
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

PORT OF OPTAPLANNER ON ANDROID

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE TOMÁŠ DAVID
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

PORTACE NÁSTROJE OPTAPLANNER NA ANDROID
PORT OF OPTAPLANNER ON ANDROID

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE TOMÁŠ DAVID
AUTHOR

VEDOUCÍ PRÁCE Ing. ZDENĚK LETKO, Ph.D.
SUPERVISOR

BRNO 2015

Abstrakt
Tato práce se zabývá portací nástroje OptaPlanner na operační systém Android. Opta-
Planner je nástroj pro řešení plánovacích problémů a je kompletně napsán v programovacím
jazyce Java, který je také využíván pro vývoj aplikací operačního systém Android. Ten však
neobsahuje všechny knihovny z Java Standard Edition Application Programming Interface
a při portaci nástroje OptaPlanner na Android tak dochází k problémům se závislostmi.
Výsledkem této práce je návrh a implementace řešení výše zmíněných problémů a ukázková
aplikace věnující se problému okružních jízd, který je řešen pomocí portovaného nástroje
OptaPlanner.

Abstract
This thesis deals with portation of the OptaPlanner tool to the Android operating system.
The OptaPlanner is used for solving planning problems and it is completely written in the
Java programming language which is also used for application development of the Android
operating system. However, Android does not contain all of the Java Standard Edition
Application Programming Interface libraries and porting of OptaPlanner to Android thus
causes dependency problems. The result of the thesis is solution design and implementation
of the problems mentioned above and model Android Vehicle Routing Problem application
which uses ported OptaPlanner tool.

Klíčová slova
OptaPlanner, Android, Java, portace, problém okružních jízd

Keywords
OptaPlanner, Android, Java, portation, Vehicle Routing Problem

Citace
Tomáš David: Port of OptaPlanner on Android, diplomová práce, Brno, FIT VUT v Brně,
2015

Port of OptaPlanner on Android

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Zdeňka Letka, Ph.D. Další informace a pomoc mi poskytl Geoffrey De Smet ze společnosti
Red Hat. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

. .
Tomáš David
May 26, 2015

Poděkování
Na tomto místě bych rád poděkoval mému vedoucímu Ing. Zdeňku Letkovi, Ph.D. a mému
konzultantovi Geoffrey De Smetovi za cenné rady, připomínky a za čas, který mi věnovali.
Díky patří také mé přítelkyni a mým rodičům za jejich podporu a pomoc při studiu.

c© Tomáš David, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Java 4
2.1 Java language . 4
2.2 Java platforms . 4
2.3 Java Standard Edition . 5

3 Android 7
3.1 Introduction . 7
3.2 Architecture . 7
3.3 Android runtime . 10
3.4 Application structure . 11
3.5 Build process . 12

4 OptaPlanner 15
4.1 Planning problem . 15
4.2 OptaPlanner terminology . 16
4.3 OptaPlanner configuration . 17

4.3.1 Modeling of planning problem . 17
4.3.2 Solver configuration . 18
4.3.3 Loading of problem data set . 19
4.3.4 Activation of Solver and acquiring the best solution 19

5 Porting of OptaPlanner to Android 20
5.1 Requirements for OptaPlanner portation . 20
5.2 Java API packages comparison . 21
5.3 JavaBeans problem . 21

5.3.1 Repacking of JavaBeans redistribution to Java core namespace . . . 21
5.3.2 Use of OpenJDK distribution source code 23
5.3.3 Use of pruned rt.jar from OpenJDK distribution 23
5.3.4 Use of OpenBeans in OptaPlanner project 24
5.3.5 Removing and replacing JavaBeans from OptaPlanner 24

5.4 Summary of approaches . 24
5.5 Design of the portation . 24
5.6 Implementation of the portation . 26

5.6.1 JavaBeans and Core library flag . 26
5.6.2 Gradle scripts . 27

1

6 Vehicle Routing Problem application 29
6.1 Requirements for Android application . 29

6.1.1 Application features . 29
6.1.2 Android devices support . 30

6.2 Application design . 30
6.2.1 Application features . 30
6.2.2 Design of screens . 31

6.3 Application implementation . 33
6.3.1 Application structure . 33
6.3.2 Porting of Vehicle Routing Problem 35

6.4 Graphical user interface . 35
6.4.1 Application screens . 35
6.4.2 Application components . 36

7 Testing and future work 40
7.1 Testing . 40
7.2 Future work . 42

8 Conclusion 44

A Content of the DVD 47

2

Chapter 1

Introduction

Porting of the applications becomes very current issue in the modern world of information
technology. Every operating system uses its own interface and technologies for application
development. However, there are cross-platform tools that allow porting of the applications
without many modifications. One of these tools is the Java programming language.

Java language is developed by Oracle Corporation and it is distributed in several plat-
forms. The most common platform is Java Standard Edition (SE) which contains many of
the basic Java libraries commonly used in standard desktop applications. A set of these
libraries is called the Java SE Application Programming Interface (API).

Android is an operating system for mobile devices developed by Google. It uses the
Java programming language to an application development. Android runtime environment
includes not only the libraries for development of graphical user interface but also a subset
of Java SE API libraries.

OptaPlanner is an open-source software developed by JBoss community designed for
solving planning problems. It is completely written in Java language and it is easily portable
between desktop operating systems. However, Android API does not contain all of the Java
SE API libraries and therefore porting of the OptaPlanner tool causes problems with de-
pendencies. This thesis deals with these problems and shows an implementation of a simple
Android application which uses OptaPlanner tool to solve the Vehicle Routing Problem.

Along with this introduction, this thesis is divided into another seven chapters. Chap-
ter 2 presents the Java programming language and its platforms. Chapter 3 describes the
Android platform, its architecture and the build process. Chapter 4 deals with the Opta-
Planner tool and shows how it can be used. In Chapter 5, differences between Java SE API
and Android API are described and the possible solutions of the JavaBeans problem on the
Android platform are suggested. One of the solutions is selected and used for realization of
the portation. Design and implementation of model Android Vehicle Routing Problem ap-
plication using OptaPlanner tool is presented in Chapter 6. Performed testings and future
work is described in Chapter 7 and the last Chapter 8 summarizes the entire work.

3

Chapter 2

Java

This chapter introduces the Java programming language. It is primarily focused on descrip-
tion of its platforms and specially on Java Standard Edition and its Application Program-
ming Interface (API) which serves as the basis for Android API described in Chapter 3.

Section 2.1 presents the Java programming language, Java platforms are described in
Section 2.2 and Section 2.3 introduces Java Standard Edition and its main parts.

2.1 Java language

Java [6, 3] is one of the most famous and most widely used computer programming languages
in the world. It is developed by Oracle Corporation and its application is widespread. Java
is used for programming smart cards, mobile and desktop applications, as well as large
business and information systems. It is class based and object oriented language which
is managed by the Java Language Specification and together with the supporting runtime
forms programming environment.

The first public version of Java was released in 1996 and since this year, eight more
versions was released. In 2010, Java changed its owner from Sun Microsystems to Oracle
Corporation. The latest version of Java (Java 8) was released in 2014.

2.2 Java platforms

Java is published in four platforms. Each platform provides tools for development and
running programs written in Java and consists of two main parts. The first part is Java
Virtual Machine (JVM) which is connected to an operating system and thus Java programs
can be executed. The second part is Java Application programming interface which provides
many public classes of standard Java libraries.

The following paragraphs briefly describe four platforms: Java Standard Edition (Java
SE), Java Enterprise Edition (Java EE), Java Micro Edition (Java ME) and Java Card.

Java Standard Edition Basic and the most famous platform which is designed for
desktop and simple server application development. Currently, the most recent version is
Java SE 8.

Java Enterprise Edition Extension of Java SE that contains special libraries for devel-
oping and running enterprise software applications and information systems. Java EE is

4

based on Java SE 7 in the current version.

Java Micro Edition Subset of Java SE for application development for small devices
such as microcontrollers, mobile phones, set-top boxes, printers and other devices is called
Java ME. Currently, the most recent version is Java ME 8.1.

Java Card This technology is designed for application development of smart cards or
devices with limited memory and processing capabilities. For example, it is used for SIM
cards of mobile devices, plastic smart card for Automated teller machine and similar devices.
Last released version is Java Card 3.

2.3 Java Standard Edition

Java SE platform is distributed in two versions. The first version is Java Runtime Enviro-
ment which is commonly used on personal computers for running Java applications. The
second version named Java Development Kit is used mostly for application development.
This platform has its own open-source implementation called OpenJDK [5]. Figure 2.1
shows parts of Java SE Development Kit (JDK) distribution in comparison with Java SE
Runtime Environment (JRE) and in the following paragraphs, these components are briefly
described.

Figure 2.1: Components of the Java Standard Edition Development Kit 1.6 [3].

Java SE Development Kit Java SE Development Kit is sometimes known as Software
Development Kit (SDK). It is tool containing everything necessary for developing Java
application. The main part of JDK is JRE which is described below. Further, it contains
the tools to create and build applications (such as compiler, documentation generator, etc.),
security, localization and other tools. The last part of JDK is Java Language Specification
which describes rules of this programming language.

5

Java SE Runtime Environment JRE is runtime environment for running Java appli-
cations. It consist from Java API, Java Virtual Machine and tools for creating rich internet
applications.

Java SE Application Programming Interface Java API is set of public classes of
standard libraries. These libraries include packages for creating graphical user interface,
manipulation with databases, base language and utility libraries and many others.

Java Virtual Machine Java programs can not run without virtual machine. JVM is
a program that provides the runtime environment necessary for executing of Java applica-
tion. Figure 2.2 shows the lifecycle of Java program. It starts with Java source code which
is compiled to bytecode by javac compiler. Bytecode is an instruction code and it is stored
in .class files. These files go through classloading mechanism to JVM and then are ready
for execution by the interpreter.

