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Abstrakt
Dynamika úhozů kláves je jednou z behaviorálních biometrických charakteristik, kterou
je možné použít pro průběžnou autentizaci uživatelů. Vzhledem k tomu, že styl psaní
na klávesnici se v čase mění, je potřeba rovněž upravovat biometrickou šablonu. Tímto
problémem se dosud, alespoň pokud je autorovi známo, žádná studie nezabývala. Tato
diplomová práce se pokouší tuto mezeru zaplnit. S pomocí dat o časování úhozů od 22 do-
brovolníků bylo otestováno několik technik klasifikace, zda je možné je upravit na online
klasifikátory, zdokonalující se bez učitele. Výrazné zlepšení v rozpoznání útočníka bylo
zaznamenáno u jednotřídového statistického klasifikátoru založeného na normované Euk-
lidovské vzdálenosti, v průměru o 23,7 % proti původní verzi bez adaptace, zlepšení však
bylo pozorováno u všech testovacích sad. Změna míry rozpoznání správného uživatele se
oproti tomu různila, avšak stále zůstávala na přijatelných hodnotách.

Abstract
Keystroke dynamics is one of behavioural biometric characteristics which can be employed
for continuous user authentication. As typing style on a keyboard changes in time, the
template adapting is necessary. No study covered this topic yet, as far as the author knows.
This master thesis tries to fill this gap. Several classification techniques were exercised
with help of keystroke data from 22 volunteers in order to test if they can be improved
to unsupervised online classifiers. A significant improvement in impostor recognition was
noted at one-class statistical classifier based on normed Euclidean distance. The impostor
could make 23.7 % actions less than in offline version on average but the improvement was
obseved with all test sets. In contrary, the genuine user recognition varied from user to user
but it still kept at acceptable values.
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Chapter 1

Introduction

When discussing biometric characteristics, many people understand the physiological bio-
metrics only. That includes fingerprints, iris scans, face recognition, etc. However, there are
also behavioural biometric characteristics, such as a signature, speech, a gait or computer
usage manners [16, 13].

For many years biometrics has been used to verify the user’s identity in order to allow
access to a system or not. This approach is usually referred to as static authentication. Once
the user is logged in the static authentication system, he is not asked to re-authenticate
himself any more. If we consider a computer system, no re-authentication may result in
a security breach since the running session might remain unlocked (e.g. the user forgets to
lock it when leaving, he loses his mobile device, etc.) and an impostor can use the device
with the genuine user’s identity.

The continuous authentication1 is a much younger discipline. It studies how to recognise
if the user working with a system is still the same person. The continuous authentication
system should run in the background, preferably without being notified by the working
user. However, if it evaluates the working person changed, it has to lock the screen and
force the person to re-authenticate with a kind of static authentication method (e.g. with
a password). That implies the biometric system must be designed so that it can operate
without user’s intervention. If the system is to be deployed easily, it should also require no
special hardware. [2, 44]

As the authentication system is running in the background, one should also look after its
speed. In order to allow comfortable work, the system should not slow down the computer,
thus it needs to be computationally effective.

The stated constraints eliminate most of the physiological characteristics2 and require
usage of common hardware input devices only. In the current research, these devices are
mainly represented by a keyboard, a mouse and a web camera. Equipped with that,
keystroke dynamics, mouse dynamics and face recognition can be performed.

This work focuses on the keystroke dynamics (KD). A lot of research on its usage for
static biometrics has been performed, usually as an additional authentication factor to the
traditional method of login with a username and a password. However, only few studies
concerned employing KD in continuous biometric systems.

A biometric system captures a biometric sample from an individual and compares it
with the reference template created earlier, during the enrolment phase. As keystrokes

1 Also referred to as continuous verification [44] or dynamic analysis. [13]
2 Some trials with physiological characteristics for continuous authentication in computer systems were

also performed, e.g. a fingerprint scanner placed on a mouse. [9]
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represent a characteristic with low permanence (since the user can get better in typing or
can suffer an injury), the template should change in time as well. Periodic re-enrolment in
order to update the template is uncomfortable for the user. Dynamic reference adaptation
would represent a better way. Unfortunately, there is no research concerning this problem,
as far as the author knows. Therefore the research question is set:

Is it possible to adjust the template during the authentication phase in a con-
tinuous keystroke dynamics system? How does it differ for various classifying
methods?

