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Abstrakt
Táto práca sa zaoberá implementáciou a optimalizáciou výpočtovo náročných algoritmov na
koprocesore Intel Xeon Phi. Koprocesor Xeon Phi bol predstavený firmou Intel v roku 2012
ako odpoveď na obrovský nárast v používaní technológie GPGPU. Xeon Phi disponuje pod-
statne väčším výkonom ako procesor, preto je podobne ako GPGPU vhodnou platformou
pre beh výpočtovo náročných programov. Xeon Phi zatiaľ v praxi nie je velmi používaný,
preto je potrebné hľadať možné oblasti uplatnenia. Rozrastá sa ale jeho použitie v su-
perpočítačových centrách, napríklad Milky Way 2 – Guangzhou (Čina), Salomon – Ostrava.
Cieľom tohto dokumentu je oboznámiť čitateľa s problematikou implementácie náročných
algoritmov na akceleračnej karte Xeon Phi, ich optimalizácie a meranie výkonu. Výkon
koprocesoru Intel Xeon Phi bude porovnávaný s výkonom procesorov Intel Xeon.

V teoretickej časti práce bude čitateľ oboznámený s architektúrou a princípmi koproce-
soru Xeon Phi. Budeme sa venovať výhodám ale aj nevýhodám tohto koprocesoru, ktoré
budú často porovnávané s všeobecnými vlastnosťami procesorov. Témou bude taktiež
otázka, kedy je vhodné zvoliť pre výpočet akcelerečnú kartu Xeon Phi a kedy procesor.
Detailne si vysvetlíme a znázorníme výber vhodných algoritmov pre Xeon Phi, postup ich
implementácie, optimalizácie a meranie výkonu. Okrem toho budú rozoberané problémy a
úskalia, ktoré môžu nastať pri implementácii algoritmov a používaní koprocesoru.

Dané demonštrujeme najskôr na ukážkových problémoch, ktoré boli riešené na Os-
travskom superpočítači Anselm. V prvom rade to budú jednoduché benchamrky typu
násobenie matíc, násobenie matice a vektora, na ktorých budú ukázané základné princípy
implementácie optimálnych algoritmov pre koprocesor Xeon Phi. Napríklad pri benchmarku
násobenia matice a vektora bolo dosiahnutých asi 6.5% teoretického výkonu koprocesoru.
Ďalším, komplexnejším problémom bude “N-Body Simulation” – simulácia pohybu častíc v
priestore, na ktorom sme otestovali potenciál Xeon Phi. Výkon koprocesoru sa pri tomto
benchmarku vyšplhal až na viac ako 35% teoretického výkonu – 725 gFLOPS (maximálny
výkon 2000 gFLOPS pre dáta s jednoduchou presnosťou). Čitateľ sa okrem iného môže
dozvedieť aj zaujímavé informácie z oblasti fyzikálnych simulácií, konkrétne bude reč o
module pre MATLAB (k-Wave). K-Wave sa zaoberá simuláciou šírenia akustických vĺn v
1D, 2D a 3D, čo sa využíva napríklad pri simulácii šírenia ultrazvukových vĺn v mäkkých
tkanivách. Na koniec si stručne povieme o portovaní už existujúcich knižníc, modulov či
programov na Xeon Phi zo snahou využitia jeho potenciálu. Bude to napríklad kroskom-
pilácia knižníc HDF5, ZLIB či konca interpretu jazyka Python s modulmi Numpy a Scipy.

Klíčová slova
Intel Xeon Phi, k-Wave, MIC, N-Body, Súčin matíc, Súčin matice a vektora, Výpočtovo
náročné algoritmy, I-vektor.



Abstract
This thesis is dedicated to the implementation of high performance algorithms on the In-
tel Xeon Phi coprocessor. The Xeon phi was introduced by Intel as a new MIC (Many
Integrated Core) architecture in 2012. The theoretical part of the thesis is focused on the
architecture of the coprocessor (with peak performance of 2 tFLOPS for a single precision
data) and on the procedure of algorithms implementation and optimization. The theoretical
knowledge is then applied to a practical examples with demonstration of the implementa-
tion and the optimization of algorithms and work with the coprocessor. In the practical
part of the thesis, simple benchmarks such as a vector matrix multiplication and a matrix
multiplication are explained and implemented. In the first benchmark 6.5% of theoretical
coprocessor performance was achieved, in the second it was much more. In following chap-
ter a more complex benchmark – simulation of a particles system (N-Body), that reached
more than 35% of coprocessor performance (725 gFLOPS), is discussed. The following sec-
tion is dedicated to some interesting problems such as optimization of a MATLAB module
k-Wave (propagation of the ultrasound waves), extraction of I-vector (speech processing),
cross-compilation of existing libraries, modules and programs. In the conclusion of the
thesis the usage the potential of the Intel Xeon Phi is evaluated.
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HPC, I-vector.
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Chapter 1

Introduction

In 2012, Intel has introduced new coprocessor – Xeon Phi, (Xeon family) which was response
to gigantic boom of the GPGPU architecture. The motivation for creation of this thesis is
deployment and enhancement of a computationally intensive algorithms on the coprocessor
Intel Xeon Phi (hereinafter referred to as MIC). After optimization of the application,
the MIC disposes with significantly higher performance than the processor; it is therefore
suitable for use with computationally intensive programs.

The goal of this work is to familiarize the reader with issues of implementing of high
performance algorithms on the MIC card, their optimization and performance comparison.
MIC performance will be compared with the performance and other important parameters
of Intel Xeon processor (hereinafter referred to as CPU). This work is very interesting
mainly because of new Supercomputer construction in Ostrava – Salomon. Salomon will
contain 864 MIC card, which ranks it among the top 5 Supercomputers in the world. This
work is great chance to gain lot of experiences with our coprocessor. Another great example
is Milky Way 2 – Supercomputer composed exclusively of Intel Xeon processors and Xeon
Phi coprocessors. During work on this thesis was used Supercomputer in Ostrava – Anselm
containing 4 MIC accelerators.

The biggest challenge of the thesis is that the MIC is relatively new and unexplored
architecture. There are not many people who have worked with this technology, and there
are not many practical examples of its use. It can be very interesting to find new ways and
possibilities of using this technology.

First, the reader will be informed with the architecture and principles of the MIC card.
We will deal with pros and cons of the MIC, which will be frequently compared with general
properties of CPU. We will also deal with the question when it is suitable to choose the MIC
card for the computation and when to choose a CPU. Further chapters of theoretical part
will explain selection of suitable algorithms for MIC, procedure of their implementation and
optimization.

First practical examples will be simple benchmarks like vector matrix multiplication and
matrix multiplication, on which basic principles of optimal algorithms implementation will
be demonstrated. The second problem will be the “N-Body Simulation” (particles system),
based on which we will test the potential of a MIC. Later we will focus on the significantly
more complex application – MATLAB module k-Wave. K-Wave deals with the simulation
of acoustic waves propagation in 1D, 2D and 3D. This can be used e.g. for simulation of
ultrasound waves propagation in soft tissues. In the end, we will briefly discuss porting of
existing libraries, modules or programs to MIC with the focus on using its potential. It will
be e.g. HDF5, ZLIB libraries or Python interpreter (with Numpy and Scipy modules).
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Chapter 2

Intel Xeon Phi

2.1 History

The development of MIC began in 2001 when a solution for energy reduction of the Intel
Xeon processor family was being sought. It was discovered that a simple low frequency
MIC architecture with an appropriate software support will be able to produce higher per-
formance and better performance/Watt ratio. The MIC abbreviation comes from the term
Many Integrated Core and is the technology of the Intel Company – Intel Many Integrated
Core Architecture. Simply said, the Intel MIC architecture combines many Intel processor
cores (fast interconnect) on a single chip. The rest of the chapter is based on information
from [1] and [3].

Apart from using this technology in computer graphics, there is a plethora of scientific
and technical application, which can utilize the advantages of the MIC architecture. Com-
putationally intensive applications can profit from the advantages of the MIC architecture
by scaling at the threads and processes level. However, this solution required a new design
of the micro architecture. Intel x86 (Pentium) cores were used as the bases, which incorpo-
rated a new, enhanced instructions set AVX-512. For this architecture an operating system
was developed and adjusted, based on the standard Linux core. Overall support for the
Linux platform has been created, which is used in given field to a great extent. At the same
time, tools for algorithm optimization tools was created (Intel Debugger, Intel Amplifier
XE, Intel Math Kernel Library, etc.).

The goal was to create a hardware and software solution, which would meet the re-
quirements of the applications for scientific and technical computations. The newly created
hardware was named KNC and its performance reached 1 tFLOPS for double precision
data. This hardware was later marked and named as Intel Xeon Phi, presenting to public
by the end of 2012. At first glance, it can be seen that the technology is quiet young,
therefore we can use the possibility to try something new, something that has not been
used for many years and contribute with it to the use of MIC, eventually simplify work
with them. Despite its great potential, this architecture is still very rarely used; therefore
it is worth the effort to introduce a new view, which would demonstrate its effective use
and maintenance. We will discuss the architecture, principles and performance in detail in
subsequent chapters.
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2.2 Basic information

Intel Xeon Phi is a coprocessor of the MIC architecture (Intel Many Integrated Core Archi-
tecture). As already stated, the MIC architecture combines many Intel processor cores on
a single chip. The Intel MIC architecture is focused on highly demanding and parallel com-
putation called HPC (High Performance Computing), which find applications in physics,
biology, chemistry, financial services, etc. The MIC architecture is suitable for achieving
high performance and throughput especially in clusters, where it works together with the
processor or other coprocessors. The key attribute of the micro architecture is the fact that
it was created to provide a universal programming environment similar to the programming
language of classic Intel Xeon processors.

Intel Xeon Phi is composed mostly of compute cores, cache memories, memory con-
trollers, client’s logic of PCIe and high throughput memory (all of these components are
interconnected through a two-way circular connection). One core comprises of an L1 in-
struction cache and an L1 data cache. Except for this, each core has its own L2 cache,
which is fully coherent among other cores, thanks to a globally distributed tag directory.
The Client’s logic of the PCIe and memory controllers offers direct interface to the MIC
main memory (GDDR5) and the PCIe bus.