Figure 2.2: The lifecycle of a Java program [6].

6

Chapter 3

Android

This chapter deals with the Android operating system and its architecture. Android plat-
form is quite different from Java platform. They use the same language for source code of
applications and the build process is also similar but the differences cause that they are not
fully compatible.

In Section 3.1, Android and its history is presented. Architecture of this platform is
described in Section 3.2 and part of this architecture – Android runtime – is discussed
in more detail in Section 3.3. Basic components of Android application are presented in
Section 3.4 and the build process of Android source code and the development environment
is described in Section 3.5.

3.1 Introduction

Android [1, 24] is a mobile operating system developed by Google. It is an open-source
system based on the Linux kernel mainly used in mobile devices such as smartphones,
tablets and smart watches but it can also be found in devices such as set-top boxes, media
players and other electronics.

Android Inc. was founded in California USA in 2003. Google Inc. bought Android two
years later. In 2007, Google acquired several patents in the field of mobile devices and at
the same year on November 5, there was an official presentation of companies association
(Open Handset Alliance) which aims to create open standards for mobile devices. The first
smartphone with Android released on October 22, 2008.

Table 3.1 presents a brief history of the Android operating system. It describes re-
lease dates of major versions, version numbers, code names, API levels and distributions
in the last column. As can be seen from version 1.5, every major version has its own co-
dename represented by a popular food. API level indicates that version brings changes in
its programming interface and the most important column shows the distribution of each
version. According to this, it may be decided for which versions still makes sense to develop
an application.

3.2 Architecture

This section deals with the architecture of Android system [23] which consists of six layers.
Figure 3.1 and following paragraphs describe this architecture starting with the kernel layer
and ending with the applications.

7

Release date Version Codename API level Distribution
[%]

September 23, 2008 1.0 – 1.1 – 1 – 2

< 0.1
April 27, 2009 1.5 Cupcake 3
September 15, 2009 1.6 Donut 4
October 26, 2009 2.0 – 2.1 Eclair 5 – 7
May 20, 2010 2.2 – 2.2.3 Froyo 8 0.3
December 6, 2010 2.3 – 2.3.7 Gingerbread 9 – 10 5.7
February 22, 2011 3.0 – 3.2 Honeycomb 11 – 13 < 0.1
October 18, 2011 4.0 – 4.0.4 Ice Cream Sandwich 14 – 15 5.3
July 9, 2012 4.1 – 4.3 Jelly Bean 16 – 18 39.2
October 31, 2013 4.4 – 4.4.4 KitKat 19 – 20 39.8
November 12, 2014 5.0 – 5.1.1 Lollipop 21 – 22 9.7

Table 3.1: Android version history [14].

Linux kernel The lowest layer stands between hardware device and other architecture
layers. Android is based on a special version of Linux kernel and several accessories such
as memory management system, the Binder IPC driver and others. Since the beginning,
Android was built on the Linux 2.6 kernel. The latest version 5 from Table 3.1 runs on the
kernel 3.4.

Hardware abstraction layer Hardware abstraction layer (HAL) is standard interface
which allows to Android system calls drivers layer while it does not have to care what is the
implementation of drivers and hardware in lower layers. For each piece of hardware should
be a driver and matching HAL providing hardware options.

Libraries Above the HAL is a layer of native libraries. These libraries are written in
C or C++ language and they can be accessed through the Android Standard Development
Kit (SDK) but if direct access is required, it is possible to do that through the Native
Development Kit (NDK). The layer includes the following libraries:

• Surface manager – library for composing different drawing surface windows on the
screen.

• Media Framework – provides various multimedia codecs for playing and recording
video in various formats.

• SQLite – a database engine for the use in data storage.

• WebKit – a browser engine for displaying web content.

• Libc – the standard library of the C programming language.

• OpenGL ES – a library for support 2D and 3D graphics and hardware accelerated
rendering.

• Audio Manager – a library for working with audio of device.

• FreeType – a library for bitmap and vector font rendering.

8

• SSL – a library for the use of encryption protocol for secure internet communications.

Android runtime Android runtime layer is located next to the native libraries. This
layer consist of two parts. The first one is the Core Libraries and the second one is the
Dalvik Virtual Machine. The Core libraries can be further subdivided into two parts: Java
libraries and Android libraries. Section 3.3 describes the details of this layer.

Figure 3.1: Android architecture [21].

Application framework Application framework layer provides many high-level services
to applications in the form of Java libraries. For developers, this is the most important
layer that allows access to the device services. The Application framework includes the
following parts:

• Activity manager – controls all aspects of running activities. It manages all Services
and Activities described in Section 3.4.

• Windows manager – provides services for windows management such as visibility
and arrangement. It also takes care about animation on the screen.

• Content Providers – allows to work with a content of other applications, it encap-
sulates the data and provides mechanisms for defining data security.

• View System – a set of basic blocks that is used to build the application user inter-
face. The basis of every graphical component is the View class which is represented
by a rectangular area on the screen.

9

• Notification manager – provides the possibility to inform the user about some
action that happened in the background. Notifications can take different forms like
LED flashing, vibrating, ringing or notification on the screen.

• Package manager – allows obtaining of various information about applications that
are currently installed on device.

• Telephony manager – provides access to telephone services of device. These services
include SIM card, network, cellphone or other information.

• Resource manager – allows access to non-code resources such as color settings,
layouts and strings. Separating of resources from code helps to better manage the
various characteristic without modifying the code.

• Location manager – provides access to the location services. These services allow
periodical receiving of geographic coordinates and therefore it is possible to track
device current location.

Applications The last and highest layer consists of the applications themselves. These
comprise both pre-installed applications and applications that have been added over time
from the Android store or another way.

3.3 Android runtime

Both Android runtime and Java Runtime Edition include a virtual machine and Java SE
API. In case of Android, its runtime contains special virtual machine named Dalvik Virtual
Machine (DVM) and API lacks several Java packages and classes and contains special
Android libraries.

Dalvik Virtual Machine

DVM is a virtual machine that is developed since 2005 and it is included into the system
due to the fact that JVM was not licensed as open-source in the past. The second reason
is the optimization for mobile devices.

Each application runs on an Android device within its own instance of DVM (i.e. not
as a process in the Linux kernel).

Running applications on a virtual machine has many advantages. First, it operates
in a sandbox and thus can not interfere with the operating system or other applications.
Secondly, it makes the application platform independent and therefore can be run on any
hardware. Advantages also include memory usage which makes the DVM better adaptable
for use on mobile devices.

An application code must be always transformed from a standard .java file into byte-
code but it is different in Java applications after this point. Bytecode is not executed by
DVM but instead of that it is converted by Dex tool to Dalvik executables (.dex format).
The whole process is described in Section 3.5.

Java libraries Most of Android applications are written using Java. Android contains
libraries based on Apache Harmony Project that is an open-source Java implementation.
These libraries are a subset of the Java SE platform. They do not contain all of the

10

packages. For example, java.awt or java.swing libraries are replaced by Android user
interface classes and packages. More detailed comparison can be found in Chapter 5.

Android libraries Android libraries contain specific packages that provide all the func-
tionality of Android devices. Libraries are written in Java and they include the following
packages:

• android.app – provides access to the application model and it is the base of all
applications.

• android.content – classes for accessing and publishing data applications.

• android.database – classes for data access and database manipulation.

• android.graphics – library for screen low-level 2D graphics drawing.

• android.hardware – provide access to hardware features such as cameras and sensors.

• android.media – library for handling with multimedia.

• android.text – library for manipulation and rendering of strings.

• android.util – common tools such as data manipulation and time utilities, conver-
sions between numbers and strings and other classes.

• android.view – basic library for building a graphical user interface.

• android.webkit – libraries for working with web content.

3.4 Application structure

In this section, anatomy of application is described. Application consist of the various
components and blocks whose description follows.

Activities Activities represent one single screen of user interface. Typically after an ap-
plication start, the main activity is displayed and from there, another activity can be started
or other operations can be performed. When a new activity is started, the previous one is
stored in a Last In First Out stack. After pressing the back button, the stored Activity is
invoked again.

Fragments Fragment is a modular section of an activity which has its own lifecycle. They
represent a portion of Activity, one Activity can contain more fragments and they are used
for adapting the layout of components on various screens.

Services Services are components that run in the background performing long-term tasks.
They do not provide a user interface. Services may be still active in the background while
other applications is running. For example, a service might be playing music or downloading
from the Internet.

11

Content providers Content providers store and load data to make them available for
other applications. Through the content providers, other applications may modify or ma-
nipulate specific data. An example might be a content provider that manages the contact
information on the device.

Intents Intents are messages between one component and other component. Intent can
be sent to inside or outside of an application and it means that one application can com-
municate with another. Three types of application components are supported for Intents
communication – Activities, Services, and Broadcast receivers – and there are two types of
intents – Explicit and Implicit. Explicit intents specify the component to start by name.
Implicit intents do not specify the component, another application can handle it and makes
appropriate response.

Broadcast receivers These components are used to listen message notifications (Intents)
from outside (other application or system) or from inside of the application. After receiving
the message, receivers can initiate appropriate reaction. An example might be an incoming
Short Message Service (SMS) or low battery notification.

Application resources Android application consists not only of Java files but also of
the resources that are separated from the source code. These resources include:

• Animation resources – define predefined animation.

• Color state list resources – define color change based on the View class state.

• Drawable resources – define different bitmaps or XML (eXtensible Markup Lan-
guage) graphics files.

• Layout resources – define the layout of application components.

• Menu resources – define content of application menus.

• String resources – define string and string arrays.

• Style resources – define the appearance and format of ui elements.

Application manifest file Each application must have an AndroidManifest.xml file.
This file contains information about application with regard to Android and it has to be
placed in root directory of project. It has to contain a unique package name for the appli-
cation, the declaration of used Activity and Service components, application permissions to
the protected parts of the API (such as access to the camera, etc.). A minimum API level,
list of connected and used libraries and other important information about application have
to also be declared. Android manifest is together with resources compiled by aapt tool to
R.java file. Thanks to this, the manifest information are available in the source code.

