to use it without connection with server but brings problems with data consistency.

Server

.
| ererErEIRITENY

Client-side
Data Cache

Client-side
Data Cache

Client

Figure 2.3: Client cache diagram [J]

Chapter 3

Communication

For communication between the application and the server, a communication protocol is
used to facilitate addressing, message format, data format and authentication. It is possible
to use one of these protocols or architectures:

e SOAP
e XML-RPC
e REST

o XMPP

3.1 SOAP

Simple Object Access Protocol is a lightweight protocol intended for exchanging structured
information in XML format. It can be the basis for a Web protocol stack, and provides the
basic framework for the messaging for Web services. Its main characteristic is expandability,
neutrality (can operate on any transport protocol such as HTTP, SMTP) and independence
(it is possible to utilize any programming model). One of its disadvantages is the use of
XML for formatting data. Messages are so large and can handle long time. The SOAP
contains its own header as shown in Figure 4.1 [4].

3.2 XML-RPC

XML-RPC is a Remote Procedure Calling protocol that works over the Internet. An XML-
RPC message is an HTTP-POST request. The body of the request is in XML. A proce-
dure executes on the server and the value it returns is also formatted in XML. Procedure
parameters can be scalars, numbers, strings, dates, etc.; and can also be complex record
and list structures. Unless it has a lower-level error, it always returns HT'TP code 200 OK

[3]-

3.3 REST

The Representational State Transfer (REST) architectural style was developed in parallel
with HTTP/1.1. This design pattern is used as a set of instructions to create a web service

SOAPPart
SOAPEnvelope
S0OAPHeader (optional)

SOAPBody

XML Content
or SOAPFault

Figure 3.1: SOAP message structure [10]

HTTP/1.1 288 OK

Connection: close

Content-Length: 426

Content-Type: text/xml

Date: Fri, 17 Jul 1998 19:55:82 GMT
Server: UserlLand Frontier/5.1.2-WinNT

<?xml version="1.8"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>faultCode</name>
<valuer<int>4</int></value>
</member>
<member>
<name>faultString</name>
<value><string>Too many parameters.</string></value>
</member>
</struct>
</value>
</fault>
</methodResponse>

Figure 3.2: XML-RPC request example [3]

HTTP/1.1 288 OK

Connection: close

Content-Length: 158

Content-Type: text/xml

Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value»<string>South Dakota</string></value>
</param>
</params>
</methodResponse>

Figure 3.3: XML-RPC response example [3]

HTTP/1.1 288 OK

Connection: close

Content-Length: 158

Content-Type: text/xml

Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.8"?>
<methodResponse>
<params>
<param>
<value><string>South Dakota</string></value>
</param>
</params>
</methodResponse>

Figure 3.4: XML-RPC fault example [3]

10

that enables network-connected device to communicate with one another through a shared
basic HT'TP communication protocol. HT'TP components are defined by four basic methods
(verbs) to communicate with the server: GET, POST, PUT and DELETE. Method GET
has no message body and is used for fetching data from the server. The POST method
uploading a new records on the server the records are contains in message body structured
by JSON or XML. The PUT method is almost same such as POST method but the records
are update on server and DELETE method is for deleting record on the server [6].

In REST architecture the URI http://server.cz/users is used to define resources. A
method decide on the action to be performed. URI http://server.net/resources/ example,
in the case of the method:

e GET returned URI list of all members of the collection
e POST creates a new record in the collection

e PUT replaces a whole collection of other

e DELETE deletes the entire collection

Using a URI like http://server.net/resources/item the actions of particular methods are
defined as follows:

e GET returns a representation of the desired member of the collection represented the
correct type

e POST usually not used
e PUT replaces addressed to a member of the collection. If not exist, create it

e DELETE deletes addressed to a member of the collection

3.4 XMPP

Extensible Messaging and Presence Protocol is a protocol for streaming XML ele-
ments in order to exchange information on a user’s presence in almost real time [4]. His
form and scalability describes RFC3921. His original name had been Jabber created by
Jeremie Miller in 1998 and modified by Jabber open-source community in 1999 [5]. Thanks
to the extensibility the protocol can be used in many applications with client-server model,
operating in near real time. These include publish-subscribe systems, signalling for VolP,
file transfer, connection Internet of things Intelligent networks and social networks [8].

XMPP network

It consists of XMPP clients and XMPP servers. Architecture of XMPP is a decentralized
network, similar to e-mail. Anyone can create and run their own XMPP server for your
domain. It uses a client-server model and therefore the connection between clients is not
straightforward, but the client is connected to your home server. All client communication
passes through the home server and XMPP servers communicate among themselves. The
Figure 2.4 shows how such communication between clients looks. The client sends a message
to the home server with Jabber ID (JID) to whom the message is intended. JID contains
the recipient’s home server domain. If the recipient’s home server is blocked, the server

11

returns an error message to the sender. The sender server sends a message to the recipient’s
server. The recipient home server eventually sends a message to the client defined by JID.
If the recipient is blocked, the server returns an error message. Recipient’s home server
is responsible for delivering a message if the recipient is not connected. JID is a unique
identifier for a client similar to an email address username@server.domain//mobile]. Tt
consists from a username and domain server separated by at (@).