Each compute core is designed in a way to be energy efficient while offering high through-
put for highly parallel tasks. If we go deeper, we discover that the cores use an “in-order
pipeline”, while each core provides 4 hardware threads (Figure 2.1 top left corner) and uses
Hyper-threading (as opposed to a CPU, offering two hardware threads per 1 core). Decod-
ing of 1 instruction takes 2 clock cycles, therefore it is very important to use at least 2 HW
threads (this will cover the gap between decoding). We can see that there are 2 pipes –
“Pipe 0” (general) and “Pipe 1” (only for scalar unit) in Figure 2.1. The performance is
hidden in a VPU unit, which is capable to process 512 bit vector data at once. Of course,
the core contains also a scalar unit, and support for the IA architecture (IA-32, IA-64) is
also secured (only 2% of the core surface area). The Intel Xeon Phi coprocessor has more
than 50 cores (depending on the model), supplying the unit with significant performance.
Other basic components of MIC core are depicted in Figure 2.1.

The Intel Xeon Phi coprocessor is controlled by a Linux operating system, adapted
for the needs of given coprocessor, supports the x86 memory configuration, arithmetic
of floating decimal IEEE 754 and is capable of running an application created in the C,
C++ and Fortran programming languages. MIC is supported by a rich developmental
environment like the compiler (Intel compiler), library for working with threads (OpenMP),
library for work with processes (MPI), mathematical libraries (MKL), environment for
performance measuring, debugging tools, etc. Even though the MIC runs its own operating
system, it cannot be used independently; therefore it is attached to a CPU, called the
host through the PCI Express bus (PCIe). As the coprocessor runs the Linux operating
system, the virtual TCP/IP stack can be implemented by the means of the PCIe bus,
allowing the user to access the coprocessor as a network node. Thanks to this, the user can
connect to the MIC through a secured shell and directly start individual tasks, or batches
of tasks. Applications can be created in several modes; we will focus on the Native mode
and Offload mode. We will discuss the use of individual modes and differences between
them in subsequent chapters.

Several Xeon Phis coprocessors can be connected to a single hosting system. Within an
individual system, individual coprocessors can communicate between one another by the
means of a peer-to-peer method through the PCIe bus without any activity of the host. The
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same communication between coprocessors without any activity of the host is also possible
through a network card.

Figure 2.1: Intel Xeon Phi basic components [3].

2.2.1 Vector Processing Unit

The most important part of the MIC core is the VPU – Vector Processing Unit. VPU
contains a new special instructions set of 512 bit SIMD instructions known as Intel Initial
Many Core Instructions (Intel IMCI). Thus our VPU can perform 16 operations with a
single precision (from here on as SP) and 8 operations with double precision (from here
on as DP) in 1 cycle, which by itself sets high performance per core. VPU also supports
FMA instructions (Fused Multiply-Add), therefore it can realize 32 SP operations and 16
DP operations at the same time. FMA instructions support multiplication and addition of
operands at the same time (FMA is perfect for vector dot product routines).

From the energy point of view VPU is a highly developed technology, especially for HPC
where the load of the processor’s cores is very high. A single operation can perform a lot
of work all at once. Without VPU, it would be necessary to repeat certain instructions for
each vector component. For the support of 512 bit SIMD instructions, it was necessary to
perform various adjustments, like a masking register added into the VPU allowing “per lane
predicated execution” (this improved the efficiency of the software pipelining). VPU also
supports Gather and Scatter instructions, which allow non-unit stride vector memory access.
EMU (Extended Math Unit) can perform transcendent operations like roots, logarithms and
other, while optimally using the core’s performance.

2.2.2 System connection

As already stated, connection of individual parts within the coprocessor is realized through
a two-way circular connection. Each direction is composed of 3 independent rings. The first
and the most complex one is the data block ring (BL – Figure 2.2). Its width of 64 bytes
secures support for high throughput, required due to high number of cores. The Address
ring (AD – Figure 2.2) is in contrast simpler and smaller. It serves for sending of memory
addresses and read/write commands. The last and the smallest one is the acknowledgment
ring (AK – Figure 2.2), sending the regulation of the flow.

6



If a core is not successful in accessing own L2 cache (L2 miss), the request for the address
is sent by the address ring to the tag directories (TD – Figure 2.2). A Memory addresses
are jointly distributed among tag directories to ensure smooth operation on a given ring. If
requested data is found in the L2 cache of another core, the request is sent by the address
ring to the L2 cache of that core. Subsequently, the data block is sent to the data block
ring. If the requested data is not found in any cache, the memory address is sent from the
tag directory to the memory bus, and the memory controller serves the request. Memory
controllers are symmetrically distributed around the ring which eliminates hotspots and
helps to achieve quick response.

During a memory access, whenever there is a L2 miss in the core, the core generates
a request for an address sent through the address ring (AD) to the tag directory (TD). If
the data is not even found in the tag directory, the core generates another request for the
address; this time the request is directed to the memory. The memory bus picks up the
data block from the memory, and sends it to the core by the data ring (BL). During this
process, there are 2 requests for an address, 2 acknowledgment messages (through AK) and
1 data block sent through the ring.

Figure 2.2: Intel Xeon Phi system connection [3].

2.2.3 Streaming stores

Streaming stores are another key enhancement, focused on further improvement of memory
throughput. Pseudo code 2.1, which demonstrating so called “Streams Triad” is bellow:

1 for(i = 0; i < N; i++)
2 {
3 A[i] = k * B[i] + C[i];
4 }

Listing 2.1: Streaming Triad example

The pseudo code “Stream Triad” reads 2 arrays – B, C and writes in array A. Historically,
the core had had to read cache line before it started to write the addressed data. Therefore,
another, needles reading from the memory connected with writing occurs. Streaming store
instructions allow the core to write in the memory the entire cache line without the need for
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reading it from the memory prior to the write. This reduces the number of transferred bytes
per 1 iteration from 256 B to 192 B. The bottom line is that we never read from A and size of
A is bigger than size of L1 cache. In our case when using streaming stores instructions, it is
necessary to perform operations: Read B, Read C, Write A. On the contrary without the
use of stores streaming instructions it is necessary to perform operations: Read A, Read
B, Read C, Write A, which is 1 operation more when compared to the previous case.

2.2.4 Cache memories

A great amount of effort and attention was spent on the issue of cache memories providing
a high throughput. Every core is equipped with a 32 KB L1 instruction cache, 32 KB L1
data cache and 512 KB L2 cache. All cache memories are fully coherent, while they support
the x86 memory model. L1 cache memories offer a throughput about 15 times higher than
the throughput of the main memory. In comparison with the main memory, the L2 cache
is 7 times faster. Because of this, effective use of cache memories is the key factor for
achieving peak performance on a MIC. Moreover, working with cache memories is many
times more energy efficient than work with the main memory. Therefore, when processing
large amounts of data, is very suitable to use “cache-blocking”, which can help to improve
cache utilization.

2.2.5 Threads

If we take into account the fact, that the Xeon Phi offers more than 50 cores, while each core
disposes with 4 hardware threads, we are getting a fairly decent amount of usable threads. In
comparison with the Xeon processor, which uses 8/16 (Hyper-threading off/on) threads at
the most, the 200 threads is an astonishing number. Of course, it is not completely simple
to effectively use such many threads. Therefore later on, we will talk about procedures
which can help us to achieve high performance. As long as our algorithm cannot be scaled
for at least 2 threads per core, the application will most likely run ineffectively and even
slowly than on a Xeon processor. The use of at least 2 threads per core allows covering
performance deficiencies of weaker cores (2 clock cycles instruction decoding), which when
compared to the Xeon processor are about 40 times slower (1 Xeon Phi thread vs. 1 Xeon
thread). Picture 2.3 depicts the difference of algorithm scaling on the Xeon processor and
the Xeon Phi coprocessor. We can observe that the maximum performance can be reached
on the Xeon Phi coprocessor only when using at least 2 threads per core.

2.3 Introduction of work station and summary

All measurements and application development for this thesis were performed on the Anselm
supercomputer in Ostrava. Further, basic properties and parameters of the Anselm super-
computer will be presented to give the reader an idea about the machine, which measure-
ments and testing of developed applications were performed on. Anselm is a cluster based
on Intel x86-64 nodes built on Bull Extreme Computing bullx technology. The peak perfor-
mance reaches the level of 94.5 Tflop/s. The cluster contains 4 types of computing nodes
[5]:

1. Computing nodes without accelerator – 180 nodes

2. Computing nodes of the Fat type – 2 nodes
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Figure 2.3: Scaling on threads level (Xeon Phi vs. Xeon) [1].

3. Computing nodes with a GPU accelerator – 23 nodes

4. Computing nodes with a MIC accelerator – 4 nodes (for this thesis the most important
ones):

• 64 processor cores total (38.4 gFLOPS per core for SP data)

• 2x Intel Sandy Bridge E5-2470, 8 core, 2.3 GHz processor for each node

• 1x MIC accelerator Intel Xeon Phi 5110P per node

• bullx B510 blade servers

• memory organization:

– 2 sockets per node

– data transfer speed up to 1600 MT/s

– memory controllers are integrated in the processor

– 6x DDR3 DIMMS per node

– 3x DDR3 DIMMS per processor (38.4 GB/s)

– 1x DDR3 DIMMS per channel

2.3.1 Detailed specification of the Intel Xeon Phi coprocessor

• Pentium scalar ISA including x87 [1]

• AVX-512 (extended instruction set)

• In-order operations, super-scalar issue
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• Full 64 bit addressing

• 4 hardware threads per core

• 50 to 61 cores (in our case 60 cores)

• 2 cycle decoder

• Scalar and vector unit

• 2x pipeline (scalar and vector/scalar)

• 6-16 GB GDDR5

• 320 GB/s

• Peak performance 2 tFLOPS for SP data

• L1 cache:

– 32 B instruction cache per core

– 32 KB data cache per core

– 8 way associative

– 64 B cache line

– 3 cycle latency

– up to 8 unresolved requests

– Fully coherent

• L2 cache:

– 512 KB per core

– 8 way associative

– 64 B cache line

– 11 cycle latency

– Inclusive

– Up to 32 unresolved requests

– Streaming HW prefetcher

– Fully coherent
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Chapter 3

Process for algorithm
implementation

3.1 Platform selection

At the beginning we should clarify when is it suitable for application to use a CPU and
when a MIC. Therefore we summarize 3.1 the most significant differences. This chapter is
based on information from [1], [3], [4] and [2].