3.5 Build process

Build process is the way how .apk package is produced from Android project. APK (An-
droid application package) file is a file format used for distribution and installation of

12

Figure 3.2: Android build process [13].

application software to Android devices. It contains all of the necessary files to run an appli-
cation. Figure 3.2 shows how APK package is created from Java source code and resources
including Android manifest file. The individual steps are:

1. The Android Asset Packaging Tool compiles resource files and AndroidManifest.xml
and produces R.java. Resource references from Java code are then linked to this file.

2. aidl tool coverts all .aidl interfaces to Java interfaces. Aidl files are interfaces used
for interprocess communication between client and service.

3. Java compiler takes and compiles R.java file, application source code and Java in-
terfaces to bytecode. Bytecode is stored in .class output files.

4. Any third party libraries and .class files are converted by Dex tool to Dalvik byte
code which is stored in .dex files.

13

5. Other uncompiled resource (eg. images), compiled resource and .dex files are pro-
cessed by apkbuilder tool which packs them to .apk file.

6. Once the .apk file is created, it must be signed by debug or release key. jarsigner
tool provides signing and creates signed .apk file.

7. Finally, if the application is being signed in release mode, zipalign tool align the
.apk file. It creates signed and aligned .apk file which is not so memory consuming.

Following paragraphs presents environment for developing of Android applications and
its build tool. These two systems automate development and the build process which is
described above.

Android studio In the past, Google has supported two developer tools for developing
Android applications. From the very beginning, Eclipse with Android plugin was primary
environment. Nowadays, the official environment for development of Android applications
is called Android studio [13]. It is a multi-platform application which provides tools to
facilitate application development. Android studio is based on the IntelliJ IDEA Java
IDE (Integrated Development Environment) and Gradle language is used as default build
system.

Gradle build system Gradle build system [15] is a project automation tool which is
built on the concepts of Apache Ant [8] and Apache Maven [9] tools. It is used as default
build system in Android studio and using Tasks from Android Gradle plugin automates
the entire build process described above. A Task represents a process which launches some
sections of Gradle build code. Standard Tasks for every Android application are:

• gradle clean – cleans project and deletes the build directory.

• gradle assemble – builds the project.

• gradle check – runs checks and tests.

• gradle build – runs both assemble and check.

• gradle assembleDebug – creates debug .apk file.

14

Chapter 4

OptaPlanner

In this chapter, the planning engine Optaplanner is presented. OptaPlanner [16, 2] is
an open-source project developed by JBoss community since 2006 and it is software designed
for solving planning problems. Optaplanner is a part of the KIE (Knowledge Is Everything)
group project [18, 17] and it combines optimization algorithms with the core of rule engine
– Drools Expert [17].

Section 4.1 describes what planning problem is and Section 4.2 presents basic termi-
nology. Introduction of basic phases of the OptaPlanner configuration is described in Sec-
tion 4.3.

4.1 Planning problem

In everyday life, at work or in another occasion, people meet problems for which they have
limited resources (time, money, etc.). Also, organizations need to face these problems at
a larger scale. Planning mechanisms help them to save these resources and time.

Planning problems can be for example N-Queen problem, Vehicle Routing Problem,
Course timetabling or Hospital bed planning. More examples can be found in [20]. Following
paragraphs presents two of these problems.

N-Queen problem One of the planning problems is N-Queen problem. Although it is
not very realistic, it is an ideal example. In this case, it is necessary to place n queens to
the chess field of size n. It is known from the Chess game that queen can move vertically,
horizontally and diagonally. The goal is to achieve that none of the queens should threaten
another.

Vehicle Routing Problem The second example of the planning problems is Vehicle
Routing Problem (VRP) [22]. Problem consists of depots, customers and vehicles. Vehicles
depart from depots, collect objects of each customer and bring them back to the depot.
Each vehicle can service multiple customers but it has a limited capacity. The goal is to
minimize total traveled distance. There are several variants of this problem, for example
Vehicle Routing Problem with time windows.

15

4.2 OptaPlanner terminology

In OptaPlanner, the planning problem is represented by Java classes, XML (eXtensible
Markup Language) configuration file and optional DRL (Drools Rule Language) files. Java
classes together form the model of the planning problem. Configuration file is written in
XML and it serves to describe the configuration of Solver. Configuration contains links to
classes of declared model, score configuration and used optimization algorithm. DRL files
which are optional contain special rules and can be used for calculation of a score. Other-
wise, the score can be calculated by a Java function. Important concepts from OptaPlanner
terminology are described in the following paragraphs.

Solver A tool in OptaPlanner which solves planning problems is called Solver. It uses
the problem model and calculates the score of possible solutions. Except of calculating the
score, Solver uses optimization algorithms to find the best score of planning problem. End
of calculation can be caused for example by finding of the best solution or by reaching of
a time limit.

Solution Solution is an instance of the problem. There are two basic types of solutions
in OptaPlanner – uninitialized and initialized solutions. In contrast to second type, the
first one does not have the calculated score yet.

Score Score is a way how to compare two solutions of a problem. Every solution has
own score and solution with higher score is better. There is significant difference between
best and optimal solution. Solver always finds solution with the highest score from possible
solutions – the best solution. Although it is not always the optimal solution which is the
best solution of current problem. There are several techniques for comparing scores:

• Score constraint signum – based on constraints. Solver finds the highest score for
the positive constraint and try to reduce a negative value for the negative constraints.

• Score constraint weight – technique where constraints may not have same weight
and thus some of them can be more important then others. For example, the first
condition is three times more important than the second condition.

• Score level – based on levels of score. Some scores are more important than others
(Hard scores). Therefore, they are compared first and then it can be decided by some
of the less important scores (Soft scores).

• Pareto scoring – Score constraints cannot be weighted against each other therefore
they are compared individually and score with the most dominating score constraints
wins.

• Combining score techniques – All the previous techniques can also be combined.

Drools and DRL Drools [17] is a business rules management system which provides way
how to use rules, workflow and event processing. DRL file is one of the methods of storing
business rules. OptaPlanner uses Drools as one of the options of score calculations which
are are described in Section 4.3.2.

16

Optimization algorithms Every individual calculation of the solution takes some time.
OptaPlanner does not count only with one solution but it is looking for the best solution
and there may be a lot of solutions. The search space can grow to astronomical proportions
and the calculation time as well. More information about optimization algorithms can be
found in [20]. Following list shows some of the algorithms that can be used:

• Exhaustive Search – Brute Force, Branch And Bound.

• Construction heuristics – First Fit, Weakest Fit, Strongest Fit, . . .

• Metaheuristics

– Local Search – Hill Climbing, Tabu Search, Simulated Annealing, . . .

– Evolutionary Algorithms – Evolutionary Strategies, Genetic Algorithms.

4.3 OptaPlanner configuration

In this section, OptaPlanner configuration is described. It can be divided into following
five basic steps that are required to get the best solution:

1. Modeling of planning problem – creation of a class that implements the Solution
interface and definition of planning domain classes.

2. Solver configuration – settings of a score function, optimization algorithms and
other parameters of Solver.

3. Loading of problem data set – insertion of planning entities and variables instances
into Solver.

4. Activation of Solver – activation of mechanism for problem solving and automatic
calculation of scores.

5. Acquiring the best solution – invocation of the method which returns the best
obtained solution.

4.3.1 Modeling of planning problem

Modeling of planning problem consists of defining individual parts of the problem and cre-
ation of corresponding Java classes for problem fact, planning entity and variable, planning
solution and other.

Problem fact Problem fact is a class which contains getters returning its properties.
This class does not contain special OptaPlanner code (it can be ordinary Java class) and
during planning it does not change. In case of N-Queen problem, rows and columns classes
are problem facts.

Planning entity Planning entity is a class which change during planning. It has to be
marked with @PlanningEntity annotation. Each planning entity has one or more planning
variables. In case of N-Queen problem, Queen class is planning entity because its row
position changes.

17

Planning variable Planning variable is a property of planning entity class with required
getter and setter. In case of N-queen problem, row property is planning variable. It must
be marked with @PlanningVariable annotation which contains valueRangeProviderRefs
property which defines possible values of the planning variable.

Planning value and planning value ranges Planning value is a possible value of
a planning variable. Usually, a planning value is a problem fact but it can be any object, for
example a Double. Planning value range is a set of possible planning values of planning vari-
able. This set can be a countable (for example row 1, 2, 3 or 4) or uncountable (for example
any Double between 0.0 and 1.0). Value Range is marked with @ValueRangeProvider anno-
tation which has property id pointing to valueRangeProviderRefs of @PlanningVariable
property. @ValueRangeProvider annotation can be placed on two types of methods – on the
Solution or on the planning entity. Usually, first type is used. Collection or ValueRange
are two types which can be used as return type of the method.

Planning problem and planning solution Each planning problem has to be defined as
a class which is used by the Solver to solve the problem. In the case of N-Queens problem,
class must contains column, row and queen lists. The planning problem corresponds with
unresolved planning solution. The solution must be described by a class that implements
the Solution interface. This interface requires to implement setScore, getScore and
getProblemFacts methods.

4.3.2 Solver configuration

The second part of OptaPlanner configuration is configuration of Solver. It is described
by XML file and it can also be changed dynamically at runtime using SolverConfig API.
Basically, it can be divided into three parts:

1. Model definition – consists of the name of a class that implements the Solution
interface and a name of class that represents the planning entity.

2. Score function definition – consists of settings such as a type of score and a class
which calculate the score (or DRL file with a rules that are used for calculation).

3. Optimization algorithms definition – contains settings of algorithms that are
used to optimize the calculation for obtaining the best score of problem.

