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Abstrakt
V této práci je rozvíjena existující metoda pro shape analýzu programů založená na lesních
automatech. Dále je také vylepšována implementace této metody, nástroj Forester. Lesní
automaty jsou založeny na stromových automatech, jejichž jednoduchou implementaci
Forester obsahuje. Prvním přínosem této práce je nahrazení této implementace knihov-
nou VATA, která obsahuje efektivní algoritmy pro reprezentaci a manipulaci stromových
automatů. Verze nástroje Forester používající knihovnu VATA se zúčastnila mezinárodní
soutěže SV-COMP 2015. Dále je verifikace založená na lesních automatech v této práci
rozšířena o predikátovou abstrakci a analýzu nalezených protipříkladů. Výsledek této
analýzy je možné využít následujícími způsoby. Prvním je určení toho, zda je nalezené
chyba reálná nebo naopak nepravá. Druhým je pak zjemnění predikátové abstrakce po-
mocí predikátů odvozených při zpětném běhu. Obě techniky byly také implementovány
v nástroji Forester. Na závěr je zhodnoceno zlepšení, které tyto techniky přinesly oproti
původní verzi nástroje Forester.

Abstract
In this work, we focus on improving the forest automata based shape analysis implemented
in the Forester tool. This approach represents shapes of the heap using forest automata.
Forest automata are based on tree automata and Forester currently has only a simple im-
plementation of tree automata. Our first contribution is replacing this implementation
by the general purpose tree automata library VATA, which contains the highly optimized
implementations of automata operations. The version of Forester using the VATA library
participated in the competition SV-COMP 2015. We further extended the forest automata
based verification method with two new techniques — a counterexample analysis and pred-
icate abstraction. The first one allows us to determine whether a found error is a real
or spurious one. The results of the counterexample analysis is also used for creating new
predicates which are used for the refinement of predicate abstraction. We show that both
of these techniques contribute to an improvement over the early approach.
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Chapter 1

Introduction

The growing number of applications of computer programs in the past few decades brings
the need for their greater safety and security. But it is not an easy task to guarantee that
software has the specified properties. The programs often go through many states during
the computations and it could be very time and space consuming or even impossible to
check whether no undesirable behavior may appear in any of the program runs. One of
the approaches to ensure the software quality is testing (and dynamic analysis) which is
based on running the program in different contexts with different inputs and matching
a program behavior and the outputs with the expected ones. This method can satisfy
the most of the software quality requirements and often covers the most of the program
behavior. On the other side, it is only possible to find the errors using testing, not to
prove their absence [7]. Finding some of the errors during testing also does not imply
the elimination of all of them.

The mentioned weakness of testing can be resolved by formal verification. Formal
verification aims at using rigorous mathematical methods to check whether a given system
meets a given specification [30]. There are three main branches of formal verification.
The first one is model checking which systematically explores the state space of a system
(e.g., a program) or its model to prove that it satisfies the verified property. The second
one is static analysis which is performed over a source code (or some modification of it)
of a system. It is done without a need of its explicit execution and it rather explores a
syntactic structure of the analysed program. One of the important and very widely used
approaches in static analysis is called abstract interpretation where the analysis is performed
by applying abstract transformers corresponding to the original program semantics in an
abstract domain. Abstract interpretation evolved from static analysis but since it deals
with semantics of programs, and since later approaches to model checking use abstraction,
boundaries of the two are rather unclear. The last approach is theorem proving. It proves
the program safety in the standard mathematical way — starting from axioms and using
inference rules to verify properties of the given system. Theorem proving can be partially
automated.

This work deals with a specific branch of static analysis called shape analysis which
focuses on verification of programs manipulating complex dynamic data structures (such
as different kinds of lists and trees), typically allocated on the heap. The checked prop-
erties are for example absence of invalid pointer dereference, that no invalid pointer is
freed (no invalid free) or that all allocated memory is freed during the program execution
(no memory leaks). There are different approaches to shape analysis with different ad-
vantages. The approaches based on separation logic [27, 2] provide great scalability. On
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the other hand, automata based approaches, particularly abstract regular tree model check-
ing (ARTMC) [3], are superior in their flexibility and generality (with the exception of
the most recent separation logic based methods [18]). This work focuses on a verification
procedure based on the concept of forest automata (FA) which combines the benefits of the
both mentioned approaches [10].

Forest automata have been introduced in [10] and they are an extension of finite tree
automata (TA). They are used as an abstract domain in a verification procedure which
performs symbolic execution of the analyzed program. A prototype of this verification pro-
cedure has been implemented as the Forester tool [23]. Forester verifies programs written
in C and it can detect safety violations such as invalid dereferences, invalid frees, mem-
ory leaks, and also reachability of an error line. It is capable of verifying non-trivial data
structures such as skip-lists of the second and the third level. However, the current im-
plementation is far from perfect. For instance, Forester currently does not fully support
the complete syntax of C and it also does not check whether a found error is real or spurious.
A general goal of this work is to improve Forester in the areas described further.

One of the problems of Forester is low modularity and maintainability of the code. The
first goal of this thesis is to improve it by replacing the underlying implementation of finite
tree automata in Forester by the VATA library — a library for manipulation with TA [20].
The VATA library implements very efficiently the most of state-of-the-art algorithms for
TA. It is better to implement the algorithms efficiently with implementation optimizations
only at one place (in VATA) than putting the effort to optimizing the implementation of the
same algorithms in Forester again. The library replacement so improves the maintainability
of Forester. Having the special encapsulated module for tree automata with a clear interface
brings more modularity by decreasing dependencies to the internals of the module. Creating
an interface between Forester and VATA will require refactoring of Forester.

Another weakness of Forester is the missing of the analysis of detected errors. Since
Forester uses abstraction to deal with unboudness of dynamic data structures a found
error can be spurious which is caused by overapproximating the set of reachable heap
configurations by abstraction. When this happens, the analysis of the detected error could
determine whether the error is a real or not. The results of the counterexample analysis
could be also used for refinement of the abstraction in the case the counterexample is
spurious. After the refinement, the analysis could be restarted with the refined abstraction
to avoid the same run leading to the spurious counterexample. This gradual refinement
of abstraction is called counterexample-guided abstraction refinement (CEGAR) [4]. The
second goal of this thesis is to design and implement the analysis of the counterexamples
and a refinement of the abstraction (when a spurious error is found) for forest automata
based verification. The method for analysing counterexamples is in this case backward run
and its results will be further used for refinement of predicate abstraction. Forester does
not currently use predicate abstraction but height abstraction because predicate abstraction
needs backward run for creating the new predicates for refinement. Height abstraction is
less precise and less flexible compared to predicate abstraction. Using predicate abstraction
would allow to analyse even more complex data structures such as red-black lists.

The outline of this master thesis is following. In Chapter 2, the preliminaries are
given. The verification procedure based on FA is covered in Chapter 3. Chapter 4 provides
description of the VATA library and Forester and Chapter 5 describes the implementation
of the version of Forester tool using the VATA library. The design and the implementation
of backward run and predicate abstraction is described in Chapter 6. Finally, Chapter 7
contains an overview of experimental evaluation and Chapter 8 summarizes this thesis.
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Chapter 2

Preliminaries

This chapter provides the theoretical foundations for this thesis. First, graphs, trees and
forests are defined along the automata accepting them in Section 2.1. Then the previously
defined concepts are further extended to hierarchical forests and automata in Section 2.2.
This section follows the definitions and the structure used in [13].

2.1 Graphs, Trees and Forests

Assume a alphabet Σ and a word w = a1 · · · an, we denote the i-th symbol of w from Σ as
ai. We denote dom(f) the domain of a total mapping f : A→ B and its range is denoted
by rng(f).

2.1.1 Graphs and Trees

A ranked alphabet is a finite set of symbols Σ and a related mapping # : Σ→ N assigning
to a symbol its rank. A (directed, ordered, labelled) graph is a total map g : V → Σ× V ∗
where V is a finite set of nodes. The items of the set Σ are in context of the graphs called
labels. The map g maps each node v ∈ V to:

1. a label α ∈ Σ that we denote by lg(v),

2. a sequence of successors (v1 · · · vn) ∈ V n for n ∈ N. We denote successors by Sg(v)
and vi is denoted by Sig(v).

Symbol lg(v) is such that #(lg(v)) = |Sg(v)|. We will omit the subscript g when no
ambiguity may arise possible.

A leaf of g is a node v ∈ V such that Sg(v) = ε. An edge of g is a pair v 7→ (a, v1 · · · vn)
where v, v1, . . . , vn ∈ V , a ∈ Σ such that g(v) = (a, v1 · · · vn). The in-degree of a node
v′ ∈ V in the graph g is the sum of its occurrences in the tuples t ∈ V ∗ get by g(v) for
all v ∈ V . We denote the in-degree of a node v ∈ V by idgg(v) and again we omit the
subscript g whenever it is possible. More formally, in-degree is defined as idg(v′) = |{(v 7→
(a, v1 · · · vn), i)) | v 7→ (a, v1 · · · vn) is an edge such that i ∈ {1, . . . , n} : v′ = vi}|. The joins
of g are nodes v ∈ V such that idg(v′) > 1.

A path from v ∈ V to v′ ∈ V is a sequence p = v0, i1, v1, . . . , in, vn where v = v0, v
′ =

vn and ∀j ∈ {1, . . . , n} : vj = Sij (vj−1) (informally, vj is the ij-th successor of vj−1).
The empty path has n = 0. The path p has length n denoted by length(p) = n. The path
p = u0, i1, u1, . . . , in, un is acyclic if ∀ui, uj ∈ p : i 6= j ⇒ ui 6= uj . The cost of the acyclic
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path p is the sequence i1, . . . , in. The path p is cheaper than path p′ iff the cost of p is
lexicographically smaller than that of p′. A node u ∈ V is reachable from a node v ∈ V iff
there exists a path from v to u or u = v. A node u ∈ V is a root of the graph g iff all nodes
v ∈ V are reachable from u. We use the term root also for a mapping root : g → V which
maps a graph to its root. A graph with the root is called rooted.

A tree t is a graph which is either empty, or it has exactly one root and ∀v ∈ V :
idg(v) ≤ 1 (informally, each node is a successor of at most one of the other nodes).

Example 2.1.1. We illustrate some terms related to the graphs and trees. Consider a
graph t in Figure 2.1 with V = {v1, v2, v3, v4, v5} and the alphabet Σ = {a, b} with a
ranking function # such that #(a) = 2 and #(b) = 0. Then the graph t is the mapping
{t(v1) 7→ (a, (v2, v3)), t(v2) 7→ (b, ()), t(v3) 7→ (a, (v4, v5)), t(v4) 7→ (b, ()), t(v5) 7→ (b, ())}.
The node v2, v4, v5 are leaves. An example of an edge is v1 7→ (a, (v2, v3)). A path is for
instance the sequence v1, 2, v3, 2, v5 what is the path from v1 to v5. Thus the node v5 is
reachable from the node v1. Since all nodes are reachable from v1 then v1 is a root of t. No
node has more then one incoming edge, hence t is a tree.

v1

v2 v3

() v4 v5

() ()

b

b b

a

a

Figure 2.1: A graph t that has attributes of a tree.

2.1.2 Forests

Without the loss of generality suppose that Σ∩N = ∅. A Σ-labelled forest is a sequence of
trees t1 · · · tn over (Σ∪{1, . . . , n}) where ∀i ∈ {1, . . . , n} : #i = 0. We suppose that the sets
of nodes of the trees t1, . . . , tn are disjoint. Root references are leaves labelled by i ∈ N.
The forest t1 · · · tn represents the graph ⊗t1 · · · tn that arises by interconnecting roots by
the related root reference. For instance, a root reference 2 in t1 would be replaced by the
root node of t2. Let us formalize the idea of the construction of ⊗t1 · · · tn. The graph
⊗t1 · · · tn contains an edge v 7→ (a, v1 · · · vm) iff ∃i ∈ {1, . . . , n} : ∃(v 7→ (a, v′1 · · · v′m)) ∈
edges(ti) : ∀j ∈ {1, . . . ,m} : vj = h(v′j) where edges(ti) is the set of all edges of the tree ti
and

h(v′j) =

{
root(tk) if v′j is a root reference with l(v′j) = k

v′j otherwise.
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Example 2.1.2. We illustrate the notion of forest. Consider a forest f in Figure 2.2. It
consists of three trees: t1 with the root u1, t2 with the root v1, and t3 with the root w1.
The alphabet Σ of the trees is the same as in Example 2.1.1 but f is defined over Σ∪{2, 3}
where 2, 3 denotes the root references to the roots u5 and v3 of the second and the third
tree.

We can obtain a graph ⊗t1, t2, t3 shown in Figure 2.3 from t1, t2, t3. The edges labelled
by root references are replaced by the edges leading to the roots of the referenced trees.

u1

u2 u3

() u4 u5

() ()

b

b 2

a

a

v1

v2 v3

() ()

b 3

a

w1

()

b

Figure 2.2: A forest f consisting 3 trees t1, t2, t3 with roots u1, v1, w1.

u1

u2 u3

() u4

()

b

b

a

v1

v2

()

b

w1

()

ba a

Figure 2.3: The graph ⊗t1, t2, t3 obtained from the forest f in Figure 2.2. The green edges
are the ones that were added to create the graph from the forest f .

2.1.3 Graphs and Forests with Ports

We extend the notion of graphs and forests with input and output nodes which are marked
by so-called ports. An input-output-graph (io-graph) is a pair (g, φ) (for brevity denoted as
gφ) where g is a graph and φ = (φ1 · · ·φn) ∈ dom(g)+ is a sequence of ports, φ1 is an input
port and φ2 · · ·φn is a sequence of output ports. The ports are unique in φ. The graph gφ
is called accessible if its root is the input port φ1.
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The set of cut-points cps(gφ) of a graph gφ consists of its ports and joins. Formally,
cps(gφ) = {v ∈ V | v ∈ φ ∨ idg(v) > 1}.

An io-forest is a pair f = (t1 · · · tn, π) such that n ≥ 1 and π ∈ {1, . . . , n}n is a sequence
of port indices, where π1 is an index of input port and π2 . . . π|π| is a sequence of the indices
of the output ports. As in the case of ports, the indices are unique. The io-graph ⊗f is
constructed from a forest f such that ⊗f = (⊗t1 · · · tn, root(tπ1), . . . , root(tπn)). The ports
of ⊗f are the roots of the trees indexed by the indices in π. This means that a node of the
graph pointed by π1 is an input port of ⊗f . The nodes (that were the roots of the trees)
pointed by the output port indices in π are the output ports of ⊗f .