Table 3.1: Comparison of a features of the CPU and the MIC.
Intel Xeon processor (CPU): Intel Xeon Phi coprocessor (MIC):
High performance of single thread High level parallel processing
High capacity memory High throughput memory
8 cores Up to 61 cores (in our case 60)
2 hardware threads per core 4 hardware threads per core
Hyperthreading: Yes (but now always used) Hyperthreading: Yes
SIMD instructions (256 bit registers) SIMD instructions (512 bit registers)
Intel AVX Intel AVX-512
Virtualization, AES Gather/scatter instructions, FMA
Intel 307/614 gFLOPS (8/16 threads, SP) 2000 gFLOPS (SP)
38,4 GB/s 320 GB/s

Differences in the architecture of the CPU and MIC definitely aren’t negligible. And
it is necessary to consider them when selecting a platform for running an application and
for writing the application itself. As long as our application is not optimized sufficiently,
it is not suitable to use a MIC, it is better to choose a CPU. The CPU is designed in a
way that allows for sufficient performance even when running a not optimized application
on single thread. On the contrary running an application, which is not vectorized and
sufficiently parallelized for a MIC, we are left with results orders of magnitude worse than
on a processor. Decision making process for selection of suitable platform can be seen in
the picture 3.1.

When choosing the platform it is therefore necessary to consider: the possibility of using
a large number of threads, the possibility of vectorization and the possibility to use high
throughput memory. Based on the above picture we start the decision making process with
number of usable threads. If our application can use more than 100 threads (of course 100
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Figure 3.1: Process for platform selection [1].

threads is not precisely set value, it depends on specific application), a MIC can seem like
a good choice. However, if our application is not capable to use this number of threads, it
is better to use the processor instead.

If our program can also profit from wide vectors (512 bit AVX registers for Xeon Phi), the
coprocessor will be the correct choice. Of course, everything depends on the optimization
of the algorithm, which is the key aspect of performance.

If we are not capable to vectorize the code sufficiently, the Intel Xeon Phi coprocessor
is providing us with the possibility to use high throughput memory, e.g. for processing of
a large data (through high number of threads). If we are not able to use even this option,
we use the Xeon processor to run the application.

3.2 Optimization process

3.2.1 Introduction to optimization

It is suitable and recommended to optimize the application for the CPU first. After reaching
high level of optimization especially if our application is capable of using a high number
of threads, we can move to the MIC platform. When developing applications for this
platform it is necessary (for now) to use an Intel compiler (icc, icpc, ifort) to generate
code for the MIC architecture. Furthermore the compiler automatically trying to optimize
the code (if the optimization is not explicitly turned off). However, this is not always
possible, especially due to naive algorithms, which are not optimized. Frequent reasons are
jumps and branching, which are constantly repeated in every iteration, embedded loops,
poor work with memory or simply incorrectly chosen algorithm structure. With a great
number of iterations, a single condition that the program has to evaluate in every iteration
can unbelievable slow down the program. Furthermore this loop cannot be unrolled and
vectorized. Similarly it is more than suitable to eliminate the number of accesses to the
main memory, which results in the processor waiting for the data a number of cycles more
than reading the data from the cache memory.

Removal of needless and frequently repeated jumps in the algorithm and enhancement
of reading the data from the cache memory can bring us significantly higher performance.
However, it is possible that the code modified in this way will not be “appealing” from a
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programmer point of view, it will not be readable and transparent, which we are trying to
have most of the time. It is price paid for achieving the maximum performance. Sometimes,
it is necessary to use such constructs which make the code intricate but the compiler can
optimize them better and thus generate a significantly faster code.

However, automatic optimizations of the compiler do not have to be sufficient, therefore
there are several ways how to help the optimization. Later on we will deal especially with
compiler directives like “Intel #pragma” or “OpenMP #pragma”, which are special marks
for compiler, thank to which it can optimize the code in a better (worse) way. These
directives are placed usually above the loops we are trying to optimize. Thanks to these
special designations we know e.g. how to signal the compiler that it can (or even has
to) vectorize a given section of the code, start it on several threads, mark that a given
data is aligned in the memory, etc. All of these compiler options can only be used if
we precisely know their meaning and consequences of use, otherwise many issues might
occur bad computing results or even an unexpected crash of the program. Thats why the
meaning of individual directives (of course only a few significant ones, others can be found
directly in the compiler documentation 1, some Intel guides 2, etc.) will be explained and
demonstrated on prime examples.

For peak performance the most important optimization steps are: vectorization, ex-
ploiting the cache memory and running the program on many threads. Vectorization is
extremely important especially because the CPU/MIC can employ VPU to treat vectors
instead of scalar operations. The exploiting of the cache memories can be enhanced by
keeping the working data in cache as along as possible and not move it needlessly between
the main memory and on-chip memory. Another important thing is the parallelization of
the algorithm on the thread level. Under this term we mean splitting the computing (if it is
possible) among several threads. Each hardware thread computes results for its own data
block, which in the end make up for the final result. At every step of the optimization, it
is necessary to consider a large number of factors affecting the end speed of the program.
Since there’s no silver bullet, one must experiment. Detailed process of optimization will
be outlined in subsequent chapters.

If we have reached the state when our code is sufficiently vectorized, parallel and we
believe we cannot enhance the CPU’s performance anymore, it is time to move to the MIC.
Unlike 8/16 hardware threads offered by the CPU, the MIC offers more than 200 hardware
threads. It is here where we find the possibility how to very quickly and simply try to
accelerate the computing on the MIC when compared to the CPU. Therefore it is advisable
to experiment with various numbers of threads, e.g. 60, 120, 180 and 240 threads. In
theory, it should be that by doubling the number of threads the computing time shortens
to half. However the reality is frequently different, it depends on the type of algorithm and
level of optimization (and overhead caused by threads communication).

In order to make such a large number of threads sensible, it is necessary to secure that
all the threads have enough work to do, otherwise overhead can slow down the program.
Thus, the size of processed data is another important factor for selection of the suitable
platform. If the computing time is better when compared to the CPU, we are on the
right way to exploit the potential of the MIC, however the algorithm can be probably still
modified and improved to achieve higher performance.

Application which was optimal for the CPU does not have to be optimal for our copro-

1https://software.intel.com/en-us/compiler_15.0_ug_c
2https://software.intel.com/en-us/articles/getting-started-with-intel-composer-xe-2013-

compiler-pragmas-and-directives
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cessor due to different architecture. For example, the MIC when compared to the processor
has a higher memory throughput, bigger L2 cache, enhanced instruction set, etc. Thus, if
we want to get maximum out of the MIC, it is necessary to consider all the aspects and
modify the code based on its needs.

3.2.2 Vectorization

Simply told, vectorization is a transformation of scalar operations to vector operations.
Scalar operations work with 1 pair of operands. While vector operations can process many
more pairs of operands at the same time.Vectorization is realized by the compiler (and
user) by packing a sequence of scalar operations into a vector one. During vectorization
512 bit SIMD (Single Precision Multiple Data) instructions are generated. In our case the
processing of SIMD instruction is secured by the VPU unit, which as we already stated can
process 512 bit vectors of operands.

The Intel compiler can automatically vectorize sample codes (as long as optimizations
aren’t explicitly prohibited) based on certain heuristics. Automatic optimization are ex-
ecuted only if the compiler is sure that the vectorization of the code won’t change its
semantics (e.g. during mutual data dependency of processed vector elements). In the cases
when the compiler refuses to vectorize the code (and we are certain that vectorization won’t
affect the semantics of the code), it is possible to override standard behavior by compiler
directives like #pragma ivdep, #pragma simd. The meaning of individual directives will
be explained later.

3.2.3 Memory layout

During algorithm optimization a good storage of data in memory is extremely important.
If we have decided to store data in structures, we usually have 2 options available – array
of structures (AoS) and Structure of arrays (SoA). First way (AoS) can have the following
form:

1 struct
2 {
3 float x;
4 float y;
5 float z;
6 } AoS[N];

Listing 3.1: Array of structures example

If we consider general data storage in array we discover that individual components of
the array are stored continuously in memory. In this case, we will have an array of struc-
tures stored in memory containing items x, y, z. This trinity represents one structure, i.e.
one element of the array. Next element of the array will be another structure etc. Between
individual elements of the array there can be a certain padding, which serves for better
alignment of data in the memory. The downside of this solution is especially that if our
algorithm wants to read/write from/to all elements (structures) for example component x,
it is not possible to use simple and quick read/write vector instructions, but gather/scatter
instructions. These instructions allow non-unit stride memory access. Under these circum-
stances the compiler won’t vectorize the code, thus we loose performance. Moreover, the
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gather/scatter instructions require more CPU cycles than simple load/store instructions.
To make data SIMD-friendly, structure of arrays (SoA) will be better way:

1 struct
2 {
3 float x[N];
4 float y[N];
5 float z[N];
6 } SoA;

Listing 3.2: Structure of arrays example

Data stored in a SoA is in this case more preferable solution because it eliminates the
need of gather/scatter instructions. In this case, we have arrays x, y, z stored contin-
uously in the memory. These 3 arrays together make up one structure. If our algorithm
repeatedly accesses neighbors elements of array x (unit stride), the compiler can generate
vector read/write instructions. Prefetching of data to cache memory works also better
while we can maximally use their size. This solution is more suitable also in regards to the
alignment of data in memory because it is sufficient to align the whole arrays once (not
every array component as was the case with AoS). Thus the paddings don’t occupy memory
space.

3.2.4 Directive ivdep/IVDEP

The directive ivdep/IVDEP instructs the compiler to ignore expected data (vector) depen-
dencies in for loops. Implicitly, the compiler treats expected data dependencies as proved
data dependencies. This is conditioned by the fact that if the compiler doesn’t have a
confirmed data independency in a given loop, it will not execute vectorization due to the
possibility of unexpected behavior of the program. The use of ivdep directive is therefore
suitable only in case when we are sure that expected data dependencies do not apply and
the code can be vectorized safely. If the data dependency is confirmed, the compiler simply
ignores the ivdep directive.