Thanks to the score calculation, all of the initialized solution can be evaluated by a score
and these are three following ways how it can be implemented:

• Easy Java score calculation – The calculation is performed using single method
of a class which implements the EasyScoreCalculator interface and this method
should return score of solution. This simple way how to calculate score is slower and
less scalable than other methods.

• Incremental Java score calculation – The calculation is performed using several
specific methods of computation. This is a quicker approach, but more difficult for
implementation. Class which defines this type of calculation must implements the
IncrementalScoreCalculator interface.

18

• Drools score calculation – The calculation is performed using DRL rules. They
are stored in .drl file. More information about rules can be found in [2, 17]. This
approach is well optimizable but DRL language must be used.

4.3.3 Loading of problem data set

Last step before the start is the loading of problem data set into Solver. This is done
by uploading planning entities and planning values to the appropriate collection in a class
that implements the Solution interface. From this step, everything is ready for Solver
activation.

In N-Queen example, all queens and all rows have to be initialized and uploaded to the
appropriate collections of N-Queens solution class.

4.3.4 Activation of Solver and acquiring the best solution

Activation of Solver takes place simply by calling the solve()method of the Solver instance
class with the parameter containing reference to an instance of a class that implements the
Solution interface.

After the calculation by calling getBestSolution() method of the Solver instance, the
best solution is returned. In the case of N-Queen problem, a solution where each queen has
assigned one row should be obtained and if optimal solution is found, then no two queens
are threaten to each other.

Termination Not all calculations terminate automatically and therefore it is sometimes
necessary to add conditions which causes the termination. Subsequent options can stop
calculation:

• Time limit termination – occurs after exceeding the time limit.

• Best score termination – terminates when a certain best score is reached.

• Step count termination – occurs after exceeding the limit of step count of calcu-
lation.

• Combining of multiple terminations – previous termination methods can also be
combined.

• Asynchronous termination from another thread – can be used if it is necessary
to terminate calculation differently than by automated methods.

19

Chapter 5

Porting of OptaPlanner to Android

This chapter deals with porting of OptaPlanner to Android. Portation is a modification of
software for the purpose of usage on different platforms. OptaPlanner is designed for Java
Standard Edition (SE) platform and for integration to Android it is necessary to compare
both platforms and resolve potential problems.

In the first Section 5.1, requirements for OptaPlanner portation are introduced. Com-
parison of Java Application Programming Interface (API) and Android API are described
in Section 5.2 and discovered JavaBeans problem is discussed in Section 5.3. Section 5.4
summarizes possible solutions of JavaBeans problem. Section 5.5 deals with design of the
portation and the last Section 5.6 focuses on its implementation.

5.1 Requirements for OptaPlanner portation

In this section, three essential requirements for OptaPlanner portation are introduced. The
first one focuses on automatic build process, the second one discusses the use of Drools
library and the last requirement targets on OptaPlanner usability.

Automatic build process First of the portation requirements is ensuring of the auto-
matic build process. When an application is built, it is good to make all the steps automatic.
OptaPlanner libraries should be imported correctly and all the dependencies should be in-
cluded or should be prepared by build script. Any other problems of the portation has to
also be resolved in a way which does not required much effort from users of the scripts.
These procedures have to be described and demonstrated on a model application.

Drools library As described in Chapter 4, one of the ways of computing function in
OptaPlanner is by the Drools rules. Drools library is distributed as a part of OptaPlanner
and also as a standalone project. Using this library, it is possible to write rule prescriptions
for score calculation. Another way how to compute the score is standard Java calculation
which does not require additional dependencies. Because Drools project is not optimized
for mobile platforms and there is another way how to calculate the score, it should not be
included in the portation of OptaPlanner on Android.

OptaPlanner usability In summary, it is necessary to prepare OptaPlanner for the
Android platform to enable possibility of using tools for solving planning problems. Mobile

20

devices have limited computing capabilities and storage space in comparison to desktop
computers. Ported OptaPlanner should consider these capabilities and adapt to them.

5.2 Java API packages comparison

This section compares two Java Application Programming Interfaces – Java 6 Standard
Edition API and Android API. Depending on the comparison, OptaPlanner dependencies
on Java SE API are identified on Android API and the consequent problems are highlighted.

Java SE API and Android API Android API is based on Apache Harmony Java 6
SE API [7] (the open-source version of Java SE). First column of Table 5.1 shows all the
packages in Java 6 SE API. In second column of the table, it is described whether or not are
the packages included in Android API. If both APIs are compared, it is certainly possible
to say that Android API is not complete Java SE API. Out of 38 Java SE API packages,
20 packages are completely missing and 9 packages are incomplete in Android API. For
example, packages for graphical user interface such as java.swing and java.awt are not
included and provided for Android development because they are replaced with the Android
graphical elements.

Android API and Optaplanner The third column in Table 5.1 describes whether the
package is needed by OptaPlanner. This tool directly uses only 6 of the total number of 38
packages of Java SE API, namely: java.beans, java.io, java.lang, java.math, java.net
and java.util. Three of the used packages are incomplete in Android API but only one
of them affects OptaPlanner, speciffically java.beans package. Due to the fact that some
of the java.beans classes are missing in Android API, direct OptaPlanner integration is
impossible. Other missing packages do not affect OptaPlanner use on Android.

5.3 JavaBeans problem

JavaBeans package allows to reuse components written in the Java programming language.
Primarily, its classes are used for creation of graphical user interface but they can also be
used for introspection of methods, properties and events. More information about Jav-
aBeans can be found in [4].

OptaPlanner is completely written in the Java language and one of its dependencies is
java.beans package. As described in Section 5.2, this package is incomplete and classes
which OptaPlanner requires are missing. In case of OptaPlanner use on Android, the
compiler throws ClassNotFoundException and with this error, OptaPlanner project cannot
be built. In this section, the possible solutions of this problem are presented and one of the
solutions is selected for the needs of the portation.

The proposed solutions can be divided into two groups. First one contains solutions
which do not interfere in OptaPlanner source code and they are described in Section 5.3.1,
Section 5.3.2 and Section 5.3.3. Solutions which change the source code of OptaPlanner
belong to the second group and they are described in Section 5.3.4 and Section 5.3.5.

5.3.1 Repacking of JavaBeans redistribution to Java core namespace

The first of the possibilities how to complete the missing java.beans package is use of
a JavaBeans redistribution. These libraries are specially designed for the Android platform

21

Java 6 SE Package Included in Android API Needed by OptaPlanner

java.applet No – missing completely No
java.awt Yes – incomplete No
java.beans Yes – incomplete Yes
java.io Yes – complete Yes
java.lang Yes – incomplete Yes
java.math Yes – complete Yes
java.net Yes – complete Yes
java.nio Yes – complete No
java.rmi No – missing completely No
java.security Yes – incomplete No
java.sql Yes – complete No
java.text Yes – complete No
java.util Yes – incomplete Yes
javax.accessibility No – missing completely No
javax.activation No – missing completely No
javax.activity No – missing completely No
javax.annotation No – missing completely No
javax.crypto Yes – complete No
javax.imageio No – missing completely No
javax.jws No – missing completely No
javax.lang No – missing completely No
javax.management No – missing completely No
javax.naming No – missing completely No
javax.net Yes – complete No
javax.print No – missing completely No
javax.rmi No – missing completely No
javax.script No – missing completely No
javax.security Yes – incomplete No
javax.sound No – missing completely No
javax.sql Yes – incomplete No
javax.swing No – missing completely No
javax.tools No – missing completely No
javax.transaction No – missing completely No
javax.xml Yes – incomplete No
org.ietf.jgss No – missing completely No
org.omg No – missing completely No
org.w3c.dom Yes – incomplete No
org.xml.sax Yes – complete No

Table 5.1: Java 6 SE API packages in Android API and OptaPlanner dependencies.

to support JavaBeans or other missing packages. If OptaPlanner source code should stay
the same, it is necessary to repackage these libraries to Java core namespace. Java core
namespace is an identification of Java API classes which belongs to java.* or javax.*
namespace. In the following paragraphs, two redistribution and the Jar Jar Links tool

22

for repacking Java Archive (JAR) files are introduced. Last paragraph describes problem
which is appearing during usage of classes from Java core namespace on Android.

OpenBeans OpenBeans project [10] is a redistribution of java.beans package based on
the Apache Harmony project. It was created because of missing JavaBeans on the Android
platform. Used namespace of this package is com.googlecode.openbeans. OpenBeans is
an open-source project and it is distributed as JAR file that can be included into a Java or
an Android project.

Mad Robot A similar project to OpenBeans is called Mad Robot [12]. As well as Open-
Beans, it contains redistribution of java.beans package in com.madrobot.beans names-
pace but it also includes some additional packages for database, graphics or geometry
manipulation. This project is distributed as Maven dependency.

Jar Jar Links Jar Jar Links [11] is a utility for repackaging Java libraries. It enables
to repack Java classes from one namespace to another. For proper use, it is necessary to
define rules which describe way how Java classes should be repacked and how the classes
have to be placed in a JAR file. Jar Jar tool uses this file to create new JAR with repacked
classes.

Core library problem Compilation of an Android project that contains a class from
namespace java.* or javax.* crashes during the translation which is highlighted by mes-
sage about using the classes from Java core namespace. It is a protection against unautho-
rized use of the namespace. This can be avoided by using --core-library flag. Adding
the flag allows translation of the application. One of options how to use the flag is modify-
ing the dx script in Android SDK (Software Development Kit). Listing 5.1 shows the flag
added to the last line of the dx file.

exec java $javaOpts −j a r ” $ jarpath ” −−core−l i b r a r y ”$@”

Listing 5.1: Core library flag in the last line of dx script.

5.3.2 Use of OpenJDK distribution source code

This solution is based on the use of available source code of OpenJDK Java SE [5] which
is an open-source distribution of Java SE. By adding sources to an Android project, it is
possible to get the necessary libraries. The advantage of this solution is that the dependency
failures are seen in translation and not when the application runs. This enables to choose
only the required classes. However, this adjustment is not trivial. It needs to be done by
a special tool that removes unused dependencies or it must be done manually.