The original and native transport protocol XMPP is the Transmission Control Protocol
(TCP), using open XML stream over the long-term TCP connections. As an alternative to
TCP connection, XMPP community has developed HTTP streaming for Web clients and
users for strict firewalls. The original specification for HT'TP XMPP can be used in two
ways: Polling and Binding method [38]. Using the method of polling (polling) the server
must have a big database to store messages, and if the client is active and always request
in a time period if there is a new message for him. For requesting is used HTTP GET and
POST method.

Binding method is implemented as a two-way stream of synchronous HTTP (BOSH)
[17]. It lets server send messages to the client without client request as soon as the server
has new data for the client. This method is much more efficient than polling where many
requests have empty answers. The XMPP using HTTP transport protocol or TCP. Using
HTTP allows that the connection has not been limited mostly firewalls. This fact is usually
used when the TCP port 5280 for XMPP is blocked [17]. HTTP server listens on the
TCP port and communications should run without restrictions. The last method is to
use WebSocket who is providing full-duplex communication channel over a single TCP
connection. WebSocket binding for XMPP is defined as a standard in IETF RFC6455 [11].

12

pubsub.node.tld
i ._ RIWC via XMPP P_I{ESLIb

Lisansi: s __.. St el ot 1
IXMPP Publish-Subscribe (XEP-0060)
- v . e
3 XMPP via XMPP 525 XMPP via ‘
WebSocket API (RFC 3920) WebSocket API
aliced@role-project.eu role-project.eu example.com bob@example.com

T— — — —

Proxy : : Proxy
Widget Widget Widget Widget

LIWC via Web Messaging API LIWC via Web Messaging API

Figure 3.5: Example of XMPP network [7]

13

Chapter 4

Windows Phone

Windows Phone 8.1 is a mobile operating system from Microsoft Corporation. Microsoft
Windows comes with a term Runtime app that identifies two types of applications. Win-
dows Store app (application for PCs, tablets and laptops) and Windows Phone Store app
(application for Windows Phone). Is it possible to create one project which contains sepa-
rate projects for design and feature experiences unique to tablet & PC and Phone device, as
well as a shared project that promotes the reuse of code relevant to both. This means that
it is possible to write a single application for both mobile and PC platform including design.
Of course, in some cases it is not so simple, and some of the frameworks and functions are
not available for Windows Phone Store app [14].

Application design for Windows Phone is not limited, but it is recommended to follow
one of the basic layout templates. What is strict defined is mandatory functions some of the
controls. For example, how back button should behave. By definition, Microsoft’s design
focuses mainly on content. Windows phone don’t have chrome elements and application
design is formatting by content and alignment.

It’s possible to develop Windows Store apps using C++, C#, Microsoft Visual Basic,
and JavaScript. JavaScript uses HTML5 markup for Ul layout, and the other languages use
a markup language called Extensible Application Markup Language (XAML) to describe
their UL.Here’s a list of recomended languages for information type of application (displaying
information such as weather, stock price, news, or social network updates) [18]:

e C# and XAML
e JavaScript and WinJS

Although this thesis is focusing on C+#, the other languages offer unique benefits.

XAML

Extensible Application Markup Language (XAML) is a declarative language. Specifically,
XAML can initialize objects and set properties of objects, using a language structure that
shows hierarchical relationships between multiple objects, and using a backing type conven-
tion that supports extension of types. The XAML language supports interchange of sources
between different tools and roles in the development process without information loss, such
as exchanging XAML sources between Visual Studio and Blend for Visual Studio. XAML
is the primary format for declaring a Windows Phone UI and elements in that UT [13].

14

WinJS

WinJS is Windows Library for JavaScript. WinJS provides high quality infrastructure like
page controls, promises, and data-binding. Polished UI features like virtualizing collections
and high performance Windows controls [16].

4.1 Windows Phone tools

The development environment is clearly defined and must use Microsoft Visual Studio 2013.
They are in it to develop Windows Store applications, and Windows Phone applications. It
includes project templates, code editor, and visual designer. There is also possible to find
the test functions. The main tools are:

e Windows Phone Emulator

Blend for Visual Studio

Application Deployment tool

Windows Phone Developer Power Tools

Isolated Storage Explorer

Windows Phone Emulator

Hardware virtualization platform for testing applications on multiple devices. Windows
phone emulator is dependent on the support of Hardware. For the run it requires a processor
with Hyper-V technology. It is able to emulate the resolution and screen size, memory
size, display settings, network settings, and the language of the region, debugging when
application is in inactive state (application development lifecycle), local storage, microphone
and lock screen. Functions as a compass, gyroscope, vibration control, backlight, display
video in a resolution greater than VGA emulator, do not support.