3.2.5 Directive simd/SIMD

The simd directives serves just like the ivdep directive for sending an instruction to the
compiler to vectorize the processed section of the code (internal loop). As opposed to the
ivdep directive, there is one significant difference. Pragma simd instructs the compiler to
always vectorize the cycle located under this directive. All data dependencies including
the confirmed ones are ignored, the heuristic of the compiler is completely changed, loop
is vectorized irrelevantly on the possibility of negative consequences on the the applica-
tion. With incorrect use computational errors or other unexpected behavior might occur.
Pragma simd is a powerful tool giving the programmer full control over the vectorization
possibilities.

3.2.6 Directive vector aligned/VECTOR ALIGNED

When using this directive, we again instruct the compiler that it can ignore its optimal
heuristics, this time regarding the data alignment in memory. But in order to use the vector
aligned directive, we have to store the data (arrays) in memory at aligned addresses. For this
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purposes a mm malloc(int size, int align) function can be used. It aligns the data in
memory for multiples of the align parameter. By using the vector aligned directive the
compiler can generate instructions for moving aligned arrays, thus the runtime alignment
control does not have to be performed. Conversely, unaligned data forcing compiler to
generate gather/scatter instruction. Again, one must be extra careful when using the
vector aligned directive and use it only if we are certain that data is aligned. Otherwise
the code will crash.

3.2.7 Directive omp parallel

Pragma omp parallel explicitly authorizes the compiler for parallelization of selected sec-
tion of the code. The directive is part of the OpenMP library. The directive creates a logic
group of threads (executing the same code), the number of which can be set by changing
the environment variable (export OMP NUM THREADS=N) or directly in the source code by
using the function omp set num threads (for C and C++ languages). For the MIC it is
possible to create and use in this way more than 200 threads that works really in parallel.

3.2.8 Directive omp for

The omp for directive authorizes the compiler for distribution of individual loop itera-
tions among a logic group of threads created by on omp parallel directive. The direc-
tive has to be placed in the code immediately before the for loop. It is important to
consider and correctly determine which variables will be shared among the threads and
which will be private for each threads. Before parallelization of the cycle it is neces-
sary to secure that individual iterations will be independent, otherwise incorrect results
occur and the computation slows down. It is necessary for the iteration variable to be
private for each thread. The iteration variable cannot be changed in the body of the
loop; the loop can only have one entry point, one exit point and it cannot contains
break command (or any other jump command). There are lot of clauses3 associated with omp
for directive which can influence threads behavior. It is used e.g. for threads scheduling,
synchronization (barrier), reduction etc.

3.2.9 Memory allocation

For dynamic allocation of aligned memory block mm malloc(int size, int align) func-
tion can be used. The size parameter indicates memory size (in Bytes). Data is aligned
in the memory to multiples of the align parameter. For the Intel Xeon Phi coprocessors
it is suitable to align the data to multiples of 64 Bytes (64 Bytes cache line).

To release of dynamically allocated memory (with the mm malloc function) it is neces-
sary to use the mm free function. When using the standard function free(void *p) we
risk unexpected program behavior.

3.2.10 Binding of threads

KMP AFFINITY is an environment variable that determines the placement of threads across
the CPU or MIC cores. We can use 2 basic types of threads affinity – scatter and
compact. The scatter affinity determines that threads are evenly distributed over cores

3List of clauses associated with omp for directive can be found on page https://computing.llnl.gov/
tutorials/openMP/

16

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/


of the CPU/MIC. So if we want to use 120 threads on a MIC, and set the threads affinity
to scatter, each core of the MIC will obtain 2 threads to run. Therefore, the load will be
evenly distributed between all cores. On the other hand if we set the threads affinity to
compact, each core will run the maximum number of threads (4 in our case), thus we fully
use 30 cores while other 30 are idle. Which threads distribution is more suitable depends
on specific algorithm, quantity of processed data, etc.

3.2.11 NUMA First Touch Policy

The NUMA abbreviation means Non-Uniform Memory Access. It is a technology used in
modern systems for faster access of the processor to memory. The processor works with
memory integrated directly on the chip (On-chip memory) or memory, which is connected
to the processor through bus (Off-chip memory). For example our Xeon Phi coprocessor
has its own L1 and L2 cache on each core, while it is connected to the main memory through
PCIe bus. The issue is that each core (or thread) can have access to given section of the
memory of different complexity. Therefore it is suitable for the data to be distributed in
the memory in such a way, that each thread will have data stored in the memory as close
as possible to given core.

This case can be achieved by the method called “NUMA First Touch Policy”. In this case
we use the fact that the memory is physically occupied only at the moment of its primary
initialization. Therefore, the primary initialization of the memory has to be executed in
parallel by all the threads. By this we will achieve that every thread will place its data
into a memory where they have best access. During the primary memory initialization by
a single thread all the data would be placed in a way where other threads could have slower
access.

3.3 Programming models

Programing models are in this case different approaches to creation of application (in terms
of MIC utilization during program runtime). We distinguish 2 basic models (discussed in
this thesis) – native and offload. Another interesting model is also cluster mode (when we
use more MICs at once).

3.3.1 Native mode

It is suitable to use the native mode only for programs made mostly of operations which can
be parallelized either by vectors or threads (both in best case). These programs should not
execute a greater number of I/O operations; MIC cannot handle them as good as the host
system. It is not suitable for programs containing significant sections of the code processed
sequentially.

Creating a native application for a MIC isn’t difficult. Source code written in C, C++ or
Fortran languages and Intel compiler is sufficient. This code then needs to be compiled with
the -mmic parameter, specifying that this is a program created for the MIC architecture.
After successful compilation, the program is ready for execution. Since it’s a native program,
it is necessary to be logged in on specific MIC card via ssh. We should set necessary
environment variables and execute the program. If the host system doesn’t share the file
system with the coprocessor, it is necessary to manually copy the executable file, libraries
and other important files over. The scp utility serves for this purpose. Advantages of the
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native mode are simpler implementation and the resulting speed of the program. Of course
the resulting speed of the program depends on a number of factors, so it is suitable to use
it only under certain conditions.

3.3.2 Offload mode

The offload modes primarily uses CPU to run the application, however some parts of the
program run on a MIC. It’s a more complex solution than the native mode, its implemen-
tation is slightly more difficult. This mode is very similar to GPGPU programing (we can
use also OpenCV). The program itself is developed and executed on the host system while
some computation parts are offloaded to the MIC. Offload applications are suitable in cases
when a program executes a great number of I/O operations (generally operations performed
sequentially), while it contains computationally demanding sections which can be processed
in parallel. Sequential operations are computed by the host system and parallel sections
will be processed on the MIC (using a great number of threads). There are two basic types
of offload mode.

Model without a shared virtual memory is more demanding on the implementation
but allows the programmer full control over the data transfers between CPU and MIC.
After launch, the program is executed on the CPU until the #pragma offload 4 directive
is encountered (this is an Intel compiler directive, OMP directives can be used as well, e.g.
#pragma omp target). This directive causes that the compiler and runtime library will
perform a data transfer (the programmer could decide what exactly will be transferred)
between the CPU and the MIC, execution of the program on MIC, eventual data transfer
back from the MIC to the CPU. Only scalar data types, arrays and structures can be
transferred (types which can be copied by the memcpy function). If we want to work in the
offload mode with more complex data types or dynamic structures, we have to use a model
with shared virtual memory. CPU and MIC can execute code in parallel, of course with
limitation when waiting for various data. This offload mode is supported by the C, C++
and Fortran languages. Data transfer between host and coprocessor has to be explicitly
solved by the programmer; the compiler is not able to do it on its own.

Parts of the code (function), which we want to execute on the coprocessor in offload
mode has to be added an attribute during its definition (declaration). It tells the com-
piler that this code is designed for the MIC architecture. This can be done e.g. by
attribute ((target(mic))). Declaration of the function designed for offload mode

can have this form:

attribute ((target(mic))) void offload function(void);

Pseudo code example of offlad usage:

1 // code running on the processor
2 processor_function();
3 #pragma offload target(mic)
4 {
5 // code running on the coprocessor
6 offload_function();
7 }

4List of clauses associated with offload directive can be found on page https://software.intel.
com/en-us/articles/xeon-phi-coprocessor-data-transfer-array-of-pointers-using-language-
extensions-for-offload
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8 // code running on the processor
9 processor_function();

Listing 3.3: Example of offload mode usage

The model with shared virtual memory relates to the extension of the C++ – “Intel
Cilk Plus language”. For offload mode Cilk shared and Cilk offload keywords are used.
The offload model with the use of Intel Cilk Plus language does not have support for the
Fortran. Variables, we want to share between CPU and MIC are marked specially by the key
word Cilk shared. These variables can then be used on the CPU as well as the MIC. For
dynamic memory allocation Offload shared malloc, Offload shared aligned malloc,
Offload shared free and Offload shared aligned free are used.

As stated, this mode allows transferring more complex data types like dynamic struc-
tures, objects, pointers, etc. Work in this offload mode is simpler; the programmer is not
dealing with data transfer between CPU and MIC as much as is the case without shared
virtual memory.

Apart from previous two offload models, also the Auto Offloading mode can be used.
This mode can be used with routines of the Intel MKL library. If our program uses a MKL
function and processes sufficient a quantity of data, the computation can be automatically
moved to the MIC. After computation on the coprocessor, the result is returned to the host
system. To achieve the automatic offload, we have to enable it e.g. by setting environment
variable MKL MIC ENABLE=1). We will discuss this process in more detail in a practical
example.

3.4 Performance measurement

3.4.1 Time measurement

Time measurement of computing can be realized in many way. E.g. calling of the gettimeofday
(library sys/time.h) function can be used before beginning the computation and after the
computation, while the results are stored in the timeval structure. The resulting times
have to be simply subtracted from one another to get final time. Even simpler is to use the
function omp get wtime (library omp.h), also before beginning the computation and after
its completion. However, if we want to know as much as possible about the performance
of our application, time measurement is not sufficient on its own. Because of this it is
suitable to use a more powerful tool, which could provide us accurate information about
the operation of our program. For this purpose we decided to use the PAPI library.

