
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

ARTIFICIAL INTELLIGENCE AND USER INTERFACE
FOR BOARD GAME OF THE SETTLERS OF CATAN
UMĚLÁ INTELIGENCE A ROZHRANÍ PRO HRU OSADNÍCI Z KATANU

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ROSTISLAV HUSA
AUTHOR

VEDOUCÍ PRÁCE Ing. MICHAL KOŠÍK
SUPERVISOR

BRNO 2015

Abstrakt
Tato bakalářská práce se zaměřuje na tvorbu uživatelského rozhraní, datové reprezentace
probíhající hry a návrh a implementaci umělé inteligence protivníka pro deskovou hru Os-
adníci z Katanu v její základní verzi. Motivací je zde jednak skutečnost, že ačkoliv se
tato hra již dočkala několika počítačových implementací, žádná z nich nenabízí umělou
inteligenci na úrovni, která by pro zkušeného hráče byla výzvou. Za druhé pak to, že
analýza rozhodovacího procesu hráče v průběhu hry je netriviální problematikou, jejíž roz-
bor z pohledu umělé inteligence slibuje přínosné poznatky. Tvorba uživatelského rozhraní
a datové reprezentace hry není hlavním zaměřením této práce, je však nezbytným krokem
k tomu, aby bylo možné vytvořenou umělou inteligenci patřičně otestovat a odhalit její
případné nedostatky.

V první části je prezentován stručný úvod do problematiky uplatnění umělé inteligence
na poli stolních a deskových her, ať už jako studijních příkladů k ověření algoritmů se širším
uplatněním, nebo přímo s cílem překonání lidského hráče. Také je zde stručně zmíněna his-
torie hry a její klíčové charakteristiky, především pak ty vztahující se právě k pohledu na
problematiku z hlediska umělé inteligence. Závěr první části pak shrnuje plánované kroky
a cíle této práce.

V následující části je pak představen přehled jednotlivých oblastí umělé inteligence,
jejichž dosavadních poznatku může být uplatněno při analýze problematiky, na kterou se
zaměřuje tato práce. Dále jsou pak také zmíněny možné přístupy k návrhu inteligence hráče
(bota) jako takové spolu se stručným přehledem jejich obvyklého nasazení, zhodnocením
jejich vlastností a shrnutím očekávatelných výhod a nevýhod.

Třetí část se zaměřuje na podrobnější analýzu hry osadníci z Katanu jako takové.
Představuje jednotlivé herní mechanismy, součásti herní plochy a jejich význam, možnosti
interakce hráčů mezi sebou a dosažení cíle hry. Následuje rozbor jednotlivých fází herního
kola s představením rozhodnutí, která hráč v jeho průběhu činí, zhodnocení jejich dopadu
na hru a jejich důležitosti pro úspěšnou herní strategii. Zvláštní důraz je pak kladen na fázi
obchodu, která je kooperativním prvkem hry a vyžaduje tedy nejen nalezení optimálního
postupu jednoho z hráču, ale nalezení kompromisu mezi hráči. V závěru této části jsou pak
shrnuty obvyklé herní strategie a případné přechody mezi nimi v půběhu hry.

Další kapitola je věnována představení návrhu výsledné aplikace. Je přiblíženo pláno-
vané rozdělení funkcionality do jednotlivých segmentů implementace - uživatelského rozhraní,
datového modelu probíhající hry a modulu umělé inteligence bota. Dále jsou podrobněji
rozebrány detaily každého z nich a jejich očekávatelná úskalí. Následuje rozbor možných
přístupů ke konkrétním způsobům implementace inteligence hráče (bota) v pořadí priority
realizace. Zmíněna je také forma zápisu logu z probíhající hry, umožňující monitorování
chování aplikace jako takové i jednotlivých rozhodovacích kroků umělé inteligence, což je
nezbytné pro ladění a případné opravy programu.

Na to navazuje podrobný popis skutečné implemetace shrnující detaily, které zůstaly v
předchozí sekci nevyjasněny, nebo se v implemetaci oproti návrhu z nějaké příčiny změnily.
Do větších podrobností je zde také rozebrána funkce uživatelského rozhraní a práce s ním.

Následující sekce je věnována zhodnocení výsledků. Jsou stručně představeny testy
použité k prověření toho, nakolik aplikace splnila vkládaná očekávání a v co nejpřehled-
nější formě shrnuty a sumarizovány jejich výsledky. Prověřeno je srovnání jednotlivých
implementací umělé inteligence proti sobě a především srovnání ve hře proti živému hráči.

Závěrečná sekce pak zhodnocuje výsledky práce jako takové a zamýšlí se nad možnostmi
navázání na učiněná zjištění a dalšího využití aplikace.

Abstract
Subject of this thesis is creation of graphical user interface, internal data representation of
going game progress and design and implementation of player artificial intelligence bot for a
game of The Settlers of Catan in the basic version of the game. One part of the motivation
behind the idea is the fact that while the game already has several computer implementa-
tions, none of them can so far be a challenging opponent for an experienced player. Another
reason is that analysis of player decision making process presents a nontrivial problematic
that can bring valuable knowledge when studies from artificial intelligence point of view.
Creation of graphical user interface and internal representation of ongoing game aren’t fo-
cus of this project, they however are necessary step to allow for proper verification of bot
functionality and revealing possible issues that need to be addressed.

First section presents overview of application of artificial intelligence in the field of
board and tabletop games, both as case studies for a verification of algorithms with wider
application and with the purpose of challenging and overcoming ability of human player.
This section also lists a brief history of the game and highlights its characteristics, focusing
on those relevant to potential bot design. End of this section the summarises goals and
planned steps of this thesis.

Next section brings more focus on individual areas of artifical intelligence theory, high-
lighting those that can be used for the analysis of problematic at hand. The suitable options
of specific approach to the bot design are also mentioned here, giving brief review of their
usual primary use and their respective strengths and weaknesses.

Third section further explains the Settlers of Catan game itself. Introduces individual
game mechanics, game board components and their function as well as the means of player
interaction and point scoring. This is followed by more detailed description of individual
game steps, overviewing the decisions players are making during each of them and their
impact on successful gameplay. Further emphasis is given on the trading, as it represents
the cooperative aspect of the game and thus doesn’t require one player’s optimal choice but
the ability to find consensus between players. Lastly this section mentions commonly used
game strategies and possible flow of the gameplay between them.

Following section focuses on design of the planned application, intended distribution of
functionality between individual components - graphical user interface, data representation
of the game and framework of the player bot. Followed by explanation of their respective
details and expected issues that need to be resolved. Next up is overview of the possible
ways of bot design in order of implementation priority. Importance of log record necessary
for proper monitoring of both application functionality and bot decision making is also
mentioned here.

As a direct follow up, next section goes into detail of actual application implementation,
explaining aspects that were not clarified in the previous section or that changed against
the original design. This section also describes specifics of user interface and its use.

Next section evaluates results of the whole project. This opens with introduction of
tests perpared to measuere application performance, followed by listing of their outcomes
and summarisation of the results. Individual implementations of the arificial intelligence
are compared against each other and more importanly against a live player.

Last section draws conclusion from the outcomes of the project, presenting possible use
in the future and prospects of a follow up work and project extension.

3

Klíčová slova
Umělá inteligence, Osadníci z Katanu, Hry s neurčitostí, Kooperativní hry, Bot, Java,
Grafické uživatelské rozhraní.

Keywords
Artificial Intelligence, Settlers of Catan, Games of Chance, Cooperative Games, Bot, Java,
Graphical User Interface.

Citace
Rostislav Husa: Umělá inteligence a rozhraní pro hru Osadníci z Katanu, bakalářská práce,
Brno, FIT VUT v Brně, 2015

4

Umělá inteligence a rozhraní pro hru Osadníci z
Katanu

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Michala Košíka

. .
Rostislav Husa

May 20, 2015

Poděkování
Chtěl bych tímto poděkovat panu Ing. Michalu Košíkovi za vedení a odbornou pomoc při
tvorbě této práce.

c© Rostislav Husa, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Settlers of Catan . 4
1.2 Goals . 4

2 Theory of Artificial Intelligence 5
2.1 Game theory . 5
2.2 Games of chance . 6
2.3 Cooperative games . 7
2.4 Expert system . 8
2.5 Agent systems . 9

3 Analysis of game mechanics 11
3.1 Game board . 12
3.2 Turn order . 12

3.2.1 Deploy . 12
3.2.2 Resource gathering . 12
3.2.3 Resource spending . 13
3.2.4 Action cards use . 13
3.2.5 Thief use . 13
3.2.6 Trade . 14

3.3 Common game strategies . 14

4 Application design 15
4.1 Game framework . 16
4.2 Game board . 16
4.3 Player interface . 16
4.4 Bots . 17

4.4.1 Evaluation bot . 17
4.4.2 Agent bot . 18
4.4.3 Expert bot . 19

4.5 Logs . 19

5 Implementation 21
5.1 Board . 21
5.2 Game . 23
5.3 Bot . 24
5.4 User interface . 24
5.5 Bot versioning . 26

1

6 Results 28
6.1 Game length . 29
6.2 Bot types . 31
6.3 Bots versus player . 32

7 Conclusion 34
7.1 Follow up . 34

8 Appendix 35

2

Chapter 1

Introduction

Board games are one of the areas that artificial intelligence has been challenging since
the day it was established as a field of computer science. Starting with relatively easily
algorithmized deterministic ones such as Gomoku (Five in a Row) and Draughts (Checkers),
through navigating massive state-space complexity of Chess and Go, to games with elements
of chance, games with imperfect information, games based on negotiation between players
incorporating level of trust and emotional stance, or any combination of the above. Proper
choice of algorithm and right heuristics have proven growing success across the whole field.
One example for all being Deep Blue versus Garry Kasparov [3]

Despite that, there’s still much left to learn and explore in this area, be it refinement of
existing solutions for optimal compromise between quality of decision and time necessary
to reach it or introduction of new methodologies allowing for different approach.

