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Abstract
With the rise of the Internet, the trend of source code plagiarism and copyright infringe-
ment has been increasing and it has become a problem in both academic and corporate
environments. With that in mind, it becomes important to be able to identify author
of a source code based on stylomentry techniques to prevent unethical violations of the
intelectual property of the author. This thesis summarizes modern approaches to source
code authorship attribution and presents a general purpose authorship attribution tool that
attempts to detect author of the source code.

Abstrakt
Se vzestupem internetu se trend plagiátorství zdrojového kódu a porušování autorských práv
zvyšuje a stal se problémem jak v akademickém, tak v podnikovém prostředí. S ohledem
na to je důležité, aby bylo možné identifikovat autora zdrojového kódu založeného na stylo-
mentrických technikách, aby se zabránilo neetickému porušování autorského intelektuálního
vlastnictví. Tato práce shrnuje moderní přístupy k přiřazení autorského zdrojového kódu a
představuje nástroj pro přiřazení autorů obecného určení, který se pokouší odhalit autora
zdrojového kódu.
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Chapter 1

Introduction

Source code authorship attribution can be defined as identification of the author of a source
code based on stylistic features of the source code.

In its principle this problem is closely linked to the problem of well researched field of
text authorship attribution which uses natural language processing (NLP) techniques for a
problem of text classification.

To date, vast majority of machine learning techniques of text classification are based on
simple statistical model of ordered word combinations which are used to great effect and
accuracy.

This thesis presents a classifier capable of determining the most likely author(s) of a
source code file trough application of machine learning methods and various stylometry
features.

1.1 Motivation
Source code authorship attribution can be used in wide variety of situations to detect
the original author of the source code. These use-cases include, but are not limited to
copyright investigation, ghostwriting detection, authorship verification, software forensics
and programmer deanonymization.

1.1.1 Copyright Investigation

A dispute of authorship between two parties (or a small group of authors) can lead to
serious copyright problems and could affect the whole software project. This dispute can be
resolved by comparing known samples of code from both (multiple) parties and attributing
authorship of disputed parts of code to their authors. It is crucial that this is to be done
with high degree of confidence in the result of such code attribution procedure.

1.1.2 Ghostwriting Detection

Ghostwriting is a subtype of plagiarism in which source code is used or published without
disclosing involvement of the original author. Unlike traditional plagiarism, the original
author of the code is aware of code being used by third party, often at an incentive.
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1.1.3 Authorship Verification

Authorship verification is a problem of deciding whether an (assumed) author is the real
author of the source code when presented with source code samples allegedly written by
the (assumed) author.

1.1.4 Programmer Deanonymization

Programmer deanonymization attempts to reveal the identity of an anonymous author.
One notable example of this process is attempt to use machine learning techniques to
deanonymize an author going by a virtual identity named Satoshi who created original
code for reference Bitcoin protocol implementation. While this attempt by the US Federal
Bureau of Investigations (FBI) haven’t been successful (as far as public knows), this is
a serious threat to open-source developers who wish to preserve their code contributions
anonymous and their identities hidden.

1.2 History
Historically, authorship attribution methods have been applied to works of art such as
paintings and written books.

Stylometry, the study of linguistic style, was used to extract authors features. Up
until middle of the 20th century this work was done by hand, by people attempting to
recognize stylometric features from the text common to the the author. Principal method
of stylometry is called author invariant, which can be described as a property of a text that
is invariant of its author. Early applications of author invariant method used features such
as average sentence lengths, average word lengths, frequency of usage of common words and
vocabulary richness. Soon it became apparent that none of these features were sufficient
enough to be truly author-invariant.

First truly successful attempts at using computers for machine learning based authorship
attribution came to fruition in 1960’s. In 1962 Mosteller and Wallace studied the problem
of disputed Federalist papers and came up with a machine learning method based on simple
mathematical model of Bayesian inference.

The need for source code authorship attribution arose sometime in 1970s when mod-
ern and portable (hardware independent) source codes were becoming more common and
source code could be reused across variety of platforms. At this time, there were no legal
frameworks that classified source code as an intellectual property or a gave it status of
literary work.

With advances in computation power, text classification via modern classifiers such as
support vector machines (SVM) and neural networks (NN) became feasible in 1990’s.

This trend continued well into the 21th century, with another major step in computing
power advancement that came with general purpose programming on graphical processing
units of modern computers and application specific accelerating units [5].
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Chapter 2

Code stylometry features

A stylometric feature captures distinctive aspects of someone’s coding style and its output
should remain consistent (for given author) even if the functional purpose of the evaluated
code differs.

Most commonly used methods in modern source code authorship attribution tools use
representations of code based on word or character level sequences that capture preference
of keywords, naming conventions and code formatting features.

2.1 Types of Features
There are 4 basic types of source code stylometry features in contemporary literature, lexical
features, layout features, syntactic features and semantic features[3].

2.1.1 Lexical and Layout Features

Lexical features represent authors preference of certain features in the source based on their
statistical occurrence. Examples of lexical feature are keyword frequency per line of source
code or average number of comments per each line of code. These features can generally
be easily computed from source code by using regular expressions and their outputs can be
represented as scalar values which can then be fed directly into the classifier.

Layout features represent authors preference for code indentation (white-space charac-
ters that serve no other purpose than making code more readable).

The main disadvantage of both lexical and layout features is that their output is often
of limited use across multiple programming languages, e.g. Python source code differs from
that of C-like programming languages.

2.1.2 Syntactic Features

Semantic features represent source code structure and their extraction from the source code
requires use of a parser. Examples of syntactic features are average level of code nesting
and branching.