To answer this question, 22 participants collected their keystroke data to be analysed
later. Most participants collected tens of thousands keyboard events. The data were used
for simulating data from one user as genuine and the rest as impostor.

Work organising

The rest of work is organised as follows.
Chapter 2 introduces the reader in the authentication using biometric methods. It ex-

plains terms biometric system, biometric method and sets conditions for choosing biometric
features.

Continuous authentication builds on biometric methods. Chapter 3 describes how to
authenticate a user in continuous setting, i.e. in situation he or she is not aware of be-
ing authenticated. It discusses how to build dynamic template and how to evaluate such
samples.

In Chapter 4, the findings from Chapters 2 and 3 are applied to the keystroke dynamics,
one of the behavioural biometric characteristics. Several approaches proposed by various
researches are presented, with respect mainly to the choice of features and classification
methods.

Chapter 5 is about gathering data from users. It reviews several capturing tools and
publicly available databases and selects one, BeLT, for data collecting. BeLT’s capabil-
ities and drawbacks are described more thoroughly. Process of seeking participants and
explaining their task is also delineated.

Next chapter describes processing the collected data. It includes filtering, transforming
to Python data structures, extracting the significant features and packing them so the
feature extraction can be skipped in later times.

The possible classifiers themselves are elaborated in Chapter 7. The chapter starts
with an introduction to machine learning terminology and scikit-learn library. Several
classifiers are outlined together with proposals how to make them learn continuously.

The last chapter describes observed results with different classifiers and settings.
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Chapter 2

Biometric-based authentication

Nowadays, the privacy becomes a more and more demanded feature in computer systems.
In most of the systems, users can work within isolated sessions and they have to authenticate
themselves prior to enter the session, e.g. with a combination of a username and a password.

The authentication system can generally use one or more of the following authentication
factors (or authenticators):

1. what the user knows – knowledge-based,

2. what the user possesses – token-based,

3. who the user is – ID-based.

Let us now look at the factors more in deep.

1) Knowledge-based The easiest and still widely used authentication methods are based
on some information that the user remembers. The information is most often a password,
a passphrase or a PIN code. This group contains also an “obscure” information related to
the person that is secret to most people, such as the user’s favourite colour or his mother’s
maiden name [34].

2) Token-based Those methods are based on something the user physically possesses
– which is called a token. This category includes smart-cards, one-time key generators or
metal keys. The major drawback of token-based authenticators is that they can be lost or
stolen. If the token is used as the only authenticator, an impostor is able to authenticate
himself only with the token. To overcome that, the token-based methods often cooperate
with another factor, such as additional PIN code or a password.

3) ID-based The last authentication factor group contains authenticators, which are
unique for the user. Usually, biometrics is considered as an ID-based authenticator, how-
ever, documents unique for the person such as a driving license or a passport fall into this
category too. The major advantage of the ID-based methods lies in the security, since it
“cannot rely on secrecy, but instead on the difficulty of replicating it.” [34] However, when
they are compromised and replicated, their replacement is difficult.

5
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Figure 2.1: Block diagram of a biometric system.

Biometric characteristic Biometric characteristics are measured from unique phys-
ical, chemical or behavioural human attributes, which are usually called traits, indicators,
identifiers or modalities. The biometric-based authentication has many advantages over
the previous two categories. It is something natural and therefore the user needs not look
after it. A biometric characteristic is much more difficult to fake and it cannot be lost,
stolen or shared. As Jain and Ross [17] mention, the biometric-based authentication offers
two more advantages over knowledge-based and token-based systems:

• Negative recognition can prevent a single person from using more identities. This
identification3 capability is useful for welfare benefits or any other systems where
nobody should be able to get the benefit twice (even under different names).

• Non-repudiation can log the user’s activities and prove his responsibility for the per-
formed actions later.

2.1 Biometric system

A biometric system consists basically of several building blocks. The number of blocks
varies in the literature, but they can be generalised in five blocks. The system design is
shown in Figure 2.1. As it is, in fact, a pattern recognition system (although it does not
perform exact comparison and rather produces a comparison score, as will be shown later),
it is predetermined to contain a reference pattern database and a comparing module. To
acquire biometric data, the system also consists of a sensor module and a feature extraction
module. The latter one also takes care of the sample quality before extracting the features.