The field of board games also simplifies application of artificial intelligence solutions
somewhat on merit of being systems that already come with strictly defined rules and
level of abstraction isolating things down to the key problematic, thus bypassing necessity
of most preparatory work - careful study what can and cannot be left out in abstraction
- that most other artificial intelligence solutions demand before their application. This
makes it ideal test bed for comparison of various types of approach, both for academic
study offering better understanding of their principles, differences and similarities, as well
as for benchmarked measurements of speed, accuracy, resource requirements and effectivity
for competitive and commercial use.

The purpose is not just solving the problem game represents or proving a relating
theory, but often also providing human player with practice opponent for learning the
game mechanics or acting as a fill-in for multiplayer games. Sometimes findings from board
game projects can even become basis of solution for more complex real life problematics.

First part of this thesis introduces board game Settlers of Catan, why are the game’s
mechanics worth attention of artificial intelligence research and goal of the thesis. Following
part reviews the areas of artificial intelligence that are relating to the game’s mechanics and
can find application in designing a game bot. Third part goes more into details of the game
mechanics and highlights points of interest. Following two sections are given to design of
an application consisting of a center point managing game board and connecting together
game bots and user interface for human player. Then, results of the application run and
bot decision making are presented and in the final chapter, conclusion is drawn based on
those.

3

1.1 Settlers of Catan

Settlers of Catan (SoC) is a modern multiplayer board game first introduced in 1995 that
quickly gained popularity all across the globe. The key characteristic of modern board
games (also known as designer board games) is being designed from a scratch by single
person or group of individuals with consistent aproach to both rules and the game’s theme,
often reflecting specific historical events or branch of human activity. As opossed to tradi-
tional board games such as Chess or Draughts, that have long history, but details of their
origin are unknown, their theme is rather vague, and that often come in many regional
sub-types and variantions. Modern board games are, as name suggests, relatively recent
idea, first pineered by Monopoly and Diplomacy in the middle of 20th century, that started
as a rather niche hobby, but eventually gained much wider following, in recent years often
rivaling popularity of well-established classic board games.

Modern board games can be further divided into so called American style games and
Euro style games. The division doesn’t so much reflect place of the origin (even if that
often is the case as well) but rather distinctive characteristics of the game. American
style games are characterised by bigger influence of luck, generally faster pace, and player
conflict being rather direct, and if they are multiplayer games, player elimination often
takes place at any point throughout the game. With Euro style games the element of luck
has much lesser importance or is not present at all, player conflict is usually indirect and
takes form of competition over resources or collection of points. Player elimination does not
happen until game conclusion and game mechanics often incorporate some sort of negative
feedback (the more ahead of the others player is the more difficult it becomes for them to
make further progress) giving other players better chance to catch up. There’s also typical
differences regarding game themes, artwork, material of components and such, but those
are not important for our view on the problematic. The important point is that despite
incorporation of the element of chance (in form of dice), SoC belongs disctinctively to the
latter category [1].

Exact SoC game mechanics will be further discussed later but it’s already obvious that
makes SoC ideal candidate for further study of game mechanics in attempt to come up with
ideal strategy for each game. The problematic is made even more challenging by the fact
that while rules remain the same, exact setup of game board and therefore optimal strategy
is different with each game.

1.2 Goals

This thesis sets to meet several goals, first of them is explaining the necessary background
for understanding artificial intelligence principles and mechanics that could be used for
designing a game bot, followed by analysing rules of the game using this knowledge and
designing how bots for playing it could be implemented.

Game platform with user interface and at least one of the bot types will be implemented
and tested against human player and eventually each other. The application should be
designed with modularity in mind allowing for easy extensions and creation of additional
bot types.

Finally, results of bot performance will be analysed, matched against expectations rising
from theoretical research and studied for possibilities of improvement or follow-up work.

4

Chapter 2

Theory of Artificial Intelligence

2.1 Game theory

Game playing is one of the specific kinds of problems that can be approached with artificial
intelligence. We’re assuming existence of two or more players that both fully understand
and strictly follow game rules, in other words, will play to the best of their capability, but
will not cheat, and that each strive to win. In its basic form there is two players taking turns
that both have full knowledge of the game state and make decisions based on evaluation of
available options. Said evaluation is usually done by function, or heuristic, that translates
next game state that would follow after each decision into a numerical value, or several
such values that are used for weighted sum. The decision is then made simply comparing
these values (sums) for a maximum. [9] It would, however, be quite short-sighted to make
decisions based only on the present game state alone and a player might easily lead themself
into a losing path that’s headed by momentarily gain. A simplistic example of this could be
chess player valuing game state only by sum of their own and opponent’s pieces falling for
a gambit. More sophisticated way to approach this is to evaluate game several turns ahead
looking at both player’s and their opponent’s options, considering that while the player will
always try to take most advantageous option (one with the highest associated value), their
opponent will try to take the one that’s most disadventageous for the player (one with the
lowest value). This can be noted in form of an and-or tree with acting player’s node being
or composition, they win as long as at least one of the child nodes leads to victory, and
opponent’s node being and composition, player wins only if all of the nodes lead to victory.

The process of going through the tree can be implemented by recurrent MinMax algo-
rithm exploring branching of possible game states to a desired depth. This can be either
until winning move is found, which can be done for games with reasonably small state space
such as tic-tac-toe 1 , or limited by available processing resources - time or memory for game
state expansions. MinMax algorithm can be further optimised by leaving out unnecessary
exploration of some nodes. This is done by noting and carrying over the best (worst) eval-
uation from already explored branching and when it’s confirmed that currently explored
branch cannot lead to better (worse) outcome, the exploration is terminated and moves on
to the next branch, if any. This optimised algorithm is called Alpha-beta pruning. This,
or other forms of pruning, is especially helpful for games with large and quickly expanding
state-space such as chess.

1In reality if both players choose best play in a game of Tic-tac-toe, the game will always end in a draw.
But it’s good example of a game with reasonably small state space.

5

2.2 Games of chance

Games of chance are non-deterministic games where outcome to some degree depends on
element of chance. That is usually present in form of dice, cards or some form of lottery.
Games where the role of chance is dominant, such as roulette or bingo, are not interesting
for artificial intelligence research as for the scientific purpose the players are making wild
guess rather than informed prediction. On the other hand, games where the element of
chance goes hand in hand with players’ skill and where the quality of players’ decision
needs to accomodate for the randomness are well suited for artificial intelligence analysis.

As in above case of strictly deterministic games, the basic scenario would be zero-sum
two player game where both players have full knowledge of game state and consequences
of individual decisions can be evaluated. The difference is in each players’ decision being
preceded (or followed) by a random event. Game state expansions noted as a tree structure
therefore require new type of nodes - chance nodes - that are evaluated by weighted average
of the follow-up node evaluations. This part works exactly the same no matter if the
following action belongs to the active player or their opponent. And again, on their active
decision making the acting player strives to pick option with the best evaluation and expects
opponent to pick the one that gives acting player the worst evaluation.

Exploration of node expansions can be implemented by modified version of MinMax
algorithm called ExpectMinMax. Further improvement of its efficiency by pruning unnec-
essary expansions is more difficult than in case of simple MinMax but even more important
because chance nodes further contribute to rapid growth of state space.

Special attention should be paid to evaluation function. First of all because existence
of nodes with extremely high or low evaluation could skew decision in their path even
if they are very unlikely. For example if player gaining advantage would evaluate at +1
and gaining disadventage at -1 while game win and loss would be +500, respectively -500.
Choice leading to 1 chance to win and 99 chance to gain disadventage would evaluate as
+4.01, while one with 100 chance to gain advantage would only add up to +1. The prior
choice would be preferred, which, in most cases, isn’t desired behavior.

The second point being that well designed evaluation function allows for effective prun-
ing. Some of the nodes don’t need to be evaluated fully before getting pruned, it’s enough
to have their best or worst estimate for comparison with best (worst) evaluation of already
evaluated nodes. One of the possible ways to approach this is Gamma-pruning that builds
on Alpha-beta pruning. Overall efficiency will, however, depend not only on quality of
evaluation funcion and pruning but also on several other factors such as order or branching
or. So far there is no known universally best approach and design of decision mechanics for
each game should be approached with specifics of its problematic in mind. [5]

6

2.3 Cooperative games

Cooperative games have been introduced relatively recently. One of the reasons to that is
the fact they require whole new level of complexity over traditional games played by two
competing players or two opposing teams. Cooperative games instead introduce several
player factions that can negotiate and make alliances with each other. Pioneer of this type
of games would be Diplomacy introduced in 1950’s and with theme of power struggle in
Europe during 20th century. Game has no element of chance so the success depends only
on player ability alone.