Much like lexical and layout features, syntactic features are largely programming lan-
guage dependent.
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2.1.3 Semantic Features

Semantic features represent code intentions and measure features such as use of recursion,
authors tendencies to split code into functions and so on. Semantic features are technically
language-independent stylometric features, their processing however typically requires an
advanced parser which needs to understand the programming language.

Some semantic features cannot be represented as a scalar value(s), and Celiskan-Islam
[3] suggests using abstract syntax trees (ASTs) for their representation, but other graph
theory based models are also used in practice. Semantic features can be also naturally
appearing in complex models of neural networks [7].

2.2 Feature Extraction Methods
Feature extraction is a process of extracting stylometric features from raw input (source
code file) into feature or vector of features that can be used as an input for the classifier.

There are dozens of possible features extracting methods proposed in the existing liter-
ature, some of which are detailed in following subsections.

2.2.1 Bag of Words

Bag of words (BoW) is simple and yet powerful model used for unsupervised feature detec-
tion. The Bag of words model learns a vocabulary of inputs (texts), then models each input
by counting the numbers of each dictionary word appearing in the input. BoW algorithm
has been used for tasks such as spam filtering [10] and tagging [23].

A variant of Bag of words method called Continous Bag of Words (CBOW ) can predict
the word given it’s context and is used as a building block of a word2vec algorithm described
in more detail in section 2.2.3.

2.2.2 N-grams Features

In the context of code stylometry, n-gram features are continuous sequences of N tokens
(words, special characters) of a source code. N-gram of size 1 is referred to as a unigram,
size 2 n-gram is bigram, size 3 n-gram is trigram, and so on.

N-gram based models have been used in the past for purposes of text classification and
sentiment learning. One subset of n-gram models known as skip-grams appears to be well
suited for text classification task [8].

Skip-grams are n-grams that are formed by allowing adjacent sequences of words to
be skipped. 3-skip-n-gram would for example contain n-grams with 3,2,1 adjacent words
skipped.

2.2.3 Word Embeddings

Word embeddings are a set of unsupervised language modeling and feature learning tech-
niques in Natural Language Processing (NLP) that map phrases from the vocabulary to
vectors of real numbers.

Word embeddings are low-dimensional representation of text sequences. Each row of
the resulting matrix corresponds to one token (word or phrase) of the dictionary created
from the text. Naive implementation of word embedding algorithm could represent each
unique word in the text as a one-hot encoding of a dictionary created from a text.
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Figure 2.1: Word embedding input vector creation

One-hot Vector

One hot vector embedding is a simple word embedding algorithm based on encoding vector
representation of the text by mapping them onto indices of a dictionary built from words of
the corpus. This results in a sparse two dimensional matrix of binary values [words, dictio-
nary_words] where 1 represents matched word in the dictionary (at appropriate dictionary
index) and 0 a non-matched word. Figure 2.1 explains the idea on how this is done, given
artificial source code sequence as follows:

if( x == y )
function

In this simplified example, vocabulary is being built as the code snippet is being parsed
to exemplify the properties of one-hot encoding.

GloVe

GloVe, or Global Vectors algorithm is an unsupervised learning algorithm for obtaining
vector representations for words [17]. Training is performed on aggregated global word-
word co-occurrence statistics from a text corpus.

While originally developed for natural language processing by Computer Science De-
partment of Stanford university, it has been experimentally applied to text classification
tasks.

word2vec

Word2vec is an embedding algorithm that has been applied on the problem of text author-
ship classification (among other problems such as sentiment analysis).

It was originally created in by a team of researchers led by Tomas Mikolov at Google
[16]. Word2vec can be described as a shallow two layer neural network model that represent
linguistic context of words. Each word is assigned a corresponding vector in feature space.
Each word vector is positioned in the vector space in such a way that words with common
context are located in close proximity to each other in the space.

Word2vec has been successfully used for text classification tasks such as sentiment anal-
ysis and sentence classification [11].
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2.2.4 Low Level Data Neural Network Based Feature Detectors

While it is technically possible to represent words and sentences on byte level (ASCII
characters), such representation is not particularly suited for machine learning tasks due to
its high dimensionality.

In his work, Baisa[2] have researched low level models (morphemes, characters or bytes)
and found them competitive with word level approach used by vast majority of modern
modeling methods. He introduces low-level models that solve some of the shortcomings of
character-level input representation.

Neural networks have been experimentally used as a low level feature extractors that
work on character (byte) level for purposes of text classification with some success [24].

2.2.5 Abstract Syntax Trees

Abstract Syntax Tree (AST) is a tree representation of the abstract syntactic structure of a
source code. ASTs have an advantage over models based on character/word level features in
that they are almost entirely programming language independent and can express complex
features such as authors tendency to write deeply nested functions or use of a recursion.
Another notable advantage of using ASTs as features is that they are more difficult to
obfuscate with tools such as indent.

Principal disadvantage of AST based feature detectors is that their parsing is entirely
language agnostic and requires a fairly complex fuzzy parser that can handle unseen code
constructs or even even syntax errors.

Nevertheless, AST based feature detectors have achieved excellent results [3] in source
code authorship attribution tasks.

9



Chapter 3

Classification

Classification in context of machine learning is the problem of identifying to which category
or set of categories a new observation belongs to on basis of a training set of observed data
(dataset).

In this process, a set of training data consists of a set of training examples of which
each example is a pair of an input object and desired output value of the final model.

In context of source code classification an input object is a source code file (or it’s
fragment) and desired output value associated with it is an original author of the code.

Process of training the model on labeled data is referred to as supervised learning.
Input object is passed to feature detectors which typically produce a N-dimensional

feature matrix that is called a feature vector.
Feature vector of each input is then used as an input of a classifier model which outputs

classification outcome. Classification outcome is typically either a matched classification
class (most likely author) or a vector of all classes, where each value of the vector stands
for likelihood of the author being the real author.