2.1.1 Operational modes

Prior to describing the individual building blocks of a biometric system, its operational
modes are presented. First, users must enrol in the system before they can use it. After
that, the system can operate identification or verification mode. [5] Those modes differ
from each other not only in the number of comparisons against the reference database, but
also in the suitability for continuous authentication.

3 The term identification is explained in Section 2.1.1.
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Enrolment A user has to be enrolled in the authentication system before he can use it.
The condition holds for a biometric-based system as well. During the enrolment phase4, the
system extracts features from the acquired samples for each user and creates their reference
records (in the later text also referred as the user’s template). Those are then stored in the
database, alongside some personal information about the user.

In order to create a representative template, more input samples may be required. [8]
The data capturing may be also supervised by a human, who verifies the user’s identity and
guaranties genuineness of the template. The template is validated against different dataset
of the same user before it is released for authentication. The purpose of this additional step
is to ensure small intra-class distance or to set personal threshold η.

Identification In the identification mode, the system performs one-to-many comparison
between the acquired sample and all the records in the reference database in order to find the
most similar records to the sample. This mode is used only in static authentication systems,
mainly for physiological biometric features. As such, identification can play a big role in
forensics. Searching the whole database brings also the capability of negative recognition
(as discussed in the introduction of this chapter), which helps to prevent double dipping5.

Verification In the verification mode, the system only checks whether the user is the
one he claims to be. That means, the sample is compared only with one user-specific
database entry and the procedure therefore operates much faster. According to whether the
verification is performed statically (while proving the claimed identity) or dynamically (by
monitoring whether the user is still the same person), we distinguish static and continuous
verification.

Since it is impossible to perform a continuous identification, the continuous biometrics
is usually understood as a synonym of continuous verification [44]. For that reason, ver-
ification is the operational mode this thesis focuses on. All the samples are compared to
a single template, which determines that each user’s template can use different weights for
particular traits.

2.1.2 System operation

In the next few paragraphs, the five basic building blocks of a biometric system are de-
scribed. The diagram of their operation is shown in Figure 2.1. It is also explained how
their operation depends on the current operation mode.

Sensor module The sensor module works as a mediator between the biometric system
and the user. The module is usually realised as a special piece of hardware. However,
sometimes common hardware can be used, for example for behavioural biometrics. Speed
of the sensor module is essential for the overall system speed.

Pre-processing Before extracting features, the sample is verified in order to be suitable
for further processing. Quality of the data may be improved, e.g. noise can be removed.
However, sometimes the sample is so poor that the user must provide the data again.

4 Sometimes also referred to as learning or training phase, especially in connection with machine learn-
ing-based systems.

5 Encyclopedia of Biometrics [23] characterises the double dipping as “the unethical act of seeking com-
pensation, benefits, or privileges from one or more sources, given only a single legitimate entitlement.”
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Feature extraction In this module, the biometric data is processed and discriminatory
information is extracted. The extracted set of features, referred to as the user’s template,
should evince small intra-class and large inter-class distance. Another reason for simplifying
is to reduce dimensionality. The proper choice of features to extract influences the perfor-
mance of matching module in a large manner. Therefore the features should be selected
with respect to the matching algorithm.

Comparison & decision modules The comparing module compares incoming set of
features (extracted from the acquired sample) with the template stored in the database.
Generally, the comparison is made not only in verification (one-to-one comparison) and
identification (one-to-many comparison) modes, but also during the enrolment phase, in
order to ensure that the user is not enrolled in the system yet. In fact, the comparing
module works in the identification mode during the enrolment. As a biometric feature is not
completely stable in time, the matching algorithm does not perform the exact comparison.
Instead, the comparing module generates a comparison score and lets the decision module
to evaluate it. In the verification mode, the modules validate the claimed identity. In the
identification mode, a list of candidate identities is returned or the sample is rejected when
no match is found.

Database The system database acts as a storage for users’ templates along with some bi-
ographic information such as name, address, username or PIN. The templates are extracted
and saved during the enrolment phase. During the recognition phase, both in identification
and verification mode, the templates are passed to the comparing module to be compared
with the current sample.