Obviously this type of games proposed interesting challenge for artificial intelligence
research. Success in cooperative game can depend on succesful dealing with other players
in a way that’s beneficial for both sides of the deal, because that’s what makes it acceptable
for the other party, and scaling these advantages to get player ahead in the game.

In case of diplomacy, another important aspect is element of trust between individual
parties, because game works with lot of nonpublic information and alliances can be broken
at any point. It’s necessary to be able to estimate whether the existing deals are reliable
or should be expected not to last.

One thing that can help with that and recognition of player standing with each other is
understanding of player emotions. In this case within context of game actions, player should
not only consider how would action they’re making affect them but also how are the other
players going to perceive it and feel about it. Emotion Annotation and Representation
Language (EARL) gives description to several dozens of them, which is way more than
necessary for such project, where degrees of satisfaction / dissatisfaction will suffice. [2]

These aspects have to be used in coordination with one another balancing logical and
emotional sides of decision making, as neither of those in their extreme form lead to optimal
decisions. As to what is the exact proportion of each for the optimal results depends on
problematic in question and needs to be thoroughly tested. [7]

In a resolution of problematic where element of cooperation has only partial role it
could bebeneficial to deploy cooperative emotional system as a component part of decision
making procedure, eg. as an agent in agent system.

7

2.4 Expert system

The history of expert systems as a distinguished field of artificial intelligence dates back
to 70s. The basic idea came from realising that quality of data is often more important
than complexity of mechanics processing it. Expert systems were intended to work with
knowledge base provided by specialists in a given area of expertise, experts, and emulate
their counsel.

First expectations were unrealistically high, aiming to create universal system that can
work over any kind of knowledge base and provide quality advice for any desired expertise
simply by changing provided knowledge base. Later computer scientists settled for more
realistic aim to create systems focused on one specific field of expertise, often inteded to be
used as embeded part of more complex application.

There is no formal definition of expert system, but generally accepted understanding
is a computer program emulating decision making process of an expert solving complex
problematic using efficiently encoded explicitly expressed expert knowledge acquired from
specialist with the aim to emulate problem-solving ability comparable to that of a specialist
in given problematic. The goal is quality of decision made, not exact emulation of decision
making process. [4]

The important point is strict separation of knowledge base and decision making mech-
anism. The main advantage is that both knowledge base and decision making logic can
be easily modified, as there’s no inherent dependancy on one another save for defined for-
mat of knowledge base records. This allows for dynamic growth of knowledge base and
ensures high level of reusability, expert system logic can easily swap knowledge base and
vice versa. Similar modification in application where knowledge and logic are inherently in-
terconnected would take much more effort or might not be possible at all. Another obvious
plus is possibility of independant development for each component.

The information expert systems use has to be expressed explicitly in form of knowledge
base. That means there is no ambiguity how to interpret it. There can, however, be a
degee of uncertainity in the information itself, furter discussed below. This transparency of
knowledge base makes it not only easy to modify (extend) but also easy to read, so it can
also be used as a study material for newcomers into the field of expertise. Knowledge base
is also idependant on expert building it and can easily change ownership over the years
of its existence and collect contributions from many specialists, up to merge with another
knowledge base in the same field of expertise.

Content of knowledge base should usually cover wide scale of options ranging from
well known textbook cases covering common situations to specific cases dealing with most
peculiar scenarios. The knowledge can be both well defined methodologies backed by theory
and proofs or personal heuristic proven to work by specialist’s practice with but with no
theoretical backing. Reality shows that this personal know-how is what makes the difference
between the distinguished specialist and average practicioner in the given field of expertise.

This setup provides expert system with general knowledge in the given field. To get
advice for specific scenario a dialogue is initialised between the expert system and its user.
The user can be less qualified specialist or even a layman. In the dialogue expert system
asks questions to collect enough information about the problematic to make suggestion.
The questions don’t have fixed order and are generated dynamically depending on specific
subject and previous answers to quickly collect most relevant information.

Expert system has to be able to deal with uncertainity. Both as part of its knowledge
base, for example when heuristic recorded as part of the knowledge base is known to work

8

for nine out of ten cases or symptoms are usually pointing to specific problem but not being
sole reliable indicator of its presence, and in the information acquired from user dialogue.
That’s because user might not be able to answer some of the question accurately or at all.

Expert system should be able to provide advice even when part of the information
is missing, buidling complext decision structure instead of interpreting facts as simple
true/false conditionals. It is also entirely possible to come up with several equally likely an-
swers instead for single decision. Either way expert system should be able to, if requested,
back given advice up by detailed explanation of reasoning that lead to the conclusion as
well as to handle any follow-up questions to adjust or further specify the problematic.

Expert systems can be further divided into three cathegories - diagnostic, planning
and hybrid. Diagnostic systems are used to match one of the possible hypotheses with
information input. The decision making process is therefore finding the best match and
queries asked in user dialogue are chosen by their informational yield. Planning systems
are used for scenarios with know initial and goal states and the desired outcome is optimal
sequence of actions (applied operators) to make transition between the two states. Solving
this task by traditional means would lead to massive state space expansion, especially if
there are many possible operators and large number of steps between initial and goal state.
Expert knowledge is used to reduce this expansion by focusing only on promising branches
speeding up the process significantly. Hybrid systems combine aspects of diagnostic and
planning, one of examples could be learning assistant using diagnostic to assess student’s
knowledge and planning to suggest best study schedule. [4]

2.5 Agent systems

The idea behind distributed artificial intelligence is distributed problem solving. As fre-
quently observed in nature and human society, collective of individuals cooperating together
can solve much more complext tasks than single individual ever could. In computer imple-
mentation, these individuals are called agents.

To successfully apply this methodology in artificial intelligence there’s several issues
that need to be addressed - competency of individual agents, form of communication and
coordination between the agents and structure of their colective. The possible structures are
all agents being equal, agent hierarchy, and existence of single decision maker and scheduler
coordinating the other agents.

Distributed artificial intelligence can be further divided into two main cathegories -
distributed problem solving and multi-agent systems. Distributed problem solving focuses
on splitting solved problem into several sub-goals that can be assigned to modules, solved
separately and then composed into final solution. The agents don’t have to be fully indepen-
dant and some parts of the distributed solution can be closer-knit together. The emphasis
is put on solving the initial problem, so if one type of agent proves to make bigger contri-
bution towards the overall solution it can be advance at the expense of the other agents.
With multi-agent systems the empasis is put on independance of agents, their interacion is
more dynamic and flexible. The enviroment should be designed to encourage cooperation
towards the common goal between any type of agents. Even those with selfish priorities.
This approach is suitable for widely defined, more generic problems. [4]

Either way, agent systems offer several advantages similar to human teamwork. The
solution is found faster, even compared to simple parallely split processing, because each
agent can focus on part of the whole problematic and only needs to have data relevant
to that specific part instead of having to iterate over all of the data. Communication

9

between individual agents is also simplified and steamlined thanks to defined distribution
of responsibilities, allowing for specialised agents to process their specific task separately
and only forward their conclusion. There’s also improve in reliability and flexibility of the
system as the agents can be easily added, replaced, and possibly substituted for one another
as the specific problem demands. When designing agent system, we need to aswer four basic
questions [4]:

1. How is solved problem defined and described and how it will be distributed between
individual agents? This is dynamic process as specific sub-problems may come up
gradually through the processing. This also helps to define how individual pieces of
the solutions will be put together to compose the origial problem solution.

2. How agents communicate? This doesn’t cover only syntax of their messaging but also
when the information are sent and who are they forwarded to.

3. Is there a mechanism to detec and resolve conflicts between agants?

4. Can agent access and work with information about actions and plans of the other
agents?

In other words, distributed artificial intelligence is about designing and testing possible
ways to answer there questions. Proper decomposition of the original problem can make
agent interaction and communication efficient with no need for external coordination and
speed up solution significantly. Two possible ways to approach problem decomposition are
top-down, starting from the view of problematic as whole, and bottom-up, starting from
view of individual agents.

There are three levels of agents’ behavior. Most basic one is reactive agent that only
responds to outside impulses. Reactive agent logic builds image of outside world in its
internal representation and determines response to individual impulses depending on the
impules itself and agent’s current assumptions. Part of the response can be forwarding
received signal or sending signal of their own to another agents. Next level is intentional
agent that can set on individual goals and internally considers possibilities to reach them.
Intentional agents can communicate their goals and present state of their curent belief, their
internal image of the outside world, with other agents in attempt to organise cooperation
with each other. The third level is social agent. Social agents work with behavioral models
of the other agents making complex plans of cooperation with them.