3.4.2 PAPI

The PAPI library 5 provides a development tool with simple interface for work with hard-
ware counters on majority of microprocessors. The PAPI library allows the programmer
almost in real time to see dependencies between the performance of developed software
and processor events. PAPI provides access to a collection of components, which allow for
performance measurement and possibilities across hardware and the program itself.

After installing the PAPI library, by using the papi avail (or papi native avail)
command one can find out which hardware counters are available. In this project, the
following PAPI options have been used.

5The PAPI library is available together with the documentation on page http://icl.cs.utk.edu/papi/
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• PAPI FP OPS – Floating point operations per second

• PAPI SP OPS – Vector (floating point) operations per second

• perf::L1-DCACHE-LOADS – L1 data cache loads

• perf::L1-DCACHE-STORES – L1 data cache stores

• PAPI L1 DCM – L1 data cache misses

• PAPI L2 DCA – L2 data cache accesses

• PAPI L2 DCM – L2 data cache misses

PAPI has a very good support for Xeon processors. Unfortunately, at the time of
creation of this thesis it had only a limited support for Xeon Phi coprocessors. E.g. the
support for number of FP vector operations was missing, which is a significant indicator
for program optimization. However, if we develop application for CPU and MIC at the
same time, it is sufficient to measure performance and computation time on the CPU and
computation time on the MIC. Based on the computation time on the MIC it is then very
simple to calculate reached performance in comparison with the CPU. If we want to get
really detailed information about our application, the most suitable solution is to use a
powerful tool directly from Intel - VTune Amplifier. This tool collects information during
the operation of the program, which is then displayed in graphic form.
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Chapter 4

Intel Xeon Phi in practice

So far we have been dealing mostly with theory in the field of architecture and implemen-
tation of algorithms on the MIC. Now, the time has come to move from theory to practice.
In the following subchapters we will describe two exemplary tasks, implemented in this
thesis. We will begin with a well know benchmark, which is a matrix vector multiplica-
tion. Later, we will describe a more complex algorithm representing simulation of particles
system (N-Body). Both applications are implemented with the purpose of achieving the
highest performance of the MIC (we will going to expertise and experience). After solving
these examples, we will focus on much more complicated problems such as optimization of
k-Wave simulations or cross-compilation of some existing programs and libraries.

4.1 Matrix vector multiplication (matvec)

4.1.1 Introduction of the benchmark

This is essentially a simple algorithm, which can be described by a pseudo code, as follows:

1 for(i = 0; i < ROWS; i++)
2 {
3 for(j = 0; j < COLS; j++)
4 {
5 vector_final[i] += matrix[i][j] * vector[j];
6 }
7 }

Listing 4.1: Matrix vector multiplication pseudo code.

The result of matrix vector multiplication is therefore a vector. Every elements (of final
vector) are a dot product of one matrix row and input vector. At first sight the algorithm
appears to be simple (is true) but we cannot call it an optimal implementation capable of
exploiting the performance of the CPU/MIC. The following pars describe how to proceed
with optimization of this algorithm. First, I will remind that during the creation of this
thesis the Intel C++ compiler was exclusively used (icpc). Therefore, all possibilities
and options of the compiler mentioned apply to the Intel compiler and do not have to
be compatible with other compilers. Significance of some used compiler options will by
described, but for deeper understanding it is good to go over the documentation1.

1https://software.intel.com/en-us/compiler_15.0_ug_c
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4.1.2 Naive implementation

The naive implementation in C++ language is stems from the pseudo code 4.1. Individual
vectors are allocated statically on the stack. The matrix is represented by a 2 dimensional
array also allocated statically on the stack. The arrays are not aligned in the memory,
optimizations of the compiler are deactivated by the means of the -O0 switch (implicitly
-O2) (wen are using no vectorization and no parallelism). The compilation of the program
can be done as follows:

1 [host]$ icpc -O0 matvec.cpp -o matvec-host # for CPU
2 [host]$ icpc -mmic -O0 matvec.cpp -o matvec-mic # for MIC

Listing 4.2: The compilation for CPU and MIC.

After compilation, we get an executable file. After execution we can check the result of
the computation and the program’s running time.

In order to analyze the performance, it is necessary to create a more complex project
to simpler work with source codes. For purposes of this thesis the matvec/ directory has
been created (everything is located in the Appendix A, next we will identify each step of
optimization only by directory name). The project was managed by the means of the Gitlab
system (hosted on the school server http://pcjaros-gpu.fit.vutbr.cz/). All source
codes are also available at the Bitbucket https://bitbucket.org/xsimek23/intel-xeon-
phi-bachelor-thesis.

The matvec/naive directory contains naive implementation of the algorithm described
in the benchmark introduction 4.1.1. Compilation of the source files (make) is followed by
the execution of the program (make run) for the matrix size 64*64 items (on CPU). We
decided to use single precision for matrix and vector data. We are working with matrix
size of 16 KB and 2 vectors, each of 256 B big. We set the repetition of computation at e.g.
1000000.

The application is compiled and executed on the CPU. Under these conditions, the
computation time is 14.85 seconds and performance is only 593.5 mFLOPS (floating point
operations per second). This is about 1.5% of total core performance. We can see (Table
4.1) that number of vector and scalar operations are the same. It is because the compiler
generate SSE/AVX instruction, but uses only single vector line (scalar operations) while
other lines are masked.

Table 4.1: Performance measurement of naive implementation, compiler options disabled
(CPU).

Matrix Size (items) 64x64 128x128
Wall Time (s) 14.85 59.89
Scalar FP Operations (mFLOPS) 593.5 607.1
Vector FP Operations (mFLOPS) 593.5 (1.5%) 607.1 (1.6%)
L1 miss 0% 1%
L2 miss 0% 0%

By using the -optreport and -vec-report3 options, the compiler provides us informa-
tion about program optimizations. It is e.g. information about what loops were vectorized,
unrolled, etc. Based on the compiler information we know that the nested loop could not
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be vectorized. Therefore, we will have the opportunity to take certain steps leading to
successful vectorization.

4.1.3 Automatic optimizations, vectorization, padding

The first choice is to enable automatic optimizations by the -O2, or the -O3 option. Further,
we tell the compiler that we want to use (if possible) the AVX instruction set. We do this
by -xavx (OPTFLAGS=-O3 -xavx) switch. After compilation of the program we discover
that the internal loop cannot be vectorized due to presumed data dependences of the
vectors. However, in our case there are no real data dependencies, therefore we submit
this information to the compiler, e.g. by using the IVDEP directive. Adjusted pseudo code
can look like this:

1 for(i = 0; i < ROWS; i++)
2 {
3 #pragma ivdep
4 for(j = 0; j < COLS; j++)
5 {
6 vector_final[i] += matrix[i][j] * vector[j];
7 }
8 }

Listing 4.3: Matrix and vector multiplication pseudo code, IVDEP directive.

Another important feature is a nice matrix size. Pretty good matrix sizes are multiples
of 16. If we had a matrix of size e.g. 63*63, the performance decreases due to bad memory
alignment. For better memory alignment we have to add some padding (during initialization
of matrix and vector), which fills empty elements in the matrix (then we will have matrix
of size 64*64). After compilation and execution we are able to achieve results:

Table 4.2: Performance measurement of vectorized implementation, compiler options en-
abled, xavx (CPU).

Matrix Size (items) 64x64 128x128
Wall Time (s) 0.66 2.87
Scalar FP Operations (mFLOPS) 96.9 48.3
Vector FP Operations (mFLOPS) 13841.5 (36%) 13250.5 (35%)
L1 miss 0% 22%
L2 miss 0% 0%

From table 4.2, we can see significant improvement. The computation speed increased
more than 20 times, the number of vector operations executed per second too. In this
case, we achieved 35% of core performance. If we use matrix of size 128*128, performance
will slightly slow down. It is cause by bigger size of the matrix (64 KB), which is 2 time
bigger than L1 cache (data are located in L2 cache). However, we still cannot be satisfied
because there are still more steps, through which further increase of performance could
be achieved. We can also see importance of padding (data alignment) in the Figure 4.1.
Depending on the data size, we can achieve more than two-fold increase of performance
(due to better memory alignment). Source files of this step can be found in the directory
matvec/vec-padding.

23



Figure 4.1: Padding experimets (CPU).

4.1.4 Dynamic allocation, data alignment

Another very important step of optimization will be storing the data in the memory. We
begin by allocating the data dynamically. This is necessary due to a large quantity of data
will be used for future tasks. Under normal condition we would use malloc for dynamic
memory allocation on the heap. However, we demand the data to be aligned in the memory
( mm mallocand mm free, see Section 3.2.9). For CPU it is suitable to align the data to
32 Bytes, for MIC 64 Bytes. However, we can use a uniform alignment to 64 Bytes. When
the vectors in the memory are aligned, we have to inform the compiler about that. We can
use e.g. the VECTOR ALIGNED directive. After adjustment the code can look like:

1 for(i = 0; i < ROWS; i++)
2 {
3 #pragma vector aligned
4 #pragma ivdep
5 for(j = 0; j < COLS; j++)
6 {
7 vector_final[i] += matrix[i][j] * vector[j];
8 }
9 }

Listing 4.4: Matrix vector multiplication pseudo code, IVDEP, VECTOR ALIGNED
directives.

Looking at the Table 4.3, computation time is slightly smaller than in previous case
(Table 4.2). The number of vector operations increased by 2-6%; on the other hand the
number of scalar operations shrank greatly (in comparison with naive implementation (Ta-
ble 4.1)). This is caused by the fact that with data aligned in the memory the compiler
can generate instructions for work with aligned vectors, which are much more faster than
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Table 4.3: Performance measurement, dynamic allocation, aligned data (CPU).
Matrix Size (items) 64x64 128x128
Wall Time (s) 0.55 2.60
Scalar FP Operations (mFLOPS) 92.3 44.6
Vector FP Operations (mFLOPS) 16216.6 (42%) 14017.1 (37%)
L1 miss 0% 19%
L2 miss 0% 0%

instructions moving unaligned data. Load/store of unaligned data is more expensive oper-
ation. This is due to scalar load/store instructions must be performed before we achieve
aligned addresses. Work with unaligned data includes scalar “prefix” (unaligned addresses),
vector load/store (aligned addresses) and scalar “suffix” (unaligned addresses). Source files
of this step can be found in the directory matvec/dynamic-aligned.