2.2 Biometric methods

Various biometric modes6 are commonly used for user authentication. In this section,
the criteria for proper choosing the method are discussed. As this work focuses on the
continuous authentication on computers, some methods which are usable for that purpose
will be briefly introduced as well.

2.2.1 Behavioural methods

Although majority of researchers in the area of biometrics are interested in physiological
modes, such as fingerprints, iris scans, voice recognition, etc., the behavioural modes de-
serve at least the same attention. The behavioural biometric characteristics evince higher
variance, but they can be favourably used in a smaller circle.

As behaviour is rather a long-term process, behavioural biometrics (BB) is predeter-
mined to be used in continuous verification. In computer use, keystroke dynamics, mouse
dynamics or software interaction (such as e-mail behaviour, GUI interaction or program-
ming style) can be counted in behavioural characteristics. Besides that, many motor skills
(gait, lip movement, signature recognition) can be classified as behavioural characteristics
as well.

Yampolskiy and Govindaraju [49] published an extensive survey on behavioural biomet-
rics, concerning many different behavioural characteristics (even very rare) and compared

6 According to [15], the mode is defined as a “combination of a biometric characteristic type, a sensor
type and a processing method.”
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them. They pointed out that almost every aspect of human behaviour can be used as a ba-
sis for personal profiling and many of them also for biometric verification. The behaviour
profiling is already being employed in web-usage analysis, tracking down shopping manners
or customising user interface. Several experiments were also performed to show that BB
are suitable for continuous verification.

2.2.2 Feature suitability

Not all traits are equally convenient for biometric recognition use. Jain et al. [16] introduced
seven aspects which should be considered when choosing the method. Yampolskiy and
Govindaraju [49] extended their explanation for behavioural biometrics.

1. Universality: Every user of the system should possess the trait. Although the
universality of behavioural characteristics is low in the population, it is high enough
for the applicable domains.

2. Uniqueness: The trait should be unique in the set of users of the system and should
evince small intra-class and large inter-class distance. The behavioural features are
expected to show larger intra-class distance. They are still unique enough for verifi-
cation, but it is difficult to identify an individual from his behaviour.

3. Permanence: The modality should be sufficiently stable in time. As a user can
learn new ways of accomplishing tasks, the permanence of his behavioural character-
istics is low. Therefore the template should be periodically updated to overcome this
drawback.

4. Measurability (also collectability): It should be easy to acquire and process the
trait. Computer input devices handle this problem easily and without obtruding the
user, who sometimes does not even notice capturing the data.

5. Performance: This property encapsulates the recognition accuracy which hugely
varies according to the operational mode. For verification, the performance is usually
high enough even for BB, however, it depends on the observed characteristic in the
identification mode.

6. Acceptability: The capturing method should be unobtrusive for the user. To pro-
vide an example, the footprint-based biometrics is proven to be usable as a biometric
mode [33], but we can hardly expect Europeans to take off their shoes to be scanned.7

Behavioural characteristics, as usually collected without the user cooperation, evince
high acceptability, but might be disapproved for ethical or privacy reasons [49].

7. Circumvention: The effort for imitating the trait should be very high to prevent
obfuscating the system. BB systems are very difficult to circumvent, since it is difficult
to get to know someone’s behaviour and imitate it.

7 The authors of the research meant footprint-based biometrics for usage in Japanese environment, where
taking off the shoes is a common habit when entering the dwelling.
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2.2.3 Using computer input devices

In biometric systems common hardware can be utilised as a sensor module in applications
in the personal computer. Although special hardware can be used for the login procedure,
such as a fingerprint scanner, only the methods which can perform continuous verification
will be discussed in this work. Nowadays, most of the research on this topic revolves around
computer-related behaviour – typing keyboard or pointing with mouse. However, contin-
uous verification based on physiological biometrics is also possible, as will be shown later.
As far as the author knows, no commercial product for continuous biometric authentication
exists.

Let’s now look at the three most significant methods.

Keystroke dynamics The keystroke dynamics biometrics is based on the way a user
types. A computer keyboard is used as a sensor module. The signal from the keyboard
is processed by the operating system (OS) that extracts low-level keyboard events – the
key-down and the key-up events. The feature extraction module transforms a sequence
of the low-level events to the sequence of features, which usually include timings of single
keystrokes and digraphs8. However, some researchers [8, 25, 43] wanted to utilise the
advantage of wider context and include also n-graphs (n >= 3) or whole words in the
template. Such an approach, however, has one large drawback for practical use – a huge
amount of data is required for a user to enrol. The whole Chapter 4 is dedicated to the
topic of the keystroke dynamics.