Multi agent systems are most frequently deployed in several scenarions. One of them
is to replace previously existing monolithical applications when they no longer allow for
demanded modifications or extensions. Another is to incorporate proven solution as a
part of another application, either to ease intergation or to keep proprietary knowledge
of exact decision making process secret while allowing for its use a

”
black box“. Multi

agent approach is also useful when designing application as a collection of modules with
emphasis on interchagability and reuse of code. Next area where multi agent systems find
use is modelling and simulation. Behavior of animal herds, insect collonies or even crowds
of people can be easily described by multi agent system with single agent representing each
individual.

10

Chapter 3

Analysis of game mechanics

As mentioned in the introduction, Settlers of Catan is multiplayer game with elements of
chance, incomplete information and possibility of player cooperation. It is expected that
the game will be played by 3 or 4 players. While it’s technically possible to play by just 2,
doing so will significantly reduce element of strategy in the game and will therefore not be
subject of this thesis. Game is symetric, in the sense that all players have same starting
conditions, same goal and same options to take on their turn.

Game has three zones, first of them is game board shared between players and fully
visible at all times. The other is grip of resource cards that are individual for each player
and hidden from the other players, although it is usually possible to deduce some of resource
cards held by player. Finally there’s development cards also individual for each player, those
remain hidden until used.

Pieces placed on game board cannot be removed and remain on their position until
end of the game, with exception of Thief marker which can relocate over the board. Spend
resource cards are discarded and used development cards left revealed in player’s possession.

Players take turns in fixed order and compete in collecting points, first player to collect
10 or more points wins the game. Players can only gain points on their own turn and it is
therefore impossible for two or more players to reach 10 points simultaneously, there will
always be a single winner.

Main way to collect points is construction of settlements and cities on the game board.
Each settlement awards player 1 point and each city 2. It is worth noting that initial board
setup already awards each player 2 points as each player begins the game controlling two
settlements. Some of development cards discussed bellow can award player 1 additional
point. Finally there’s two additional conditions and first player to meet either of them gets
corresponding award. Controlling each award is worth 2 additional points. One award is
given to player controlling most revealed Knight development cards (at least 3) the other
to player controlling uninterrupted road with most segments (at least 5). Obviously eiter
award could be lost when another player suprasses the player currently holding the award.
When there’s a tie award remains with the player who met the condition first.

To summarise what above means in terms of available information - points earned from
settlements and cities are public and cannot be lost, points earned from awards are public
but can be lost, and points earned from development cards remain secret until they add
up to 10 with player’s other points. It is prudent to assume that when player holds some
unused development cards, some of them might be point scoring.

11

3.1 Game board

Game board consists of 19 hexagonal tiles, 18 of which can provide resources, having as-
signed resource type and a number to be rolled for yield, the last tile is blank. The tiles are
put together into roughly circular game board. Exact position of each tile and its number
can either follow predetermined patter or be generated randomly each game. Settlement
and City markers are placed at the edge of a tile, thus neighbourning with up to 3 tiles,
roads are place along the tile’s sides. Tiles forming the game board are wrapped by board
frame and some of the frame segments are marked as harbours. Those are considered to
be associated with the two tile edges (possible settlement/town locations) nearest to the
marker. Amount of markers each player can place on the gaming board is limited. The
maximum values are 5 settlements, 4 cities and 15 segments of the road. Once expended,
no additional marker of the same type can be placed. There are 5 types of resources repre-
sented by resource cards. Those are also limited, specifically to 19 pieces per resource. Spent
resource cards are returned to the resource pool, but if at any time all the resource cards of
give type are held by players, no more of that resource can be acquired. Game incorporates
mechanic preventing consitent hoarding of the resource card with the goal of denying them
to the other players, futher explained below. These limits can affect game strategy, as it is,
for example, impossible to win solely by construction of roads and settlements.

3.2 Turn order

This section briefly describes individual steps of the gameplay and corresponding player
actions and decision making taking place during each of them.

3.2.1 Deploy

First step of the game after the game board has been assembled is deployment of initial
settlements and roads. At this point all the information about the board composition is
already available. Players randomly choose their order and each places single settlement
marker and road segment adjacent to that marker. Thr only limitation at this point is
that settlements have to be at least two tile sides (road segmets’ distance) away from
each other. Then, players place their second initial settlement in reverse order along with
another segment of road adjacent to either settlement or existing segment of the road. The
order reversal at this part is in place to balance the range of options each players have
in settlement deployment. After the second deployment round each player draws their
initial resouce cards, one each of the resources yielded by tiles neighbourning their second
settlement, and first game turn starts.

3.2.2 Resource gathering

Regular game turn begins with active player rolling a dice pair. If their sum is other than
7 tiles with that number are yielding. That means that for each settlement neighbourning
the tile the settlement’s owner gets one resource card of the tile’s resource and two resource
cards for each town marker meeting the conditions (assuming there’s sufficient resource
cards left in the bank). On the roll of 7 there’s no yield and thief marker is activated
instead. Note that not only the active player, but all the eligible players can get the
resource cards. Active player is, however, the only one that can spend and trade resource
cards int the following step.

12

3.2.3 Resource spending

Player can spend resources either placing new markers on the game board or drawing action
cards at appropriate resource cost. Cards can be drawn as long as there’s some in the deck,
but plancing markers has to meet further requirements.

• Road segment - has to be placed adjacent to player’s existing road segment through
tile edge that’s either unoccupied or occupied by player’s own marker.

• Settlement - has to be placed on tile edge touched by player’s road segment and
at least two segments (regardles whether occupied or unoccupied) away from other
settlement and town markers on the board (belonging to any player). It doesn’t
matter if the edge is also touched by another player’s road segment as long as the
above requirements are met.

• Town - town marker can only be placed replacing player’s existing settlement marker.
Settlement marker is returned to the pool and can be used again to establish new
settlement.

3.2.4 Action cards use

There’s five types of action cards. They’re drawn at random from a shuffled deck and are
not reused over the course of the game. Exact counts of each type are listed in appendix.
Player keeps the drawn card secret until played, which can be at any point of player’s own
turn after dice roll and resource gathering has been resolved.

1. Knight - player moves thief marker and scores the knight card towards Largest Army
archievement.

2. Victory point card - player scores 1 additional victory point.

3. Progress - Roads - player builds 2 road segments at no resource cost (if able).

4. Progress - Monopol - player names a resource type and the other player hand him
over all resource cards of that type.

5. Progress - Invention - player draws two resource cards of his choice (can be the same).

3.2.5 Thief use

Thief is the only marker that moves across the board. At the beginning of the game thief
occupies Desert tile where it has no effect. Thief marker moves whenever player rolls 7 on
the dice or plays Knight action card. If 7 was rolled, thief move is preceded by discard
phase where each player holding over 7 resource card must choose and discard half of them
(rounded down).

When thief marker moves to a tile, that tile becomes blocked and will not yield any
resources until the thief marker moves somewhere else. Additionally player moving the
thief picks one of the players owning settlement or town marker at the edge of affected tile
(if any) and takes one resource card from them at random.

13

3.2.6 Trade

Another part of game strategy is resource cards trade. Trade can only be initiated by active
player, who can either propose a trade to the other players or trade with game bank. When
trading with other players the proposal is entirely up to the player, but most commonly
will be in a form of one for one offer. Non-active players then have a chance to accept the
offer (ideally in the same order as the game progression, but realistically on first come first
served basis). Player can theoretically propose any number of offers. Trade with game bank
is done at exchange rate of 4 resource cards of the same type for any one resource card.
This rate can be further improved by controlling settlement or town neighbouring harbour
marker. Harbour of specific resource type improves exchange rate of that one resource to
2:1 and harbour of unspecified type rate of any resource to 3:1.

3.3 Common game strategies

The succesful gameplay can be approached from several angles depending on the specific
board setup and choices made by other players. Most common strategies are [8]

• The Ore-Grain Strategy - focusing on upgrading initial settlements to towns as soon
as possible doubling resource yield and either trading away for the other resource or
folloing into Card Builder strategy.

• The Wood-Brick Strategy - focusing on fast construction of roads occupying good
spots for construcion of new settlements. Follow up should focus either on getting
access to the other resources or forwarding into Bank Trade strategy

• The Card Builder Strategy - focusing on drawing Action cards aiming for Largest
Army archievement, additional victory points and perhaps Longest Road archieve-
ment. With less emphasis on construction of additional settlements.

• The Balance Strategy - focusing on access to all resources allowing for flexible trade
options and relatively simple construction of additional settlements.

• The Rare Resource Monopoly Strategy - only viable on very specific board setup,
focusing on isolating access to the resource with lowest yield probability and using it
as a negotiation lever in trade with other players (usually in form of 1:2 or even 1:3
deals)

• Bank Trade Strategy - focusing on one resource with a good yield probability and
corresponding harbour acquiring the other necessary resources via trade with other
players and 2:1 trade with bank.

14

Chapter 4

Application design

This section explains the ideas behind planned application structure, segmentation of prob-
lematic into logical parts, responsibility of individual packages and expected highlights that
will be requiring extra attention. Analysis of possible approach for individual bot types
is also presented with a brief description of each and its expected upsides and downsides.
Only some of the planned bots may be actually implemented depending on complexity of
the application as a whole.

game

gui bots

board

�
�

�
�

�
�
�

��	

?