4.1.5 Parellel processing on thread level

It is time to move from the features of the compiler to the features offered by multi-core
CPU. We will try to execute the application on more than 1 thread. This can be achieved
by a directive from the library OpenMP – #pragma omp parallel for (see Sections 3.2.6,
3.2.7). The adjusted code will looks like:

1 #pragma omp parallel for
2 for(i = 0; i < ROWS; i++)
3 {
4 #pragma vector aligned
5 #pragma ivdep
6 for(j = 0; j < COLS; j++)
7 {
8 vector_final[i] += matrix[i][j] * vector[j];
9 }
10 }

Listing 4.5: Matrix vector multiplication pseudo code, PARALLEL directive.

This directive will distribute a given number of matrix lines, input vector and final
vector among threads. Iteration variables has to be explicitly set as private or they can
be created directly at loop entrance (e.g. for(unsigned i = 0; i < COLS; i++)). Let
us remind that stated code samples are only pseudo codes (check Appendix A for specific
source codes). Computation will be tested for 1, 2, 4, 8 and 16 (2 x CPU) threads. We
can see a strange behavior when we start with matrix size 64*64. We can see in Table 4.4
that the computation time increases with increasing number of threads. This phenomenon
is caused by the overhead related to the creation and maintenance of a “large” number of
threads, while individual threads do not have sufficient amount of work. This also causes
“fake sharing” of memory between threads. Each thread has only 8 elements for processing
(each thread will rewrite cache line of other threads). The L2 miss rates depicted in the
Table 4.4 are very high. This is also due to fake memory sharing and cache line invalidation.

Due to previous phenomenon, it’s time to get a little bit more intense and try the
computation for larger matrix and smaller number of repetitions (for shorter computation
time). Matrix size will be set e.g. at 2048*2048 items (16 MB), we select 1000 repetitions.
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Table 4.4: Performance measurement of omp parallel version, matrix size 64*64 (16 KB),
“bad” results (CPU).

Threads Wall Time (s) Vector FP Ops (mFLOPS) L1 miss L2 miss
1 0.787 12086 (31%) 1% 0%
2 2.527 3861.2 (5%) 1% 90%
4 2.441 3843.4 (2.5%) 1% 93%
8 2.990 3202.2 (1%) 1% 95%
16 4.237 2243.4 (0.37%) 1% 97%

Increase of performance depending on the number of threads is depicted in Table 4.5 and
Figure 4.2.

Table 4.5: Performance measurement of omp parallel version, matrix size 2048*2048 (16 MB
CPU).

Threads Wall Time (s) Vector FP Ops (mFLOPS) L1 miss L2 miss
1 0.895 12030.8 (31%) 25% 64%
2 0.395 26460 (34%) 25% 60%
4 0.205 51661.4 (33%) 24% 60%
8 0.135 91309 (29%) 24% 63%
16 0.06 173723 (28%) 23% 63%

So 1 CPU computed the result the fastest on 8 threads. Specifically in 0.135 seconds
reaching performance 91 gFLOPS (29% of theoretical performance). Two CPUs achieved
performance 173 gFLOPS (28%). The L1 and L2 miss rates is relatively balanced in com-
parison with results depicted in the Table 4.4 (fake memory sharing was eliminated by large
matrix size). Figure 4.2 also shows that the most “beautiful” scaling was reached with the
matrix size 2048*2048. There is sufficient amount of data for all threads while data are
still fitted in the L3 cache. Now that the algorithm is optimized sufficiently, we can move
to the Intel Xeon Phi coprocessor.

4.1.6 Matvec on the Xeon Phi coprocessor

The First step in transferring our application to the MIC will be a very simple adjustment
of the Makefile. We add the -mmic parameter to compiler flags (CXXFLAGS+=’-mmic’).
This will make the compiler generate code for the MIC. We also have to remove the -xavx
options since it is not supported by the MIC. Let’s compile and run our program.

1 [host]$ cd nbody/omp-parallel-mic
2 [host]$ make
3 [host]$ ssh mic0
4 [mic0]$ cd nbody/omp-parallel-mic
5 [mic0]$ export OMP_NUM_THREADS=1 # later e.g. 120, 180, 240
6 [mic0]$ # following line - direcotory with MIC shared libraries
7 [mic0]$ export LD_LIBRARY_PATH=/path/to/lib/mic:$LD_LIBRARY_PATH
8 [mic0]$ ./matvec

Listing 4.6: Compilation and execution a native aplication for Xeon Phi.
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Figure 4.2: Scale computation to more threads (CPU).

Let’s compare single thread performance of application (naive implementation on CPU,
dynamic and aligned version on CPU & MIC) at first. We can see great difference between
naive (no optimizations) implementation and optimized version in Figure 4.3 (more than
20 times faster). Figure 4.3 also shows that MIC has much worse results than CPU when
we using only 1 thread (MIC is more than 10 times slower). It is mainly due to low core
frequency and 2 cycles instruction decoding described in the Section 2.2.

The MIC offers us significantly more hardware threads than the CPU. Therefore, we
can start experimenting and execute the program using 1, 2, 4, 8, 16, 32, 60, 120, 180
and 240 threads. Figure 4.4 and Table 4.6 contain results of the measurements for the
matrix 2048*2048 elements (16 MB) and 1000 repetitions. As we can see from the Figure
4.4 and Table 4.6, the MIC needs much more threads to achieve satisfactory results. But
the dependency of a speed up (on threads number) and process of scaling can be clearly
seen. More data means better workload of the threads and we can see more “beautiful”
scaling.

However, at the end we achieved only slightly better result than on the processor. The
coprocessor calculated the result on 240 threads in 1.127 seconds, which almost equal with
1.135 second that achieved processor (8 threads). Two CPUs are in this case much better
than MIC (almost 2 times).

Therefore, we must even try to increase the matrix size (lot of threads == overhead)
and compare the results. Graph 4.5 describes comparison of CPU and MIC performance.
We can see that with matrix size 8192*8192 is performance of the MIC more than 5 times
higher than performance of the CPU (and 3 times higher than 2 CPUs). In this case we
achieved performance about 130 gFLOPS on the MIC – 6.5% of theoretical performance (1
CPU – 8% and 2 CPU – 6.7%).

Of course we have not used all available optimization possibilities (6.5% of theoretical
performance is not very much), but for demonstration purposes this level of optimization
is sufficient. It would definitely be suitable to compute multiplication for data block the
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Figure 4.3: Single thread comparison (CPU/MIC).

Figure 4.4: Scale computation to more threads (MIC).
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Table 4.6: Performance measurement of omp parallel version, matrix size 2048*2048 ele-
ments (16 MB, MIC).

Threads Wall Time (s)
1 4.042
2 3.824
4 3.841
8 1.983
16 1.098
30 0.599
60 0.360
120 0.246
180 0.164
240 0.127

approximate size of cache memory (cache blocking), but we will deal with this in the N-
Body benchmark. Implementation of this task is nice mainly as “tutorial”, in real situations
is better to use highly optimized routines, e.g. from Intel MKL. Source files of this step
can be found in the directory matvec/omp-parallel-mic.

4.2 Multiplication of two matrixes (matmul)

From the matrix vector multiplication we now move to multiplication of two matrixes. This
time we won’t implement the algorithm itself. We will experiment with optimized routine
from the MKL – DGEMM. The DGEMM (in our case cblas dgemm) function compute ma-
trix multiplication for double precision data. Since this function is part of the Intel MKL
library, it is highly optimized for the CPU as well as the MIC. Except for this it can highly
utilize the potential of the machine. We can therefore directly test speed up of the MIC in
comparison to the CPU (or 2 CPUs). Moreover, we can demonstrate the use of the Auto
Offload mode here.

Let’s start with the matrix of the size 1024*1024 (we will gradually double this size).
To see results of this experiment look at Figure 4.6.

Unfortunately, we weren’t able to measure performance of DGEMM by PAPI (only wall
time). On the other hand, Intel published their SGEMM/DGEMM benchmark 2 and we can
compare our results. Intel achieved performance 837 gFLOPS (on the MIC same as our one)
which is 83% of theoretical performance. Two CPUs (16 threads) produced performance
548 gFLOPS which is about 1.5 time smaller than the performance of the MIC. For the
matrix size 16384*16384 are our results very similar (Intel used similar matrix size). The
MIC is much faster in comparison with 1 CPU (4 times for matrix 4096*4096). It means
that using of MIC can has a sense.

If we want to use the Automatic Offload (AO), we have to compile the code for the CPU
(without -mmic), set the environment variable export MKL MIC ENABLE=1 and execute the
program. If we want to check whether offload was performed, we set the environment
variable export OFFLOAD REPORT=2. If we want to set the number of coprocessor threads,
we set export MIC ENV PREFIX=MIC; export MIC OMP NUM THREADS=240. When execut-

2SGEMM/DGEMM benchmark by Intel:
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-sgemm-dgemm.html
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Figure 4.5: Matvec comparison CPU vs. MIC.

Figure 4.6: Speed up of the MIC against the CPU in the matrix multiplication (matmul).
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ing the program with various matrix sizes we discover that the AO takes place only after
crossing a certain matrix size. This is caused by library runtime heuristics which allows
AO only if it presumes that the computation on the MIC would has sense.

Automatic Offload can also be used for example with Python language, specifically with
modules Numpy and Scipy. If we want to use AO with this modules, they will have to be
linked with Intel MKL.

In this example we can simply experiment with KMP AFFINITY. Graph 4.7 shows dif-
ferences of wall times when we are using compact or scatter threads affinity. As we can
see, importance of threads affinity depends on matrix size (generally depends mainly on
specific algorithm). Source code of examples associated with this section can be found in
the matmul/ directory.

Figure 4.7: Comparison of the compact and the scatter threads affinity (matmul).