Example 2.1.3. Recall the graph t from Figure 2.1. It can be extended to an io-graph
tφ by adding ports φ = (v1, v4, v5). The resulting io-graph tφ has the input port v1 and
the output ports v2, v3. Because v1 is the root, the graph tφ is accessible. The cut-points of
tφ are v1, v4, v5.

In Figure 2.2, we shown the forest f . This forest could be extended to an io-forest
fio = ((t1, t2, t3), π) by defining a sequence of the port indices π which could be e.g., (1, 3).
Then the graph ⊗fio is a pair (⊗(t1, t2, t3), (u1, w1)). The graph ⊗(t1, t2, t3) is the same as
in Figure 2.3. The input port u1 is indeed root(t1) and the output port w1 because it is the
root of the third tree in f and the index of the output port is 3.

2.1.4 Minimal and Canonical Forest

There are two properties of the forests, minimality and canonicity, that we will further
use. The properties make it possible to represent an io-forest in a unique way. An io-forest
f = (t1 · · · tn, φ) representing a graph ⊗f is minimal iff the roots of the trees t1, . . . , tn
correspond to the cut-points of ⊗f , so there exists a bijection between {root(tk) | tk ∈
{t1, . . . , tn})} and cps(⊗f). The minimal io-forest is hence a unique representation of ⊗f
up-to to permutations of t1, . . . , tn.

To be able to define truly canonicity representation of the forest f we define an order-
ing �p, so called canonical ordering, of the cut-points of ⊗f . The canonical ordering �p ⊆
cps(⊗f)× cps(⊗f) is defined as follows: c1 �p c2 ⇔ the cost of the cheapest path from φ1

(input port) to c1 is smaller than the cost of the smallest path from φ1 to c2. The io-
forest fc is canonical iff it is minimal, the trees t1, . . . , tn are ordered by �p, and ⊗f
is accessible. The canonical io-forest is then a unique representation of an accessible io-
graph. The canonical io-forest can be obtained by a depth-first traversal (DFT)[17] of ⊗f .
To make DFT traversal deterministic and hence the ordering of the trees unique we need
to assume that there is an ordering ≤Σ over labels Σ of ⊗f . The DFT then uses a stack
of nodes initialized with the input and output ports ordered by �p with the smallest node
on the top of the stack. The DFT is run over ⊗f . It visits the successors tuples of a node
in the order given by ≤Σ and the nodes in successors tuples are in their order in tuple. We
obtain canonical forest fc where trees are in the following order. The first ones in canonical
ordering are trees corresponding to the ports of f ordered by �p and the rest of the trees
is in the canonical ordering of the trees which is defined by the order of the DFT traversal
visit.
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2.1.5 Tree Automata

A (finite, non-deterministic, top-down) tree automaton (TA) is a quadrupleA = (Q,Σ,∆, R)
where

• Q is a finite set of states,

• Σ is a ranked alphabet,

• ∆ is a set of transition rules where transitions have a form (q, a, q1 · · · qn) where
q, q1, . . . , qn ∈ Q, a ∈ Σ, n ≥ 0 and #a = n. Alternatively, we write q

a−→ (q1 · · · qn) to
denote that (q, a, q1 · · · qn) ∈ ∆. The rule is called leaf rule when n = 0,

• R ⊆ Q is a set of root states.

We can symmetrically define bottom-up tree automata as a quadruple B = (Q,Σ,∆, F )
where

• Q is a finite set of states,

• Σ is a ranked alphabet,

• ∆ is a set of transition rules where transition has a form (q1 · · · qn, a, q) where
q,q1, . . . , qn ∈ Q, a ∈ Σ, n ≥ 0 and #a = n. We can again write (q1 · · · qn)

a−→ q
to denote a (q1 · · · qn, a, q) ∈ ∆. For n = 0 we call the rule leaf rule,

• F ⊆ Q is a set of final states.

We further consider top-down tree automata unless stated otherwise.
Their semantics of TA is defined following as follows. A run of A over a tree t is

mapping ρ : dom(t) → Q such that ∀v ∈ dom(t) ∃q a−→ (q1 · · · qn) ∈ ∆ : q = ρ(v) ∧ ∀i ∈
{1, . . . , |S(v)|} : qi = ρ(S(v)i). We use t⇒ρ q to denote that ρ is a run of A over a tree t s.t.
ρ(root(t)) = q and we use t⇒ q to denote that exists t⇒ρ q. The language of a state q ∈ Q
is defined as L(q) = {t | t⇒ q} and the language of A is defined as L(A) =

⋃
q∈R L(q).

Example 2.1.4. Consider a TA A = (Q,Σ,∆, R) where Q = {q1, q2, q3, q4, q5}, Σ =

{a, b}, such that #(a) = 2,#(b) = 0, R = {q1}, and ∆ = {q1
a−→ (q2, q3), q2

b−→ (), q3
b−→

(q4, q5), q4
b−→ (), q4

b−→ ()}. Then the map ρ such that ∀i ∈ {1, . . . , 5} : ρ(vi) = qi is a run A
over the tree t from Figure 2.1. Since ρ(root(t)) = ρ(v1) = q1 then t ∈ L(q1) and because
q ∈ R it also holds t ∈ L(A).

2.1.6 Forest Automata

A forest automaton (FA) over alphabet Σ is a pair F = (A1 · · ·An, π) where A1 · · ·An is a
sequence of tree automata defined over the alphabet Σ∪{1, . . . , n} and π = I1 · · · In, where
I1, . . . , In ∈ {1, . . . , n} is a sequence of port indices. There are two kinds of languages
related to FA. The first one is a forest language obtained by Cartesian product of the
languages of particular TA (and port indices) of FA and hence the forest language is a set
of the io-forests. The other is the graph language obtained by connecting the io-forests
from the forest language to io-graphs. Formally, the forest language of the FA F is the set
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of io-forests Lf (F ) = L(A1) × . . . × L(An) × {π}. Note that it is necessary to add to the
Cartesian product also the sequence of indices to preserve the structure of io-forests and
hence to be able to construct graph language of F .The graph language of F is the set of
io-graphs L(F ) = {⊗f | f ∈ Lf (F )}. We say that F respects canonicity if ∀f ∈ Lf (F ) :
f is canonical.

One of the most important operations over forest automata used in the program analysis
is checking graph language inclusion of two forest automata. This operation is performed
to check whether symbolic execution reaches a fixpoint. Checking inclusion of languages of
forest automata that respect canonicity can be done component-wise, i.e. checking language
inclusion of their tree automata one by one.

Lemma 2.1.1. Let F 1 = (A1
1 · · ·A1

n1
, π1) and F 2 = (A2

1 · · ·A2
n2
, π2) be two canonicity

respecting FA. Then L(F 1) ⊆ L(F 2) iff

• n1 = n2

• π1 = π2

• ∀i ∈ {1, . . . , n1} : L(A1
i ) ⊆ L(A2

i )

Proof can be found in [11].

Example 2.1.5. Consider the io-forest fio = ((t1, t2, t3), (1, 3)) from Example 2.1.3. The
tree t1 (which is the same as the tree t) belongs to the language of TA A defined in Ex-
ample 2.1.4. We further have a TA B = (QB,Σ,∆B, RB) where QB = {p1, p2, p3}, Σ

is same as in Example 2.1.4, ∆ = {p1
a−→ (p2, p3), p2

b−→ (), p3
b−→ ()} and R = {p1}.

The TA B contains t2 in its language. Finally, consider a TA C = (QC ,Σ,∆C , RC)

where QC = {r1}, Σ is again the same as before, ∆ = {r1
b−→ ()} and R = {r1}. A set

L(C) contains t3. Putting all automata together we can construct the forest automaton
F = ((A,B,C), (1, 3)). The io-forest fio is in the forest language Lf (F ) of F because it
belongs to L(A) × L(B) × L(C) × {(1, 3)}. Hence the graph ⊗fio = (⊗(t1, t2, t3), (u1, w1))
(shown in Example 2.1.3) is in the graph language L(F ).

2.2 Forest Automata of Higher Level

The FA defined above can represent data structures, like singly-linked lists or trees, by
already defined forest automata. The hierarchical FA introduced in this section extend
expressive power of basic FA. They are able to represent the new classes of data structures
(further described in 3.2.2) like doubly-linked lists or trees with root pointers. An alphabet
of such forest automaton contains so-called structured labels (described in Section 2.2.1)
and another FA (described in Section 2.2.3).

2.2.1 Structured Labels

To easy definition of FA of higher level we introduce structured labels. Let Γ be a ranked
alphabet of sub-labels with defined total ordering @ which is called sub-labels ordering. Let
g be a graph defined over 2Γ where A denotes a label of g and ∀A ⊆ Γ : #A =

∑
a∈A #a.
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The graph g has edges in the form v 7→ (A, v1 · · · vn) where A ⊆ Γ and #A = n. We
denote such edge by e. Each edge e consists of sub-edges that creates sequence e〈1〉 = v 7→
(a1, v1 · · · v#a1) · · · e〈n〉 = v 7→ (am, vn−#am+1 · · · vm). We denote the i-th sub-edge of e in
g by e〈i〉 = v 7→ (ai, vk · · · vl) where i : 1 ≤ i ≤ m. We use SE(g) to denote all sub-edges of
the graph g. A node v of a graph is isolated if it is not part of any sub-edge. Formally, a node
v is isolated iff @ e〈i〉 = v 7→ (ai, vk · · · vl) ∧ @ e〈i〉 = v′ 7→ (ai, vk · · · vl) : v ∈ {vk, . . . , vl}.
A graph g is unambiguously determined by SE(g) if g has no isolated nodes.

2.2.2 Tree Automata over Structured Labels

Since we have already extended the notion of labels to the structured ones, we also extend
tree automata to the ones over such labels. A TA over structured labels is quadruple
A = (Q, 2Γ,∆, R) where Q, Γ and R has the same meaning as in the case of basic TA and
∆ is a set of transition rules with the rules in the form (q, {a1, . . . , am}, q1 · · · qn) where
q, q1, . . . , qn ∈ Q, {a1, . . . , am} ∈ Γ. Each rule could be interpreted as a sequence of the
rule-terms d〈1〉 = q 7→ (a1, q1 · · · q#a1) · · · d〈n〉 = q 7→ (am, qn−#am+1 · · · qn) and we denote
the i-th rule term of sequence again by d〈i〉 where i ∈ {1, . . . ,m},

2.2.3 Forest Automata of Higher Level

Following the extension of TA, we define also FA over the structured labels. Informally,
a forest automaton of a higher level can have another forest automata (of lower lever) as
the symbols on its edges. This makes it possible to build a hierarchy of forest automata.
We explain the hierarchy using induction. Let start from the forest automata of level 1.
Forest automata of level 1 can have only the structured labels from 2Γ in alphabet but not
forest automata. They forms the set Γ1. Then all forest automata of level i form the set
Γi. A forest automaton F of level i+ i is defined over the ranked alphabet 2Γ∪∆ where ∆
is a subset of forest automata of level i which are called boxes of F . Finally, the set of all
forest automata of all levels

∑
i≥0 Γi is denoted by Γ∗ and it is ordered by a total ordering

@Γ∗ coming the sub-labels ordering @.
We define an operation sub-edge replacement which helps us to define semantics of forest

automata of higher level. Informally, the method removes a sub-edge and matches nodes
at its left-handed and right-handed side with a new graph serving like a substitution of the
sub-edge by a graph. This operation will be further used for a replacement of sub-edge of
FA with by a graph represented by FA of lower level.

Formally, let g be a graph with an edge e ∈ edges(g) and sub-edge e〈i〉 = v1 →
(a, v2 · · · vn). Let g′φ be an io-graph such that |φ| = n. We assume that dom(g) ∩ dom(g′) =
∅. The sub-edge e〈i〉 could be replaced by g′ if ∀j ∈ {1, . . . , n} : lg(vj) ∩ lg′(φj) = ∅ (this
conditions checks whether there is no successor of vj and φj reachable over the same label
from the both nodes). The result of replacement (if it is possible to do it) is denoted as
g[g′φ/e〈i〉]. It is the graph gn in the sequence g0 · · · gn of graphs which are defined as follows:

• SE(g0) = SE(g) ∪ SE(g′) \ {e〈i〉}.

• ∀j ∈ {1, . . . , n} : the graph gj is obtained from gj−1 by following procedure

1. Deriving a graph h by replacing the origin of the sub-edges of the j-th port φj
of g′ by vj .

2. Redirecting edges leading to φj to vj , i.e., replacing all occurrences of φj in
rng(h) by vj
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3. Removing φj .

We apply the concept of sub-edge replacement to the forest automata of higher level
now and introduce following two procedures over FA.

• Unfolding of a graph g is replacement of its sub-edge with a symbol, which is an
FA F ′, by a graph from L(F ′). Formally, sub-edge e〈i〉 of the graph g has a symbol a
and this symbol is a FA F ′ (so this symbol is a box) and g′φ ∈ L(a) then h = g[g′φ/e〈i〉]
is an unfolding of g. We use g ≺ h to denote that h is unfolding of g.

• Folding is a replacement of g′φ by e〈i〉 in h obtaining g. So we can say that g′φ is folded
to e〈i〉.

A transitive reflective closure of ≺ is denoted by ≺∗. A set of all graphs obtained
by repeated application of unfolding from a graph g over ranked alphabet Γ is called Γ-
semantics. Formally defined, it is the set of graphs g′ such that g ≺∗ g′. We denote it as
JgKΓ or just simply JgK when it is clear which alphabet we speak about. Finally, Γ-semantics
is defined for a FA F of higher level as JF K =

⋃
gφ∈L(F )(JgK× {φ}). Note that the meaning

of L(F ) and Lf (F ) has not been changed so the both sets (languages) contain graphs (or
forests) over Γ.