@
@
@
@
@
@
@
@@R

@
@
@
@
@
@
@
@@R

�
�
�

�
�
�

�
��	

Figure 4.1: Designed package dependance

15

4.1 Game framework

First step in establishing groundwork of the application design is deciding exact extent of
expected functionality. In this case that would be running game locally with up to 4 bots
or a live player and up to 3 bots. Game playing over network or with multiple live players is
not expected, thus is should be sufficient to have the application as a single piece of software.
The program run will be driven centrally by a designated class that will be responsible for
setup of game board followed by creation of bots and possibly with player UI. then it will
be scheduling turn order between participants and processing their decisions and actions.
This class will also be responsible for recording a log of game progress. while this solution
doesn’t meet the idea of

”
single responsibility per class“ it should be acceptable here, as

this will be the only class with access to the complete knowledge of the game situation and
any other implementation of log recording would have to work through it anyway.

4.2 Game board

With hexagonal tiles and game mechanics using not just tiles themself but also their edges
and vertices as board segments, maintaining both consistency of board state and easy
navigation for bots and live player alike becomes obvious concern. Out of several possible
approaches this project will be opting for pointy topped hexagon placement using adjusted
even-r offset coordinates (the adjustment being head start of 2nd row versus 0th and 5th)
[10]

Furthermore, during the game run there will be constant need for neighbourning ele-
ments access, ownership verification and distance measurement. As such it’s for the best to
create tiles, tile edges and tile vertices each as separate objects and have them interlinked
with knowledge of their surrouding. Game board class will then provide wrap of sorts
mediating access to this structure. Individual elements of the structure will not need any
identification of their own as they will never be accessed directly, always either through
neighbour or through the wrapper structure. Board object will also be responsible for ac-
counting of resource cards and action cards after a consideration that they’re also part of
the board state even if they’re not present on the board itself. Above in combination with
the concept of central control means that neither bot nor the player interface will need to
keep their own records of the board state as they can always retrieve needed information
from the board object. This will eliminate risk of any data incosistency.

4.3 Player interface

Live player will interact with the game via Swing GUI. Key element of the GUI will be of
graphical representation of the board state that will also serve as an input for board element
selection. Given that after initial deployment board elements, that is - not player and thief
markers, don’t change position, they can be precomputed at the initiation of the player
window and stored as the window’s private variables for faster updates. Conveniently,
functionality of Swing class Polygon also provides a way to check if point in a window
area lies within the polygon’s boundaries, which can be used for aforementioned selection.
The canvas will respond to a mouse click as a whole, comparing mouse coordinates against
aforementioned polygons, allowing for more steamlined response than would be possible
with setting multiple sensory segments. Another part of player GUI will be status bar

16

monitoring public information not obvious from the board alone, such as number of resource
cards and action cards held by each player. Finally there will be control elements, most
likely in form of buttons, for initiation of player actions and another information bar with
players private information - own resource cards and action cards. This interface will
also allow user to spectate game run with bot players alone. In such case player control
elements, private information bar and interactive function of game board visualisation will
be disabled.

4.4 Bots

As explained above, game will be driven centrally by a designated class and thus bots will
be designed as passive / responsive. When bot player’s order comes, it will be prompted
for a decision what action the player wants to take. Some of the information necessary
to make such decision will be stored in the object representing the bot, this will be the
case of information that doesn’t change frequently and/or is proprietary to the bot alone
and should be kept secret. Th rest of the information will be handed to the bot as a
part of decision prompt call, which will be the case of information that changes frequently,
is public or is provided by another player (bot or not) and couldn’t be known until just
before the call was made. The idea of having multiple bot types is ideal opportunity to use
OOP principle of inheritance. Game driving class will assume all the bots are of generic
parental bot type with clearly defined prompt call interfaces and specific bot types will be
inherited from this class guaranteeing compatibility, this approach is also known as Liskov
Substitution Principle [6] Hopefully, it will also be possible to steamline the design with
player interface prompts allowing for very uniform operation of game driving class as it will
not need to make any distinction between bot and live player GUI when interaction with
their respective objects.

4.4.1 Evaluation bot

First bot type will be based on the idea of evaluation functions collection that will be able
to examine and evaluate the game state at any given prompt and formulate the decision.
The job will be made easier by the fact that the prompt call will already indicate what
type of response is expected and thus what evaluation should be made. On the other hand,
this means having to come up with quite a range of evaluation functions covering all the
situations and game steps. Hopefully, some of those can be answered by reuse of the same
or similar algorithms reducing the amount of necessary production code by recursive and/or
parametrised calls. Expected evaluations will be including but not limited to:

• Selecting spot for a settlement marker placement - this evaluation will have to go
through most of the candidates, discounting only those already occupied or within
distance of 1 from already occupied. Given that even empty board range of possibil-
ities is still well within double digits, even a linear time complexity shouldn’t cause
too much workload.

• Finding shortest road path connecting to a given spot - good opportunity to deploy
Breadth-first search over a list of road segment sequences. Backtracking wouldn’t be
suitable because of possible path loops that can be easily treated in BFS but would
cause more problems otherwise

17

• Finding best spot for a thief marker placement - similar problematic as in the case
of settlement markers placement. In this case the range of considered options is even
lower, so again linear complexity is fine.

• Decision to make token placement or an action card purchase - generally speaking,
because of the thief mechanic preventing resource hoarding, resource cards should
always be spent if at all possible, so the decision in this part is more about finding
the best location for a marker placement using evaluation mentioned above.

• Action card use - action cards use is a little more complex because they can be safely
kept in reserve. That should always be the case of some to make the most of their
effect while the others can be spend immediately. This cannot be covered by any
eastablished algorithm and will have to be decided on case to case basis.

• Trade making - this really consists of two steps, the first is decision what the trade
tries to archieve, which is generally speaking getting together appropriate resource
types to complete a purchase of card or marker. The following step will be proposing
a deal that gets the player closer to that, expending resources not needed at the
moment. Trade making will be partially done out of order as the bot has to respond
to proposals made by the other players.

4.4.2 Agent bot

Next logical approach to the problematic is designing a bot that will decompose decision
making and evaluation into corresponding sub-problems which can be resolved indepen-
dantly and their solutions then put together into a composite decision. This allows for
more flexibility in bot design as individual decision making parts can be exchanged with-
out affecting the rest of the components. This bot type can also better utilise internal
storage of the data, with each component (agent) keeping their own relavant parts. It
can also possibly save some evaluation runs by having agent store last evaluation inputs
and corresponding results, returning the same result on the same input and only running
new evaluation on a different one. This wouldn’t very well be possible on aforementioned
bot type where isolating the problematic to a small enough fraction that such repeated
calls can realistically happen would take considerably more effort than it would save. The
problematic decomposition into agent responsibility can be following:

• Central agent - responsible for receiving prompt calls, passing them to corresponing
agents and formulating decision from the information received back. This agent will
also be cutting ties in case of conflict between the other agents.

• Build agent - responsible for evaluation of marker placement spots, monitoring marker
placement of the other players and evidence of available and demanded resources for
best.

• Trade agent - responsible for trade with other players and game bank both on players
own turn and in response to trade offers from the others, cooperating with token
agent on setting up trade priorities.

• Score agent - agent proposing best opportunities to score points - placement of more
awarded markers vs striving for one of the archievements or victory point cards. This
agent will also monitor points of the other players, both revealed and presumed and
advise trade agent on threat level each of the other player poses.

18

• Thief agent - agent responsible for thief location evaluation used when thief marker
movement takes place. Also measuring thief threat level - importance of blocked
resource and impact on the other players.

• Card agent - overviewing use of action cards for their optimal effectivity.

4.4.3 Expert bot

Another possible approach to the bot design is as an expert system. This would obviously
consist of two parts - the decision making process and the knowledge base. While the game
is quite popular worldwide and many players have their preferred strategy, this knowledge
has never been, as far as I’ve managed to research at the time of preparing this thesis,
properly formalised. Considering individual steps of the gameplay, it becomes obvious that
while some of the decision making knowledge can be formalised relativelty easily, such as
preference of resources depending on board composition and resources already available, the
other, such as appropriate use of action cards, would make such task far more challenging.
Either way, this would first require clarification of a format in which the information will
be stored followed by consultation with large enough group of skilled players. Even then,
preparation of a decision making process that can effectively utilise this knowledge base
would not be easy and while some extent of inspiration can be drawn from existing game
playing expert systems, it would have to be designed from the grounds up just for the
purpose. User working with the expert system will be represented by game core prompt
consulting the bot for the next player action.

Another possibility is to use expert system approach as a component of another solution
(eg. aforementioned Agent bot), utilising expert system functionality on for those sections
of the problematic where it’s most suitable, dealing with other parts of the decision making
via another method.

4.5 Logs

While the application interface will allow visualisation of ongoing game, both with player
participation and played by bots only, this alone would be insufficient for a proper analysis
of game run and bot performance. Therefore it’s necessary to be able to record a log of
game progress all the way from board setup to game conclusion.