3.1 Naive Bayes Classifier
Naive Bayes classifier is a simple, but powerful algorithm based on predictive model of
Bayes’ theorem.

Naive Bayes classifiers work by correlating the token’s input data (typically words) with
labeled data and then using Bayes’ theorem to calculate a probability that an input sample
belongs to classification class.

Naive Bayes classifiers are widely used for text classification [18] and a spam filtering
[22]. They have also been used for authorship attribution [4], [13].

3.2 Random Forest
Random forests or Random decision forests are an ensemble learning classification method
that operate on multitude of decision trees set at training time outputting the classification
class that appears most often as a result in set of decision trees [9].

Random forests have already been successfully used for source code authorship classifi-
cation [14].
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3.3 Support Vector Classifier
Support vector machines (SVMs) are commonly used as classifiers (also referred to as
Support Vector Classifiers) in field of machine learning. They represent data as a points
in N-dimensional feature space. Originally developed in 1960’s as a linear classifiers, with
application of kernel trick proposed by Aizerman [1] they can be used for classifying non-
linear problems. Modification of SVM method that became known as Support Vector
Clustering (SVC) allows for unsupervised learning and data-mining by means of clustering
the data in feature space.

When compared to Neural Network based classifiers, SVM based classifiers are typically
order of magnitude faster and less memory demanding while being able to achieve similar
results.

SVCs have been successfully used for text classification and experimentally for author-
ship analysis of compiled program binaries [19].

3.4 Neural Networks Classifiers
Neural network based classifiers have been used extensively in recent papers on NLP text
classification [11], [25], [13]. Neural networks are more closely detailed in following chapters.
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Chapter 4

Artificial Neural Network

Artificial neural networks (ANNs) are a machine learning model which is based on a large
collection of connected simple units called nodes or neurons, loosely analogous to axons
in a biological brain. Neurons are connected to each other by connections that carry an
activation signal of varying strength in a network of connected nodes. If the combined input
of incoming signals is strong enough, the node becomes activated and the signal travels to
other node connected to it.

ANNs can be represented as a directed graph in which nodes represent nodes and
directed edges represent connections.

ANNs that resemble directed acyclic graph are commonly referred to as Feedforward
Neural Networks, while graphs that contain directed cycles are called Reccurent Neural
Networks.

Recurrent neural networks (RNNs) are models that have been naturally applied to
NLP problems mainly because RNNs can use their internal memory to process arbitrary
sequences of inputs which makes them useful for tasks such as speech recognition or au-
thorship classification.

Convolutional neural network model implemented in this thesis will be briefly explained
in following sections as well as its basic building blocks.

Note that full overview is outside the scope of this work.

4.1 Basic Building Blocks of a Neural Network

4.1.1 Node

Node of a neural network, also referred to as a Perceptron and Neuron is a basic building
block of a neural network. It represents a function that takes multiple input parameters
(typically outputs of from a previous layer of NN) and outputs a result value.

Input of each node is multiplied by the weight (of each connection), results of this
operations are summed and evaluated with activation function (4.1.1). Afterwards bias
value of the node is added to the output which then serves as an input for node in next
layer.

Figure 4.1 shows example node with 3 inputs along with their associated weights and
single output.
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Figure 4.1: Perceptron

Activation Function

Activation function of a node defines the output of that node given an input or set of input
data. Two of the most commonly used activation functions that are were experimented with
in this thesis and are commonly used with CNNs are ReLU and logistic function (sigmoid).

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(
∑︁

𝑥𝑖 * 𝑤𝑖) + 𝑏𝑖𝑎𝑠 (4.1)

Logistic Function

Logistic function is a function defined with equation:

𝑓(𝑥) =
1

1 + e−𝑥
(4.2)

ReLU

Rectifier linear unit (ReLU) is an activation function defined with equation:

𝑓(𝑥) = max(0, 𝑥) (4.3)

Upon initialization of the model, weights and biases of nodes are initialized to pseudo-
random values. During training weights and bias values are adjusted by running the opti-
mizer based on gradient descend (4.2.3).

4.1.2 Network and evaluation

A typical feed-forward Neural Network used for supervised classification contains several
layers of nodes, with one or more input layers (nodes have single input, for example scalar
value of a feature detector output), several inter-connected hidden layers and an output
layer which maps output value of each classification class (given the inputs in input layer).

Figure 4.2 shows such a network with input vector of 4, two hidden layers of size 5 and
output layer with 3 classes.

During an evaluation of this model, the network is presented with inputs x_i which are
passed trough the Nodes in input layer, outputs of input layer are passed to nodes of first
hidden layer and so forth until outputs reach the output layer.

13



Figure 4.2: Example of feed-forward classification network

On a trained model, input features presented to the model will output a likelihood
prediction of each classification class. Subsections that follow will detail how model learns
to classify the input data.

4.2 Model learning
Learning is a supervised process that occurs every time a neural network is presented new
input during the training phase (learning epoch). Feedforward neural networks often use
backpropagation, which is an abbreviation of for Backward Propagation of Error [20].

4.2.1 Backpropagation

Backpropagation works by adjusting the model (weights and biases of nodes) based on
knowledge of the true classification classes of inputs during the training. Backpropagation
works in two phases, forward pass and backward pass that are further detailed in following
subsections.

4.2.2 Forward pass

Forward pass evaluates current model on set of input data and outputs predictions for each
classification class. On untrained network, these prediction values will have no correlation
to the true classes of the input (labels).