When we recall the definition of canonicity respecting FA we will find that it is applicable
also for FA of higher level. A FA F is canonicity respecting if ∀f ∈ Lf (F ) : f is canonical.
Since definition of canonical FA is not affected by extending the labels to the structured
ones the meaning of canonicity is the same as for basic FA. The language inclusion checking
is again possible in the component-wise way like in the case of basic FA, as it is proved
in [11]. However, the testing language inclusion with the same algorithm used for the
non-hierarchical FA is sound but incomplete because the structured labels are compared as
uninterpreted symbols and their semantics is not considered.
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Chapter 3

Forest Automata based Verification

Consider programs manipulating dynamic data structures. These programs can change
the shape of the heap (and so reach another heap configuration) by performing operations
like allocation of a new memory node on the heap, freeing an existing memory node, updat-
ing the references between memory nodes or other pointer operations. Since dynamic data
structures used in these programs can be unbounded, the number of potentially reachable
heap configurations is infinite. However, we use FA to represent this infinite state space by
forest automata in a finite way. Then the shape analysis can be done over the forest au-
tomata representing the reachable heap configurations to discover whether no undesirable
behavior like a dereference of an uninitialized pointer can happen.

This chapter provides an overview of the shape analysis based on forest automata in-
troduced in [12]. First, a heap representation using FA is described and then we provide an
overview of the symbolic execution and also describe the method in context of the frame-
work of abstract interpretation.

3.1 Heap Representation

It is possible to view a heap (more precisely a single heap configuration) as a (directed)
graph where each allocated heap cell corresponds to a node in the graph [15]. The heap cells
consists of pointer selectors and data selectors. A pointer selectors can point to another
graph node, to the null value or it can be undefined. A data selector is related to data
from some finite data domain. Such heap graph can be viewed as an io-graph where the
pointer variables pointing to the nodes of the heap are the ports of the io-graph. The
io-graph can be accepted by a forest automaton as a member of its graph language. Forest
automata are able to represent of the reachable heap graphs by their graph languages.
The data structures with heap graphs with unbounded number of cut-points (e.g., doubly-
linked lists) are represented by hierarchical forest automata. In general, the hierarchical
forest automata are able to represent more data structures down to their higher expressive
power.

Let us formalize the idea given above. We denote a pointer selector by PSel, a data
selector by DSel and data domain by D. A single heap configuration is an io-graph gst over
the ranked alphabet of the structured labels from 2Γ with the sub-labels from the ranked
alphabet Γ = PSel ∪ (DSel×D) having the ranking function that assigns 1 to the pointer
selectors and 0 to the data selectors. The values of data selectors are stored in the structured
labels as the sub-labels from DSel×D. The internal structure of a memory cell in the heap
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is reflected by the structured label lg(v) of a node v representing the memory cell. A null
value is represented by a node null with lg(null) = ∅. The undefined selectors of a memory
node v have no special syntax so they are not presented in the structured label lg(v).

Not only the allocated memory on the heap is modeled by forest automata in the
verification procedure but also a stack frame of the actually analyzed function of the original
program is represented by forest automata. Particularly, the io-graphs and forest automata
have from their definitions exactly one (index of) input port and just the one input port sf
keeps the information about the stack frame.

Example 3.1.1. We illustrate described principle of heap representation with an example
taken from [13]. We consider a singly-linked list whose items are data structures containing
pointers to a next item and also integer data variable. Written in C:

struct SLL {

struct SLL* next;

int data;

};

Consider an io-graph g representing a heap and an allocated cell of this singly-linked list
on the heap with value 13 in data variable and pointer to a cell named snext in the next
variable. The memory cell can be represented by a node s with following label lg(s) =
{nextg(snext), (datag, 13)()}. The pointer selector nextg ∈ PSel representing the pointer
variable next from the SLL structure has really the rank 1 and the one successor state is
snext. The sub-label (datag, 13) ∈ DSel × D representing data variable from SLL structure
has the rank 0 and has no successor what is denoted by ().

3.2 Symbolic Execution

So far we described the representation of heap configurations using forest automata. Now
we will describe how the forest automata representation is computed for each point of
the analysed program. FA-based verification procedure is a standard abstract interpreta-
tion [6]. The concrete domain is a set of heap graphs. To each program location can be
assigned a set of pairs (σ,H) where H is a single heap configuration and σ is a mapping
that maps variables to the nodes in H, to null or to an undefined value. The abstract
domain is a set of forest automata. The verification procedure computes for each program
location a finite set of pairs (σ, F ) (called abstract configuration) where F is a hierarchical
forest automata of higher level respecting canonicity and σ maps again each variable to
null or to undefined value or to an index of TA in F . Since FA are not closed under union,
it is not possible to represent the sets of heaps by single FA. Therefore a set of FA is needed
to represent the set of all reachable heap configurations at one program location.

Let us now describe the notion of abstract transformers. The function fop(gst) is re-
lated to an operation op of the analysed program. This function models semantics of op
in the concrete domain in such way that fop(gst) transforms an io-graph representing the
heap configuration before and after the execution of the concrete operation op. The ab-
stract transformers τop are defined for each concrete operation op reflecting the semantics
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of fop(gst). They transform a FA S representing the heap in abstract domain to a resulting
FA S′ = τop(S) such that

⋃
F ′∈S′JF

′K = {fop(gsf ) | gsf ∈ JF K ∧ F ∈ S }.
The verification starts from an initial abstract configuration that consists of an FA for

the initial heap configuration representing an io-graph gsf where g consists of two nodes.
The first one is null and the second one is the empty stack frame sf with lg(sf ) = ∅.
The sequence of abstract transformers related to the program statements is then iteratively
applied to the abstract configurations. The process of applying abstract transformers over
the abstract domain is called symbolic execution.

The abstract transformers related to a program location are applied iteratively until
abstract configurations reach fixpoint. Each iteration consists the following steps:

1. The sets of abstract configurations at each program point are updated by applying
the abstract transformers following these steps:

(a) Some boxes of FA in abstract configuration are unfolded to materialize the ac-
cessed parts of heaps by abstract transformers. This step is called unfolding.

(b) The abstract configuration is updated by the abstract transformer.

(c) New boxes are learnt by the method described in [15] and boxes are applied
again. This is repeated until no new boxes are found.

(d) FA are transformed to the canonicity respecting form.

2. At junctions corresponding to the beginning of the loops the union of the possible
heap configurations of the particular branches is followed by widening. This requires
checking language inclusion between sets of FA to test whether a fixpoint has been
reached. It is necessary to transform the FA to canonicity respecting form before
inclusion checking.

Widening currently consists of repeating the following two steps to each F in the abstract
configurations of a junction point until the fixpoint is reached:

1. The boxes of F are folded.

2. Abstraction — currently based on the framework of abstract regular (tree) model check-
ing [3].

We will further describe some parts of the verification procedure in detail. Normalization
transforming FA to canonicity respecting FA is described in Subsection 3.2.1. Subsection
3.2.2 describes how the boxes are used in the verification procedure. Finally, the methods
of abstraction over FA are described in 3.2.3.

3.2.1 Normalization

Normalization performs transformation over a FA F = (A1 · · ·AN , π) and its result is
canonicity respecting FA. Normalization consists of the following steps:

• We merge TA of F into a form where the roots of forests accepted by F are cut-points
only. Consider there is a TA A which accepts trees with roots that are not cut-points
of the related graph from L(F ) and a TA B that contains the root references to A.
A is then connected to B at the referenced places and so a new TA BA = (QA ∪
QB,Γ,∆A+B, RB) is created. The set of transition rules ∆A+B is ∆A∪∆B where the
transitions q → a(q1 · · · qi · · · qn) ∈ ∆B are substituted by q → a(q1 · · · qa · · · qn) ∈ ∆B,
where qi is a root reference to A and qa is the root of A.
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• TA of F are reordered by canonical ordering of cut-points.

• We obtain F in form in which the roots of trees from the forest language correspond to
the cut-points respecting the canonical unique ordering. It meas that ∀i ∈ {1, . . . , n}
and for all accepted forests f = (t1, . . . , tn) holds one of the following conditions:

– The root of ti is the j-th cut-point in the canonical ordering of the cut-points
of the graph of the accepted forest ⇒ It is the j-th cut-point in the canonical
ordering of all accepted forests.

– Otherwise, the root of fi is not a cut-point of any accepted forest.

3.2.2 Boxes

There can be infinitely many cut-points in the graphs representing the heaps. For instance
each node of doubly linked list is a cut-point. These heaps cannot be represented by the
plain forest automata since the tree decomposition of such graph is not possible. This can
be resolved by employing the boxes (box is a symbol of alphabet of forest automata of higher
level which is also forest automata as it was defined in Chapter 2). Since it is possible for
FA to use other FA as symbols the repeating sub-graphs of the heap are folded to the boxes.
They are further used as labels and thus bound cut-points. When an abstract transformer
needs to access a graph described by a FA hidden in the box, then the unfolding is done.

The boxes can be learnt during the analysing of a program automatically by the method
proposed in [15] or it can be given to the analyzer manually by a user [10].

3.2.3 Abstraction over Forest Automata

Forest automata are able to handle the infinite state space rising from the possible unboud-
ness of the mentioned dynamic data structures by representing them in a finite way. The
finite representation is possible due to abstraction over forest automata. The abstraction
merges some states and so creates the cycles in transitions what make forest automaton
able to represent an infinite state space. Moreover, the abstraction increases the probability
of the termination and accelerates the method. The abstraction over forest automata is
based on the framework of abstract regular tree model checking [3].

The abstraction merges states of forest automaton that are equivalent according to
a given equivalence relation over the states of forest automaton. Since the abstraction is
defined for a single tree automaton it is performed component-wise over a forest automaton.
Formally, the abstraction α over a tree automaton M = (Q,Σ,∆, R) is a function α : Q→
Q/∼M such that α(q) = [q]∼M where ∼M⊆ Q × Q is an equivalence relation. We denote
α(M) the tree automaton obtained by applying α to Q. It holds that |Q/∼M | ≤ |Q| and
also that L(M) ⊆ L(α(M)).

The forest automata based verification is currently implemented (in the Forester tool)
employing height abstraction. This abstraction merges the states with the equivalent lan-
guages upon to a given tree height. The range of abstraction function is the set of the
equivalence classes of the relation ∼nM . The relation ∼nM is therefore defined as follows:
∀q1, q2 ∈ Q : q1 ∼nM q2 ⇔ L≤n(M, q1) = L≤n(M, q2) where L≤n(M, q) is a language con-
taining sub-trees obtained from trees of L(M, q) by their restriction up-to height ≤ n.

The abstraction over forest automata overapproximates the set of the reachable config-
urations of a program (formally, L(M) ⊆ L(α(M))). This it can led to a detection of a
spurious counterexample which is not present in an original program but it is caused by
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a heap configuration created by abstraction. In [4], the counterexample-guided abstraction
refinement (CEGAR) for avoiding a spurious counterexample was proposed. It consist two
steps. The first is detection of spuriousness of an error found by the analysis. When it is
proved that the error is spurious then the second step is refinement of the abstraction α to
abstraction α′ such that L(α′(M)) ⊆ L(α(M)). The program analysis is restart using the
refined abstraction α′ what may prevent reaching the detected spurious counterexample
again.

In the case of height abstraction this refinement is done by increasing the height n.
However the refinement does not guarantee that the detected spurious counterexample will
not be detected again the next run. Moreover, no automatic refinement and also not even
spurious counterexample detection have been implemented in the Forester tool yet. This
will be resolved by implementing backward run and predicate abstraction what is described
later in Chapter 6. Predicate abstraction is refined by the predicates learnt from backward
run what prevents reaching the spurious error again and so provides finer refinement then
height abstraction.
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Chapter 4

The VATA Library and Forester

As we mentioned in the introduction, FA based verification is implemented by the tool
Forester. Since FA are closely related to TA, as it was shown in Chapter 2, Forester
also depends on an implementation of TA. It currently has its own implementation of
TA providing the operations needed during the verification procedure. This library has
the strong dependencies with the rest of code. The other classes depend to the library
data types, manipulates its data members and so on. The changes in this library are very
difficult due to these dependencies. Encapsulating of the library to a module with an clearly
defined interface can improve the overall quality of Forester code. It is also not practical
to maintain and further develop such one purpose library. It is not general to be used
anywhere else. But the development in algorithms for TA, especially the one for checking
inclusion of TA languages, goes on and an implementation of the new algorithms brings the
greater efficiency. A new efficient algorithm also often achieves greater efficiency than an
implementation optimization of an existing algorithm. Therefore the replacement of library
by a general purpose one can bring the advantages such as maintainability and modularity.

With respect to the mentioned facts we decided to replace the mentioned Forester
TA implementation by the VATA library. The VATA library is a very efficient, general
purpose, library which provides implementation of the standard operations over TA like
union or intersection. It mainly aims at implementing the state-of-the-art algorithms [1]
for language inclusion checking efficiency of which is crucial for performance of Forester.

This chapter provides a brief description of the VATA library and the Forester tool.

4.1 The VATA Library

The VATA library is an open source library for nondeterministic tree automata implemented
in C++. Its main application is in the field of formal verification. VATA is licensed under
GPL, version 3, and it can be obtained from its official website [25]. To the our best
knowledge, it is the only library implementing the state-of-the-art algorithms for checking
inclusion of NTA languages, which makes it the only suitable choice for use as the backend
library of Forester.

4.1.1 Design

The VATA library currently provides explicit encoding and also semi-symbolic (top-down
and bottom-up) encoding using multi-terminal binary decision diagrams (MTBDD) of NTA.
It has been designed to be easily extensible by other encodings. The library provides API for
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Figure 4.1: The main concept of the VATA library. Figure is taken from [20].

creating and manipulating NTA and also the command line interface (cli) build around the
API for experimenting with tree automata defined in a text format directly from command
line. The main concept of the design of the library is given in Figure 4.1. There are the
three main parts in the library design:

1. Parsers — Parsing an input automaton from a text file. Timbuk [26] is currently
the only one supported format for parsing the input automata.

2. Serializers — Serializing an automaton to a text file. Timbuk format is again the only
supported format.

3. Automata encodings — The particular encodings of NTA. An encoding should consists
of a core module implementing NTA representation and also the operations over NTA
in this encoding.