As to what exactly will be recorded is up to further consideration, log should most
definitely provide enough information for a person reading it to be able to reconstruct the
game run, even if doing so would be somewhat tedious. Given the fact that game uses
hexagonal board where edges and vertexes matter, recording the board state will not he
anywhere as easy as in case of games with square board. Ideal solution seems to be setting
up coordinates system for tiles and player markers placement and recording action taken
on the board via those.

As for the bot decision making, possibility of running sepatare log for each bot has
been considered, but interpretation of those without the context of game as whole would
be difficult, if at all possible, so the bot decision making will be included in main game log.
Besides the action taken it should also record justification why the bot made that action,
so result of evaluation function or similar indicator will be included along with the decision.

Next concern is recording of information not directly obvious from the game board
state. Specifically, that means resource cards and action cards. Resource cards change

19

hands quite frequently, so the log should provide not only information of their movement
but also summaries at certain points of a game (eg. after one round of player turns) for
easier review. Action card traffic is comparatively more sparse, so just noting thier draws
and plays with respective variable, if any, should suffice.

Point scoring should be noted as well, but while most important for the actual game
play, it’s not really so importat for the log keeping, as it can be easily deduced from seeing
game board state at any point of the game. Trading between players will also be recorded
in somewhat simplified state, partially because it will be happening a lot, each player can
make any number of trade offers on their turn, they have to be considered by the other
players and most of them get turned down. Second reason is that goal of trade doesn’t
have to be explicitly stated, it will be obvious form player’s next purchase or just sought
resource alone.

Logs will be recorded in plain text, use of a code format to save space shouldn’t be
necassary. Even a log of long 4 player game is eastimated to be well under 100kB, which
is easily acceptable. Option of game replay from a log will not be implemented, because
doing so would give no more information than can be deduced from existing log alone.

20

Chapter 5

Implementation

This section goes into exact steps taken in implmentation of the aplication, highlighting
differences from the original design and explaining in further detail decisions made on code
level. Individual subsections representing packages are introduced in chronological order of
their implementation.

5.1 Board

As mentioned in previous section, first step toward implementation of the project had to
be representation of the game board, as it is the centerpiece that every other segment of
the application will interact with. Tile edges and vertices (road and town / settlement
placements) can be generated upon board initiation as they all start blank and only gain
further properties as the game goes on.

Meanwhile, generation of tiles is more complex, while there is predefined setup, men-
tioned in game rules as introductory game, most of the times player will want to have
their board randomised. This randomised tile generation is made in a way that emulates
the procedure done by players as described in game rules (only simplification being use
of Fisher-Yates shuffle that can randomize corresponing arrays in single run) placing tiles
spirally around the game board from any given edge, this functionality has been separated
into its own class.

All three kinds of sub-elements are then stored in corresponding two dimensional arrays
of variable 2nd dimension length. In following of the design idea, these classes can interlink
and reference their neighbouring elements. Given complexity of this interlinking, doing so
right on the creation would be difficult if at all possible, this is therefore done in separate
run over the arrays already filled with corresponding objects. After that any element of the
board can navigate its way to any other element without having to interact with wrapper
class at all. Access to the elements via wrapper class is however still important because of
the interaction with other game segments where navigation via coordinates still has its use.

Representation of harbours on the board frame has been excluded from having their
own objects, they are noted as attribute of corresponding tile vertices and as an array of
their respective types around the board frame used for display only. This separation of
information doesn’t matter, as the coherency can be verified on board generation (where
one representation is derived from the other) and neither changes as the game progresses
so there isn’t any risk of inconsistency.

Another information mantained in this section are player resource and action cards.

21

These could have been separated into their own class as well, but because of the close
interaction of resource pool and game board itself it will be a lot easier to verify consistency
between the two within single class.

At this point it became obvious that quite extensive testing of this package will be
necessary before implementation of any other elements that build on it to avoid missing
any underlying issues. But at the same time without any classes that work with the board
representaion or can properly visualise it, such testing would be complicated. Therefore it
was decided to add functionality that records board game state in a plaintext, both tiles
with markers and resource pool. This was used for debugging via standard output printing
and also later used for recording of game log instead of originally intended recording via
coordinates only. While that aproximately doubles size of the logs it makes them a lot more
readable.

Some additional functionality was later added to the wrapper class for more convenient
work with it, such as retrieving list of tile vertices occupied by specific player and executing
actions corresponding to action card play. Those ass little functional complexity and make
work with the class a lot more convenient.

This package also includes class representing a pair of dice used during the gameplay.
Value of the roll might need to be read several times over fromvarying segments of appli-
cation so this is prefered over storage in a variable.

While board and dice pair classes will always have instance of a single object in this
application it was decided against making them singletons, because further extensions of
the project might want to run more games paralelly.

22

"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb

"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb

"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb

b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""

b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""

b
b

bb"
"

""b
b

bb"
"

""b
b

bb"
"

""

Tiles

row 0

row 1

row 2

row 3

row 4

Town spots

row 0

row 1

row 2

row 3

row 4

row 5

Roads

row 0

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

row 10

Figure 5.1: Row indexing of roads, town sposts and tiles.

5.2 Game

This class was implemented as a game centerpoint keeping tabs on game board, partic-
ipating players and interaction between them, representing game run as a single thread
run calling subsequent functionality as necessary. Initiation of the game object will create
corresponding game board, expected number of bots and optionally player user interface,
then schedule their rescpective order and process their choices.

At first, bot and player decisions were replaced by completly randomised or pre-set
choices to verify that connection between this class and underlying game board works
correctly, including attempts to execute disallowed moves to check if the design can handle
refusing them correctly without exception calls.

Other than keeping the game flow and recording game log, this class is basically mediator
between other components of the application. It also does monitor player scores, which
could be done by board alone but from the application logic makes more sense here to
know when the game run concludes. That is including the two possible archievements.

Another responsibility of this class is rolling dice and processing resource yield, essentialy
taking over first step of player turn. While in real life game this is handled by players, the
process is entirely set and doesn’t involve any degree of choice on the player side and can
therefore be automatised like this, reducing amount of code on player side.

23

5.3 Bot

First implementation of bot was done in accordance with planned design, creating series of
evaluation functions that can respond to game prompts. First goal of the bot is spending
available resources on whatever can be purchased this turn, taking into account best possible
placement for a new markers. This is followed by decision whether to use some of the
available action cards and finally trade with other players in preparation to have prepared
the right resources for the next turn.

While the amount of trade offers made is theoretically unlimited, it was decided that
opportunity for a trademaking by a bot will be reduced to a single offer per round, because
the logs indicated that if the first deal isn’t accepted right anway, chance of success of any
subsequent one is very low. While going through all the possibilities wouldn’t be issue for a
bot-to-bot game, having to deal with that many prompts as a live player would slow game
down a lot. Otherwise trade functionality works as designed using similar set of rules for
both making and accepting deal from another player. Given the passive nature of the bots,
this necessiates non-active bots to be prompted to update their trade preference whenever
deal is to be proposed to them.

Pathfinding of road connections was incorporated into the board itself as an additional
feature, because it’s rather simple and there isn’t any reason why various bot types should
ever not have clear access to optimal path.

Evaluation of settlement and town placement works on the idea of balanced gameplay
strategy where all resources have similar value to a player and tile quality is indicated
chiefly by yield probability. Of course past the deploy step the distance to reach the next
placement point is also taken into consideration, preventing the bot from expending resource
on attempts to reach tiles too far away to be viable.

Thief placement evaluation works on the similar idea, except the intent is to cause most
inconvenience to the other players, blocking tile with best yield for the most opponents.
While player will shy away from blocking tile they’re using themselves (indicated by negative
thief effect evaluation), it can theoretically come to it rarely.

Action cards acquisition is prioritised second to token placement but over hoarding the
resources to the next round. At this point attempts to predict drawn card type are not
made as doing so with only fraction of knowledge necessary would be very complex and
still unreliable.

5.4 User interface

Graphical user interface (GUI) was designed using Java Swing libraries. First version was
designed to only monitor progress of game driven by central elements and using bot players,
basically an alternative to monitoring game flow via log. Apparently a delay (driving thread
sleep sequence) had to be introduced to slow display down to the level where it can be
reasonably perceived by human observer (0.1 to 1 seconds between steps). This worked as
designed without any problems.

Following step allowing for active player interaction however introduced some unex-
pected difficulties requiring further reseach and partial redesign of the application workflow.
The issue in question is nature of Event Dispatching Thread (EDT) not allowing update of
displayed elements from another (subsequently launched) threads. In practice this would
mean that EDT launching game thread doesn’t allow the game thread to update graphical
interface until the control is passed back to EDT. Even a bot game launched by GUI in-

24

stead of the central class would put displaying on hold until the game run concludes, so no
updates are shown, only the final game state. Passing the control from GUI actively used
by player is arguably even worse, as the player isn’t guaranteed to have up to date view of
the board because the update might be in postpone.

Forcing the update from another thread is not possible as it would disrupt thread safety.
Several solutions have been considered, most radical of them being complete redesign of
the application separating GUI strictly from the game core and setting up communication
between the two via established protocol, this would however require redesign of several
other elements making most of the progress done so far void. So while this proves that the
original idea of designing application as a single piece might not have been optimal decision,
this project will push through with it to focus on confirmation of the other premises.