14



Loss function

Loss function, also referred to as cost function, is a function that returns a real number
representing how well (badly) the neural network performs during training by comparing
predicted output values (classification classes) to correct values (labels).

Since output values of model are real numbers while true values (labels) are a binary
truth values (1 or 0), normalizing function has to be applied onto output layer in order
to calculate loss function and error of the model. Most commonly used method for this
purpose is softmax.

Softmax function

Softmax function, also also referred to as normalized exponential function is a generalization
of the logistic function that normalizes K-dimensional vector �⃗� of arbitrary real values into
K-dimensional vector of real values that range [0,1] and add up to 1.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�⃗�) =
𝑒𝑣𝑗∑︀𝐾
𝑑=1 𝑒

𝑣𝑘
𝑓𝑜𝑟𝑗 = 1, ...,𝐾 (4.4)

When adjusted for our problem of multi-class neural network it takes shape of:

𝑥𝑖 =
𝑒𝑠𝑖∑︀𝑛𝑐𝑙𝑎𝑠𝑠

𝑐 𝑒𝑠𝑐
(4.5)

where x_i is normalized value for each output class.
Figure 4.3 shows how softmax is applied over output layer of the neural network.

Figure 4.3: Softmax layer applied to output layer of a NN

Cross entropy

Cross entropy cost function used for multi-class neural networks [20] can be defined as
follows:
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𝐸 = −
𝑛𝑐𝑙𝑎𝑠𝑠∑︁

𝑖

𝑡𝑖𝑙𝑜𝑔(𝑥𝑖) (4.6)

This signifies total error of our model and is required for weight adjustment in backward
pass of backpropagation during learning phase.

4.2.3 Backward pass

Backward pass, sometimes referred to as weight update, recursively (from output layer,
trough hidden layers onto input layer) adjusts the weights in the model.

The goal of backward pass is to update each of the weights in the network so that they
cause the current output to be closer to the target output. This is done by minimizing the
error for each Node of the network. This is done in two steps for each weight:

1 The weights output delta and input activation are multiplied to find the gradient of
the weight

2 A fraction of the weight’s gradient is subtracted from the weight

The fraction mentioned in step 2 is also known as learning rate of the training phase.
This parameter is a value in range [0,1] that suggest how much should weights change
during each training iteration. If set to 1, network would always correctly classify the
current inputs of the network, but wouldn’t generalize onto unseen inputs.

Weight update

Following example shows how weights are updated by computing their gradients on an
output node of a network.

Figure 4.4: Simplified adjustment of weights of a single node

In order to find out how much a change in 𝑤1 will affect total error, we need to find the
gradient with respect to 𝑤1 which is defined as:

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡
* 𝜕𝑜𝑢𝑡

𝜕𝑛𝑒𝑡
* 𝜕𝑛𝑒𝑡

𝜕𝑤1
(4.7)

𝐸𝑡𝑜𝑡𝑎𝑙 stands for summed error of the node (since we already have 𝐸𝑡𝑜𝑡𝑎𝑙 from forward
pass, we don’t need to compute it), out stands for activation value of the node adjusted by
bias (output), net is a sum of all inputs (sometimes referred to as net input).
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Final formula for updating weights is:

𝑤1𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑤1 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 * 𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
(4.8)

This calculation is done on for each Node of the network in reverse order of that used
to evaluate the model during the forward pass.

Gradient descend

Gradient descend is an iterative algorithm which computes the gradient of a function and
uses it to update the parameters of the function in order to find a maximum or minimum
value of the function. It is used to optimize (minimize) the loss function which parameters
are the weights and biases in the network. Gradient descend algorithms belong to one of 3
categories based on the input size that is presented to the model when updating its weights.

1. Batch gradient descend use every example in each iteration

2. Stochastic gradient descend uses single example in each iteration

3. Mini-batch gradient descend uses b examples in each iteration where 𝑏 > 1, 𝑏 <
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

This work uses Adam algorithm [12] implemented in TensorFlow library. Stochastic
Gradient Descend (SGD) algorithm was also experimented with, but found inferior.

4.2.4 Overfitting

Neural networks are very expressive models that can learn complicated relationships be-
tween input and output data. This can lead to sampling noise problem in the model
(relationships that exist in training data but not in test data).

To deal with this problem, several techniques have been used.

Dev/Train division of data

One simple technique is the division of the (labeled) training data into separate dev and
training sets, where training set is used for training the model and the dev set (training
phase test set) is used for periodic evaluation of accuracy. When the classification accuracy
of the model on the dev set starts getting worse, the training is stopped.

For method to work, (multi-class) input data needs to be shuffled in the dataset to
provide optimal coverage of each class in both training and dev set.

L1 and L2 regularization

Other commonly used method is L1 and L2 regularization [15] which works by penalizing
weight values of NN nodes to the calculation of loss function (4.2.2).

Dropout

The key idea behind dropout [21] is to randomly drop nodes along with their connections
from the neural network during training. This is meant to prevent nodes (typically within
layer) from co-adapting to each other.
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4.3 Convolutional Neural Networks
Convolutional Neural Networks were originally developed for use with image classification
in mind and differ from classic architecture in that they use convolution operation on inputs,
taking advantage of image pixels binned in a neighborhood correlating to each other.

A typical CNN consist of 3 main types of layers of nodes, Convolutional Layer, Pooling
layer and Fully connected layer. In CNN models, the convolutional layer is generally referred
to as feature detector and fully connected layer is referred to as a classifier.

Main advantage of CNNs over other types of NNs is that they are fast to train and
generalize very well on well suited input data.

CNNs utilize have already been applied to NLP problems such as semantic parsing
and sentence classification [7]. It has been shown[11] that convolutional neural networks
can be used for the task of sentence classification with promising results when used with
pre-trained word vectors as inputs.