A program (e.g., cli of VATA) employing the three parts of the VATA library works as
follows. An input automaton is loaded by one of the parsers to an intermediate representa-
tion. The wrapping program chooses an internal encoding of NTA into which the automaton
is translated from the intermediate encoding (note that it is also possible to create automa-
ton in the chosen encoding directly using API provided by VATA). The automaton is then
processed by applying the operations implemented by a module of the chosen encoding.
Finally, the automaton can be serialized to an output format. When one wants to add her
own encoding, then she needs to implement only the core of the encoding (with an API
for creating the automaton itself) and needed operations over TA, and can employ already
implemented parses and serializers of VATA.

4.1.2 Implemented NTA Encodings

We will now describe the two encoding of TA in the following subsection.
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Figure 4.3: Semi-symbolic encoding of tree automata.

The explicit encoding of NTA transition relation is a hierarchy of hash tables, as it is
shown in Figure 4.2. The first level of the hash tables hierarchy (top-level look-up tables)
maps each state q to the second level of the hash tables hierarchy (transition cluster). It
stores symbols that appears at a transition with q as the left-handed side. Each symbol a
in a transition cluster is mapped to a pointer to a set in the third level of hierarchy (sets
of pointers to tuple). The set contains pointers to the tuples which are at the right-handed
sides of the transitions with q at the left-handed side and with a as the symbol. The tuples
are stored at a set where every tuples is stored only once. This hierarchy allows one to
share the part of the transition relation between different automata what brings the higher
space efficiency. Module for explicit encoding also stores explicitly the set of the final states
of the NTA. On the other hand, it does not explicitly store a set of all states because it can
be obtained from the transition relation.

The other encoding is the semi-symbolic one, based on VATAs own of the MTBDD
package. This encoding is efficient mainly for TA with large alphabets. The main principle
of the semi-symbolic encoding is shown in Figure 4.3. First of all it is necessary to dis-
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Explicit Semi-symbolic
Operation top-down bottom-up top-down
Union + + +
Intersection + + +
Complement (experimental) + + +
Removing useless states + + +
Removing unreachable states + + +
Simulation + − −
Downward Inclusion + + −
Upward Inclusion + − −
Simulation over Labeled Transitions System + − −

Table 4.1: Table of supported operations over NTA by particular encodings implemented
in the VATA library. Table is taken from [16].

tinguish between (a) top-down and (b) bottom-up variants of this encoding. The first one
maps each state q of a NTA using MTBDD to the sets of the tuples of states such that that
it is possible to make transition from q under a symbol a to a tuple in appropriate set (each
set of tuples is dedicated to one symbol under which it is possible to make transition from
q). The former one symmetrically maps each n-tuple (q1 · · · qn) of a NTA using MTBDD to
the sets of states. Each such a set S is dedicated to a symbol a of the NTA and it contains
states such that there exists a transition with (q1 · · · qn) at the right-handed side and symbol
a and state from the set S at the left-handed side. The final state set of a NTA is again
represented by explicit set in the both variants. A state set is not stored explicitly because
one can obtain it from the transition relation. The symbols are encoded (as binary strings)
in MTBDD. The more detailed description of theory and implementation of semi-symbolic
encoding and MTBDD can be found in [19].

All of the mentioned encodings currently support efficient language inclusion checking
using the algorithms from [1]. On the other hand, the other operations are not currently
implemented by all encodings. The full enumeration of the supported operations for the
particular encodings is given in Table 4.1.

4.2 Forester

Forester is an open source for verification of programs manipulating complex dynamic data
structures tool written in C++. It currently supports the analysis of programs in the C
language. Forester is distributed as a GCC plugin under GPL license, version 3, and it can
be obtained from its official website [23].

4.2.1 Design

Forester is implemented as a GCC plugin however it does not directly analyze intermediate
code of GCC called GIMPLE. It uses the Code Listener infrastructure [8] that provides a
fronted over the GIMPLE format.

Let us describe the verification procedure done by Forester (shown in Figure 4.4) and
the high level conceptual design of Forester (which is shown in Figure 4.5) and the relations
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Figure 4.4: High level overview of Forester program analysis.

between its modules. The implementation of Forester is not explicitly separated into stand-
alone compilation modules. The notion of the modules used in the following text is rather
an abstract one, serving to a reader basic summary of the Forester design. A module
typically is e.g., a set of closely related classes with a similar purpose. Forester starts
the analysis by translation of the intermediate code of GCC in representation provided by
Code Listener to its own microcode. This is done mainly by Forester Compiler module.
The microcode instructions of Forester are implemented by module Microcode Instructions.
Each program statement is represent by one or several Microcode Instructions associated
with the abstract transformers. Compiler creates a list of Microcode Instructions over which
the Symbolic Execution is performed. Symbolic execution run the microcode instructions
(abstract transformers) which manipulates Symbolic State and Forest Automata included
in the symbolic states. When Forester detects an error the symbolic execution is aborted
and the analyzed program is claimed incorrect. During the symbolic execution, Forester
checks whether there is no left garbage. If the program is garbage free and without errors
then a shape invariant has been found and the analyzed program is determined as correct.

Symbolic execution requires Symbol Context which is created for each function and also
for global space. It keeps information about the variables used in the current scope, the
function arguments and the stack frame layout. A symbolic state provides information
about the state of the heap, represented by FA, and it also keeps the information about the
corresponding microcode instructions.

Forest Automata module provides the methods for manipulation of FA during the ver-
ification procedure. The operations such as normalization or abstraction over FA are not
the part of the module containing FA implementation but are provided as classes taking
FA as parameters. So these operations can be understood as another module Operations
over Forest Automata. Forester currently has its own implementation of Tree Automata.
It is very lightweighted and contains the operations optimized for the purposes of Forester.
One of them is an operation for language inclusion checking. It uses the simulation relation
for acceleration because the efficiency of inclusion checking is crucial for the performance.
The advantage of this implementation is its simplicity and the efficiency raising from the
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Figure 4.5: Conceptual design of Forester.

optimization the implementation to suit the needs of Forester.
A real implementation is much more complicated (e.g. Forest automata are implemented

by two classes: FA and FAE ) and full of the technical details. A full description of the
implementation is also not the aim of this text therefore we provide just this conceptual
view of the design.

It was already mentioned that the substitution of the underlying TA implementation
with the VATA library could bring some improvements. The first one is the easier mainte-
nance of the library where the state-of-the-art algorithms are implemented and optimized in
comparison with the one purpose implementation. Since VATA and Forester are developed
by the same developers it is also easy to add to VATA the operations needed by Forester.
The clearly defined interface between TA library and the rest of Forester also improves the
code quality of Forester in the sense of modularity, maintainability and code organization.
These benefits led us to implement the version of Forester using VATA, further described
in Section 5.

4.2.2 Implementation of Forest Automata Concepts

This subsection describes the implementation of the forest automata based verification pro-
cedure in Forester. The core of the forest automata module is class FA. The implementation
corresponds with the definitions given in Chapter 2. Class FA has a data member repre-
senting a vector of tree automata (t1 · · · tn). It also has a data member keeping a reference
to an automaton representing the global variables and a reference to the automata repre-
senting the local variables of the actually executed function. The basic operations over an
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FA (like adding or removing a TA from an FA) are encapsulated in class FA. The other
class providing operations over FA is class FAE (Forest Automata Extension).

The labels of the TA transitions are represented by the structure NodeLabel. It is
defined as a tuple NL = (T, V ). This structure contains a data member T determining the
type of the root node of a transition (whether it is a general node, a data node or a node
containing a vector of data). A value V related to the type of the node is also stored as a
data member of the structure.

As it was already mentioned, the forest automata are further used in the representation
of a symbolic state. An implementation of the representation of a symbolic state is in
class SymState. This class keeps a reference to a Forester microcode instruction I which
is executed at the symbolic state. It has a data member that is a pointer to a forest au-
tomaton F (an instance of class FAE) representing the actual memory shape in the symbolic
state. Another data member of class SymState is a set of registers {r1, . . . , rm}. We denote
set {r1, . . . , rm} by G. A register can be local or global one. There are two global registers.
The first one contains a reference to the forest automata modelling the global state, e.g.,
the block of global variables in the symbolic state. The other then represents the allocated
memory of the actually executed function. The local registers serve as temporary mem-
ory used in the microcode instructions for data manipulation. Putting together the data
members of class SymState, we define symbolic state formally as a triple S = (F,G, I).

The values of the registers are instances of a structure Data. We formally define struc-
ture Data as D = (T, S, V,MB) where T is a data type, S ∈ N is a size of data, V is a
value of type T , MB = (D1 · · ·Dn) are nested data when D is a data structure. T can be
one of the following data types: pointer, reference to a TA, integer, boolean, structure or
generally some other data type. T can be also undefined or it can be a state with the type
that is unknown. We describe in detail one of the types — the root reference. Its values
are defined as RR = (ROOT ,DISPL) where ROOT ∈ N is an index of a tree automaton
in F and the displacement DISPL ∈ N is an index of a selector in a structured label of
the transition with RR at the left-handed side. The displacement DISPL is given by the
sum of sizes of the preceding selectors so it determines the precise position of the selector
in label. The operations for manipulation with a symbolic state are partially provided by
class SymState and some additional operations are provided by class VirtualMachine.

We already described described the forest automata implementation in Forester. The
symbolic execution using this data structures is realized by gradually appending and re-
moving the symbolic states from a queue. The implementation of symbolic execution is in
class SymExec. When a symbolic state is taken from the queue a microcode instruction
contained in the symbolic state is executed. Some of the instructions during its execution
append a new symbolic state to the queue. Symbolic execution finishes when the queue is
empty. The microcode instructions executed during the symbolic execution are described
in the following section.

4.2.3 The Microcode Instructions

This sections provides a description of the Forester microcode instructions which corre-
spond to the abstract transformers in abstraction interpretation. First, we introduce some
examples how the C statements are translated to the corresponding Forester microcode
instructions, then we define the instructions more formally and we give a complete list of
them. Consider the following data structure that is an implementation of singly-linked list
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struct T {

struct T* next;

int data;

};

and the declared variables struct T *x, *y used in the following examples. All constants
used in the examples are dependent on a concrete Forester run and they are chosen randomly in
this text. The syntax of the instructions in the examples is following:

op(r0, r1, r2)

where op is a name of a instruction, r0, r1, r2 are operands such that r0 is a destination register and
r1 and r2 are the source registers. But only some of the instructions require all three parameters,
the other instructions take just two or less parameters. A constant may be also used in place of a
register. When [r + c] is used as an operand then the instruction dereferences a root reference in
register r. More precisely, the instruction accesses directly a selector with the displacement c in a
label of the transition with the root referenced by r at the left-handed side. We will further consider
the selector in the label of a transition with the referenced root at left-handed side if it is not stated
otherwise. In the following text, the registers r1, . . . , rn are local ones. GLOB and ABP are global
registers such that GLOB register contains reference to the FA representing global variables and
ABP register contains reference to the FA representing local memory.

Example 4.2.1. The statement x = (struct T*) malloc(sizeof(struct T)); is translated to
these microcode instructions:

1: mov_reg r0, (int)4
2: alloc r0, r0
3: node_create r0, r0, next[0:4:+0]
4: mov_reg r1, ABP + 0
5: mov_reg [r1 + 12], r0
6: check

First, the size of the newly allocated data (in this case the size is 4) is stored in the register 0
on line 1. Then the new instance of the structure Data is created and stored to register 0 on line 2.
A new TA t is created on line 3. The TA t has one transition from the root with a label that consists
of one pointer selector next whose displacement in the label is 0 and the size of the allocated node
is 4. The instruction node stores a root reference to t to register 0. Finally lines 4 a 5 add a root
reference pointing to t to a FA representing a memory state of the actually executed function (which
is in this case the function main). In this case a selector related to the pointer x has displacement
12 in the label of TA representing the function memory state. The instruction on line 6 then checks
whether no garbage was created by the previous instructions.

Example 4.2.2. The statement y = x->next; is symbolically executed by the following instruc-
tions:

1: mov_reg r0, [ABP + 12]
2: acc_sel [r0+0]
3: mov_reg r0, [r0 + 0]
4: mov_reg r1, ABP + 0
5: mov_reg [r1 + 16], r0
6: check
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The first instruction stores a root reference to a TA representing heap pointed by the pointer x to
register 0. In this case, a node with a root reference is pointed by the selector with the displacement
12 in a label in TA referenced by register ABP . Because the pointer y will point also to the this
memory after the execution of statement, the new cut-point will be created at this node. The special
TA representing the heap reachable from y will be needed. This is done by the second instruction
that makes so-called isolation of the selector with displacement 0 in the TA referenced by register 0.
This creates a new TA if x->next points to an allocated memory, otherwise the instruction does
not do anything. The instruction on line 3 loads to register 0 a root reference from a selector of TA
referenced by register 0. The instruction on line 4 moves a reference to TA that represents a local
memory state to register 1. Finally, the instruction on line 5 copies the root reference from register
0 to a TA node pointed by pointer y. The last instruction checks whether no garbage is present.

Example 4.2.3. The statement free(x); is implemented by these instructions:

1: mov_reg r0, [ABP + 12]
2: acca_sel [r0]
3: free r0
4: check

The first instruction loads to register 0 the root reference to TA representing the heap reachable
from x. The reference to this TA is stored in a selector with displacement 12 in TA referenced by
register ABP . The second command isolates all selectors of the TA referenced by the register 0.
The isolation has the same meaning as in the previous instruction. The isolation of the selectors
to the particular TA is done in order to enable freeing right the memory represented by the TA.
Then the third instruction removes TA pointed by register 0 from FA and then it invalidates all
references to it. The last instruction again checks whether there is no garbage created by executing
this instruction.

Example 4.2.4. The statement x->data = y->data; is done by these instructions:

1: mov_reg r3, [ABP + 16]
2: acc_sel [r3 + 4]
3: mov_reg r3, [r3 + 4]
4: mov_reg r1, [ABP + 12]
5: acc_sel [r1 + 4]
6: mov_reg [r1 + 4], r3
7: check

The first instruction loads to register 3 a root reference pointed by a selector with displacement
16 in TA referenced by register ABP (which is the TA modelling the heap of the actually executed
function). Then the data selector x->data (which has displacement 4 in label in TA reference by
register 3) is isolated. A data value of selector is loaded to register r by the instructions on line 2
and 3. The instructions on line 4 and 5 prepare the data selector y->data in the same way as has
been prepared the selector x->data. Finally, on line 6, the data value in register 3 is copied to the
TA node pointed by the selector y->data. The last operation is again checking whether no garbage
is left.