The GUI / EDT issue was instead solved by rewriting game run from a thread repre-
sentation to repeated calls of function making single game step per call, or fraction of the
step in case of player interaction, updating GUI after each if any change in game state was
made. EDT will launch in short runs via SwingUtilities.invokeLater() giving the necessary
space for update to execute. Control will be passed back and forth between game class
and player window. This doesn’t allow for originally intended hierachical order (window
elements need to be able to call game class and the other way around) and would cause
cross-reference between the packages and therefore the game class has been moved to the
same package as the window elements. Exact step in the game workflow and expected calls
are marked by status codes on either side of control passing as a first number of numerical
array passed as call argument (the others being further specifications of the choice, such as
resources being traded etc.) and corresponding return values.

GUI itself consists of launch window where parameters of a game can be decided, main
player window with game board display canvases and buttons for a player interaction and
several prompts for further choices invocated via buttons (player activity) or game flow
(player response to prompt from another player). These subsequent prompts can also
interact with game object directly, launching only functionality in their competence (eg.
prompt for a parametrised play of action card can only make call of that one card) but
still needing accees to it and therefore being located in the same package. Stepping into
the calls out of order is prevented by disabling GUI elements that are not in order at given
point.

These adjustments brought up one more issue, which is that when bot prompts other
players for a response for its trade offer, this prompt should be answered in the order of
gameplay. Unfortuntelly, in case of live player this means having to interrupt bot logic
execution, waiting for an answer from the player. Following after that at the exact point of
interruption would be quite difficult requiring complete rewrite of corresponding part of bot
and game core logic. It was therefore compromised that live player will be prompted last
after the bot players (if none of them agreed to the deal) which allows for easier application
following no matter if the deal was made or not. This theoretically puts player at a slight
disadventage against bot players but it shouldn’t be much of an issue as actual gameplay
trading between live players works on first come first served basis, which is not entirely fair
either. To further simplify player’s access to trademaking, deals asking for resources player
does not have are turned down automatically without coming up as a prompt.

25

game

bots

board

?

@
@
@
@
@
@
@
@@R

�
�

�
�

�
�

�
��	

Figure 5.2: implemented package dependance

5.5 Bot versioning

Because of the scale of modifications and adjustments made during the application imple-
mentation, coming up with second bot type from the ground up in time for a proper testing
became unrealistic. So instead of that project focused on further refinement of existing bot
creating second evaluation bot version with dynamic allocation of resource and correspond-
ing harbour priorities. While relatively small change in the amount of code it is expected
that this will improve bots performance noticeably.

26

Figure 5.3: Application GUI - gameplay

Figure 5.4: Application GUI - initial menu

27

Chapter 6

Results

This section measures quality and performance of final application, pitting bots against each
other and against human opponents of varying skill. First measure of success is obviously
win ratio and the point difference behind winning player, main goal of the bot is collecting
as many points as possible. 1

Another measurable quality is how long game takes, this will mostly make sense for a
play between one type of bots where the speed of group finishing game as a whole should
indicate how well they are adapted to the problematic. That is to say, measuring length of
gameplay turns. The testing should also verify bot performance depending on randomness
of board setup, bots should perform equally well on randomised and non=randomised
board. Game between human players on this game version usually takes between 20 and
40 turns.

Application real time run is not a concer of there tests, sufficient to say tat even on
weaker machine (single core CPU, 2GB RAM) game run finishes under one second.

Because the game incorporates element of chance, it’s necessary to run each type of test
several times to eliminate the influence of luck and measusure actual performance.

1When winning player finishes the game with more than 10 points, eg. by getting 2 points archievement
at 9 points, the runned up is counted against the original target of 10 points.

28

6.1 Game length

Game length depending on bot complexity and and randomness.

run two bots three bots four bots
number turns lead turns lead turns lead

run 1 45 1 27 3 15 3
run 2 32 4 28 4 29 5
run 3 50 3 32 1 25 2
run 4 37 5 23 3 19 3
run 5 42 2 36 1 32 1
run 6 35 3 27 3 28 2
run 7 55 2 32 4 19 2
run 8 26 5 33 3 23 1
run 9 45 2 21 2 17 3
run 10 34 3 41 3 24 2
average 40.1 3 30 2.7 23.1 2.4

Table 6.1: Dummy bots preset board

run two bots three bots four bots
number turns lead turns lead turns lead

run 1 63 4 39 2 23 5
run 2 48 5 29 2 22 2
run 3 54 3 32 2 22 2
run 4 63 2 32 1 25 1
run 5 58 6 41 2 32 2
run 6 61 4 35 1 17 1
run 7 81 4 21 3 22 3
run 8 52 1 18 3 23 2
run 9 47 6 25 2 36 2
run 10 59 5 34 2 24 4
average 58.6 4 30.6 2 24.6 2.4

Table 6.2: Dummy bots random board

29

run two bots three bots four bots
number turns lead turns lead turns lead

run 1 22 6 18 5 27 2
run 2 37 3 29 1 25 2
run 3 31 1 24 1 24 1
run 4 30 2 26 3 26 2
run 5 34 1 36 2 32 3
run 6 25 3 32 2 19 2
run 7 34 2 46 3 23 1
run 8 36 6 22 1 29 2
run 9 43 6 24 2 31 2
run 10 45 4 31 1 22 3
average 33.7 3.4 28.8 2.1 25.8 2

Table 6.3: Smart bots preset board

run two bots three bots four bots
number turns lead turns lead turns lead

run 1 29 3 28 4 23 2
run 2 30 4 35 2 31 3
run 3 45 3 23 3 45 3
run 4 24 2 46 1 36 1
run 5 42 1 26 2 19 2
run 6 21 4 26 3 25 3
run 7 32 3 44 2 22 1
run 8 43 2 36 4 21 2
run 9 46 4 21 1 25 3
run 10 32 2 19 2 26 2
average 34.4 2.8 30.4 2.6 27.3 2.2

Table 6.4: Smart bots random board

Results of this test suite show two things. First is that with just two players, Dummy
bots have difficulties finishing the game. This is understandable because game is intended
to be played in at least three people. Second point is that otherwise performance of bots
is about the same across all the options with expected shortening of duration of game with
more players, this is because of more trading possibilities and more frequent resource yield
rolls.

30

6.2 Bot types

This section compares the two bot types against each other scaling their success in gameplay.
In this case only randomised board will be used, previous section confirmed that the board
type doesn’t impact bot perfomance and randomised board test

run Dummy bots vs Smart bots
number 1 vs 1 2 vs 1 1 vs 2 2 vs 2

run 1 Dummy won Smart won Smart won Smart won
run 2 Dummy won Smart won Dummy won Smart won
run 3 Smart won Dummy won Smart won Smart won
run 4 Dummy won Dummy won Smart won Smart won
run 5 Dummy won Smart won Smart won Dummy won
run 6 Dummy won Smart won Smart won Smart won
run 7 Smart won Dummy won Smart won Smart won
run 8 Dummy won Smart won Dummy won Smart won
run 9 Dummy won Smart won Smart won Smart won
run 10 Dummy won Dummy won Smart won Smart won
run 11 Smart won Dummy won Smart won Smart won
run 12 Dummy won Dummy won Smart won Dummy won
run 13 Dummy won Smart won Smart won Smart won
run 14 Dummy won Smart won Dummy won Dummy won
run 15 Smart won Smart won Dummy won Smart won
run 16 Dummy won Smart won Smart won Dummy won
run 17 Dummy won Dummy won Dummy won Dummy won
run 18 Dummy won Smart won Dummy won Smart won
run 19 Smart won Dummy won Smart won Dummy won
run 20 Dummy won Smart won Dummy won Smart won

victory rate 15:5 8:12 7:13 6:14

Table 6.5: Dummy vs Smart random board

Results indicate that while dummy bot does better in two player game, presumably
because there is very little room for more complex strategy or cooperation, smart bots
begins to outperform them in three and four player games even when there is just one of
them.

31

6.3 Bots versus player

This section compares bot performance against live player. To get better range of compar-
ison, several volunteers were asked for assistance. Each player was set up against 3 bots of
either type in five games.

Volunteers:

1. Male student, inexperienced player

2. Female student, inexperienced player

3. Male IT worker, experienced player

4. Male retiree, average player

run player vs Dummy bots player vs Smart bots
number game length player

position
game length player

position
run 1 36 2nd 29 3rd
run 2 25 3rd 19 2nd
run 3 32 1st 24 4th
run 4 29 1st 22 3rd
run 5 41 2nd 35 1st

average 32.6 1.8 25.8 2.6

Table 6.6: Live player 1

run player vs Dummy bots player vs Smart bots
number game length player

position
game length player

position
run 1 42 2nd 35 2nd
run 2 39 1st 27 2nd
run 3 51 3rd 29 1st
run 4 33 2nd 32 4th
run 5 24 3rd 19 3rd

average 37.8 2.2 28.4 2.4

Table 6.7: Live player 2

32

run player vs Dummy bots player vs Smart bots
number game length player

position
game length player

position
run 1 15 1st 19 3rd
run 2 22 1st 32 1st
run 3 23 2nd 27 1st
run 4 32 1st 25 1st
run 5 29 1nd 21 2nd

average 22.4 1.2 24.8 1.6

Table 6.8: Live player 3

run player vs Dummy bots player vs Smart bots
number game length player

position
game length player

position
run 1 26 2nd 32 2nd
run 2 42 3rd 35 2nd
run 3 21 1st 15 4th
run 4 32 2nd 41 3rd
run 5 46 2nd 24 1st

average 33.4 2.0 29.4 2.4

Table 6.9: Live player 4

Tests indicate that even the weaker version of the bot is a worthy opponent for inexpe-
rienced and average player. Experienced player can overcome it without much difficult but
will usually tie with smart bot. Generally smart bot performs better than dummy bot and
average game length with live player is comparable to that with bots only.