4.3 N-Body Simulation

4.3.1 Introduction of the benchmark

N-Body is some physical simulation strongly associated with HPC. There are lot of bench-
marks (with some modifications) dealing with this problem. It is a more complex task
incorporating significantly more computations (not only MAD like matvec). It will be a
computation of mutual force influence of bodies and its optimization. Each body has a
certain weight, speed and position in space. Gravitational forces of other bodies affect the
specific body. Their forces have various directions and their resultant causes a change in
body speed. At first it is necessary to compute the force affecting every body. It is given
by vector sum of partial forces caused by gravitational effect of other bodies. We compute
the force between 2 bodies by equation 4.1.

F =
G ∗m1 ∗m2

R2
(4.1)
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F is force between 2 bodies, G is gravitational constant, m1,m2 are weights of bodies, R
is distance between bodies. Having this force we can calculate the acceleration of body by
equation 4.2.

a(i+1) =

∑
F i+1
n

m
(4.2)

Consequently we can calculate new velocity of the body by equation 4.3

v(i+1) = vi + a(i+1) ∗ ∆T (4.3)

The last equation 4.4 is used to calculate a new position of the body.

r(i+1) = ri + v(i+1) ∗ ∆T (4.4)

To summarize, in each step we compute forces among individual bodies, changes of
the speed and positions. The simulation of N particles movement in STEPS steps can be
describe by Pseudo code 4.8.

1 // each step of simulation
2 for(step = 0; step < steps; step++)
3 {
4 // iterate through all bodies
5 for(i = 0; i < N; i++)
6 {
7 // calculate force between bodies
8 for(j = 0; j < N; j++)
9 {
10 if(particle[i] != particle[j])
11 F = calculate_force(particle[i], particle[j]);
12 }
13 // calculate acceleration
14 ACC = calculate_acc(particle[i], F);
15 // calculate velocity
16 VEL = calculate_vel(particle[i], ACC);
17 // calculate position
18 POS = calculate_pos(particle[i], VEL);
19 }
20 }

Listing 4.7: Pseudo code of the N-Body algorithm.

4.3.2 Naive implementation

Let’s start with a simple implementation to validate the code. During implementation we
can proceed according to the relations stated above and the Pseudo code 4.8. Like in the
matvec benchmark the application was implemented and optimized for the CPU at first.
After compiling the program through appended Makefile and subsequent execution, we
achieved results shown in Table 4.7. As we can see the results are not satisfactory, mainly
due to very small number of vector operations.

After confirming the accuracy of the computation, this version of the program was
taken as reference for checking the correctness of the computation and optimization of the
algorithm. At first glance the code is far from optimized ones, therefore several steps for
optimization have to be taken. We will proceed just like with matrix vector multiplication.
This implementation can be found in the nbody/naive directory.
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Table 4.7: Performance measurement of the naive implementation (CPU).
Number of bodies 1000 (27.3 KB) 10000 (273 KB)
Wall Time (s) 16.000 1600.270
Scalar FP Ops (mFLOPS) 1499.51 1500.45
Vector FP Ops (mFLOPS) 250.75 (0.65%) 250.79 (0.65%)
L1 miss 0% 10%
L2 miss 1% 2%

4.3.3 Algorithm enhancement, automatic optimizations

So far our code contains badly designed algorithm especially with respect to the structure
of loops, jumps in loops and data storage in memory. First step is the removal branches
from the loop. This branch is to ignore the identical particles (this avoiding division by
zero). The condition was removed by adding very small constant to the distance between
the particles. The constant has such a small value that its consequence on accuracy of the
computation is negligible.

Further, it is necessary to adjust data layout in memory. For clarity it is good to cover
individual particle attributes into a structure. As we explained in the theoretical part, there
is a big difference between array of structures or structure of arrays where SoA is said to be
more SIMD-friendly. Again we choose dynamic allocation and data alignment to 64 Bytes.
After the modification of the algorithm we get significantly better results (see Table4.8).

Table 4.8: Performance measurement of a better implementation (still single thread), au-
tomatic optimizations (CPU).

Number of bodies 1000 (27.3 KB) 10000 (273 KB)
Wall Time (s) 1.110 107.120
Scalar FP Operations (mFLOPS) 17.85 1.84
Vector FP Operations (mFLOPS) 26165.70 (68%) 27076.60 (70%)
L1 miss 0% 22%
L2 miss 2% 2%

The results speak for themselves; the computation time shrank almost 15 times, not to
mention the number of vector computations. It’s worth mentioning that there is not a single
compiler directive, it is exclusively the code structure enhancement, better data layout and
automatic optimization of the compiler. It needs to be said that the application is still run-
ning only on 1 thread. Performance 27 gFLOPS is very good result, it is 70% of theoretical
performance. Source codes can be found in the directory nbody/non-jump-auto-opt.

4.3.4 Parallel processing on thread level

When looking at a force computation, we can see that a loop is still complicated. It is
possible to exempt computation of acceleration (and particle speed) from this loop. We
must store resultant force (for each particle) to array, which we will add to the structure of
the particle system. Thus we can compute acceleration and new speed in an individual loop;
we compute the new particle position in the same way. These shorter and simpler loops
can be vectorized better. On the other hand, structure of particles system now contains
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13 arrays (not 7 as in previous case). This means that we will work with 50.7 KB (1000
bodies) and 507 KB (10000 bodies) of data (we use single precision).

Let’s add the omp parallel for directive above loops which can be executed in parallel.
In our case it is the loops for initiation of force, computation of force, computation of
acceleration, computation of speed and computation of position. Further, we add the
directive simd above loops which can be vectorized (the most nested loops). At this point
we will try to run improved program on a single thread and compare results. See Table 4.9
for complete results. Note that number of scalar operations is very small.

Table 4.9: Performance measurement of the omp version, single thread only (CPU).
Number of bodies 1000 (50.7 KB) 10000 (507 KB)
Wall Time (s) 1.022 104.105
Scalar FP Operations (mFLOPS) 0.14 0.07
Vector FP Operations (mFLOPS) 28494.30 28020.80
L1 miss 1% 30%
L2 miss 1% 1%

It’s good to advise the compiler that the data in memory is aligned. However, due to a
large number of threads the alignment breaks down and the program crashes might occur.
Therefore, for simplicity we will execute the program for such number of particles for which
data will be still aligned even after particles distribution among all threads. Now we will
run the computation for 10000 particles and 1000 steps subsequently on 1, 2, 4, 8 and 16
threads. The results of the measurements are listed in Table 4.10 and Figure 4.8.

Table 4.10: Performance measurement of the omp parallel version, 10000 bodies, scaling
(CPU).

Threads Wall Time (s) Vector FP Ops (mFLOPS) L1 miss L2 miss
1 103.937 28063.3 30% 1%
2 552.254 55831.3 31% 1%
4 26.164 111453.0 31% 1%
8 13.745 212304.0 31% 2%
16 0.532 393308.0 30% 3%

Figure 4.8 clearly shows dependency of computation time on the number of threads.
Computation took 13.745 seconds on 8 threads while we achieved performance more than
210 gFLOPS (68% of theoretical). Two CPUs provide performance 390 gFLOPS (63%).
When we work with only 2000 particles, the performance is almost same for single thread
and for more threads (2, 4, 8, 16). It can be caused by bad workload of each thread. If
we exceed a certain threshold (number of bodies), scaling is much better (see Figure 4.8).
Source codes can be found in the directory nbody/omp-parallel.

4.3.5 N-Body on the Xeon Phi coprocessor

First, we will compare single tread programs. It will be naive implementation on CPU and
previous implementation (Section 4.3.4) on CPU & MIC. We can see (Figure 4.9) similar
results to matvec (Figure 4.3). Single thread application running on MIC has about 5 time
worse results than on the CPU.
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Figure 4.8: Scale the computation to a more threads (CPU).

Figure 4.9: Single thread comparison (CPU/MIC).
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The next step will be the program execution (10000 bodies and 1000 repetitions) on the
MIC, while using 1, 2, 4, 8, 16, 32, 60, 120, 180 and 240 threads. Figure 4.10 and Table 4.11
depicts the course of the application scaling (on the MIC). The computation time when
using 240 threads was 3.4 times smaller than on the CPU. It means that performance on
240 threads provide more than 725 gFLOPS (36% of theoretical performance). On the
other hand, single thread computation took as long as 471 seconds, which is about 4 times
more than when using 1 thread on the CPU. These results speak for themselves. The key
to high performance on the MIC is without a doubt using a large number of threads. We
can also see course of scaling for other number of bodies. E.g. 2000 particles have slower
scaling course (small threads workload) than greater numbers of bodies.

However, we are not yet done with optimization, there are still several possibilities,
through which we can better utilize the potential of the MIC. The source codes are available
in the directory nbody/omp-parallel-mic.

Table 4.11: Performance measurement of the omp parallel version, 10000 bodies and 1000
runs (MIC).

Threads Wall Time (s)
1 471.662
2 267.336
4 226.572
8 108.587
16 54.360
30 29.479
60 15.161
120 7.908
180 5.253
240 4.017

4.3.6 Cache blocking

The Xeon Phi coprocessor offers us very quick cache memories. The next step of optimiza-
tion will be the effort to exploit cache memories as best as possible. For this step we will
use the famous method – cache blocking. This method is based on splitting a large number
of data into smaller blocks, usually blocks of the cache size. The principle is using the
data stored in cache as many times as it’s possible before moving them again to the main
memory. This data reusable (from the cache memory) eliminates the number of accesses
to the main memory, thus the CPU/MIC doesn’t have to wait so long for the data. The
process for loop tiling may look like:

1 // simple iterating through array
2 for(i = 0; i < N; i++)
3 {
4 A[i] = do_something();
5 }
6

7 // cache-blocking
8 for(i = 0; i < N; i += BLOCK)
9 {
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Figure 4.10: Scale computation to a more threads (MIC).

10 for(b = j; b < min(N, j + BLOCK); b++)
11 {
12 A[b] = do_something();
13 }
14 }

Listing 4.8: Pseudo code of the cache-blocking.