5.3.3 Use of pruned rt.jar from OpenJDK distribution

The last option without interference to the source code is use of the rt.jar file which is
part of the Java SE libraries. This package contains JavaBeans compiled classes and other
parts of Java SE. Due to its size, it is not well suited for an Android applications and it
also includes libraries that are already contained in Android API and can causes collisions.
Therefore, it has to be pruned. The advantage of pruning is that there is no need to worry

23

about dependencies that are not needed for OptaPlanner tool because these files are not
again compiled. On the other hand, it may happen that an application hits some missing
required dependencies during runtime and the application crashes.

5.3.4 Use of OpenBeans in OptaPlanner project

This is the first solution which intervenes to the OptaPlanner source code and it consists of
replacing all java.beans dependencies for the com.googlecode.openbeans by rewriting all
imports and by addition of OpenBeans.jar archive to the OptaPlanner core project. This
causes redirection of all dependencies to OpenBeans. The disadvantage of this solution is the
intervention in the OptaPlanner source code. In terms of Android application developers,
it is needed to create anew fork (or branch) of OptaPlanner and maintenance of such copy
is complicated and complex.

5.3.5 Removing and replacing JavaBeans from OptaPlanner

Last option to solve the JavaBeans problem is its elimination from the source code and its
replacement by another technology. This is the biggest intervention to OptaPlanner code of
all the offered solutions and it is also the major disadvantage. As in the previous solution,
it is necessary to create a new fork of OptaPlanner and take care of its maintenance.

5.4 Summary of approaches

Table 5.2 shows summary of the JavaBeans problem solutions. The first column contains
solution name. In the second column, licenses which should be respected when using con-
crete approach are placed. The need for modification of OptaPlanner source code is marked
in the third column. Assumed solution level of difficulty is placed in the fourth column and
advantages and disadvantages of each approach are described in the last column.

License and avoiding the modification of OptaPlanner are the essential requirements of
the selection. License has to permit commercial and private use and modification of the
code. Furthermore, the easier solution is better because then each developer has an oppor-
tunity to easily use OptaPlanner on Android without making any special modifications.

The best solution of JavaBeans problem seems to be repacking of the OpenBeans redis-
tribution of JavaBean to Java core namespace. In this approach, suitable Apache license
must be respected. This license is free software license and it allows easy usage of the code.
It is not necessary to modify the OptaPlaner code and generally, this approach requires less
effort from the programmer.

5.5 Design of the portation

This section describes design of the portation based on the requirements from Section 5.1.
Major task is to make the entire process automatic and show how OptaPlanner can be
ported into Android project of a developer tool.

Developer tools As described in Chapter 3, the official environment for development of
Android applications is called Android studio which brings new build system which is based
on Gradle language. Android studio is selected as primary developer tool for portation needs
and Gradle laguage is chosen for automatization of all the required processes.

24

Approach
name

License OptaPlanner
modification

Level of
difficulty

Advantages and
disadvantages

Repacking
OpenBeans
redistribution
to Java core
namespace

Apache
License 2.0

No Easy + standalone jar file, no prob-
lems with dependencies

Repacking of
Mad Robot
redistribution
to Java core
namespace

LGPL 2.1 No Easy + same as in previous case

Use the Open-
JDK distri-
bution source
code

GPL 2.0 No Medium + dependency failure occurs in
translation, source code con-
trol
- difficult adjustment which
can cause problems with de-
pendencies

Use of pruned
rt.jar from
OpenJDK
distribution

GPL 2.0 No Hard + standalone jar file
- difficult adjustment which
can cause problems with de-
pendencies, incosistent jar,
prunning

Use of Open-
Beans in
OptaPlanner
project

Apache
License 2.0

Yes Easy + easy adjustment
- need of modification of Op-
taPlanner source code and
the subsequent maintenance
of OptaPlanner fork

Removing and
replacing Jav-
aBeans from
OptaPlanner

– Yes Medium - same as in previous case

Table 5.2: Summary of the JavaBeans problem solutions.

Importing of OptaPlanner libraries OptaPlanner is distributed as a Maven depen-
dency or it is packed in JAR files. Because one of the requirement is automatic build
process, first type of distribution is selected. Gradle language supports Maven dependen-
cies and it allows complete automation of importing process. Because OptaPlanner is daily
developed, its last snapshot version should be always used to secure that the portation is
compatible with Android for the future releases of OptaPlanner.

Exclusion of unnecessary libraries As written in Section 5.1, Drools libraries should
not be included in portation. It can be assumed that also another libraries can be excluded
because they can be already part of Android API. These exclusions has to be performed
by Gradle language to secure the process automation. It also helps to reduce size of the
potential applications.

25

Completion of missing libraries Section 5.3 describes JavaBeans problem and one of
the suggested possible solutions was selected in Section 5.4. Task of the chosen solution is
to repack OpenBeans redistribution to Java core namespace and following steps should be
performed by Gradle language to automate the entire process:

• Download JarJar tool for repacking libraries.

• Download OpenBeans package which is in com.googlecode.beans namespace.

• Run JarJar tools and repack OpenBeans package to Java core namespace (java.beans).

• Clean temporary files and move final JAR into proper directory.

• Add --core-library flag to allow use of the Java core classes.

5.6 Implementation of the portation

In this section, implementation of the portation is described. The first part focuses on the
two main issues and the second part on the Gradle scripts which implement the portation
itself are introduced.

5.6.1 JavaBeans and Core library flag

Two main issues need be to solved before it is possible to use OptaPlanner on Android.
First one is completion of missing libraries to a project and second one is adding the
--core-library flag to allow use of the Java core classes.

Completion of JavaBeans library Completion of JavaBeans library is implemented by
Gradle scripts described in Section 5.6.2. These scripts can be used in any Android Gradle
project and they enable to automatically download required tools and packages from the
Internet, repack OpenBeans library and create JavaBeans JAR file which is added to the
project.

Core library flag If some classes from Java core namespace are present in an Android
project, its compilation fails. Proposed solution where --core-library flag is added to dx
script in Android SDK directory as shown in Listing 5.1 does not work from version 1.1.0
of Android Gradle build tools. The build tools are changed and they no longer use the
dx script. Therefore, the flag must be directly embedded in settings of Android plugin in
build.gradle file as shown in Listing 5.2.

p r o j e c t . t a sk s . withType (com . android . bu i ld . g rad l e . t a sk s . Dex) {
add i t iona lParameter s=[’−−core−l i b r a ry ’]

}

Listing 5.2: Addition of Core library flag in build.gradle script.

26

5.6.2 Gradle scripts

The entire process of the portation is automatized by Gradle scripts. Gradle is default
building tool for Android studio which is currently a primary application for creating An-
droid projects.

This section discusses how OptaPlanner can be added to an Android project and de-
scribes tasks which perform operations required to complete missing libraries described in
Section 5.5. All the described tasks are used in application described in Section 6.

OptaPlanner dependency As in any other project which does not use only standard
Java classes, it is necessary to include third party libraries. Gradle can use Maven de-
pendencies and this is one of the ways how OptaPlanner is distributed. Libraries can also
be added directly as JAR files but it would be worse for automatization. As mentioned
in Section 5.1, Drools library should not be included and also xmlpull library has to be
excluded because it is already contained in Android API. Listing 5.3 shows OptaPlanner
dependency with excluded libraries.

compi le (’ org . optaplanner : optaplanner−core :6 .3 .0 −SNAPSHOT’) {
exc lude group : ’ xmlpull ’
exc lude group : ’ org . droo l s ’

}

Listing 5.3: OptaPlanner Maven dependency in Gradle build script.

Downloading and removing tasks There are two downloading tasks downloadJarJar
and dowloadOpenBeans. First task downloads repacking tool Jar Jar links and second one
downloads OpenBeans package in JAR format from the Internet. The tasks for removing
temporary files after their use are namely: deleteJarJar, deleteOpenBeans, deleteRule
and deleteJavaBeans.

Task for creating of repacking rule file Jar Jar tool needs to know how to repack
OpenBeans.jar. For this purpose, there is createRuleFile task which creates file with
rule as shown in Listing 5.4. This rule tells that all OpenBeans namespaces should be
replaced with JavaBeans namespace.

r u l e com . goog lecode . openbeans .∗∗ java . beans .@1

Listing 5.4: Jar Jar Links rule for repacking OpenBeans to Java core namespace.

Task for repacking OpenBeans Last task for manipulation with OpenBeans package
is repackOpenBeans task. This task launches all the previous tasks and also executes com-
mand which creates JAR file with repacked OpenBeans to Java core name space. The new
file is placed into project /lib directory. This command is shown in Listings 5.5. Finally,
removing tasks are activated and temporary files are deleted.

java −j a r j a r j a r . j a r p roc e s s r u l e . txt openbeans . j a r javabeans . j a r

Listing 5.5: Command for repacking openbeans.jar file.

27

Task for adding Core library flag This task is originally created for modification of dx
script in build tools directory in Android SDK. It finds dx file and adds --core-library
flag to the last line of the file. In latest versions of Android Gradle build plugin, this
approach does not work and it is replaced as described above in this section.

28

Chapter 6

Vehicle Routing Problem
application

One of the goals of this thesis is creating of a simple application which demonstrates func-
tionality of OptaPlanner tool on Android system. Previous Chapter 5 shows how to port
the tool to the mobile platform. In this chapter, OptaPlanner tool is used to creating the
Vehicle Routing Problem application.

First Section 6.1 introduces application requirements. Application design is described
in the second Section 6.2. Implementation itself is divided into two parts. The first part
which is described in Section 6.3 present inner structure of the application and the second
part deals with graphical user interface and its layout.

6.1 Requirements for Android application

This section deals with requirements for Android application. First part introduces features
of the application and the second part discusses support for different versions of the Android
operating system.