Example 4.2.5. The statement x == y translates Forester into the following list of the instructions:
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1: mov_reg r0, [ABP + 12]
2: mov_reg r1, [ABP + 16]
3: eq r5, r0, r1

The instruction on line 1 loads the root reference pointed by a selector with displacement 12 in
TA referenced by register ABP related to a pointer x to register 0. The second instruction does
the same thing as the previous one but for a pointer y and register 1. The third operation then
compares the content of the registers 1 and 2 and stores the result to register 5.

These examples provide an overview of the concept of the microcode instructions. We will
further describe a more detailed and formal description of them. We use rs ∈ G to denote a source
register, rd ∈ G to denote the destination register, rl ∈ G to denote a local register and rg ∈ G
to denote a global register. Note that the source and destination registers can be the local as well
as the global ones. The source and destination registers are the parameters of some instructions.
We use G[r := r′] to denote the set G of the registers with register r substituted by the register r′.
A symbol In denotes then next instruction following an actually executed instruction. We define
the semantics of each instruction formally as a function f : I×S→ S where S is a set of all symbolic
states and I is a set of all instructions. When the instruction is clear from context, we omit the first
parameter of f . The function f defines the effect of the instruction as a transformation of the current
symbolic state s to a new symbolic state s′.

We now present a list of the microcode instructions used in Forester with the description of
their semantics. Each instruction is described informally and then its effect is defined formally by
the function f . The instructions are divided into two parts. The first part contains the instructions
modifying forest automata and the second part consists of the remaining instructions that do not
change forest automata.

The Instructions Modifying Forest Automata

• acc sel(rd) isolates the i-th selector of a label in the transition from the root of a given TA.
The root of TA is defined by the destination register rd. This instruction checks whether
a selector pointed by the destination register selects a node that represents allocated memory
node or undefined pointer. In the first case, the node is isolated to a new TA and the original
node in the original TA is replaced by a root reference to the new TA. In the other case
nothing changes. Note that this basically corresponds to the identification of the cut-points
and their separation to a new TA.

f((F,G, I)) = (F ′,G, In) where F ′ is a new FA obtained from F by isolating the i-th selector
of TA t. TA t and the related selector are determined by a root reference RR = (Root,Displ)
in the register rd such that Root references to t and i = Displ + o where o is a offset which
is a parameter of this instruction.

• acc set(rd),acc all(rd) instruction does the same thing as the previous one but for a set
of selectors or for all selectors of a given root of TA.

• node create(rd,rs) instructions creates a new node (and hereby also a new TA) which is the
root node of the new TA. A reference to the new TA is stored to the destination register rd.
A type info of the new node and its size is obtained from source register rs. Note that the
reference to t is not added to a TA in F in this step but it is done by instruction assigning a
register value to a node of TA.

f((F,G, I)) = (F ′,G[rd := x], In) where F = (T1 · · ·TN , φ), F ′ = (T1 · · ·TN , Tnew , φ), Tnew
is the newly created TA, and x is a reference to Tnew . The selectors in the label of Tnew are
specified in rs.

• node free(rs) instruction deletes a node in FA (referenced by register rs) and invalidates all
references to it.
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f((F,G, I)) = (F ′,G, In) where F ′ is obtained from F by removing the TA t referenced by rs
and removing all reference to t from TA of F .

• store(rd, rs, o) instruction stores a value from the source register rs to a TA t pointed by the
destination register rd. The location is selected by a selector with displacement o in a label
of t.

f((F,G, I)) = (F ′,G, In) where F ′ is a FA obtained from F by an assignment Sdispl
T = rs,

where Sdispl
T is a node of the TA T referenced by the root reference RR = (Root,Displ) stored

in rd register. The node is pointed by the selector with displ, such that displ = Displ + o
and o is an offset which is a parameter of this instruction.

• stores(rd, rs, o) instruction does the same as the previous one but manipulates the structures.

Formal definition is also same but the result is a structure.

• abs(), fix() instructions computes fixpoint with (abs) or without (fix) abstraction.

f((F,G, I)) = (F ′,G, In) where F ′ is a new FA obtained from F by computing fixpoint with
or without abstraction.

• check() instruction checks whether there is no a garbage. It alternatively removes all un-
reachable TA.

f((F,G, I)) = (F ′,G, In) where F ′ is obtained from F by removing all unreachable TA.

The Instructions Not Modifying Forest Automata

• alloc(rd,rs) instruction creates a new instance of structure Data D = (T, S, V,MB) that
represents allocated memory. The size S is determined by an integer value in the source
register rs. The created instance will be further used for creation of a new TA and it is yet
stored to the destination register.

f((F,G, I)) = (F,G[rd := x], In) where x = (void ptr, undef, S′, ∅) is an instance of structure
Data such that S′ ∈ N is a size stored in rs.

• load cst(rd,c) instruction loads a constant c to the destination register rd. This creates a
new symbolic state which differs only in register contents.

f((F,G, I)) = (F,G[rd := c], In)) where c is a constant which is parameter of this instruction.

• move reg(rd,rs) instructions creates a new symbolic state where a value from the source
register rs is moved to the destination register rd.

f((F,G, I)) = (F,G[rd := rs], In).

• bnot(rd), inot(rd) instructions negates a value in the destination register and it creates a
new symbolic state with the negated value in the destination register. bnot negates integer
and inot negates the boolean value.

f((F,G, I)) = (F,G[rd := ¬rd], In).

• move reg offs(rd,rs,o) instruction accesses a tree automaton reference in the source register
rs and increases its displacement value by the given offset o. The new value is then stored in
the destination register rd.

f((F,G, I)) = (F,G[rd := (Root,Displ+ o)], In) where o is offset which is a parameter of this
instruction and rs = (Root,Displ).

• move reg inc(rd,rs1,rs2) instruction does the same thing as the previous one but moreover
it increases a displacement by a value in the second source register rs2 .

f((F,G, I)) = (F,G[rd := (Root,Displ + o + rs2)], In) where rs1 ∈ G, rs2 ∈ G are the source
registers such that rs1 = (Root,Displ), rs2 is integer value.

• get greg(rld,rgs) loads a value from the global, source register rgs to the local, destination
register rld.

f((F,G, I)) = (F,G[rld := rgs], In).
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• set greg(rgd,rls) loads a value from the local, source register rls to the global, destination
register rgd.

f((F,G, I)) = (F,G[rgd := rls], In).

• get ABP(rd,ABP, o) loads a root reference from the register ABP to the destination reg-
ister rd. The instruction also adds the offset o to a displacement in the root reference.

f((F,G, I)) = (F,G[rd := (Root,Displ + o)], In) where rABP = (Root,Displ) is the register
containing root reference to FA representing local memory and o is an offset which is a
parameter of this function.

• get GLOB(rd,GLOB,o) loads a root reference from the register ABP to the destination
register rd and adds the offset o to a displacement in the root reference.

f((F,G, I)) = (F,G[rd := (Root,Displ+ o)], In) where rGLOB = (Root,Displ) is the register
containing root reference to FA representing the global memory state and o is an offset which
is a parameter of this instruction.

• load(rd,rs,o) loads a value from a TA t pointed by a root reference in the source register rs
to the destination register rd. The value is stored in a selector with displacement o in label
of t.

f((F,G, I)) = (F,G[rd := x], In) where rs = (Root,Displ), x is a value of the selector of T
with displacement displ T is a TA of F referenced by ROOT , displ = Displ+o, o is the offset
which is a parameter of this instruction.

• loads(rd, rs, o) instruction does the same as load instruction but manipulates the structures.

Formal definition is the same but the result stored in the selector is a structure.

• load ABP(rd,rs,o), load GLOB(rd,rs,o) instructions do the same as the previous in-
struction but loads a value from a TA pointed by rABP or rGLOB register.

Formally it could be defined as the previous instruction but ABP and GLOB are used instead
of rs.

• push greg(rs) instruction creates a new global register rg and fills it with a value in the source
register rs.

f((F,G, I)) = (F,G ∪ {rg}, In) where rg is a new global register such that rg = rs.

• pop greg(rg,rs) instruction takes a value in the last created global register and stores it to
the source register. The global register is then deleted.

f((F,G, I)) = (F,G \ {rg}[rs := rg], In) where rg is the lastly created global register.

• cond(rs,It,Ie) instruction represents a condition in the original code. It creates a new
symbolic state with the same forest automaton and appends it to the queue. The new state
can contain instruction It when the condition is true and then branch is performed. Otherwise,
instruction Ie is used in the next state for case when the condition is false. The value of
condition is stored in the source register rs.

f((F,G, I)) = (F,G, rs?It : If ) where It is instruction used when rs has true value and If is
instruction used otherwise.

• iadd(rd,rs1,rs2), imull(rd,rs1,rs2) instructions do the integer addition and multiplication
of the numbers in the source registers rs1 and rs2 and stores the result to the destination
register rd.

f((F,G, I)) = (F,G[rd := rs1 ⊗ rs2 ], In) where rs1 ∈ G, rs2 ∈ G, ⊗ ∈ {+, ∗} are two source
registers with values of integer type.

• eq, neq, ge, gt, le, lt(rd,rs1 ,rs2) instructions makes a corresponding comparison of the val-
ues in the source registers rs1 and rs2 . The result of the comparison stores to the destination
register rd.

f((F,G, I)) = (F,G[rd := rs1 ⊗ rs2 ], In) where rs1 ∈ G, rs2 ∈ G are two source registers and
⊗ ∈ {=, 6=, <,>,≤,≥}.
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• build struct(rd,rs i1 · · · in) instruction creates a structure from a content of the source
registers rs, rs+i1 , rs+i2 , . . . , rs+in and the result stores to the destination register rd. The
source registers are defined by the index of the first register rs and the vector of offsets
i1 · · · in from this register.

f((F,G, I)) = (F,G[rd := x], In) where x is a structure created from the values of the registers
rs, rs+i1 , rs+i2 , . . . , rs+in . The values i1, i2, . . . , in are the offsets defined as the parameters of
this instruction.

• abort() instruction aborts program execution.

• assert(rs,c) instruction checks whether the value in the source register is the same one as
the constant c.

f((F,G, I)) = (F,G, I) if rs = c, otherwise symbolic execution is aborted. Constant c is
a parameter of this instruction.

• error() instruction throws an exception representing a local error in program.

• noret() instruction quits program symbolic execution when no return function end is reached.
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Chapter 5

Forester with VATA

This chapter describes the first enhancement of Forester done as the part of this thesis — replacing
the underlying tree automata library by VATA. We discuss its difficulties and technical issues we
had to handle during the design and implementation phase.

We decided to use the VATA library implementation of explicit encoding of TA because it is
currently the only one that support the most of needed operations over TA, including language
inclusion checking or removing useless states of TA. The semi-symbolic encoding is designed to
tackle automata with large alphabets and since no large alphabets are used during the verification
procedure the advantages of the semi-symbolic encoding would not be fully utilized here.

Forester implementation is currently far from maturity. The high structural dependencies is
one of the bottlenecks. It makes difficult to change a module because the other modules are de-
pendent on it internals such as the used data types. Therefore we first focused on reduction of
dependencies between the classes (described in Section 5.1). Then we apply the design pattern
adapter [9] (described in Section 5.2) to create an interface between Forester and the VATA library
(implementation itself is described in Section 5.3). Application of adapter design pattern makes it
possible to include VATA without the need of rewriting Forester to the names of methods and the
data members used in VATA. It also creates only one particular place (adapter class) connecting
Forester and VATA instead of including VATA into Forester classes. This prevents and removes a
need of creating too strong relations between Forester and VATA.

5.1 Refactoring of Forester

The original Forester implementation of tree automata library has the strong dependencies to
the other classes. Hence it was needed to refactore the implementation before creating adapter
class for VATA API. The core class of the original tree automata is class TA. There are also the
other related classes, e.g., class TT for representation of the transitions or class Antichain for lan-
guage inclusion checking using the Antichain algorithm from [1]. This set of classes realizing original
tree automata library will be further referred as tree automata module.

The used principles and patterns for refactoring are inspired by generic programming [28].
The refactoring is mainly based on reduction of a number of data types and data members declared
to be public (in sense of the C++ programming language). This is done by exploiting the features
provided by C++11 [29] which allows auto deduction of the mentioned data types in compilation
time (using keyword auto). That enables us to make some of the data types of the original tree
automata module private. Iterator is another concept often used in combination with auto de-
duction of types to bring higher genericity and reduce the number of dependencies to a concrete
implementation. The combination of these two patterns are used for example for iteration over of
all transitions of tree automata or over all transitions with the same state at the left-handed side.
These kinds of iterations are quite common in Forester.

Another part of the refactoring consists of replacing a direct access to the class data members
by the corresponding getters and setters. Reducing the structural dependencies is also done by
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Figure 5.1: Adapter design pattern expressed in UML. Picture is taken from [31].

emphasis on application of Law of Demeter [21] which practically means that classes using TA
explicitly should implement methods providing information about TA instead of providing instance
of TA object itself. For instance, when one class wants to know whether a given state is a final
state of a TA of a FA then the implementation of FA should implement a method providing this
information instead of providing access to its private TA data member. That helps us to make the
interface for TA module smaller.

5.2 Adapter Design Pattern

Adapter is a structural design patter [9] used for creating interface between incompatible classes.
An UML diagram describing Adapter is shown in Figure 5.1. Adapter consists of a class Adaptee
which is the class that we want to make compatible with another class Client. Client uses the
methods of Adaptee. The Adaptor class is the one providing the connection between Client and
Adaptee. There are two ways how to implement an Adaptor. The first one is to implement Adaptor
as an inherited class from Adaptee and to employ the concept of inheritance to redirect method calls
to its parent (with some possible preprocessing). The other implementation is composing Adaptee
to Adaptor and using Adaptor like an interface to Adaptee. Adaptor could also add a new method
that combines the methods of Adaptee to implement the wanted operations.

Applied to the case of Forester and VATA, Adaptee is the API of the VATA library, specifically,
it is the class ExplicitTreeAut implementing the representation of tree automata in explicit encoding.
Client is not only one class but the set of the Forester classes using TA library. Adaptor is a newly
implemented class VATAAdapter described in the following section.