4.3.1 Convolutional Layer

Convolutional layer consists of set of trainable filters (kernel windows) that are convolved
across the input matrix computing the dot product between the elements of filter and input
data. This is optionally followed by activation function that adds non-linearity to the model
(4.1.1). Afterwards, outputs of the convolutional layer are subsampled by a max-pooling
layer (or other subsampling method).

Figure 4.5 shows an example step of convolution process with 3x3 filter sliding over 5x5
input matrix resulting in 3x3 convolved feature matrix.

Figure 4.5: Convolution of 5x5 image and 3x3 image filter

4.3.2 Pooling Layer

Pooling layer, sometimes referred to as subsampling or spatial pooling layer, is a layer of
a CNN that reduces the dimensionality of each feature map while retaining most of the
information.

Pooling layers define a spatial neighborhood (for example a 3x3 window) and produce
a single value. This value is produced in several ways that define the type of the pooling
layer, for example max-pooling layer takes the highest value from the neighborhood, sum
pooling sums all the values and average pooling averages all elements of a neighborhood.
In practice, Max Pooling is most commonly used method.
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4.3.3 Fully connected layer

Fully connected (FC) layer is a traditional multi-layer perceptron layer that uses a softmax
activation function in the output layer as described in figure 4.2. Fully connected means
that each node in the previous layer is connected with to the each node in following layer.

Fully connected layers are meant to learn non-linear combinations of features from
feature layer.

In CNN models they typically follow convolutional layers with one or more FC layers
being stacked together with final layer serving as output layer of the model (with activation
function being omitted) and optional dropout layer.
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Chapter 5

Dataset

Dataset used for development and training of the model that implements source code au-
thorship classification in this thesis was obtained by parsing public source code repositories
on GitHub.

5.1 GitHub
GitHub1is a source code hosting platform for source code version control, management and
open source collaboration. As of April 2017, GitHub reports ”almost 20 million users, 57
million repositories, and 100 million pull requests“[6].

5.2 Dataset gathering
In order to obtain relevant data from GitHub, PyGitHub library was used for scraping (web
data extraction process) the metadata about source code repositories.

PyGitHub3[?] is an open source library written in Python programming language2 that
allows access the GitHub API (Application Programming Interface)3 and its features such
as listing existing users, their repositories, source code size and and others.

It was used to list existing GitHub users and their repositories and downloading them
if following conditions are met for each repository:

∙ Size: <10,1000> kB

∙ Programming language: C, C++

∙ Number of commits: > 1

∙ Number of contributors: 1

∙ License: permissible (MIT, GPL, ...)

These restrictions are meant to sanitize the downloaded dataset as much as possible,
although optimal dataset (in which all authors would be the real authors of all source
files associated in their respective repositories) couldn’t be achieved. Further details are
discussed in chapter (7).

1https://github.com
2Python language reference available at https://python.org
3GitHub API v3 reference available at https://developer.github.com/v3
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Dataset scraping has proven fairly difficult and slow mostly due to GitHub API limita-
tion of number of requests that one public IP address can process per hour (5000). Since
every requests (listing users, listing repositories, getting repository details) counts into this
limit and filtering parameters were fairly strict, final dataset gathered over two days of
constant parsing is still fairly small.

5.3 Dataset preprocessing
Downloaded repositories with source codes were automatically unpacked and everything
except source codes (as identified by file extension) were deleted.

Whole dataset was further partitioned by size, repositories of less than 256 words (151
files, 11% of the dataset) were separated from the main dataset used for training and
evaluation of the model during experiments. Similarly, biggest repositories with over 1500
lines of code (30 files, 21% of the dataset) were separated from the main dataset for further
experiments.

Standard UNIX tool iconv4 was further used to change input file encoding into ASCII
text.

After manual inspection of the dataset, repositories were separated by size into three
categories:

∙ big-mt-1500l Repositories bigger than 1500 lines of code (300 files)

∙ small-lt-256w Repositories smaller than 256 words (e.g. l̃ess than twice the size of
input sequence 6.3.2)

∙ data Everything else (960 files)

For experimental purposes, clones of data repositories were created:

∙ no-comment Repository data without C-style comments

∙ no-words Repository with words replaced by a single character X (words can defined
by regular expression [a-Z][a-Z|0..1]+), e.g. a string that stars with a letter of the
alphabet followed by optional alphanumeric letters)

5.4 Data statistics
Following table captures statistics of obtained from raw dataset:

Table 5.1: Dataset statistics
Feature Value Note
Number of authors 648
Number of repositories 1412
Size 81MB (data=19MB, big-mt-1500l=71MB, small-lt-256w=640kB)

4iconv reference available at http://pubs.opengroup.org/onlinepubs/009695399/functions/
iconv.html
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Chapter 6

Authorship attribution tool
architecture

6.1 Architecture
Figure 6.1 shows high level overview of the reference implementation of the source code
authorship tool work. Firstly, the dataset is created from directory of formatted source and
stored into the memory. During this step the data is processed as detailed in section 6.3
and vocabulary of the input data is stored as detailed in section 6.3.2.

the model is trained on labeled examples source code in training phase of the classifi-
cation. After the model is trained, the model can evaluate unknown (unlabeled) examples
of source code in prediction phase and it outputs a vector of classification classes (authors
from training dataset) with their respective probabilities per each class.

Figure 6.1: High level design of the source code authorship detection tool

22



6.2 Technologies used

6.2.1 TensorFlow

The neural network software framework library of choice used in this thesis is TensorFlow1.
TensorFlow is an open source library released in 2015 by Google and is meant to make

it easy for developers to design, build and train deep learning models. It originated as
in-house library meant for internal Google use.