33

Chapter 7

Conclusion

This thesis introduced the game of the Settlers of Catan and its mechanics, summarised
artificial intelligence theory relevant to player bot design and based on these information
proposed several possibilities of specific bot implementation.

Putting these ideas in use necessitated creation of game framework and graphical user
interface allowing for interaction between player and bots. This was done using Java (ver-
sion SE8) with use of Swing toolkit.

One of the proposed bot architectures was implemented in two versions and their func-
tionality was tested against each other and with live players. Tests confirmed most of the
expectations - bots pose challenge for a casual player and can stand against experienced
one. Majority of scenarios indicated superiority of bot with dynamic priorities, only expec-
tion being one on one games with static priority bot, where more straightforward approach
had advantage.

7.1 Follow up

Findings of this thesis open up plenty of possibilities for expansions and following work.
Graphical user interface of existing application can be further refined giving dynamic three
dimensional view of game board and possibility of game playing over network can be added.

More importantly, besides approaches mentioned in this thesis there’s still opportunity
for application of more artificial intelligence methodologies such as machine learning or
fuzzy logic allowing bots to analyse behavior of the other players and adjust their own
strategy.

Naturally it is also possible to extend scope of the application beyond the core version
of the Settlers of Catan and introduce some of many existing game expansions with their
new mechanics.

34

Chapter 8

Appendix

Log sample - 4 player game with mixed type of bots, summary of previous turn plus complete
run of observed turn

Board and resources after Turn 15:

~*~ () () ~O~ ()

0 0 0 2 0 0

() () () ()

0 L@6 0 B@9 2 L@8 0 ~B~

(1S) (1T) (2S) (2S)

1 1 1 1 2 2 2 0

() () () () ()

~L~ 0 O@4 0 G@6 0 B@5 0 0

() (4T) (3S) (3S) ()

0 4 4 0 0 3 3 0 0 0

() () () () () ()

0 G@3 4 O@12 0 L@9 0 W@2 0 O@3 0 ~*~

() (4S) () () () ()

0 0 3 0 0 0 0 0 0 0

() () (4T) (1S) ()

~G~ 0 G@5 3 W@10 4 BT8 0 W@11 0

() (3S) () () ()

0 0 3 0 4 2 2 0

() () (2S) (2S)

0 L@10 3 G@4 0 W@11 0 ~*~

() () () ()

0 0 0 0 0 0

~*~ () () ~W~ ()

Owner | Lumber | Brick | Wool | Grain | Ore |

Player 1 | 2 | 1 | 0 | 3 | 0 |

Player 2 | 2 | 0 | 0 | 2 | 4 |

Player 3 | 1 | 1 | 0 | 3 | 2 |

Player 4 | 1 | 1 | 0 | 1 | 0 |

Bank | 13 | 16 | 19 | 10 | 13 |

35

Player 1. (Smart Bot) Turn 16

Player 1. (Smart Bot) rolled 2 + 3 = 5

Player 1. (Smart Bot) gained: nothing

Player 2. (Dummy Bot) gained: 1 Brick

Player 3. (Dummy Bot) gained: 2 Brick 1 Grain

Player 4. (Smart Bot) gained: 1 Grain

Player 1. (Smart Bot) build new Road at [3,0] and now control longest road,

earning 2 points.

Player 1. (Smart Bot) wants: 1 Brick offers: 1 Grain

Player 2. (Dummy Bot) refuses

Player 3. (Dummy Bot) refuses

Player 4. (Smart Bot) refuses

Player 2. (Dummy Bot) Turn 16

Player 2. (Dummy Bot) rolled 1 + 3 = 4

Player 2. (Dummy Bot) gained: 1 Grain

Player 3. (Dummy Bot) gained: nothing

Player 4. (Smart Bot) gained: 2 Ore

Player 1. (Smart Bot) gained: 1 Ore

Player 2. (Dummy Bot) upgraded Settlement at [1,5] into Town, earning 1 point.

Player 2. (Dummy Bot) wants: 1 Wool offers: 1 Ore

Player 3. (Dummy Bot) refuses

Player 4. (Smart Bot) refuses

Player 1. (Smart Bot) refuses

Player 3. (Dummy Bot) Turn 16

Player 3. (Dummy Bot) rolled 6 + 5 = 11

Player 3. (Dummy Bot) gained: nothing

Player 4. (Smart Bot) gained: nothing

Player 1. (Smart Bot) gained: 1 Wool

Player 2. (Dummy Bot) gained: 3 Wool

Player 3. (Dummy Bot) wants: 1 Ore offers: 1 Grain

Player 4. (Smart Bot) refuses

Player 1. (Smart Bot) refuses

Player 2. (Dummy Bot) refuses

Player 4. (Smart Bot) Turn 16

Player 4. (Smart Bot) rolled 1 + 2 = 3

Player 4. (Smart Bot) gained: 1 Grain

Player 1. (Smart Bot) gained: nothing

Player 2. (Dummy Bot) gained: nothing

Player 3. (Dummy Bot) gained: nothing

Player 4. (Smart Bot) wants: 1 Wool offers: 1 Grain

Player 1. (Smart Bot) refuses

Player 2. (Dummy Bot) refuses

Player 3. (Dummy Bot) refuses

36

Board and resources after Turn 16:

~*~ () () ~O~ ()

0 0 0 2 0 0

() () () ()

0 L@6 0 B@9 2 L@8 0 ~B~

(1S) (1T) (2T) (2S)

1 1 1 1 2 2 2 0

() () () () ()

~L~ 1 O@4 0 G@6 0 B@5 0 0

() (4T) (3S) (3S) ()

0 4 4 0 0 3 3 0 0 0

() () () () () ()

0 G@3 4 O@12 0 L@9 0 W@2 0 O@3 0 ~*~

() (4S) () () () ()

0 0 3 0 0 0 0 0 0 0

() () (4T) (1S) ()

~G~ 0 G@5 3 W@10 4 BT8 0 W@11 0

() (3S) () () ()

0 0 3 0 4 2 2 0

() () (2S) (2S)

0 L@10 3 G@4 0 W@11 0 ~*~

() () () ()

0 0 0 0 0 0

~*~ () () ~W~ ()

Owner | Lumber | Brick | Wool | Grain | Ore |

Player 1 | 1 | 0 | 1 | 3 | 1 |

Player 2 | 2 | 1 | 3 | 1 | 1 |

Player 3 | 1 | 3 | 0 | 4 | 2 |

Player 4 | 1 | 1 | 0 | 3 | 2 |

Bank | 14 | 14 | 15 | 8 | 13 |

37

Bibliography

[1] Board Game Geeks community. Eurogame entry.
http://www.boardgamegeek.com/wiki/page/eurogame, January 2015. seen 20. Jan
2015.

[2] Association for the Advancement of Affective Computing. Emotion annotation and
representation language. http://emotion-research.net/projects/humaine/earl,
April 2015. seen 23. Apr 2015.

[3] Feng-hsiung Hsu. Behind Deep Blue: Building the Computer that Defeated the World
Chess Champion. Princeton University Press, 2002. ISBN 0-691-09065-3.

[4] V. Mařík, O. Štěpánková, J. Lažanský, and col. Umělá inteligence (2). Academia,
Praha, 1997. ISBN 80-200-0504-8.

[5] Ervin Melkó and Benedek Nagy. Optimal strategy in games with chance nodes. Acta
Cybernetica, 18(2):171–192, 2007.

[6] Reinhold Ploesch. Contracts, Scenarios and Prototypes: An Integrated Approach to
High Quality Software. Springer, 2004 edition, 2004.

[7] S. Polberg, M. Paprzycki, and M. Ganzha. Developing intelligent bots for the
diplomacy game. Computer Science and Information Systems, pages 589–596, 2011.

[8] Haseeb Saleem and Rashdan Raees Natiq. A multi-agent player for settlers of catan.
Master thesis, Blekinge Institute of Technology, 2008.

[9] E. Triantaphyllou. Multi-Criteria Decision Making: A Comparative Study.
Dordrecht, The Netherlands: Kluwer Academic Publishers (now Springer), 2000.
ISBN 0-7923-6607-7.

[10] Red Blob Games tutorials. Hexagonal grids entry.
http://www.redblobgames.com/grids/hexagons/, April 2015. seen 12. Apr 2015.

38