Blend for Visual Studio

It is a collection of useful design tools for visual creation of Windows Store applications
based on JavaScript, VB, C#, or C++. For applications built on JavaScript automatically
apply tools for creating user interfaces in HIML5 and CSS3. For other languages it uses
XAML.

Windows Phone Developer Power Tools

Use this tool to monitor the response, resource utilization and debugging in a crash. It
consists of three powerful testing and debugging tools:

e Application Verifier - Detect subtle programming errors in native code

e Performance Monitor - Capture real-time performance metrics and visualize them
graphically

e Performance Recorder - Collect system-wide logs and analyse them on your com-
puter

15

<UserControl x:Class="MyWindowsPhone.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"”

>
<Grid Background="OldLace">
</Grid=
</UserControl>
Figure 4.1: Windows phone XAML example [13]
(function () {

"use strict”;

var app = WinJS.Application;
var activation = Windows.ApplicationModel.Activation;
WinJS.strictProcessing();

app.onactivated = function (args) {
if (args.detail.kind === activation.ActivationKind.launch) {

if (args.detail.previousExecutionState !== activation.ApplicationExecut
// TODO: This application has been newly launched. Initialize
// your application here.

} else {
// TODO: This application has been reactivated from suspension.
// Restore application state here.

}

args.setPromise (WinJS.UI.processall());

app.oncheckpoint = function (args) {
// TODO: This application is about to be suspended. Save any state
// that needs to persist across suspensions here. You might use the
// WinJS.Application.sessionState object, which is automatically
// saved and restored across suspension. If you need to complete an
// asynchronous operation before your application is suspended, call
// args.setPromise().

app.start();
B

Figure 4.2: Windows phone XAML example [16]

16

All tools are available for debugging applications in both the emulator and on the device
with Windows Phone 8.1 . Testing continues even after you disconnect your phone from the
computer and after reconnecting the output of tracking applications downloaded to your
computer.

While Application Verifier is mainly used for debugging memory and determination
of critical vulnerabilities, Performance Monitor shows real-time hardware metrics of
resources such as CPU, memory, and input/output operations. Record Performance
is a deeper analysis of the performance and resource consumption. Does not record only
performance test applications, but also other services and jobs for detecting the impact of
their influence on the running application.

Isolated Storage Explorer

With this tool it is possible to ensure that the application files are deposited in the right
place, or to copy them for or to device.

4.2 Push Notification

This is an asynchronous, best-effort service that offers third-party developers a channel
to send data to a Windows Phone app from a cloud service in a power-efficient manner.
Depending on the format of the push notification and the payload attached to it, the info is
delivered as raw data to the app, the app’s Tile is visually updated, or a toast notification
is displayed. MPNS returns a response code to the cloud service after a push notification
is sent indicating that the notification has been received and will be delivered to the device
at the next possible opportunity [15].

1. The application requests a push notification URI from the Push client service.

2. The Push client service negotiates with the Microsoft Push Notification Service (MPNS),
and MPNS returns a notification URI to the Push client service.

3. The Push client service returns the notification URI to the application.
4. The application can then send the notification URI to the cloud service.

5. When the cloud service has info to send to the application, it uses the notification
URI to send a push notification to MPNS.

6. MPNS routes the push notification to the application.

17

@B ouR cLOUD SERVICE & Mpns

PUSH-ENABLED APP - - PUSH CLIENT SERVICE
3

WINDOWS PHONE

Figure 4.3: Push Notification diagram for Windows Phone [15]

18

Chapter 5

Current situation and work plan

This thesis is focused on client platform and final application is developed for Windows
Phone 8.1 operation system. The main thing for client is which components are located
and how to split some of them between him and server platform as described in Section
2.1. Client can be defined as Thin and Thick client. Thin client has Presentation compo-
nent and eventually part of Application component, while database and main application
components are on server. The Thick client contains Presentation and part or entire Ap-
plication component and part or entire duplicated Database. In Table 5.1, pros and cons
of both clients are compared side by side. For the user it is better if application is runnable
in offline mode and the application does not have to communicate with server frequently. I
chose the thick client because of many benefits.

The instance of application supports only one user who is login to the system. This
user can observe his data and create new data in application. His data are data created by
him or data which are shared with him. It is not right to copy the whole database to client
platform but duplicate only some rows from tables. This approach requires to create same
tables and relationships as on server. The server should decide which data belong to the
user, and served them to the client. To use SQL database on Windows Phone 8.1 platform,
SQLite library enables which allows to store data in SQLite database. This SQLite library
also supports Object-relational mapping (ORM) for converting data between incompatible
type systems in object-oriented programming languages.

The last main part of client/server model is communication between the client and the
server. For communication can be used some of defined protocols or architecture, or a new
one can be designed. SOAP and XML-RPC have defined message structure and there are
many libraries to use them properly but they use XML to structure the messages. A message
defined by XML is long and its processing takes a long time. XMPP architecture has same
problems. To prevent problems with XML, the solution is to use JavaScript Object Notation
(JSON). JSON is a lightweight data-interchange format and language independent. JSON
can be simply deserialized to a Dictionary structure or to an Object. We chose to define
custom protocol in JSON. The application does not need to communicate with server real-
time. Information can be present on client after some time then is not necessary to use
Long Polling but only Polling.