From high level point of view, TensorFlow is a Python2 library that computes on ar-
bitrary data by using graph of data flows. Nodes of this graph represent mathematical
operations and edges represent the data being communicated from one node to the next.
Data itself is represented by multi-dimensional vectors also known as Tensors.

For visualization of the model and suite of visualization tools distributed with Tensor-
Flow named TensorBoard3 was used.

6.3 Data Processing

6.3.1 Input Tokenization

Tokenization converts a raw source file into a single space delimited sequence of strings
(row) which has original whitespace/symbolic characters replaced with arbitrary tokens
(for example, group of 8 spaces is replaced with token ###8S.

The idea behind token replacement is logical separation of adjacent words to ease vocab-
ulary dictionary creation in subsection 6.3.2. For example, the C expression var1==var2
would be an unique single dictionary word. After token replacement, resulting sequence
yields 3 tokens {var1, ###EQUALS###, var2}.

List of selected replacement token categories is listed in table 6.1.

Table 6.1: List of replacement tokens
Token Description Number of tokens
###nS### Adjacent spaces ###4S###) 8
###TAB### Tokenized tab 1
###NL### Newline character 1
###OPERATOR### various C operators (+=,+,-,&,*,++,–,!,∼,{,},[,],(,), ...) 33

6.3.2 Data splitting

As discussed in chapter 4, CNNs expect fixed sized inputs. To achieve this, tokenized data
sequence is split into fixed size vector of 128 input tokens. Input sequence is further padded
with padding tokens as necessary.

While this is necessary to make word embeddings based feature detector work, it also
has an added benefit of dividing each source code into moderately sized sequences of tokens
(128 tokens represent approximately 15 lines of code on average).

Each of these tokenized input sequences (further referred to as chunks) is classified
independently along with lexical and layout feature vector (which is calculated on per-file
basis). This is further discussed in following sections 6.4.2 and 6.4.1.

1https://www.tensorflow.org/
2https://www.python.org
3https://www.tensorflow.org/get_started/summaries_and_tensorboard
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Vocabulary dictionary is created during training phase from the training set after the
input data has been tokenized.

6.4 Feature extraction
Feature extraction process is two-fold, first lexical and layout features are extracted during
parsing for each source file. Secondly, features are extracted during via convolutional neural
network and vocabulary based word embeddings.

Data flow of feature extraction process is captured by figure 6.2 and further detailed in
subsequent sections 6.4.1 and 6.4.2.

Figure 6.2: Feature extraction data flow

6.4.1 Lexical and layout features

Lexical and layout feature detection is being done on per-file basis during file parsing stage
together with tokenization of inputs. Output result of a lexical and layout feature detector
is a 1D feature vector of numerical values per each file.

Table 6.2 lists the selected features detected during this process.

Table 6.2: Basic lexical and layout features
Feature Class Description number of

features
kw_occurrence_<KW> lexical number of keywords (KW) per line of source code ∼30
avg_line_len lexical average length 1
tabs_per_line layout basic source code metric 1
file length layout another basic source code metric 1

<N>spaces_per_line layout features describing width of indentation (4 consecutive
spaces are represented by token 4spaces_per_line) 8

tabs_per_line layout average number of tabs per line of source code 1

6.4.2 Word embeddings

Features themselves are extracted by passing embedding layer to the set of convolutional
layers in parallel. These convolutional layers extract features vectors by applying kernel
function (filter) onto input vector.

Embedding Layer

Embedding layer maps vocabulary word indices into low-dimensional vector representation
via vocabulary dictionary created by parser during training of the model.
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Figure 6.3: Word-embedding feature extraction process

In the actual model input is represented by an input batch comprised of multiple chunks
of input data. During training phase, input batch contains randomly shuffled input se-
quences from the dataset.

Convolutional Layer

Each convolutional layer is represented by simple 1-layer CNN.
As an input it takes expanded 4-dimensional vector [batch_size, chunk_size, embed-

ding_size].
Kernel window continually moves (strides) over the input matrix and applies convolution

which results in single scalar value. Result of this operation is a matrix of all convolutions.
Afterwards, an ReLU (rectified linear unit) activation function is applied over the results

of the convolution. Logistical function (sigmoid) was considered as well, but experimentally
ReLU seems to generalize faster.

Since the input vector contains relatively sparse values, convolutional layer is followed
by max-pooling, reducing it’s dimensionality and allowing for better generalization.

Each of convolutional layers outputs a feature vector which is then concatenated into
final convolution layer output vector.

To prevent overfitting of the model, dropout layer(4.2.4) can be added behind the max-
pooling layer.

6.5 Classification
Using the output of features detectors from feature extraction phase, classifier part
of the model can be evaluated and model outputs can be generated. Classification output
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per each class can be evaluated by measuring output signals of the output layer (output
vector with size equal to number of classification classes).

Softmax function is further applied to normalize this vector of resulting classes and this
operation yields a vector of probabilities per each class.

This vector is presented for each tokenized input sequence (128 tokens by default) and
can be either reduced to single file by using the normalization or further used in attempt
to detect plagiarism of a fraction of a source file (stolen function).

Figure 6.4: Classification data flow
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Chapter 7

Model Evaluation

During development and experiments, the current model was continually tweaked and ad-
justed in order to best generalize on a dev dataset. For this purpose, TensorBoard output
showing the model weights and biases was continually evaluated along with training and
testing accuracy. Model underwent several revisions described in following sections.

7.1 Feature selection
Initially Convolututional layers 6.4.2 were combined with with lexical and layout feature
layer in the manner depicted in following figure 7.1.