5.3 Implementation

The main part of our implementation of the adapter pattern is the new class VATAAdapter having
the role of Adaptor. We decided to use such approach to Adaptor preferring the composition over
the inheritance, since we often needs to rename methods. For instance, the name of a method in
Forester differs from the name of the method in VATA with the same functionality. A conversion of
a data type of a parameter of a tree automata operation is also sometimes needed, e.g. from vector
to set.

The class VATAAdapter instantiates class ExplicitTreeAut from VATA as its private data mem-
ber and redirects to this instance method calls from Forester (the names of methods of VATAAdapter
are the same as they were in the original TA library). VATAAdapter also sometimes performs men-
tioned conversion of the data types. There are also the methods implemented by adapter not
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presented in VATA, like the method unfoldAtRoot, performing unfolding. These methods are very
Forester specific and so it is not sensible to add them to a general purpose library such as VATA
and it is better to implement them in an interface like class VATAAdapter.

Originally, we were planning keep the original TA module along VATA adapter in order to be
able to easily switch between the two implementations of TA. However, it has proven that it would
bring high overhead in situations such as a conversion of some data types which is not necessary to
do when the implementation using the data types compatible with VATA is used directly. Hence
we decided to remove the original tree automata module and from this point, Forester supports the
VATA library only.
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Chapter 6

Backward Run and Predicate
Abstraction in Forester

When an error in the analysed program is detected, it is necessary to check whether is it real or
spurious. A spurious error can be caused by an overapproximating abstraction over foster automata.
The analysis of spuriousness can be done by a backward run which, however, has not yet been
designed and implemented for forest automata based shape analysis. An intersection of forest
automata is crucial for the backward run but it has not been also developed yet. After proving that
the error is spurious the abstraction is refined to avoid the spurious error detection by the same
run again. The analysis is then restarted with the refined abstraction. This principle of gradual
refinement of abstraction is based on the CEGAR framework [4].

As one of the main contributions of this work, we design and implement backward run including
the intersection of forest automata and predicate abstraction [3] for forest automata based verifi-
cation. Predicate abstraction can be refined by predicates obtained from backward run. It can be
done is such way that the predicates are created directly to avoid the abstraction that caused the
error and so the error will not be detected by the same run again. We restrict ourselves only to basic
forest automata, not the hierarchical ones to keep this work within the bounds of master thesis.

The structure of this chapter is the following. The first Section 6.1 describes the backward run
and predicate abstraction in general. Section 6.2 describes the algorithm for the intersection of
non-hierarchical forest automata which is important part of the backward run. Section 6.3 contains
the design of backward run and Section 6.4 describes the design of predicate abstraction for forest
automata. Section 6.5 covers the implementation.

6.1 Backward Run and Predicate Abstraction

We described in Section 3 that the abstract transformers τop related to the concrete program op-
erations are gradually applied to forest automata starting from a forest automaton modelling an
empty heap. This gradual application of abstract transformers in the order of the concrete program
operations is called forward run. Formally, a forest automaton representing the memory state at
program point n is obtained by τnop(τn−1

op (. . . τ1
op(FEmpty) . . .)) where τ iop is an abstract transformer

related to the concrete program operation at the i-th point of the program execution and F empt is
a forest automaton modelling the (initial) empty heap. Normalization, (un)folding, and abstraction
are done along with the abstract transformers at some program locations, as described in Chapter 3.

Consider that an error is detected at the n-th program location during the forward run. The ver-
ification of non-spuriousness of the error is done by a gradual application of reverse abstract trans-
formers τ−op over forest automata. The backward run starts from the error line and then checks
whether an intersection of the languages of forest automata from forward and backward run is
non-empty at each program line. When the intersection is non-empty the backward run continues
using the automaton representing the intersection of the languages. If the backward run reaches
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Figure 6.1: Figure is taken from [3]. Figures illustrates principle of forward and backward
run and a detection of a spurious counterexample.

the beginning of the program without detection of an empty intersection of the languages, the
error is real, otherwise is spurious. This process is called backward run. We use FA ∩ FB to de-
note a forest automaton with language L(FA) ∩ L(FB). Formally, we compute forest automata
by application τ1

−op(τ2
−op(. . . τn−op(Fn ∩ FBAD) . . . ∩ F3) ∩ F2) from the n-th point back to the be-

ginning where Fi is the forest automaton at the i-th point of the forward run and FBAD is the
forest automaton representing heap configuration causing the detected error. It is checked whether
∀ 0 ≤ i < n : L(τ1

−op(. . . τ i−op(Fi ∩ FB
i ) . . . ∩ F2)) ∩ L(τ iop(. . . τ1

op(FEmpty) . . .)) 6= ∅ where FB
i is the

forest automaton at i-th point of the backward run. When the intersection is empty the found error
is reported as spurious and if no empty intersection is found the error is real.

This principle is illustrated in Figure 6.1. Figure shows how a forest automaton (and its lan-
guage) is gradually changed by abstract transformers until an error is found. The backward run
starts from the error configuration and reverses the abstract transformers until the empty intersec-
tion between the forward and backward FA languages is get at the point i − 1. Then the error is
reported as spurious. Forest automata are in the figure represented by their languages which are
shown as the colored areas. The figure shows FA of a symbolic states in the forward run using the
green (language of FA before abstraction) and the yellow (language of FA after abstraction) areas.
There are k symbolic states in the figure. Each step of the forward run does abstraction of FA, e.g.,
FA α(Fi) is obtained by the abstraction of FA Fi. Then the abstract transformer is applied to the
abstracted FA and the next symbolic state with FA Fi+1 is obtained. An abstract transformer is
illustrated by the arrows connecting the yellow area of one state with the green area of the next
state. The error configuration in language L(FBAD) is shown as the red area. The backward run
starts from the error configuration and applies the reverse abstract transformer (illustrated by the
dotted arrows) to FA representing the intersection (the orange areas) of the languages of the forest
automata from the forward (the green and yellow areas) and backward run (the blue areas). The re-
sult of a reverse abstract transformer is a new backward run state with the FA having language
shown as a blue and an orange area. It is found that the error is spurious because the intersection
is empty at the level i− 1.

Predicate abstraction has not yet been used in forest automata based verification because it is
meant to work with backward run which detects the predicates to refine predicate abstraction in
the case of a spurious counterexample detection.

The used predicate abstraction is defined over a TA as in [3] and its extension to FA will be de-
scribed later. The predicate abstraction is parameterized by the set of predicates P = {P1, . . . , Pn}.
A predicate P ∈ P is a language represented by a tree automaton. As we described in Section 3.2.3,
the abstraction function α over a set of states Q of TA A = (Q,Σ, δ, R) basically merges states
in the same equivalence class of an equivalence relation. The predicate abstraction function is de-
noted by αP . The predicate abstraction introduces an equivalence relation ∼P where the states of
tree automaton are equivalent when their languages have an non-empty intersection with the same
predicates. Formally, ∀q1, q2 ∈ Q : q1 ∼P q2 ⇔ (∀P ∈ P : L(A, q1) ∩ P 6= ∅ ⇔ L(A, q2) ∩ P 6= ∅).

The refinement of predicate abstraction is done by extending the set of predicates by adding
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tree automata languages from a FA in backward run that has empty language intersection with the
related FA from the forward run. Then the new forward run is started using the extended predicate
set for the abstraction. The new predicates will prevent merging the states at the points that caused
detection of the spurious error again. When the refinement from [3] is used then the termination of
the method is guaranteed.

6.2 Intersection of Forest Automata

As an important part of the backward run, we design and implement the algorithm for intersection
of languages of non-hierarchical forest automata. The algorithm is based on the algorithm for the
top-down intersection of tree automata and extends its idea to forest automata.

The main part of the method is given in Algorithm 1. The algorithm takes two non-hierarchical
forest automata FA and FB with the same number of port indices as its input and outputs a forest
automaton FC such that L(FA) ∩ L(FB) ⊆ L(FC). The reason why FC overapproximates language
of the intersection is given after the description of the algorithm.

The algorithm starts with the initialization of the auxiliary data structures processed (where the
processed roots of the resulting FA are stored), cnt (what is counter of TA of the resulting FA) and
the data structure for the resulting automaton F on lines 1-3. Then it iterates over all port indices
of the input FA and over all roots of TA at the positions in the input FA given by the port indices
and it calls the function intersect over the root states (one from each TA) and their TA.

The function intersect takes as the input parameter these two TA and one state from each of TA.
We use lhs to denote one of the inputs, lhs.aut to denote the TA itself, and lhs.state to denote its
state. The same notation is used for the second input parameter rhs of the function. The function
intersect constructs TA of the resulting forest automaton. The states of the resulting automaton are
so-called product states — pairs (r, s) where r is a state of FA and s is a state of FB. The function
returns the index of the newly created TA in the resulting FA.

The function intersect starts with creating the root point (lhs, rhs) and adding it to the set of
processed root points if it is not already processed. Otherwise it returns the index of TA with such
root point as the root. This is done on lines 1-3. Then the counter cnt of the created TA of the
resulting FA is increased and the stack workset is initialized to serve as an auxiliary data structure
where the product states are stored to be processed later on lines 4-8.

The function intersect creates a new TA with the only product state (lhs.state, rhs.state) and
with the empty transitions set on line 8. The product states from the workset are gradually processed
in the cycle beginning on line 9. We denote (r, s) the actually processed product state. We call
referencing the states that are at the left-handed side of transitions labeled by root references.
The normal states are states that are not referencing states. There are several cases of how the
product state is managed by.

Algorithm 1: Intersection for non-hierarchical forest automata

Input: FA = (A1 · · · An, πAk · · ·πAk ), FB = (B1 · · · Bm, πBk · · ·πBk )
Output: FC = (C1 · · · Cp, πc) such that L(FA) ∩ L(FB) ⊆ L(FC)

1 processed := ∅;
2 cnt := 0;
3 F := empty FA;
4 for i := 1 to k do
5 forall the root states r of AπAi do
6 forall the root states s of BπBi do
7 intersect((r,AπAi

), (s,BπBi
));

8 return F ;
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Function intersect(lhs, rhs)
Input: lhs = (lhs.aut , lhs.state) and rhs = (rhs.aut , rhs.state) are pairs of an automaton

and a state from the automaton
Globals: F : an FA; processed : set of processed root points; cnt : counter of components of F
Output: Index of the resulting component in F

1 if (lhs, rhs) ∈ processed then
2 return index of the component for (lhs, rhs)

3 processed := processed ∪ {(lhs, rhs)};
4 index := cnt ;
5 cnt := cnt + 1;
6 workset := createStack();
7 workset .push((lhs.state, rhs.state));
// start creating the new TA

8 Q := {(lhs.state, rhs.state)}; ∆ := ∅;
9 while ¬workset .empty() do
10 (r, s) := workset .pop();

11 if r
ref(i)−−−→ then // r is a root reference

12 if s
ref(j)−−−−→ then // both r and s are root references

13 cp := intersect((i, root(i)), (j, root(j)));
14 else // only r is a root reference
15 cp := intersect((i, root(i)), (rhs.aut , s));

16 ∆ := ∆ ∪ {(r, s) ref(cp)−−−−−→};

17 else if s
ref(j)−−−−→ then // only s is a root reference

18 cp := intersect((lhs.aut , r), (j, root(j)));

19 ∆ := ∆ ∪ {(r, s) ref(cp)−−−−−→};
20 else // for normal states
21 foreach a ∈ Σ (in the reverse order than given by �Σ) do
22 foreach (r1, . . . , r#a) ∈ posta(r), (s1, . . . , s#a) ∈ posta(s) do

// the ordering should not be important here

23 ∆ := ∆ ∪ {(r, s) a−→ ((r1, s1), . . . , (r#a, s#a))};
24 for i := #a to 1 do // push in the reverse order to keep DFT
25 if (ri, si) 6∈ Q then
26 Q := Q ∪ {(ri, si)};
27 workset .push((ri, si));

28 F .append((Q,Σ ∪ N,∆, {(lhs.state, rhs.state)}));
29 return index ;

1. Both r and s are referencing states. The function intersect is called recursively on the ref-
erenced root states and creates a new TA with the index cp. Finally a transition with the
product state (r, s) at the left-handed side, that is labeled by the root reference to a TA with
index cp, is added to the transition set of the new TA. This is on lines 11-13.

2. The one of states r or s is a referencing state and the other one is normal. The function
intersect is called with the referenced root state as one parameter and the second parameter is
the normal state. The result of this function call is the position cp of a new TA at the resulting
FA created by this call. Then a transition with the product state (r, s) at the left-handed side
that is labeled by the root reference to a component at the position cp is added to the new
TA. These cases in the algorithm correspond to lines 14-16 and 17-19.

3. The both r and s are not root references but the normal states. Then it is iterated over all
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a ∈ Σ with #(a) = n and a new transition t is added to the transition relation ∆, where
t = (r, s)

a−→ ((r1, s1) · · · (rn, sn)) such that (r1 · · · rn) ∈ posta(r), (s1 · · · sn) ∈ posta(s) and
posta(q) = {(q1 · · · qn) ∈ Qn | q a−→ (q1 · · · qn) ∈ ∆}. Finally, when the product state (ri, si),
1 ≤ i ≤ n, is a new one, then it is added to Q and appended to the workset for a further
processing. This last case corresponds to lines 20-27 of the function intersect .

The function intersect finally adds the created TA with the root (lhs.state, rhs.state) to the
resulting FA and returns the index of this TA in the resulting FA, which is done on lines 28-29.

Algorithm 1 returns the FA FC overapproximating the intersection L(FA) ∩ L(FB). The over-
approximates comes from non-determinism causing that a referencing state rA from A may form
more then one product state with the different states rB from B. This ambiguity in mapping among
the states can led to a generation of a graph where one cut-point appears more then once what
is not possible. It can be resolved by splitting FA FC to several FA. For each possible bijection
between the referencing states of FA and the states of FB it is created a particular FA. Each of FA
corresponds to one maximum bijection states. The product states that contract the chosen bijection
are removed from FA. The useless states are then removed from each FA. We continue for each FA
separately.

It is also necessary to care about the case when a referencing state r of one FA is paired with a
normal state s of the second FA and the product state (r, s) appears more then once in a run of TA
or in more then one TA. This would mean that the product state, which is the root, is referenced
more then once what cannot happen since s is a normal state. To guarantee that this will not
happen we create the new FA F = (T1 · · ·Tn, π) in the following way. For each 1 ≤ i ≤ n : Ti and
for each (r, s) in Ti there is created FA F = (T1 · · ·Tn, π) such that (r, s) is not in any other TA Tj ,
where i 6= j, and (r, s) is not in any run of Ti more then once. We remove useless states in every
FA F and throw away FA with the empty language. We get as a result of the intersection of FA
the set of FA representing the resulting language.