The work plane
1. Split application component between client platform and server platform

2. Design database for store user information

19

3. Define communication protocol and use JSON data-interchange format

4. Define polling policy

5. Implement application and use SQLite database

6. Apply Windows Phone tools for testing and debugging application

7. Show application to users and collect feedback

Table 5.1: Thin and Thick client comparison

Thin Clients

Thick Clients

Easy to deploy as they require no
extra or specialized software installation

More expensive to deploy and more
work for IT to deploy

Needs to validate with the server
after data capture

Data verified by client not server
(immediate validation)

If the server goes down, data collection
is halted as the client needs constant
communication with the server

Robust technology provides better uptime

Cannot be interfaced with other
equipment (in plants or factory
settings for example)

Only needs intermittent communication
with server

Clients run only and exactly
as specified by the server

More expensive to deploy and more
work for IT to deploy

More downtime

Require more resources but less servers

Portability in that all applications are
on the server so
any workstation can access

Can store local files and applications

Opportunity to use older,
outdated PCs as clients

Reduced server demands

Reduced security threat

Increased security issues

20

JSON Example

{"employees™:[
{"firstName":"John", "lastName":"Doe"},
{"firsthName"”:"Anna", "lastMame":"Smith"},
{"firsthame"”:"Peter”, "lastMame":"Jones"}

1}

XML Example

<employees>
<employee>
¢firstName>Johne¢/firstlame> <lastName:Doe</lastName:
</employee>
<employee>
¢firstNamerAnna¢/firstlame> <lastName:xSmith</lastMame:
</employee>
<employee>
<firstName>Peter</firstName> <lastName>»Jones</lastName:>
</employee>
</employees>

Figure 5.1: JSON vs. XML example defines an employees object, with an array of 3
employee records

(lient Server (lient

GET /comet

idle

GET /Comet

Figure 5.2: Polling (left) vs. long-polling (right) latency

21

Chapter 6

Proposal

The application communicates with Colla server which is the server storing the data for
the construction supervision and the construction company. This data contains Projects
construction company. The project has items which represent defects on construction.
Defects can be recorded by images and texts. Each item has also discussion section where
the defect can be discussed. It’s possible to share the Project and the Item between users.
The user who creates the Project or the Item can also edit this record and assigned to the
other users. These users can add new images and discuss, what type of defect it is. Every
record is stored on server and client has onlysome records.

The client controls assignment picture to items and assignment messages to items. User
can take a photo of defects on client “s application. The client and the server share some
part of application component as editing the Project detail and the Item detail. The
client controls this by the User Interface and allow edit the Project only to users who have
permission for this. The server controls the same action but informs client and response to
the request. This duplication application part is mainly for security on the server and right
User “s experience of the client.

6.1 Decomposition

The application is decomposed to three extensive blocks: User Interface and Controls,
Communication, Data block and one Polling Manager (Figure 6.1). The User Interface
block communicates with the user by showing structured data and controlling inputs from
the user. This block contains application logic for control what user can do and what
he can not. The block creates instances of Data Classes which are used for storing in
database. These data are passed down to the Data block to the Data Provider which saves
these objects to the database. The Data Classes contains classes of database tables. The
Data Classes are used for objective communication with the database. The Data Provider
deserialize them and save into the database. The User Interface fetching the object from the
Data Provider to show them and is given to the user. The Data Provider sends notifications
to the User Interface about the data and what kind of data was changed in the database.
The User Interface and Controls communicates only with the Data Provider.

The Communication block has Api Interface with collection of method for communi-
cation with server. JSON API implements this method and is connected with Request
Serializer and Response Deserializer. Polling Manager initiates request to server by JSON
API and plans next request. If in response from server is some data Response Deserializer

22

deserialize this data and send them to Data Providet. If the user creates new data the Data
Provider sends them to JSON API. Request Serializer create proper message for server.
JSON API sends data the server and the server responses if the data was stored or error if
data was wrong or a different error message.

This structure is easy to change. If the communication between the client and the
server will change and the server will start to use XML instead JSON it’s neccessery only
change the Request Serializer and Response Deserializer. This situation is the same with
the Databse. The Data Classes will remain the same or with only small changes. The
change in one of block shouldn’t ovlivnit the other block.

Next think is to propose application screent flow (Figure 6.2). Storyboard has all screens
which should appeare in application. It shows how application can be used and how can be
using. Defined flow is example what user see whan turn on application and where he can go.
Also define screen following some action. The first start is defined as Start I.. User login
him self or if he don’t have an account he can created it. Follows Loading Dialog. When
data are downloaded appeare Project List Page. User can create new Project or chose from
some of existing. If is project select appeares Item List Page belongs to project. Each Item
has chat section and information section. Item detail in Item Page. From Item Page is
possible take a photo and add this photo to Item. Start II. is application start if user is
already logged but still does not select Project. Once user select Project the application
start with Start II1. action.