Figure 7.1: Discarded NN architecture model

After initial evaluation on moderately sized dataset, analysis of model weights in the
first fully connected layer (classifier) has showed that that after training, these features
have almost no impact on the model.

It became clear that this model can be simplified into following final model:
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Figure 7.2: final NN architecture model

7.2 Model evaluation
Model can either output the raw output vector per each classification class, a softmax
normalized vector per each class or a hard prediction of a class with highest output value.
Reference implementation of the model output its results as a CSV file1.

CSV format is defined as <file>,<line>,<class>,[optional vector of softmax values per
each class].

Note that the line stands for the position in the input source code where the sample
chunk used for evaluation was taken from.

Example output of the model is as follows (note: sequence on lines <79,89> was miss-
classified as jhunt instead of mattn GitHub author.

../data/data/mattn.c-bucketsort.raw,1,mattn

../data/data/mattn.c-bucketsort.raw,17,mattn

../data/data/mattn.c-bucketsort.raw,32,mattn

../data/data/mattn.c-bucketsort.raw,48,mattn

../data/data/mattn.c-bucketsort.raw,63,mattn

../data/data/mattn.c-bucketsort.raw,79,jhunt

../data/data/mattn.c-bucketsort.raw,89,mattn

All experiments and accuracy measurements were done with main ”/data“ dataset as
described in section 5.3 and default model parametersA unless specified otherwise.

7.3 Model accuracy
For measuring the accuracy of the model during development, labeled main dataset was
used and split into training (90%) and test (10%) sets.

After each 100 evaluations of the 64 chunk sized minibatches, evaluation on the test
set was measured and true values were compared to output class values. Output class is
for purpose of this measurement defined as the class with highest output signal from the
output layer.

After each test set evaluation on 100th iteration, the model was saved if the accuracy
has improved7.4.

1http://www.ietf.org/rfc/rfc4180.txt#page-1
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It should be noted that whole dataset divided into chunks of 128 tokens with their
respective true class values was shuffled and as such some correlation is present between
dev and test set (e.g. separate repositories coming from the same author haven’t been
used).

Figure 7.3: Model accuracy as measured on dev/test set of the main dataset, X axis stands
for evaluation step, Y axis for accuracy, blue signal is accuracy on the training set, orange
signal is accuracy on the test set, note that test accuracy stepped updating when model
started overfitting

Reference accuracy of the model on is 83% on the test set and 91% on the training set.
If the model was evaluated on previously unseen data, it was forced to make a wrong

prediction by choosing the class with highest output signal (argmax2 operation on output
layer).

7.4 Scalability
The model implemented in this thesis scales very well on the testing dataset, but proper
cross-validation with method such as k-fold cross-validation3 haven’t been measured. Test
accuracy on main dataset stops after only 5 epochs when the model starts overfitting.

2https://www.tensorflow.org/api_docs/python/tf/argmax
3https://www.cs.cmu.edu/~schneide/tut5/node42.html
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Figure 7.4: Model accuracy as measured on dev/test set of the main dataset, X axis stands
for evaluation step, Y axis for accuracy, blue signal is accuracy on the training set, orange
signal is accuracy on the test set, note that test accuracy stepped updating when model
started overfitting

One serious scalability deficiency that significantly hurts classification performance on
large sets of evaluation inputs is that due to regular expression based token replacement it
becomes impossible to keep track of of where did the input string originate in input batch.
At the moment this is done by matching tokenized input sequences back to the tokenized
evaluation dataset however this substring search infers heavy performance penalty.

7.5 Model Tuning
Model has several configurable parameters that affect performance, scalability and accuracy.
For complete list and implementation details on each parameter refer to A.

7.5.1 Number of Epochs

This model parameter signifies number of global iterations that model undergoes during
training. As discussed in 7.4 on a small dataset the model can start overfitting and stop
generalizing well very rapidly. Even on moderately sized dataset, in practice there was little
improvement of accuracy of the test set past 7 or 8 full epochs.

7.5.2 Mini-batch size

Minibatches allow to reduce the variance of gradient updates and allow bigger step sizes ??
at the cost of introducing averaging noise introduced to the model. On the main dataset,
various minibatch sizes have been experimented with and apart from batches of extreme
sizes (>1000) when classification accuracy dropped bellow 50% or small size(<16) when
accuracy dropped slightly and performance worsened significantly they didn’t seem to affect
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classification accuracy on the test set. Size of 64 was chosen artificially for evaluation of
the model.

7.5.3 Learning rate

Various learning rate values were evaluated for the main dataset, high values (>0.1) com-
bined with low minibatch sizes prevented the model from generalizing on the dataset by
adjusting the weights by big margins. Extremely small 1𝑒−6 on the other hand slowed
down the learning process significantly. Values suggested in the literature and existing NN
implementations typically range between 1𝑒−4 and 1𝑒−3 and so the latter was artificially
chosen.

7.5.4 Convolutional Layers

Originally, single convolutional layer was considered. After further research, 3-parallel layer
design was adapted from [11]. This allows for skip-gram like model expressiveness even when
using a simple one-hot vector encodings. Further evaluation has shown that as little as 3
convolutional layers with filters of varying sizes can significantly improve feature accuracy
of the model ( 45% -> 75%+ on the test set). Evaluations done with increasing number of
filters and convolution kernel sizes and number of filters per each layer had no significant
impact on the accuracy performance of the main dataset.

7.5.5 Fully Connected Layers

Several combinations of number of connected layers and varying sizes were tested during
model evaluation phase. Apart from a single layered design where a layer was directly
connected to convolutional network and output layer (mapping layer), 2 or more layers of
sufficient ( 200 nodes or more for main dataset) size seem to have made a significant enough
difference in terms of performance on a test set. One layered approach with layer of 4096
in size resulted in good training accuracy (>93%) but fairly worse test accuracy (61%).