6.1.1 Application features

The following paragraphs describe essential requirements and features of created applica-
tion. They focus on inner structure, graphical user interface and the licence under which
the application is written.

Vehicle Routing application Standard OptaPlanner distribution [19] contains demon-
stration examples. One of the examples is Vehicle Routing application. It is often used for
presentation of OptaPlanner and it is one of the real world examples and thus it is also
a good choice for demonstration on Android. Created aplication should present the Vehicle
Routing Problem in a similar way as the original OptaPlanner application.

Vehicle Routing model The source code of the original application already contains
OptaPlanner Vehicle Routing Problem model which should be included in this application.
Furthermore, it contains some tools for importing specific .vrp files. The model specifies
classes which are required for OptaPlanner tool.

29

Graphical user interface Graphical user interface cannot be ported because application
is written by Awt and Swing libraries which are not included in Android API as described
in Section 5.2. Therefore, new application graphical user interface should be created and
adjusted to fulfill aspects of Android application development.

Application settings Application without any settings is too static and uninteresting
for the users. Therefore, they should at least be able to choose problem solving algorithm.
Another option could be setting of calculation time limit. Thanks to that, process can be
terminated earlier.

File opening The original Vehicle Routing application contains .vrp example files which
contains tasks of problems. These files should be compatible with created application and
some of them should be included. It should be possible to open these files and display them
in a similar way as in the original application.

Solution displaying The application must be able to display unsolved solution on the
application screen. Furthermore, it should be possible to display new best solution every-
time when it is found and at the end of the process, last best solution should remain on the
screen. The application should also be able to display actual statistic information about
solved problem.

License The entire application should be distributed as an open-source software and it
should be written under Apache License 2.0. Source code must be publicly available on the
Internet for guidance of other people in their own OptaPlanner projects.

6.1.2 Android devices support

Before the development starts, it is good to clarify which version of Android will be sup-
ported by application. Every version of Android comes with new API and new functionality.
Biggest changes comes when the first number of version is changed. Actual distributions of
Android versions on devices can be seen in the last column of Table 3.1.

Versions 2.x.x are on decline. Currently, the most used versions are with 4.x designation
and distribution of the newest 5.x versions grows. Therefore, it is decided that application
should support Android from version 4.0 (API 14). The version decides which resource can
be used for application design and development and how application should be tested.

6.2 Application design

One of the critical points of creating an application is design. It can be divided into two
parts. The first one is design of an inner structure and it is presented in Section 6.2.1. The
second one is design of graphical user interface and application component layout which is
described in Section 6.2.2.

6.2.1 Application features

In Section 6.1.1, inner structure requirements of the application are described. According
to them, the application features design is written and introduced in following paragraphs.

30

Application settings Designed application supports several setting options. It is pos-
sible to select one of three algorithms: First fit decreasing with Late acceptance, Branch
and bound and Brute force. Simultaneously, it is required to select time limit of calculation
in seconds. Calculation stops after time limit is reached or it is possible to stop it earlier
by stop button. Furthermore, Vehicle Routing example can be chosen. Application con-
tains list of these files and after user selects one of them everything should be prepared to
calculation start. The setting should be placed on the first screen of the application.

VRP files Mentioned list of example files consists from files used in original OptaPlanner
application. These files are named the same way and user can compare results between
both applications. Because default Android system does not contain file browser and user
probably does not have his own .vrp files, application does not support opening files from
device storage. List of files should be placed on the second screen of the application.

Porting of Vehicle Routing Problem model In Section 6.1.1, it is described that
original application already contains Vehicle Routing model for OptaPlanner tool. These
classes have to be embedded into application and they have to be used for calculation of
the problem. Furthermore, they should be used for displaying of current solution.

Problem solving Graphical user interface cannot wait until calculation is finished and
therefore these two parts must be separated from each other. While solving is in progress,
user controls the application and also can use some of its parts. When screen is turned or
application is hidden in background, solving process has to be still active and not termi-
nated.

Solution displaying New best solution should be displayed every time when it is found.
For that purpose, application contains third screen especially for displaying founded solution
which should be similar to original application. Lines represents roads, vehicles and depots
have their own icons. Customers differs from the original for saving screen space. Instead
of points with numbers, customers should be represented as circles with inner number
describing its demand. Time window circles should be displayed in a similar way as the
original but not separated from customer.

Solution data Every solution has data which cannot be displayed graphically or they
are too important and have to be be displayed separately. Hence, it is designed that score
of solution and actual load of vehicles should be drawn on side menu which is described in
Section 6.2.2.

6.2.2 Design of screens

This section introduces design of application screens and describes component layouts. The
overall concept and links between screens are shown in Figure 6.1.

Application top bar Top bar is placed on the top of the each screen as shown in
Figure 6.1. It contains name of the application and quick function buttons. These buttons
can start the calculation or call the informational dialogs. Buttons are not visible all the
time but only on the screens when it is necessary.

31

App name Buttons App name

App name Buttons App name

Welcome text...

Settings...

Continue
button

file 1

file 2

file n

...

Actual solution...

Progress bar

Score

Vehicle 1 load

Vehicle 2 load

Vehicle n load

...

Settings screen Files screen

Solution screen
Solution screen with
side menu

Figure 6.1: Design of screens and links among them.

Settings screen The first screen of Figure 6.1 is main screen of the application. It
consists of top bar, welcome text and part with setting elements where calculation options
can be set. Last element on the screen is button for switching to the next screen where one
of the VRP files can be selected.

Screen with VRP files list The second screen in Figure 6.1 contains only list of VRP
files and top bar. Top bar does not contains any buttons on this screen because there is
no need for them. The list contains all of the included VRP files and after click on one of
them, it is switched to the last screen – Solution screen.

32

Solution screen The most important screen of the application is the last screen. Solution
and its gradual progress is displayed on this screen. On the top bar, button for start
of calculation is included and under the actual solution representation, progress bar for
displaying actual time is placed. When user swipe with finger from left to right on the
screen, side menu with actual solution statistic should be displayed.

Side menu with statistics The last section of Figure 6.1 is side menu which is displayed
on right side on the solution screen. It contains statistic data of actual solution. First item
on the menu is solution score and next items represents every vehicle of the problem and
its current load and capacity. Menu can be closed when user clicks somewhere outside of
the menu.

Informational dialogs Application design contains two informational dialogs for better
understanding of the application content. First one contains information about application
itself. Second one consists of legend which describes all displayed components of Vehicle
Routing Problem on the screen.

Material design One of the new features which Android version 5 brings is material
design. It is very sophisticated study that shows how to handle elements, layouts, colors
and others. Although this feature is not fully backward compatible, it is partially possible
to bring this design to earlier devices with older versions of Android. It is designed that
application should use material design as much as possible.

6.3 Application implementation

In this section, implementation of Vehicle Routing Problem application is described. The
first part introduces application structure and its important components. Second part
focuses on porting of Vehicle Routing Problem and its model from the original OptaPlanner
application. Graphical user interface is presented in the next Section 6.4.

6.3.1 Application structure

Application consists of one activity and three fragments as shown in Figure 6.2. Activity is
represented by MainActivity class in the application code and it contains Action bar and
space where fragments are placed. Every time when action of fragment change is invoked,
the space is replaced by new fragment.

Settings elements are placed on the first fragment which is defined by MainFragment
class. VrpFileListFragment class represent the second fragment containing list of VRP
files. The last fragment is defined by VrpFragment class and it is used for displaying current
solution.

In the following paragraphs, important components of application are described. Espe-
cially, the components which are related to the background processes. Graphical compo-
nents and their layout are described in Section 6.4.

List of files List of VRP example files is placed on the second fragment. This list is
implemented by RecyclerView component which simplifies displaying of data to the list
and provides basic patterns of behavior.

33

Action bar

Space for
fragments

Activity

Fragment 1 Fragment 2 Fragment 3

Fragment with
calculation
settings

List of vrp
example files

Fragment with
solution

Figure 6.2: Activity and fragments in application.

Solver asynchronous process After the button for calculation start is pressed, asyn-
chronous process is created. This process sets, builds and activates Solver with required
parameters. Listener is added to Solver to publish process every time when new best solu-
tion is found. The process is represented by VrpSolverTask class which extends AsyncTask.
AsyncTask class enables changes of graphical user interface, perform the background oper-
ations and publishes results.

Solution painter Solution painter is a component which draws a solutions on the screen.
It is represented by VrpPainter class which is modified VehicleRoutingSolutionPainter
class from the original OptaPlanner project. Because Android does not support Awt and
Swing Java graphic libraries, VehicleRoutingSolutionPainter was rewritten to use An-
droid methods for drawing on the screen. Solution painter draws two types of solution:

1. Unsolved solution – painted when a file is selected from the list in the second
fragment.

2. New best solution – painted every time after Solver is activated and new best
solution is found.

34

6.3.2 Porting of Vehicle Routing Problem

Original Vehicle Routing application contains Vehicle Routing Problem model for Opta-
Planner tool. These files are taken and modified to fit in the created Android application.
Following paragraphs present these files and show the way how they are used.

Vehicle Routing Problem model Without model of the problem, application cannot
work. Vehicle Routing Problem is defined by VehicleRoutingSolution class which im-
plements Solution interface. This class contains all information about solved problem
(list of all customers, depots and vehicles) and it is used together with solver configuration
by Solver to calculation of the problem. Customer class is marked as planned entity and
contains Standstill planning variable. More detailed information about Vehicle Routing
Problem definition can be found in OptaPlanner documentation [20].

Solver configurations In this application, it is possible to use three algorithms and set
time limit of calculation. These configurations include link to problem definition and link
to score calculator and they are stored in .xml file which are used for building the Solver.
For each algorithm, there is one XML file and it is applied according to the choice in the
application. Time limit is additionally set after Solver is created.