6.2 Communication

It is used HTTP protocol POST method for the communication with the server. The Body
of request has application/z-www-form-urlencoded content type with three parameters cmd,
token and input. The client has to ask server to generate new token at first. The Token is
used as identifier in communication with the server. The Token is unique for different users
and different devices. If one user uses more devices then each device has allocated different
token. Asking token is the first message to all clients. The Client can send new data and
request old data from the server when has token as show Figure 6.2. All communication
has user context.

A Prameter cmd contains string with command name. The Prameter token specifies
user token and input contain JSON string with parameters for command. Each request
has to include this three parameters except command get_token. This command makes
a request server to generate new token for the user. Communication format is shown on
Figure 6.4. Server return JSON contetn with parameters cmd, results with number of
results in response, data with data and error. Parrameter error content message where is
specify type of error in string and id where is error code. List of commands and JSON
input parameters for request and JSON HTTP BODY response in data parameter is shown
in Table 6.1 and Table 6.2. The bolt cell is name of input parameter. The errors generated
by databse are specify in Table 6.3.

6.3 Database

Database is similar to database on server but not same. In Figure 6.5 is databse diagram.
Each table corresponds with Data Classes from Section 6.1. Table User is main table which
has relationship with almost all tables. Tables has Foreign keys for linking rows.

23

Application

User Interface and controls

Fmng Controls Ul ltem UI Project Ul
Manager
l Communication I Data
API Interface Data Provider
JSON API
@l Datbase Data Classes
Request Response
Serializer Deserializer

Figure 6.1: The application block model

24

Start Page

Login Page Update Project Page

—Start 1.

New Project Page

| Inputi |

Create I

I Login I I Update
A4
Registration Page Project List Page

Project 1 .¢

Project 2 .ﬂ.

Pt
- \
”~ Ll

Start Il.—>]
F | Add Project

Item List Page

| Item Page | Chat Page

Update ltem Page

i:"ll.l

Item 1 @ =z}
ltem 2 GJ A
ltem 3 @ oz

A 4

ltem 4 G =

—Start lll.5

Add Item

Y

New ltem Page

Input3

I Create

_—

Images

A 4

I Update I

Camera Page

Figure 6.2: The application storyboard

25

i Client Server

o T
User i i
1: Set login and password [.

> !
[

2: Token request

el
-
-

4: |s logged

L]

e '

et < __5: Request data :
L]

7: Show new information

10: Show new information s T -

Figure 6.3: Sequence diagram of first communication

HTTP BODY

{
"timestamp”: 1432579064,
"emd"; "get_events",
"data": {
"projects": <PROJECT ARRAY>,
"item": <ITEM ARRAY>, Server

I3

"rasult": "1", 8
o

"arrgpt "

}

Response

HTTP POST Request =
Client

HTTP BODY

cmd = get_events

token = <TOKEN=>

input = {timestamp:"0"}

Figure 6.4: Communication example

26

get_token command

cid - device indentifier
request: login - user identifier (aid or login name)
password
type - 0 (loging by aid) / 1 (loging by login name)
response: | token

add_project command

name - project nameaccount_id - account id which for is project connect
address - project address (not required)

t: o
reques description - project descriotion (not required)
finish_time - timestamp of finish time (not required)
response: | pid - new project id

add_sheet command

pid - project id which for belong

request: | name - sheet name (not required)
POST file - binary data (image or PDF)
response: | sheet_id
add_item command
pid - project id which for belong
request: | name - item name (not required)
sheet_id - sheet id (not required)
iid - item id
response:

changeTime - timestamp of last change

update_item command - user has to be the item owner

name - item new name (not required)

TOqUest: | et id - sheet id (not required)

iid
response: changeTime - timestamp of last change
add_multimedia command

iid - item id which belong
request: POST file - binary data (image or pdf)
response: | mid - multimedia id

get_multimedia command - return image of multimedia or sheet

mid - multimedia id

request: or
sheet_id - sheed id
response: | binary data

Table 6.1: Communication parameters 1/2

27

get_preview command - return image preview (256x256px) multimedia or sheet

mid - multimedia id

request: or
sheet_id - sheed id
response: | binary data

get_events command

request:

timestamp - when was the data created (not required)

response:

users : array of users which client needs

projects : array of projects for current user

items : array of items for current user

multimedia : array of multimedias info for current user
contacts : array of contacts for current user
project_invitations : array of project invitations from others users
(aid, pid, state)

item_invitations : array of item invitation from others users
(aid, iid, state)

accounts : array of available accounts for current user

sheets : array of sheets for current user

count: response counter

(the next response on this command have to be one greater)
messages: array of messages

add_message command - add new message

text - message body

t:
redques iid - item id which message belong
creationTime - timestamp when message hit server
response: . .
msg_id - message id
Table 6.2: Communication parameters 2/2
error code error message error description
666 invalid token token is invalid or is not specify
2 missing command command is not specify
789 params error to many parameters or invalid parameter
both logi d d d t match with
1 user does not match | POt login and password does not match wi
any user in database on server
6 unknown command | command is invalide