6.3 Designing Backward Run over Symbolic States

We describe now the design of the backward in Forester. A general overview of the backward run
was given in the beginning of this chapter.

It was mentioned that abstract transformers in Forester implements the instructions of its
microcode in an abstract domain. The input C program is translated to microcode instructions
T = IF1 , I

F
2 , . . . , I

F
n+1.

The forward run is done by going through T in the forward order and executing the abstract
transformers implementing the instructions in T over symbolic states. It generates the forward trace
of symbolic states FT = SF

0 , . . . , S
F
n . The state SF

i is the input of the abstract transformer τ i+1
op

where 0 ≤ i ≤ n and SF
i+1 is the resulting symbolic state.

Assume that an error is detected in the symbolic state SF
n . Then the backward run starts from

this symbolic state and it is done by going through T in the reverse order executing the reverse
transformers τ i−op over the intersection SB

i and SF
i obtaining SB

i−1 where 0 < i ≤ n. The intersection
of SB

i and SF
i is a symbolic state that is identical to SB

i but has an FA representing a language that
is an intersection of languages of FA of both states. The backward run generates the backward trace
BT = SB

0 , . . . , S
B
n . Each τ i−op implements reverse instruction IBj and it is reversion of τ iop which

implements the instruction IFj .
It is not necessary to compute FA with the language L(FF

i ) ∩ L(FB
i ) to get the next symbolic

state in the backward run (and to check spuriousness of an error) after the execution of each
reverse instruction in the backward run. Indeed, it is sufficient to compute intersection only for the
microcode instructions FI abs(), FI fix() because only these instructions do an abstraction of
FA which can lead to a spurious error. The other instructions are precise and elementary enough
that they could be reversed without need of intersection.

The next sections provides the description of the inverse microcode instructions. We describe
each reverse instruction first informally and then define it formally as the function g : S × I → S.
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The function g should have the reverse semantics to the forward function f from Section 4.2.3.
The function models behavior of the reverse transformer implementing a reverse instruction with a
given symbolic state as an input. We further use IP to denote an instruction Ii−1 that precedes the
instruction Ii. The symbolic states, their registers and instructions have the same role as they have
in Section 4.2.3.

The Instructions With Special Reverse Semantics

This section provides a description of instructions such that the (forward) abstract transformers
implementing them manipulates forest automata or do an operation that is not similar to any other
instruction.

• FI node create(rs, rd) does the reversion the C function malloc. The instruction gets a
value from the source register rs in SF

i where i is order of this instruction in T . If the value
is a reference or a null pointer then the new state is just copy of SB

i .

Otherwise the value type is void pointer. The new symbolic state registers have the same
values in the registers as the state SB

i with the exception of the register rd. The value of this
register is substituted by the value r′d of SF

i . The substitution is done because the register rd
contains reference to the TA t representing the heap pointed by the allocated pointer. TA t
is then removed from FA and all references to it are invalidated.

g((F,G, IB)) = (F ′,G[rd := r′d], IBP ) where (F,G, IB) = SB
i , rd ∈ SB

i , r′d ∈ SF
i and F ′ is

obtained from T by removing TA t referenced by the register rd and invalidating all references
to it.

• FI node free reverses freeing the memory. The removed TA representing a heap pointed by
a freed pointer is referenced by the root reference RR in the register rd. This TA is copied
from FA FF of SF

i to FA FB of SB
i into the corresponding position. It is also necessary to

relabel the selectors of FB according to FF to replace undefined values created after free by
the root reference to the renewed FA.

g((F,G, IB)) = (F ′,G, IBP ) where (F,G, IB) = SB
i and F ′ = l(F ∪ {T}) where T is the TA

referenced by RR in the register rd of SF
i and l performs relabeling such that if r

undef−−−−→ () ∈
F ∧ r RR−−→ () ∈ FF then r

undef−−−−→ () is replaced by r
RR−−→ ().

• FI store(rd) creates a new symbolic state identical to the SB
i . Then the root reference

RR = (Root,Displ) is loaded from the register rd of SB
i . The value V from a node pointed

by the selector with displacement Displ in FA of SF
i referenced by Root is loaded. Finally,

the value V is stored to the node of FA of the new symbolic state. The node is pointed by
the selector referenced by RR.

g((F,G, IB)) = (F ′,G, IBP ) where (F,G, I) = SB
i and F ′ is obtained by the described opera-

tion of storing value to the node of FA.

• FI stores has the same semantics as the previous one but for storing a structure to a FA.

• FI abs(), FI fix() creates a new symbolic state identical to the state SB
i . Then a new FA

created by the intersection of FA from SB
i and SF

i is used for the new symbolic state.

g((F,G, IB)) = (F ′,G, IBP ) where (F,G, I) = SB
i , F ′ = F ∩ FFWD and FFWD is FA of SF

i .

• FI push greg(rg) creates a new symbolic state identical to the state SB
i but the last global

register added SF
i is removed from the new state.

g((F,G, IB)) = (F,G \ {rg}, IBP ) where SB
i = (F,G, I) and rg is the last global register added

to SF
i .

• FI pop greg(rg) creates a new state identical to the SB
i , then the register rg from SB

i is
moved to the forest automaton of the new state and finally the original value of rg in SF

i is
stored to the corresponding register in the new state.

g((F,G, IB)) = (F,G ∪ {rg}, IBP ) where SB
i = (F,G, I) and rg is the last global register

removed from SF
i .
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• FI set greg(rg) creates a new symbolic state identical to the SB
i . It loads an old value of

the global register rg from SF
i and assigns it to the register rg.

g((F,G, IB)) = (F,G[rg := r′g], IBP ) where SB
i = (F,G, I) and r′g is the register of SF

i .

• FI abort is not reversible.

• FI acc sel has an empty semantics. The original instruction isolates a selector and so it can
create a new TA. It is not necessary to reverse this operation since it does not change the
language of FA of the symbolic state or anything else in the symbolic state.

g((F,G, I)) = (F,G, I)

• FI acc set,FI acc all are the same as the previous instruction and so the semantic of these
instructions is empty.

g((F,G, I)) = (F,G, I)

Register Assignment Instructions

The instructions in the list bellow perform simply an assignment to the register. Reversing them
consists of creating a symbolic state S′ with the same values of registers as the symbolic state SB

i

and substituting of a value of the original destination register rd of S′ by the value of the same
register in the state SF

i (denoted by r′d). Formally, g((F,G, IB)) = (F,G[rd := r′d], IBP ) where
(F,G, IB) = SB

i and r′d ∈ SF
i .

• FI load cst
• FI move reg
• FI bnot, FI inot
• FI move reg offs
• FI move reg inc
• FI get ABP

• FI get GLOB

• FI load
• FI load ABP, FI load GLOB

• FI get greg
• FI loads
• FI alloc
• FI iadd, FI imull
• FI eq, FI neq, FI ge, FI gt, FI le, FI lt
• FI build struct

Void Instructions

The following instructions have reverse semantics that is identity to the input symbolic state because
they do not change the symbolic state in forward run. The symbolic state obtained by the reverse
instruction is the same as the symbolic state SF

i . Formally written, g((F,G, IB)) = (F,G, IBP ) where
SB
i = (F,G, IB).

• FI cond
• FI check
• FI assert
• FI error
• FI noret
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6.4 Designing Predicate Abstraction over Forest Automata

The predicate abstraction from [3] defined for tree automata was already introduced. We extend
the concept to forest automata in automata component wise way. This means that the abstraction
is applied to each tree automaton of forest automaton in the current symbolic state separately.
Formally, let αFP : F → F be an abstract function where F is a domain of forest automata and P =
{P1, . . . , Pn} is a set of predicates. The function αP is defined as follows. Let F1 = (A1 · · ·An, φ

A)
and F2 = (B1 · · ·Bn, φ

B) be two forest automata and let αP be an abstraction function merging
states of a tree automaton according to the equivalence relation ∼P defined in Section 6.1. Then
αFP (F1) = F2 ⇔ ∀i ∈ {1, . . . , n} : Bi = αP(Ai).

The states are merged only in one tree automaton and not across the different tree automata of
forest automata using the proposed method. However, merging the states of different tree automata
can be more efficient (since a forest automaton with smaller number of states is created). This work
proposes the first version of predicate abstraction and an optimization of the new method could be
done as the future work.

The predicates from P are languages represented by tree automata. We use compressing rep-
resentation from [3]. A tree automaton A = (Q,Σ,∆, R) represents a set of predicates where the
predicates are the languages L(A, q) of the states q ∈ Q. Checking whether a state of a tree automa-
ton has non-empty intersection with the same sets of predicates as another state of the automaton
is done by the following method. Consider a TA A and the set of predicates P that are represented
by the set of TA T = {AP1 , . . . , APm}. Recall that the TA can represent a set of predicates. We
create the product automata A×AP1 , . . . , A ×APm in the bottom-up way manner [5].

Each of product automata A×APi , where 1 ≤ i ≤ n, has the state set consisting of the product
states of the form (p, q) ∈ QA ×QAP

i
. To easier the construction of ∼P , we introduce the auxiliary

function m that labels each state of A by the states of the predicate tree automata. Formally, the

function m : QA → 2
Q

AP
1
∪...∪QAP

m is defined as follows: m(p) = {q ∈ QAP
1
∪ . . . ∪ QAP

m
| ∃A ×

APi : (p, q) ∈ QA × QAP
i
}. The equivalence relation ∼P ⊆ Q×Q is then constructed such that

(p1, p2) ∈ ∼P ⇔ m(p1) = m(p2). The application of the function αFP can lead to merging the states
of A.

When a found error is considered to be a spurious one, then the abstraction needs to be refined
by creating the new predicates and adding them to the current set of the predicates P. The new
predicates are created as follows. Consider a point of an analysed program where the spurious
error is detected at the (i − 1)-th step of the backward run because L(FF

i−1) ∩ L(FB
i−1) = ∅ where

FA FF
i−1 is from the forward run and FA FB

i−1 is from the backward run. We create a normalized
FA FFN

i = (A1 · · ·An, φ
A) and a normalized FBN

i = (B1 · · ·Bm, φ
B) by normalization of FF

i and
FB
i from the i-th step. It can be supposed that n = m because normalization transforms the both

FA to an uniform form. Then the set of the new predicates Pnew = {Bi ∈ FN
B | L(Ai) ∩ L(Bi) = ∅}

is obtained. The symbolic execution is then restarted again with the P = P ∪ Pnew.

6.5 Implementation

This section provides the description how the described methods have been implemented in the
Forester tool. We describe the implementation of backward run in Section 6.5.1, the implementation
of intersection of symbolic states in Section 6.5.2, and predicate abstraction in Section 6.5.3.

6.5.1 Backward Run

The backward run can be enabled by setting the macro FA BACKWARD RUN in file config.h to 1. If this
macro is set to value 1, then the backward run is executed by class SymExec on an error detection.

The main method of backward run is called isSpuriousCE. It checks whether a given error
is a spurious or not. This method is implemented in class BackwardRun — the wrapper class of
backward run.
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As it was described in Section 6.3, the backward run is performed by going through the given
forward trace in the backward order and executing reverse abstract transformers implementing the
reverse instructions. The method reverseAndIsect has been added to class AbstractInstruction for
modelling a reversion of instruction. The class AbstractInstruction is the parent class of the inheri-
tance hierarchy of the classes implementing microcode instructions. Each microcode instruction has
to implement this method if the parent class does not already implement it. The method reverse-
AndIsect basically implements the reverse abstract transformer of a given instruction. Despite the
name of the method, the intersection of forest automata is not done by each microcode instruction
but only in the cases described in the previous section. The method reverseAndIsect returns a new
symbolic state that is used as the next symbolic state in the backward run.

The method isSpuriousCE returns true whenever a symbolic state returned by the method
reverseAndIsect contains a forest automaton with an empty language. In such a case, it also creates
the new predicates. When the method reaches the beginning of the forward trace, then the found
error is real and the false is returned.

6.5.2 Intersection of Forest Automata

The method reverseAndIsect of class FixpointBase performs the intersection of forest automata.
This class is inherited by the classes implementing microcode instructions FI abs, FI fix which
both compute the fixpoint. The intersection of forest automata is implemented by class SymState
representing a symbolic state. Moreover, it contains information about the variables in the cur-
rent symbolic states, which is needed by the implementation of the algorithm for forest automata
intersection.

The main method for symbolic state intersection is called Intersect. It computes the intersection
between the symbolic states. The parameters of the intersection are the symbolic state, that calls
the method Intersect, and the symbolic state given as a parameter. The result of the intersection
replaces the content of the calling object.

Another operation implemented for the purposes of the backward run is the method Substi-
tuteRefs. It performs substitution of the root references, which is needed for reversing the instruc-
tion FI free. The root supposed to be substituted and reference for substitution are given in the
parameters of this method. The method is again member of class SymState.

6.5.3 Predicate Abstraction

The predicate abstraction is implemented by a method predicateAbstraction, a member of class
Abstraction. This method takes a set of tree automata representing the set of predicates as its pa-
rameter. The abstraction is performed over a forest automaton which is a data member of class Ab-
straction. The abstraction is chosen by setting value of macro FA USE PREDICATE ABSTRACTION
to 1. When predicate abstraction is chosen, the method predicateAbstraction is called on FA ABS
instruction execution.

The new predicates used by predicate abstraction are created during the testing whether a found
error is spurious or real. Particularly, the method isSpuriousCE creates the predicates when the
spurious error is detected using the method described in Section 6.4. It is necessary to perform
the intersection between TA representing predicates and TA of FA from symbolic state of backward
run. The bottom-up intersection algorithm of tree automata was implemented in VATA for this
purpose because VATA contained only a top-down algorithm for computing intersection which is
not suitable for our purposes.