Setting the correct block size for processing doesn’t have to be decisive. It depends on
the cache size (there is a difference if we want to keep the data in L1 or L2 cache), type of
algorithm, etc. We must experiment with the block size, we can start e.g. with the size 1/2
of L1 cache. We subsequently increase the block size and observe the acceleration/slowdown
of computation. Now, we will run simulation for much more particles because we must have
data bigger than all caches (e.g. 1105920 particles). Figure 4.11 describes differences among
wall times of programs with the various block sizes. We can see that we have not achieved
satisfactory results with any block size. It can be caused by strong hardware and software
prefetching or some other hardware and compiler optimizations. Source code can be found
in the directory nbody/cache-block-mic.

4.3.7 Offload mode

So far we have been dealing with programming of native applications for Xeon Phi. As
we said at the beginning, Xeon Phi is not capable to process I/O operation as fast as the
CPU. Before beginning the computation, our program reads large amount of data from the
file. After completing the computation writes the same amount of data into the file. Data
reading time from file on the MIC is several times higher than on the CPU; therefore we
will try to use the offload mode. The program will be run on the host system. Host reads
the data and sends it to the MIC. After that, the MIC runs a simulation and sends the
data back to the host system (CPU subsequently writes them in a file). In this case, the
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Figure 4.11: Cache blocking, various block sizes (MIC).

implementation will be more difficult than with the native mode. This is complicated by
the fact that it is not possible to copy other than simple data types to the MIC (it cannot
be a structure of pointers). Before copying the data to the MIC we have to perform manual
decomposition of pointer structure to individual arrays, which we copy to the MIC and
store back to the structure. We add required offload directives and compile the program.
This time the program will be compiled for the host system, i.e. without the -mmic option.

The comparison of the individual program sections (MIC native vs. CPU + offload
to MIC) is depicted in Figure 4.12. When we read/write 1105920 bodies from the file via
fprintf function, we achieved much worse results on the MIC than on the CPU. The
CPU handles I/O (single thread) operation so much better. It is more efficient to use some
king of buffers and read/write bigger chunks of data, less times (binary read/write is also
faster than fprintf). Source codes for the offload mode are available in the directory
nbody/offload.

4.4 K-Wave

K-Wave is an open source toolbox for MATLAB, dealing with the simulation of acoustic
waves propagation in 1D, 2D and 3D. It comprises of thousands lines of source code (C++
language) optimized for CPU using OpenMP. So this time we will not be creating the code
itself, we will try to port the application to the MIC, measure performance, compare with
CPU and eventually optimize. We will not be dealing with the internal structure of the
program; we will only sum up the most basic information.

The program itself is composed of a large number of demanding computations. The
combination of this computations creates the simulation itself. Simulation uses own kernels,
but in majority of cases functions from the MKL library. It uses especially FFT functions
forming the biggest part of the simulation. For data load/store operations it uses the HDF5
library, for data compression the ZLIB library.
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Figure 4.12: Comparasion of the native and the offload mode (N-Body), 1105920 bodies.

For the program compilation it’s necessary to prepare the HDF5 and ZLIB libraries for
the MIC (non-standard libraries). Procedure of libraries compilation for the MIC will be
described in the Section 4.5.

After successful compilation, we can move to the performance testing on the MIC.
Immediately after starting the program we discover that the computation time on the
MIC is approx. two times longer than on the CPU. With a complicated project like this
it is more difficult to discover the reasons for the low performance. However, the Intel
VTune Amplifier (profiling tool) serves us very good for this purpose. After the application
profiling we discover that a big part of the computation time is taken especially by the FFT
functions from the MKL library. This fact is not very heartwarming, because we are not
able to affect the performance of these functions. The profiling results show that the FFT
functions on the MIC takes longer time than on the CPU.

We have therefore decided to measure the performance of the FFT functions (on the
CPU & MIC) by means of simple benchmarks. On 1 CPU we achieved performance of circa
70 gFLOPS (8 threads), on 2 CPUs 115 gFLOPS (depending on processed data size, etc.).
The MIC achieved in majority of cases worse results or hardly reached the performance of
the CPUs.

Searching the web we can find other benchmarks related to FFT and Intel Xeon Phi,
where results similar to ours were achieved. The performance of Xeon Phi also reached
around 100 gFLOPS. However, we were not able to solve this problem. It is possible that
the new MKL version will bring also a better FFT performance on the MIC.

4.5 Cross-compilation of existing libraries, modules, programs

Very interesting part of this work was the effort of porting various libraries, modules or
programs to the MIC. These included e.g. HDF5 library (data model, file format for data
storing), ZLIB or BZIP2 libraries (data compression). A more complex problem was the
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cross-compilation of the Python interpreter and its Numpy, Scipy or Ctypes modules. The
Numpy and Scipy modules are widely used, especially in HPC sphere. They contain a
large number of data types and highly optimized routines. Furthermore, these modules can
be linked directly with the MKL library. The effort for native running of stated libraries
and modules on the MIC was successful (from the functional point of view). From the
performance point of view (e.g. Python language interpreter) it was worse. As already
mentioned, low performance of the Xeon Phi cores does not allow “quick” running of the
programs using only 1 thread. The Python interpreter executes the code sequentially (with
the exception of optimized functions calls), thus using only 1 thread.

Regarding the cross-compilation of existing programs (for the MIC), it can be simple
or very difficult. Standard compilation and installation takes place usually in the following
steps:

1. Execution of a configuration script (./configure)

2. Compilation of a source files (make)

3. Installation (make install)

Various parameters can be given to the configuration script affecting the compilation.
So if we compile for the MIC, it is necessary to set the correct compiler options. E.g. we
have to state that we want to use the Intel compiler (CC=icc) and generate the binary for
the MIC (CFLAGS=-mmic). It’s not always such easy; sometimes it is necessary to manually
adjust the Makefiles, configuration scripts, etc. The directory cross-compilation contains
some procedures of cross-compilation (ZLIB, BZIP2 or HDF5 libraries). These procedures
are only “demo”, for other versions of the libraries it might be necessary to do other
adjustments.

4.6 Extraction of I-vector

Python running natively on the MIC was designed for research group at the FIT VUT
focused on speech processing. It was so called the Extraction of I-vector, which is quite a
significant part of speech processing. The application was created in the Python language
and used optimized routines calls from Intel MKL.

As already mentioned, the performance of the Python interpreter on the MIC was
not satisfactory. Sections of the code based on calling the MKL functions displayed signs
of acceleration. But the code executed sequentially (1 thread) literally buried the entire
program. For comparison the program wall time on the MIC was approx. 20 times higher
than on the CPU. The biggest part of the application wall time was reading the data from
file (expected behavior). But even with computations themselves the coprocessor didn’t
fair better than the CPU. Figure 4.13 depicts comparison (wall times) of individual parts
of I-vector extractions (1 x CPU vs. 1 x MIC).
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Figure 4.13: I-vector extraction, comparasion of individual parts, CPU vs. MIC.

41



Chapter 5

Conclusion

This thesis deals with the implementation and optimization of a high performance algo-
rithms on the Intel Xeon Phi. For demonstration purposes, simple benchmarks have been
implemented, from which we moved on to more complex ones. To gain experience with
the MIC, the matrix vector multiplication has been chosen. The benchmark has been
implemented for the CPU reaching the performance 90 gFLOPS (29% of the theoretical
performance) at the first. This task reached performance about 130 gFLOPS on the MIC
(6.5%). Acceleration in this case isn’t significant, but in some cases (big matrix) a speed up
of the MIC can be more than 4-fold. A similar algorithm was the matrix multiplication (we
used optimized function from the Intel MKL). The MIC was doing quite well; with sufficient
data it reached more then 4-fold acceleration (compared with the CPU). However, due to
problem with the PAPI we were unable to measure the maximum performance (gFLOPS).

Algorithm reaching significantly higher performance on the CPU and the MIC was
the N-body simulation. The quickest version of the algorithm produced performance
210 gFLOPS (68% – 1 x CPU), 390 gFLOPS (63% – 2 x CPU) and 725 gFLOPS (36% – 1
x MIC). The next step in our work was the porting of MATLAB module k-Wave to the
Xeon Phi. The effort to accelerate the computations by using Xeon Phi was unsuccessful
due to strange behavior of the FFT functions (from the MKL library). These functions did
not display signs of a speed up on the MIC. It was quite the opposite, in many cases they
were slower. The problem might be solved in the newer version of Intel MKL.

Conclusion of the thesis is focused on cross-compilation of existing libraries, modules and
programs. It deals e.g. with libraries for work with files (HDF5, ZLIB, SZIP), interpreter
of the Python (with Numpy and Scipy modules). Python running on the Xeon Phi should
have been used for speech processing, specifically for the I-vector extraction. However, the
Xeon Phi did not bring any speed up, quite the opposite, it brought a multiple slowdown.

All the experiments show that the Xeon Phi is definitely suitable only for highly paral-
lel tasks regarding threads and SIMD instructions. It is not suitable for programs, which
contain demanding computations processed sequentially (by using 1 thread or scalar op-
erations). When combining parallel and sequential computations, it is suitable to use the
offload mode or the CPU only.

I would like to continue in my work with Xeon Phi in the future, since a new supercom-
puter – Salomon (in Ostrava) will be soon ready for use. The Salamon will contains a large
number of Xeon Phi coprocessors. The plan includes e.g. the use of several coprocessors
for parallel solving of complex tasks.
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Appendix A

Content of CD

• cross-compilations/ – Directory containing some practical advices associated with
the cross-compilation of libraries ZLIB, SZIP, HDF5 and GNU MAKE

• doc/ – Directory containing html documentation (doxygen) and manual refman-
XeonPhi.pdf (also generated by the doxygen)

• Doxyfile – Configuration file for the Doxygen

• fft-mkl – Directory containing samples of using FFT functions from the Intel MKL

• matmul/ – Directory containing the source code of the matrix multiplication

• matvec/ – Directory containing the source code of the matrix vector multiplication

• nbody/ – Directory containing the source code of the N-Body Simulation

• python-mkl/ – Directory containing samples of using Numpy, Scipy modules linked
with Intel MKL

• README.md – Basic information about the thesis, content of CD, directory struc-
ture

• text/ – Directory containing LATEXsource code of the thesis

All these directories contain their own README.md file with the information about
specific part of the thesis (benchmark, instructions, guidelines . . . ). For more information
(e.g. how to compile and run the program) see a specific README.md.
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