Table 6.3: Server errors codes and messages

28

Contact Message item Invitation
User_id <<Pk Fles ld <<Plk>> ltem_id <<Pk, Fle>
Uld =<Unique==> Msg_id <<Unique=> User_ide<Fks>
Type ltem_id<<Fks> State

0.n
Target User_ide<Flk=> i
i Relation o
CreationTime
1
Text
Status > Relati
o.n
: 1
User Item
Multimedia
Id <<Pk=> Id <<Pk=>
Id <<Pk=>
Uld ==Unigue>= lld =<Unigue==
Relation=— Wid <<Unigues>
Login it o.n Ptoject_id <<Flo>
ftem_id <<Fks:= L >—Relation——
Surname ! e i | User_id <<Fk>>
User_id <<Fl== i
1| Firstname CreationTime
CreationTime
Y B ! T Sheed_id<<Fiss
Relatio <> Name
0.n
a.n 1
Relatior Relatio Relation
0.n 1
0.n
Project Tag
" Relatio Description e 1] <P
o.n
Tag_id <<Unigues>
G ARt Address g_ ques
Id <<Pk>> Name Item_id <<Fk=>
Acountld <<Unigquess HE——Relation———=> Hole e
o.n -
Public_id <<Uniguess ! State User_id <<Flc>
Name CreationTime Zoom
FinishTime Text
StartTime Y
Project Invitation User_id <<Fk>> X
Project_id <<Pk, Fk=> Account_id <=Flk== a.n
User_id<<Fle= Pld <<Uniques=>
Relaticn
State H Id <<Pk>>
1 1
Sheet
Id <Pl
Sheed_id =<Unigues>
Relation i 2l atio n— Project_id <<Fle>=
o.n
User_id <<Fle==
Name
- <> CreationTime
0.n

Figure 6.5: Database diagram

29

Chapter 7

Implementatio

Implementation is using models and diagrams from Chapter 6. Application is implemented
in Microsoft Visual Studio 2013 and using his tools. The libraries and notworks are linked
to project by NuGet Package Manager. Code is written in C#.

7.1 Database

Diagram form Figure 6.5 is giving model how database should be implemet. In the project
was use SQLite.Net library for creationg tables and fetching data from database. Commu-
nication with database is basically synchronous and SQLite.Net use ORM. Calling fuction
conn.Find<Item>(item => item.Iid == message.Iid) return object of Item classe who
has reletionship with object message. For defined table is necessary define class with special
keywords above attributes. Keywords like PrimaryKey, AutoIncrement, ForeignKey,
Unique. All tables has defined relationships with other tables. Relationship is defined
by SQLiteNetExtensions library. This relationship is specified by keywords ManyToOne,
OneToMany, OneToOne. Each relationships needs ForeignKey for addressing connection
with other tables.

Tables on client are different than on the server. Tables on client are extended on its
own Id. User can create new Item but his Id is created by server. After client send data
on server is created Item Id and return it in response. This action is asynchronous on
application run. Client have to create own id for storing Item as soon as is Item created
and user can take a photo attached to Item. Client can add photos to Item without storing
Item ion server. Client shoul send new Item on server as soon as possible. DataHelper
class is implement as singleton and handles all action with database.

Example of class corresponding to the table in the database:

public class Item
{
[PrimaryKey, AutoIncrement]
public int Id { get; set; }
public int Iid { get; set; } //Item id
[ForeignKey (typeof (Project))]
public int ProjectId { get; set; }
[ForeignKey (typeof (User))]
public int AId { get; set; } //User owner id

30

public uint CreationTime { get; set; }
public int Sheet_id { get; set; }
public string Name { get; set; }

[ManyToOne]

public Project Project { get; set; }

[ManyToOne]

public User User { get; set; }

[OneToMany (CascadeOperations = CascadeOperation.All)]
public List<Message> Messages { get; set; }
[OneToMany(CascadeOperations = CascadeOperation.All)]
public List<Multimedia> Images { get; set; }

7.2 Communication

For communication has been use HTTP protocol with custom API. Api is define by
APIInterface interface. The interface is part of Communication block. The interface
is implemented in JSONApi class. Other bocks communicate with Communication block by
this interface. The JSONApi class includes serializer and deserializer. Processed responses
are passing to other blocks by callbacks because the communication is asynchronous.

Request message has application/x-www-form-urlencoded content type. Application
used for serializing data MultipartFormDataContent class. This class has key/value list
and value can be string, number or biteArray data type. The biteArray has been use for
sending images and sheets. The JsonObject class is serializer for JSON data wich are ap-
pend to the input parameter.The MultipartFormDataContent and JsonObject are part of
RequestContent class which processes all data before sending. The RequestContent class
corresponds with the Request Serializer block from Figure 6.1. Communication is asasyn-
chronous and MultipartFormDataContent and is ensuring by HttpClient class. The result
is passed to ProcessResponse class wich is implement as singleton. The ProcessResponse
deserialize the response send them to database. The ProcessResponse corresponds with
the Response Deserializer block from Figure 6.1.