The first run of predicate abstraction should be done with an empty set of predicates. This can
lead to a very strong abstraction where the most TA states would be merged. This would lead to
a trivial spurious counterexamples found in the first run of the analysis. Therefore we use height
abstraction with height 1 (what is also the original configuration of abstraction used in Forester)
for the first run of symbolic execution. When a spurious error is detected in this run then the new
predicates are created and the next runs of symbolic execution use predicate abstraction. Moreover,
the behavior of the new implementation is different only after the detection of a spurious error.
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Chapter 7

Experimental Evaluation

This chapter summarizes the experimental evaluation of the results of this work. First, we compare
a performance of the versions of Forester without and with the VATA library. Then we evaluate
the backward run on the SV-COMP benchmark and finally the version of Forester using predicate
abstraction is compared to the original one with height abstraction. We also discuss the programs
that were newly verified by Forester because it was not possible to analyze them without the back-
ward run and predicate abstraction.

All of the experiments have been evaluated on the computer with CPU Intel Core 2 Duo (2.13
GHz) and 4 GiB memory, using Debian Linux, testing version. We used g++, version 4.9, for
compiling Forester and gcc, version 4.8, for compiling the analysed programs. The measured time
is the CPU time. The presented times are the averages of the five measurings. The evaluations over
SV-COMP benchmark are done following the rules of SV-COMP competition [24].

7.1 The Evaluation of Forester with VATA

This section provides a comparison of the early version of Forester that uses its own tree automata
library and the version using VATA. Since the version without VATA is no longer compatible with
the new version of Forester, we can only evaluate the performance on the programs that are possible
to analyze also with the older version of the tool without backward run and predicate abstraction.
Therefore we use height abstraction of the height 1, which was the original configuration of Forester
before this work started.

The first performance tests were performed over the regression test suite of Forester. The results
of these tests are summarized in Table 7.1. There are two cases that were measured. The first one is
the case when Forester is compiled with the third level of optimization of the compiler. The original
implementation outperformed us by the factor of two. Since we expected that VATA as an optimized
library should be more efficient then Forester implementation of tree automata, we tried to verify
these results by compiling Forester and VATA without optimization and running the tests again.
We found that with the optimization turned off, Forester with VATA is more efficient. The are
two possible explanations of the the worse performance of Forester with VATA in the case when
optimizations of compiler are used. The first one is that the original implementation of tree automata
in Forester uses simulation to reduce the size of tree automata what is not done in version with

Table 7.1: Comparison of Forester with and without VATA on the regression tests of
Forester.

Compiler optimization without VATA [s] with VATA [s]

-O3 9.00 17.00

Default 65.00 43.00
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Table 7.2: Comparison of Forester with and without VATA on the selected cases. Compiled
with g++ default optimizations.

Version without VATA [s] with VATA [s]

SLL with CSLL 7.77 5.44

DLL with CDLL 13.23 10.70

Skiplist, the 3rd level 173.07 185.70

Skiplist, the 2nd level 3.86 1.90

Linux driver snippet 9.931 5.08

Table 7.3: Comparison of Forester with and without VATA on the selected cases. Compiled
with g++ with level -O3 of optimizations.

Version without VATA [s] with VATA [s]

SLL with CSLL 0.85 2.07

DLL with CDLL 1.43 4.03

Skiplist, the 3rd level 15.00 46.00

Skiplist, the 2nd level 0.40 0.60

Linux driver snippet 1.07 1.92

VATA because the reduction based on simulation in VATA is not ready yet. However, this does
not explain why the original implementation is more efficient only when the advanced compiler
optimization are used. The second possible explanation of the slowdown is that VATA is linked
to Forester as a static library so the compiler cannot perform the advanced optimization between
Forester and VATA, as opposed to Forester using its own tree automata module.

We decided to further explore this problem by comparing the particular programs. These
programs contain manipulation of singly-linked lists of circular singly-linked lists, doubly-linked
lists of circular doubly-linked lists, the skip-lists of the 2nd and the 3rd level and also a snippet from
the Linux drivers. Not all of these programs are included in the Forester regression test set.

The results comparing Forester with and without the VATA library compiled without the com-
piler optimization are in Table 7.2. The version of Forester with VATA is faster in this case. The
only exception is a verification of the skip-list of the third level. We suppose the original imple-
mentation takes the advantage of reduction of tree automata because tree automata with the big
number of states are created during it verification. The big number of the generated states is related
to the fact that the program manipulating the skip-list of the third level is the probably the most
difficult case from the whole Forester testing benchmark.

The comparison of the two versions of Forester compiled with the compiler optimization on the
same programs are in Table 7.3. Here, the original implementation of Forester is faster. The biggest
difference is in the time needed for the verification of the skip-list of the third level. It has probably
the same cause as in the version without optimization. Putting the results together, we assume
that the main performance loss for Forester using VATA comes from the inability of compiler to
perform the advanced optimization. The fact that VATA does not reduce tree automata based
on simulation relation has the impact probably mainly in the demanding cases such as verification
of skip-list. However, employing the algorithm for reduction of tree automata in VATA would be
needed in future to prevent inefficiency in verification of the programs where FA with many states
are generated.

Although Forester using VATA is slower in some cases, the slowdown is not as significant to
prevail the advantages of the better modularity and maintainability coming from having the separate
library for tree automata, especially with regarded to the further development. On the other hand,
one of the goals of the future work should be the deeper investigation of the causes of the slowdown.
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Table 7.4: Evaluation of the backward run on SV-COMP benchmark and on the test set of
Forester.

Category Real Spurious

HeapManipulation 8 3

MemorySafety 6 0

Forester test set − 7

7.2 Backward Run Evaluation

The implementation of backward run was evaluated on SV-COMP benchmark and also on the test
suite distributed with Forester. The evaluation was done by analysing the programs that was correct
but Forester found a (spurious) error in them. We also checked whether the backward run correctly
confirms the real errors are real.

Note there is a difference in reporting error between Forester test suite and SV-COMP bench-
mark. All found errors in the Forester test suite, including a memory garbage detection, are reported
and the analysis is stopped after the detection. In the SV-COMP benchmark, only the errors break-
ing a given specification cause stop of the analysis. For instance, the analysis should not stop when
a garbage on the heap is detected but the absence of the other errors such as an invalid pointer deref-
erence is verified. We respect the specific rules for the both test sets in our evaluation. It is possible
to configure Forester to stop after a garbage detection by the macro FA CONTINUE WITH GARBAGE in
file config.h.

The implementation of backward run confirmed 6 real errors in the programs in the mem-
ory safety category of SV-COMP benchmark and 8 real errors in the heap manipulation category.
Moreover, the 3 spurious counterexamples were detected in the heap manipulation category. The re-
sults are summarized in Table 7.4. The analyzed programs in SV-COMP benchmark include e.g.,
programs from LDV (Linux Drivers Verification) project containing implementation of alternating
singly-linked list or manipulation with mutex locks, or the programs implementing bubble sort over
a list implementation from the Linux kernel. Forester does not successfully process all the programs
in the test set because it does not currently support all C language constructions. It causes that the
number of the found errors, spurious or real, is not as high as it would be if Forester could analyze
all the programs in the benchmark.

The results of evaluation at the Forester test set are the following. There are 8 cases where
the spuriousness of the found error was proved. A confirmation of the real errors does not make
sense because these errors were supposed to be found by Forester also before the backward run
implementation as a part of its testing.

The important contribution of backward run is a guarantee of correctness of answer when an error
in a program is reported to the user. Unfortunately, so far we can apply the backward run only to
the programs that use the supported C language constructions.

7.3 Predicate Abstraction

This section provides an evaluation of the Forester with predicate abstraction. The predicate ab-
straction is used in the way described in Section 6.5. The first run is performed using height abstrac-
tion with height 1 and when a spurious counterexample is found, the analysis creates the predicates
and continues with predicate abstraction. This method ensures that Forester successfully passes all
the cases that it passed before because the first run remains the same. First, the number of the new
cases that Forester can analyse due to predicate abstraction is evaluated. Then the newly analysed
cases are studied in a more depth and the performance of Forester is compared to the Predator
tool, the winner of HeapManipulation category and the best sound tool in MemorySafety category
of SV-COMP’15.
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Table 7.5: Evaluation of predicate abstraction in the SV-COMP benchmark and
the Forester test suite. Table shows the number of the verified programs which correctness
was not verified by Forester before this work and the number of the newly found errors that
Forester was not able to detect or confirm before.

Category New errors found Newly proved programs

HeapManipulation 9 2

MemorySafety 2 1

Forester test set 0 4

Table 7.5 summarizes the results of the evaluation of predicate abstraction on SV-COMP’15
benchmark and Forester test suite. We distinguish between the programs with a new detected error
that Forester was not able to find before and the programs proved to be correct. The most of the new
errors are detected in the heap manipulation category of SV-COMP’15 benchmark, where 9 errors
have been detected that Forester has not been able to detect before. We also proved 2 programs
from the LDV project to be correct. In the memory safety category, there is less found errors and
verified programs but it is partially caused by the fact that this category contains less test cases
then the heap manipulation category. Finally, we prove correctness of 4 programs from Forester test
set which could not be proved without the use of predicate abstraction. These programs manipulate
the data structures like doubly-linked list or trees. They do not need creating boxes during the
verification procedure although some other use of these data structures can lead to an application
of boxes.

The main issue complicating the successful analysis of more programs is the immaturity of
Forester. It does not support all C language constructions and it fails due to an internal error
because some unexpected state occurs during the analysis. This often causes that many test cases
remain not analysed. The symbolic execution able to remove a detected garbage and continue would
also improve the results as well. This is problematic mainly because the programs from SV-COMP
benchmark create a garbage in the tests cases where a different safety property is verified.

Last, a comparison of the performance between Forester and Predator is given. The programs
described here can be analysed only due to the backward run and predicate analysis implementation.
Table 7.6 summarizes the results. Forester outperforms Predator in verification of red-black lists
because the abstraction in Predator is not able to create the shape invariant. To our best knowledge,
it is the only sound tool able to verify these kind of data structures. The other test case is a singly-
linked list which has an integer value as the data. The items of the analysed singly-linked list are
ordered by the value of their data. So for example, a distance between the head of a list and a
node having integer 4 as a data member is smaller than the distance between a node having integer
6 as a data member. In the case of verification of correct program, Predator outperforms Forester
because Forester found a few spurious counterexamples before the shape invariant was computed.
In the case when the program contains an error, Forester is slightly faster.

Another case when Predator ran out of time is a tree (without the parent pointers) ensuring
that each left successor node have allocated it right successor node. Forester is able to verify the
correctness of such a structure but it is the most time demanding task of this set. Finally, the last
tested program is the one traversing a singly-linked list of even length and then freeing the list
by two nodes at time (which is safe because the number of nodes is even). Predator in this case
reported a spurious error. Forester detects that the error is spurious but is unable to learn a set of
predicates avoiding this error. After the first run, it learns that the list should not be 3 elements
long. When the analysis is restarted then a spurious error is detected for the list with 5 elements.
The predicates preventing the error are learnt but the analysis will find a new spurious error for the
list with 7 elements and so on. Forester is unable to generalize the predicates to exclude all list of
odd length from the set of all reachable heap configurations and so the analysis does not terminate.

It is necessary to admit that predicate abstraction is not fully complete in Forester. It needs to
be implemented more efficiently to get the better performance on the hard cases. The new predicates
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Table 7.6: Evaluation of predicate abstraction on SV-COMP benchmark and the Forester
test set. Timeout is set to 1000 second.

Category Forester [s] Predator [s]

Red black list, correct 1.10 timeout

Red black list, error 0.12 timeout

SLL with integers, correct 0.12 0.03

SLL with integers, error 0.02 0.03

Tree, correct 251.03 timeout

SLL of even length, correct timeout false positive

are not also created in the most precise way so some states may not be abstracted although it would
be theoretically possible. Predicate abstraction also often causes an internal Forester error when a
garbage is created but the analysis continues because an absence of another kind of error should be
proved.
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Chapter 8

Conclusion

The main goals of this thesis were (a) to implement version of Forester tool that uses the VATA
library for tree automata representation and manipulation and (b) to extend the verification pro-
cedure based on forest automata with backward run for detection of the spurious errors found in
the analysed program. The theory of forest automata and the related theory of tree automata have
been studied and described in the beginning of the thesis. The verification procedure based on forest
automata has been also explored to fulfill the thesis goals.

The connection of Forester and the VATA library was designed and implemented after the
analysis of the both tools. Forester had to be refactored for this purpose. Then the adapter design
pattern was used to create an interface between Forester and VATA. The version of Forester using
the VATA library successfully participated in the competition SV-COMP 2015 [24] and a paper
introducing Forester was published in proceedings of the conference TACAS 2015 [14].

The backward run over symbolic states was designed for forest automata based shape analysis
and implemented in the Forester tool. The intersection of non-hierarchical forest automata was
implemented for the purposes of the backward run. The intersection of forest automata is not only
a necessary part of backward run but it is a nice theoretical contribution of this work too. Predicate
abstraction over forest automata was also designed including learning the new predicates by the
backward run. Predicate abstraction uses bottom-up tree automata intersection in VATA which
was also implemented (but not designed) as the part of this work.

The backward run and predicate abstraction were evaluated on SV-COMP benchmark and
Forester test suite. These new techniques make it possible to successfully analyze some programs
on which the earlier version of Forester fails. Moreover, the extension of Forester with predicate
abstraction and backward run is to our best knowledge the only one sound tool able to verify the
red-black lists (and similar data structures) fully automatically.

This work participated in the student conference Excel@FIT 2015 [22]. A paper about this work
was accepted to a local proceedings of the conference and the work was awarded with the second
prize in the category

”
Scientific contribution“.

There is still many possibilities for the future work. Forester is not able to analyse many
programs because it does not support all C language constructions or the analysis of a program
ends in an internal error. Resolving these issues is one of the future goals. Predicate abstraction is
not also yet fine tuned and the further improvements would bring the better performance. There is
also needed a modification that would allow Forester to continue also when a garbage is created but
a different property is verified. The other future directions involve also conceptual and theoretical
extensions of backward run, including intersection of forest automata, and predicate analysis such
as a generalization to the hierarchical forest automata.
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Appendix A

Storage Medium

The storage medium contains the source code of the Forester tool (that is distributed together with
the Predator tool and Code Listener) and the source code of the VATA library. The tests used for
the evaluation in this thesis are another content of the storage medium. It also contains an electronic
version of this technical report and its LATEX sources. The file README describes the structure of
the storage medium and the instructions for compiling and running Forester.
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