7.5.6 Sequence Length

Different sequence lengths (sizes of tokenized input sequences of the evaluated file) were
tested and optimal size was found to be between 75 and 150 of tokens. Higher number of
tokens in input sequence caused model to fit too closely onto the training data, whereas
shorter sequences were causing worsened accuracy on both training and test set.

7.6 Experiments
Apart from supervised evaluation of the network, an unsupervised plagiarism detection ap-
proach was attempted by. For this purpose, a source file that contained 50% of source codes
coming from one author and 50% coming from second author were concatenated into single
file and presented to the network during evaluation phase with the idea that the network
should react differently to each input. Manual inspection of source codes has shown that
this was indeed the case, with input sequences from first author predominantly matching
classes of two authors from training dataset, whereas second author author predominantly
matched a single author in the dataset. This evaluation was done repeated with different
source code files with similar results.
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Second experiment dealt with experimenting with evaluation accuracy on pre-processed
inputs. The main dataset was stripped of all C and C++ style comments and evaluated
for test set accuracy. This significantly reduced the vocabulary size from over 30000 input
tokens into just over 13000, but the accuracy on the testing set has worsened to 69% after
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Chapter 8

Conclusion and Future Work

Theoretical part of this thesis researches and evaluates modern authorship attribution tech-
niques used for source code authorship attribution with special attention given to neural
network based techniques.

For implementation and evaluation part of this thesis, a combined approach of statistical
analysis of code stylometry features and word embedding feature detector backed by a
powerful feed-forward neural network based classifier was chosen.

Resulting implementation of this thesis presents a tool for authorship attribution of
program source codes based on convolutional neural network and word embedding approach.

Furthermore, this tool can be easily extended by adding new feature detectors to the
model or be extended to work with other tools.

Resulting source code authorship tool is capable of identifying the original author of
a source code with high degree of probability upwards of 75% on unseen data in diverse
dataset originating from GitHub online repositories.
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Appendix A

Model Parameters

Model parameters are defined in their respective source code files - cnn.py for model
parameters, train.py for training parameters and finally eval.py for evaluation pa-
rameters.

They can be either modified directly in source codes or by passing a command-line
argument (–param=value) when executing scripts train.py, eval.py.

A.1 Train/Dev Split
During training of the model, input data (inputs, labels) are split into two sets of input
data - training set and dev set. Split parameter OPTS.data_split_ratio defines the ratio
as a real value <0..1>, with for example 0.8 value signifying 80%:20% split.

Unlike training set, dev set is never used to train the model (adjust weights) and is
merely used to evaluate model accuracy on unseen data. Since the dataset is made of
merged source files of a repository, there is inherent functional correlation between the test
and dev set, nevertheless this data was used to compare different experiments for sake of
accuracy comparison.

During the experimenting with the model, this ratio was kept constant at 0.9.

A.2 Number of Epochs
Number of epochs signifies how many times will the model evaluate on the whole training
dataset.
This parameter is defined as OPTS.num_epochs in source file train.py.
Default value chosen is 10.

A.3 Mini-batch Size
Mini-batch size (4.2.3) specifies the size of the mini-batch (number of tokenized input se-
quences) used for model evaluation.
Default value chosen is 64.
This parameter is defined as OPTS.batch_size in source files train.py,eval.py.
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A.4 Learning Rate
Learning rate parameter is the rate at which the model updates the weight given the input
of a mini-batch (4.2.3).
This parameter is defined as OPTS.learning_rate in source files train.py,eval.py. Default
value chosen is 1𝑒− 3.

A.5 Output Directory
Output directory specifies the directory into which to save the vocabulary, author names
and other relevant model data during training phase. Furthermore, neural network state is
being considered for saving each 100 iterations of the training, depending on whether the
dev set accuracy has improved from previous 100step cycle or not.
This parameter is defined as OPTS.out_dir in source file train.py.
Default value chosen is ”./model/<system-date>.

A.6 Input Directory
Input directory specifies the directory containing saved model from training phase (A.5).
This parameter is defined as OPTS.model_dir in source file eval.py

A.7 Convolutional Filter Sizes
Convolutional filter size is a comma separated string containing size of convolution filters.
This parameter is defined as OPTS.filter_sizes in cnn.py. Default value chosen is 3,4,5
(creates 3 convolutional layers with kernel sizes of 3x3,4x4 and 5x5 respectively).

A.8 Number of Convolutional Filters
This parameter defines the number of convolutional filters per each convolutional layer.
This parameter is defined as OPTS.num_filters in cnn.py. Default value chosen is 128.
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Appendix B

Usage

The reference implementation uses two main python programs:
train.py for model training on a dataset represented with a directory a labeled files and
eval.py which uses learned model to classify files in the evaluation directory and outputs a
CSV formatted file with results (predicted class and vector of classification likelihood per
each classified sequence in each file of the dataset).

B.0.1 train.py

train.py trains the model on provided dataset directory that contains labeled files. Labels
are extracted from the filename base, if multiple files are to be assigned same label this
can be done as label.<string> where <string> part of the filename is ignored. Model
output is automatically stored in directory model/<timestamp> or can be specified by switch
out_dir.

Example usage:

python ./train.py --dataset=<dir>
python ./train.py --dataset=<dir> --out_dir==./out

B.0.2 eval.py

eval.py evaluates the model and stores predictions in CSV formatted file. Model is loaded
with the switch model_dir and input data directory is specified switch dataset.

Example usage:

python ./eval.py --dataset=<dir> --model_dir=<dir>
python ./eval.py --dataset=<dir> --model_dir=<dir> -o output.csv
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