API interface:

interface APIInterface

{
Task getToken(Action<JsonObject> responseAction,

string login, string password, int type);

Task getEvents(Action<JsonObject> responseAction, string timestamp);
Task getEvents(Action<JsonObject> responseAction, DateTime startDate);
Task getEvents(Action<JsonObject> responseAction);
Task getNewNotification(Action<JsonObject> responseAction);
Task getMultimediaPreview(Action<byte[]> responseAction, int mid);
Task getSheetPreview(Action<byte[]> responseAction, int sheet_id);
Task<byte[]> getMultimedia(int mid);
Task getSheet(Action<byte[]> responseAction, int sheet_id);

31

Task addSheet (Action<JsonObject> responseAction);
Task addMultimedia(Action<JsonObject> responseAction,
StorageFile image, int iid);
Task addItem(Action<JsonObject> responseAction, Item item);
Task addProject(Action<JsonObject> responseAction, Project project);

7.3 User Interface

The User Interface is implemeted in XAML and controlled by C# controllers classes. For
data binding is used observers wich notifi interface about data the change of data. For
implementation User Interface has been used strandarts interface components. The list is
ListView component and the Item detail is created by StackPanel. On Figure 7.1, Figure
7.2 and Figure 7.3 are displayed application pages. On Figure 7.4 is comparison of design
on the Android and on the Windows Phone.

32

E ey LR il Q7 % o 9:36
kuba Item test

Camera Chat
I A o 9:35 wl Az o4 9:35
Create a new Project Project setting
Project name and info ProjectStatus
|Active

Project data (Editable):

test kuba
| 5/23/2015 |

Kounicova 123, Brno

Finish aate

Link your project to an account | 5/23/2015
choose an item |
| desc
Note: Your project must be linked to a valid
account Project data (Non-editable):
PID: 26

Economicke stavby a.s.
123 456 789

Awexa sro

Create a new Project Project Settings

Figure 7.1: Application pages 1/3

33

ol @ 7z %

Projects

test kuba

Kounicova 123, Brno

test kuba

Kounicova 123, Brno

test kuba

Kounicova 123, Brno

test kuba

Kounicova 123, Brno

test kuba

Kounicova 123, Brno

test kuba

Kounicova 123, Brno

test kuba

Kounicova 123, Brno

wll @ Z %

Registration

%3 9:35

05.05. 2015 [

20:56 |

05.05. 2015 [(_'_-,

2057 |

05.05. 2015 |

21:.02 |

05.05. 2015

|

1
)

05.05. 2015
- W

05.05. 2015 [
&
]

—

08.05. 2015 [s

5

List of Projects

e 9:33

-
>

-

=N
>

-

Start Screen

wll A7 2
COLLA

L

registration

®

wll A7 %

login

Name

jakub.dohnal

Password

Prihlasit se do systému

Registration

Login

Figure 7.2: Application pages 2/3

34

9:33

9:34

wl Az »

test kuba

kuba Item test
Dohnal
Awexa sro

kuba Item test
Dohnal
Awexa sro

4 9:35 ol QA 7z 7 934

@)n]

08.05. 2015

Loading ...

List of ltems Loading Dialog

Figure 7.3: Application pages 3/3

35

il Bell o will Bel 4:20 PM o 7 @ =

r_' B Vila Ofechovka Zrusit Spravee Gkold

Jitka Brandysova

@
Popraskana omitka u vchodu Ea s _\%_ Daniel Hardrock

i T = R. Kc - X
Metrostav (i 2]
vy L 6.
Vas novy Ukol! i ;335 (

Chybi nazev zaznamu!

X
R. Kokrdova 20.6.
Metrostav 7 [o 2013)) Vykonavatel spinil Gkol

Chybi izolace v pfizemi E 21.6. e
2015

J. Smréek . -
B Stavebni dozor 2 (1)
Ukol spinén

Ukol zapocat

Spinéni dkolu povrzeno

Zobrazit celou historii Gkolu

Saving to Screenshots...

Wl Az o 9:35 wll A7 @ o 936
) test kuba kuba Item test
kuba Item test 08.05. 2015 i
Dohnal
Awexa sro ('j‘. (1] |

kuba Item test
Dohnal
Awexa sro

Figure 7.4: The application design comparison with Android platform

36

Chapter 8

Testing

For debugging and testing has been used standard Visual Studio tools as Application Ver-
ifier, Record Performance for records memory leaks and Isolated Storage Ezplorer for de-
bugging database and stored images.