Score calculator Every solution has its own score and this score must be calculated by
one of the three methods described in Section 4.3.2. For score calculation in this application,
VehicleRoutingEasyScoreCalculator class which implements EasyScoreCalculator is
used. This class calculates hard and soft score of solution. Hard score is computed as
a load of vehicles above their capacity and soft score is calculated as negative total vehicle
distance. In case of time window variant, delay against due time of arrival is added to the
hard score.

VRP example files Example .vrp files are used as problem datasets. These files are
taken from the original OptaPlanner Vehicle Routing Problem application. They contain
information about number and capacity of vehicles, position and demands of customers and
position of depot. This application includes 36 example files in total.

Vehicle Routing importer Example files are stored in specific .vrp text format and
have to be loaded into classes that describe Vehicle Routing problem. For this purpose,
VehicleRoutingImporter class is imported and used from the original OptaPlanner appli-
cation.

6.4 Graphical user interface

This section presents graphical user interface implementation of the application as designed
in Section 6.2.2. The first part of this section describes application screens and the second
part introduces three important components.

6.4.1 Application screens

Every application consists of Fragments or Activities which are collectively called screens.
Using controls, it is possible to move from one screen to another or to change its appearance

35

or behavior. This application is composed from three screens. These screens can be seen in
Figure 6.3. The third screen is displayed with unsolved problem and with ongoing solution
process.

Main screen Main screen is displayed after the application starts. It consists from Action
bar, welcome text, setting elements and button to continue to another screen. Action
bar contains application name and buttons for displaying legend dialog and application
information dialog. Welcome text provides some basic instruction for the users. Two
controls are present for calculation options of the problem. It is possible to set time limit
in seconds using Number picker and Spinner allows to select one of the three supported
algorithms. Last element on this screen is Open file button which opens screen with list of
VRP files.

Screen with VRP files list After Open file button on the main screen is pressed, screen
with VRP files is displayed. It also contains action bar but it is very limited because no
controls are required on this screen. Rest of area is filled with list of VRP files from original
OptaPlanner application [19]. After the selected file is pressed, it is switched to last screen
and the problem with its solutions is displayed.

Solution screen This screen is used to display unsolved, ongoing and solved solutions. It
contains Action bar with all of the control items as shown in Figure 6.3. Compared to the
main screen, Action bar has an additionally button for displaying Navigation drawer and
button for start and end of the solution process. On the bottom of the screen, Progress bar
is placed. This component is used for displaying time which approximately remains. Rest
of the screen is filled with component which draws current solution. At the beginning, the
component draws unsolved solution and after the start button is pressed, it always draws
the best solution after it is found. Individual elements of this component are:

• Circle with a number – customer with his demand.

• Building image – depot from where vehicles depart.

• Car image – vehicle with its color.

• Solid line – vehicle road to a customer.

• Dashed line – vehicle road to a depot.

• Sector on a circle – time windows for vehicle arrival.

• Line on a circle – vehicle arrival time.

6.4.2 Application components

This section introduces and describes three important components of the application: Ac-
tion bar, Navigation drawer and Dialogs.

36

Figure 6.3: Application screens – main screen, list of VRP files, screen with unsolved
problem and ongoing solution process.

37

Action bar

Action bar is a panel on top of the screen that provides basic user action and information
about user navigation. It always contains application name, optionally action buttons
for quick invocation of application functionality and overflow button on the right side for
displaying the other applications options.

Action bar is displayed on every screen of this application but it changes depending on
required functions on actual screen. Figure 6.3 shows action bars of each screen.

Navigation drawer

Navigation drawer is a panel that displays application navigation on the left edge of the
screen. By default, it is hidden and it could be displayed by touching the left icon on the
action bar. Also, it could be displayed when a user swipes with a finger from the left edge
of the screen to the right. Opposite procedure makes navigation drawer invisible.

This application uses navigation drawer for displaying important statistic data. Fig-
ure 6.4 displays visible panel on the left side of the application. The first item on the panel
shows hard and soft score of displayed solution. Second item holds total distance traveled.
Other items are linked to vehicles of the problem. Each of them has its own parameters
– color, name and capacity. These three items are static and do not change during the
calculation. Last parameter is actual load of the vehicle.

Figure 6.4: Navigation drawer with actual data.

38

Dialogs

Dialogs are small windows which display some significant information or they are used for
user interaction with decisions that define further actions. Dialogs are always located above
all other parts of the application.

Figure 6.5 shows all three dialogs used in the application. The first one and the second
one can be retrieved directly from the action bar by clicking on the icons with question
mark or informative icon. The first dialog contains application legend for understanding
what is displayed on the screen and the second dialog briefly describes the application.
The last dialog is displayed only when calculation runs and user clicks on the back button.
Dialog then asks the user if he wants to end the ongoing calculation.

Figure 6.5: Screenshots of dialogs used in the application.

39

Chapter 7

Testing and future work

Testing of applications is very important part of the development. During this phase, a large
number of bugs is often detected and critical problems can be also discovered. Measurement
is as well counted to the testing because it can reveal performance problems.

Section 7.1 is focused on testing devices and describes performed comparative measure-
ments. Section 7.2 describes future work which shows direction of the continuation of the
project and points out to the important parts which can be implemented or improved.

7.1 Testing

This section introduces testing devices and describes performed comparative measurements.
It focuses on comparison between mobile devices and desktop computer which differ espe-
cially in their performance.

Devices

The application is tested on several devices during and also after development. Table 7.1
shows testing devices and their important parameters. Some issues which are associated to
them are described in following paragraphs.

First of the parameters is Android version which specifies supported parts of Android
features. Most of the problems are related with unsupported functions and they are usually
detected by compiler. However, from time to time some problems can appear and therefore
it is better to test application on various versions of Android system.

Next parameters are display size and display resolution which together define density of
the screens points. Every device has different display density and component layout must
be well designed to fit to many devices screens. Another problem appears after the screen
rotation. Display sides are exchanged and components layout must be adapted.

Last parameters are number of CPU cores, CPU and RAM. They define device speed
and computing capabilities. Because this application calculates with many values, some
tests and measurements which compare these devices are performed.

The application is tested on the five devices in total. Four of them are mobile phones,
one is tablet and the last one is Android emulator. Emulator is a virtual mobile device that
runs on a desktop computer. Parameters of emulator can be selected as necessary except
of CPU which is inherited from host computer and adjusted according to operating system
capabilities.

40

Device Android
version

Display
size

[inches]

Display
resolution

[pixels]

CPU
cores

CPU
[GHz]

RAM
[GB]

LG Nexus 5 5.1.0 4.95 1080 x 1920 4 2.3 GHz 2
Asus Nexus 7 2013 5.1.0 7.0 1200 x 1920 4 1.5 GHz 2

Samsung Galaxy Xcover 4.1.2 4.0 480 x 800 2 1 GHz 1
Sony Xperia active 4.0.4 3.0 320 x 480 1 1 GHz 0.5

Emulator 4.4.2 4.5 720 x 1280 – – 1.5

Table 7.1: Configuration of testing devices.

Comparative measurements

After testing and debugging the application, two comparative measurements are performed
on the devices mentioned in Table 7.1 and on one desktop computer with parameters de-
scribed in Table 7.2. On the desktop computer, simple OptaPlanner project calculating the
same Vehicle Routing problems has been created. On the mobile testing devices, graphical
part is excluded and only calculation itself is measured. The goal of these measurements is
to compare capabilities of Android devices with a standard desktop computer and it should
verify if Android devices are capable to use OptaPlanner.

Parameter Value

Device Notebook Lenovo ThinkPad T430s
CPU Intel Core i7-3520M 2.90GHz
RAM 16 GB
OS Fedora 21 64b

Table 7.2: Configuration of testing computer.

For both tests, three testing VRP files are used. They differ in the number of customers,
the number of vehicles and the capacity of vehicles. Parameters of the three used files are
shown in Table 7.3. The same files are also used in the application on the desktop computer.

VRP file Number of customers Number of vehicles Vehicle capacity

A-n32-k5.vrp 31 5 100
A-n64-k9.vrp 63 9 100
F-n135-k7.vrp 134 7 2210

Table 7.3: Testing files.

First test deals with a time of the first found solution. Each test case is measured
five times and the arithmetic mean value (µ) and standard deviation (σ) was calculated.
The values are written in Table 7.4. As can be seen, differences between the desktop
computer and the mobile devices are quite substantial. Thus, the more complex problems
the difference between them rapidly grows. It can be also observed that more powerful
mobile devices (Nexus 5 and 7) surpass older devices (Samsung Xcover and Sony Xperia)
with worse CPU and performance of emulator is approximately equal to the most powerful
mobile device (Nexus 5).

41

Device
A-n32-k5.vrp A-n64-k9.vrp F-n135-k7.vrp
µ σ µ σ µ σ

LG Nexus 5 0,162 0,034 0,561 0,031 2,760 0,063
Asus Nexus 7 2013 0,228 0,027 0,795 0,023 4,132 0,070
Samsung Galaxy Xcover 0,411 0,058 1,434 0,012 8,219 0,217
Sony Xperia active 0,755 0,136 2,705 0,027 16,334 0,062
Emulator 0,119 0,021 0,386 0,056 1,647 0,015
Desktop computer 0,075 0,006 0,130 0,013 0,284 0,017

Table 7.4: Time of first found solution in seconds (less is better).

Second test is displayed in Table 7.5 and it is based on 10 seconds time limit. After the
time limit the best soft score was saved and of five measurements the largest was selected.
Soft score shows a distance of the all vehicles which is traveled between customers and
depot as a negative value. A higher value means a smaller distance. Quite substantial
difference is appears again between mobile devices and desktop computer. Although the
Nexus devices have different parameters, they reached same results in two cases. The oldest
device (Sony Xperia active) did not reach any result in the appointed time limit for the last
case.