User experience testing is defined as questionnaire for user. Users are divided into two
categories. The first category are users who working as construction supervision who are
mainly entering information to the application and assign defects to individual buildings.
The second category are users who works as construction manager and observe new infor-
mation in the application and and with its help manage repair defects. This two different
groups have different questionnaire with questions of how they use the application, what are
their problems with the application, how often they use the application and What features
are missing in the application. This test also requires go with users to work and observe
their behavior and if they use the application properly. This process is time consuming and
requires a long observation. It has been scheduled two months of testing with users.

37

Chapter 9

Conclusion

This master’s thesis is focused on how to design client-server application and design what
procedures and technologies are used for implementation of this type of application on Win-
dows Phone platform. The thesis indicates a problems with pooling method and describes
the design of communication between application and server. The available protocols for
communication are assessed, including their appropriateness for using in final application.

The proposed application utilizes the local storage and database system for using ap-
plication without internet connection and shows how to keep the data consistency. The
application allow users shared their pictures and maintain their connections. The appli-
cation allows user to take a photo of defect and pass it to other coworkers. Also allows
you to edit individual records and opening and closing defects in the form of items. The
application mediates the discussion of individual faults between coworkers in a chat.

It is important to test the application with users. It is the most important work that
must be planned. Contact the user to test the application and control the further develop-
ment of the applications according to their requirement. As required to add more features
to the application and finish the application appearance to resemble the appearance of
the application on other platforms. Arrange partners for the delivery of applications and
monetize applications according to their wishes.

38

Bibliography

[1] A. Berson. CLIENT/SERVER ARCHITECTURE. 2nd edition, édition en anglais.
McGraw-Hill, 1996. ISBN 9780070056640.

[2] Clive Evans, David Lacey, David Harvey, David Gibbons and Andy Krasun.
CLIENT/SERVER: A Handbook of Modern Computer Design. Prentice Hall
International UK, 1995. ISBN 0-13-377201-2.

[3] Dave Winer. Xml-rpc specification. http://xmlrpc.scripting.com/spec,
1999-06-15 [cit. 2015-04-15].

[4] Jani Ilkka Frederick Hirsch, John Kemp. Mobile Web Services: Architecture and
Implementation. John Wiley & Sons, 2007. ISBN 047-001-596-9.

[5] Mukesh Singhal Gurdeep S. Hura. Data and computer communications : networking
and internetworking. CRC Press, 2001. ISBN 0-8493-0928-1.

[6] Leonard Richardson, Sam Ruby. RESTful Web Services. O’Reilly Media, 2008.
ISBN 978-0-596-52926-0.

[7] PD Dr. Ralf Klamma, AOR. The xmpp experience.
http://dbis.rwth-aachen.de/cms/projects/the-xmpp-experience.

[8] Kevin Smith Peter Saint-Andre and Remko Troncon. XMPP: The Definitive Guide.
O’Reilly Media, 2009. ISBN 978-0-596-52126-4.

[9] WWW site. Smart client-side caching.
https://www.componentone.com/Studio/Data-Management/DataSourceSilverlight.

[10] WWW site. Overview of saaj.
https://docs.oracle.com/javaee/5/tutorial/doc/bnbhg.html, 2010 [cit.
2015-4-10].

[11] WWW site. The websocket protocol. http://tools.ietf.org/html/rfc6455/,
2011 [cit. 2015-4-10].

[12] WWW site. How to build a restful web api on a raspberry pi in javascript.
https://thefloppydisk.wordpress.com/2013/05/08/
how-to-build-a-restful-web-api-on-a-raspberry-pi-in-javascript/, 2013
[cit. 2015-4-10].

[13] WWW site. Xaml for windows phone 8.
https://msdn.microsoft.com/en-us/library/windows/apps/cc189036.aspx,
2015 [cit. 2015-04-10].

39

[14] WWW site. Building windows and windows phone apps with shared code.
https://dev.windows.com/en-US/develop/build-apps-shared-code, 2015 [cit.
2015-4-10].

[15] WWW site. Push notifications for windows phone 8.
https://msdn.microsoft.com/en-us/library/windows/apps/
££402558%28v=vs.105%29.aspx, 2015 [cit. 2015-4-10].

[16) WWW site. Quickstart: Adding winjs controls and styles (html).
https://msdn.microsoft.com/en-us/library/windows/apps/hh465493. aspx,
2015 [cit. 2015-4-10].

[17] WWW site. Xmpp technologies overview.
http://xmpp.org/about-xmpp/technology-overview/, 2015 [cit. 2015-4-10].

[18] WWW site. Languages, tools and frameworks.
https://msdn.microsoft.com/en-us/library/windows/apps/dn465799. aspx,
2015 [cit. 2015-4-15].

40

Appendix A

CD content

41

	Introduction
	Client Server model
	Architecture and infrastructure design

	Communication
	SOAP
	XML-RPC
	REST
	XMPP

	Windows Phone
	Windows Phone tools
	Push Notification

	Current situation and work plan
	Proposal
	Decomposition
	Communication
	Database

	Implementatio
	Database
	Communication
	User Interface

	Testing
	Conclusion
	CD content