Device A-n32-k5.vrp A-n64-k9.vrp F-n135-k7.vrp

LG Nexus 5 -857311 -1597400 -1411795
Asus Nexus 7 2013 -857311 -1624700 -1411795
Samsung Galaxy Xcover -879018 -1631923 -1420843
Sony Xperia active -894553 -1633708 –
Emulator -855010 -1597400 -1411448
Desktop computer -787082 -1424148 -1292057

Table 7.5: The best soft score after 10 seconds time limit (larger is better).

Although there is a significant difference between the desktop computer and Android
phones or tablet, these mobile devices are still sufficiently fast to use OptaPlanner tool and
solve such kind of problem.

From testing and measuring, it can be said that portation of OptaPlanner is successful.
Standard Java score calculation of OptaPlanner is used and the calculation process is able
to achieve satisfying times on the real mobile devices. Also, there were no problems recorded
with OptaPlanner tool and its use.

7.2 Future work

This section describes future work which comes after this project. There are already plans
how to improve OptaPlanner integration to Android system and in addition, there are two
main projects which will be primarily processed.

OptaPlanner game Because OptaPlanner works on Android, there are many ways how
to use it. One of them is to create a simple game where user goal is to defeat the Opta-

42

Planner by finding shortest way for vehicles. By clicking on the customers user can create
road for vehicle to the depot. Meanwhile, time is measured and when user finishes his task,
OptaPlanner do the same and results are compared. This is the preliminary proposal of
the game that follows this work.

Drools As noted in Chapter 5, Drools package is not included in the poration due to
its size and complexity. There are plans to port Drools tool to Android separately. If the
portation is successful, it will be deployed and tested together with OptaPlanner. Although
Drools tool consumes a lot of computer resources, current mobile devices already have high
performance and it might be interesting to have such instrument on Android platform.

43

Chapter 8

Conclusion

Libraries of Java SE API and Android API were compared and it was found that they
differ significantly. Out of 38 Java SE API packages, 20 packages are completely missing
and 9 packages are incomplete in Android API. On closer inspection, it was revealed that
one of the OptaPlanner tool dependencies is missing in Android API. This missing package
is named JavaBeans.

For JavaBeans problem were suggested five solutions, namely: Repacking JavaBeans
redistribution to Java core namespace, Use of OpenJDK distribution source code, Use of
pruned rt.jar from OpenJDK distribution, Use of OpenBeans in OptaPlanner project and
Removing and replacing JavaBeans from OptaPlanner. Due to comparison of advantages
and disadvantages of individual solutions, it was selected a solution which does not change
source code of OptaPlanner tool, has a license that allows easy application and generally is
suitable for usage on Android.

Chosen solution for further progress consists of repacking of OpenBeans redistribution to
Java core namespace. During this process, new JAR file consisting of the missing JavaBeans
libraries is created and could be subsequently inserted into an Android project. However,
this faces the problem which does not allow to use classes of Java core namespace on
Android. The problem was resolved by using the Core library flag and the entire process of
the portation was designed, implemented and automated by Gradle language – the default
build tool for Android projects.

According to the written requirements, model Android Vehicle Routing Problem appli-
cation which uses the ported OptaPlanner was designed and implemented. The application
can use one of the three algorithms, set calculation time limit and solve attached problem
examples. Actual problem is always displayed in text and graphic form on the screen of the
application together with the newest found solution. The application is publicly available
on Google Play Store on the Internet and the presentation video was created and was pre-
sented along with solution how to use OptaPlanner on Android to developers community
on OptaPlanner website.

On the Vehicle Routing Problem example, comparative measurements that focus on
performance comparison between mobile devices and desktop computer were performed.
These measurements proved that OptaPlanner is working and can be used on Android.

The challenge for the future work is portation of Drools tool. It is standalone project
which can be used by OptaPlanner as one of the option for calculation the score and in the
future, it may be interesting to have such tool on Android.

44

Bibliography

[1] Grant Alleb. Android 4: Průvodce programováním mobilních aplikací. Computer
Press, 2013. ISBN 978-80-251-3782-6.

[2] Lucas Amador. Drools Developer’s Cookbook. Packt Publishing, 2012.
ISBN 978-1-84951-196-4.

[3] Oracle Corporation. Java standard edition 6 documentation. [online]. URL:
http://docs.oracle.com/javase/6/docs/, 2014 [cit. 2015-01-17].

[4] Oracle Corporation. The javabeans api. [online]. URL:
http://openjdk.java.net/groups/swing/beans/index.html, 2015 [cit.
2015-01-10].

[5] Oracle Corporation. Openjdk. [online]. URL: http://openjdk.java.net/, 2015 [cit.
2015-01-10].

[6] Benjamin J. Evans and David Flanagan. Java in a Nutshell. O’Reilly Media, Inc.,
2015. ISBN 978-1-449-37082-4.

[7] Apache Software Foundation. Apache harmony. [online]. URL:
http://harmony.apache.org/, 2010 [cit. 2015-01-10].

[8] Apache Software Foundation. Apache ant project. [online]. URL:
https://ant.apache.org/, 2015 [cit. 2015-05-24].

[9] Apache Software Foundation. Apache maven projec. [online]. URL:
https://maven.apache.org/, 2015 [cit. 2015-05-24].

[10] Code Google. Openbeans. [online]. URL: https://code.google.com/p/openbeans/,
2011 [cit. 2015-01-04].

[11] Code Google. Jar jar links. [online]. URL: https://code.google.com/p/jarjar/,
2012 [cit. 2015-01-04].

[12] Code Google. Madrobot. [online]. URL: https://code.google.com/p/mad-robot/,
2013 [cit. 2015-01-04].

[13] Google Inc. Android app developer resources. [online]. URL:
http://developer.android.com, 2014 [cit. 2015-01-04].

[14] Google Inc. Dashboards. [online]. URL:
https://developer.android.com/about/dashboards/index.html, 2015 [cit.
2015-05-23].

45

http://docs.oracle.com/javase/6/docs/
http://openjdk.java.net/groups/swing/beans/index.html
http://openjdk.java.net/
http://harmony.apache.org/
https://ant.apache.org/
https://maven.apache.org/
https://code.google.com/p/openbeans/
https://code.google.com/p/jarjar/
https://code.google.com/p/mad-robot/
http://developer.android.com
https://developer.android.com/about/dashboards/index.html

[15] Gradle Inc. Gradle. [online]. URL: https://gradle.org/, 2015 [cit. 2015-05-24].

[16] Red Hat Inc. Optaplanner – planning engine. [online]. URL:
http://www.optaplanner.org, 2014 [cit. 2015-01-04].

[17] Red Hat Inc. Drools. [online]. URL: http://www.drools.org/, 2015 [cit.
2015-01-10].

[18] Red Hat Inc. Kie group. [online]. URL: http://www.kiegroup.org/, 2015 [cit.
2015-05-25].

[19] Red Hat Inc. Optaplanner distribution. [online]. URL:
http://download.jboss.org/optaplanner/release/6.2.0.Final/

optaplanner-distribution-6.2.0.Final.zip, [cit. 2015-05-08].

[20] Red Hat Inc. Optaplanner user guide. [online]. URL:
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/

html_single/index.html, [cit. 2015-05-08].

[21] RTC Magazine. Android architecture. [online]. URL: http://rtcmagazine.com/
files/images/3420/RTC05_TS_Viosoft_Fig01_original.jpg, 2012 [cit.
2015-01-04].

[22] NEO-University of Málaga. Vehicle routing problem. [online]. URL:
http://neo.lcc.uma.es/vrp/, 2015 [cit. 2015-05-24].

[23] Neil Smyth. Android 4.4 App Development Essentials. CreateSpace Independent
Publishing, 2014. ISBN 978-1495358067.

[24] Jiří Vávrů and Miroslav Ujbányai. Programujeme pro Android. Grada Publishing,
2013. ISBN 978-80-247-4863-4.

46

https://gradle.org/
http://www.optaplanner.org
http://www.drools.org/
http://www.kiegroup.org/
http://download.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-distribution-6.2.0.Final.zip
http://download.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-distribution-6.2.0.Final.zip
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html
http://rtcmagazine.com/files/images/3420/RTC05_TS_Viosoft_Fig01_original.jpg
http://rtcmagazine.com/files/images/3420/RTC05_TS_Viosoft_Fig01_original.jpg
http://neo.lcc.uma.es/vrp/

Appendix A

Content of the DVD

• app/ – directory with APK file of the VRP application.

• text/ – directory with PDF file of this master’s thesis.

• video/ – directory with the presentation video.

• app-src/ – directory with source code of the VRP application.

• text-src/ – directory with LATEX source code of this master’s thesis.

• video-src/ – directory with source files of the presentation video.

• README.md – file with instructions.

47

	Introduction
	Java
	Java language
	Java platforms
	Java Standard Edition

	Android
	Introduction
	Architecture
	Android runtime
	Application structure
	Build process

	OptaPlanner
	Planning problem
	OptaPlanner terminology
	OptaPlanner configuration
	Modeling of planning problem
	Solver configuration
	Loading of problem data set
	Activation of Solver and acquiring the best solution

	Porting of OptaPlanner to Android
	Requirements for OptaPlanner portation
	Java API packages comparison
	JavaBeans problem
	Repacking of JavaBeans redistribution to Java core namespace
	Use of OpenJDK distribution source code
	Use of pruned rt.jar from OpenJDK distribution
	Use of OpenBeans in OptaPlanner project
	Removing and replacing JavaBeans from OptaPlanner

	Summary of approaches
	Design of the portation
	Implementation of the portation
	JavaBeans and Core library flag
	Gradle scripts

	Vehicle Routing Problem application
	Requirements for Android application
	Application features
	Android devices support

	Application design
	Application features
	Design of screens

	Application implementation
	Application structure
	Porting of Vehicle Routing Problem

	Graphical user interface
	Application screens
	Application components

	Testing and future work
	Testing
	Future work

	Conclusion
	Content of the DVD