Mouse dynamics Using mouse (and pointing devices in general) movements for biomet-
ric recognition is a subject of study for much shorter time than the keystroke dynamics. It
is obviously caused by expanding usage of pointing devices for controlling the computer.
During the continuous authentication, the low-level mouse events data is being collected
from the OS. Unlike keystroke dynamics, the low-level mouse events are too detailed to be
processed directly. Pre-processing of such events is therefore necessary and aggregation is
also used quite often [19]. Feher et al. [11] introduced an extensive study on the topic of
the mouse-based user verification. They included many features in the template – not only
movements, but also clicks and composed features such as point-and-click or drag-and-drop.

Face recognition Sim et al. [44] proposed a method of multimodal continuous verification
using a web-camera and a fingerprint scanner placed on a mouse. Performing stand-alone
face recognition is also possible, but it has to overcome several difficulties including liveness
detection or different poses and angles of capturing. However, it is usually considered as
one of the less intrusive methods [26].

Summary

Biometric methods are considered ID-based authentication factors. A biometric character-
istic is a unique physical, chemical or behavioural human attribute and is the most difficult
to imitate from all the authentication factors.

A biometric system is a complex authentication mechanism that collects and processes
individual samples, compare them to a user template stored in database and based on the

8 A digraph is an ordered pair of two consequent characters.
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comparison predicts either the user identity (identification mode) or whether they are who
they claim to be.

Behavioural methods observe specific parts of human behaviour and are suitable for
authentication as well. However, they evince much smaller precision than physiological
features and thus the authenticators can use combination of more behavioural traits.
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Chapter 3

Continuous biometric
authentication

Although most researchers focus on static biometric recognition, in some situations it can be
advantageous to monitor continuously the user’s identity. Considering the user is monitor
continuously, the biometric system has to evaluate a large number of samples in a short
time. Therefore its template has to be simpler than for static biometrics and it should be
possible to update it regularly.

Moreover the continuous biometric system should forgive short-term deviation from the
template. Concept of trust handles this problem by maintaining value of trust level which
expresses rate how much the system believes the user is still the same person. If the trust
level drops below pre-set value, the user is locked out.

3.1 Dynamic template

The dynamic template is usually understood as a database of biometric features which is
being updated regularly during the continuous authentication. In contrast to the static
template, the dynamic one must satisfy several requirements:

1. The dynamic template must be simple. Comparing a sample with the template is
very frequent, since every single sample is examined individually. Several samples
can appear every second and they must be processed in a short time with as little
resources as possible.

2. It should allow adding new training samples during the run time with as little
overhead as possible. It implies creating a simple procedure that does not need to
process the whole enrolment dataset again. This is especially important for classifiers
with long enrolment phase, such as neural networks.

The constraints above require much simpler features than for a static template. For
example, for the static keystroke dynamics of a single password, the durations of characters
and latencies between them9 are usually stored. The durations and latencies are directly
bound to their positions in the password. For a password of n letters, such a template
contains at least 2n−1 features (n durations and n−1 latencies). Additionally, some other
features can be included, e.g. overall typing speed.

9 For the explanation of terms duration and latency see Section 4.1.1.
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In contrast to that, a dynamic template can consist of a table of durations for every key
(or a selected subset of the most frequent keys) and a table of latencies between digraphs.
Of course, the template structure is adapted to the needs of the particular classifier but
generally is composed of simpler features than a static template.

3.1.1 Template adjusting methods

As mentioned before, a typical way to create a biometric template is to capture the user’s
traits during an enrolment phase. It is possible to divide the template creation into three
phases: capturing, usage and adjusting. The typical operation – I will call it late adjust-
ment method – keeps the mentioned order.

However, it is also possible to create the template during the recognition phase, which is
more meaningful for behavioural biometrics. Let me call this approach early adjustment
method. As the name suggests, early adjustment method starts the classification with
a template made of very few samples (or even with a completely empty template). During
the system operation, the template is being adjusted. From the beginning, the system will
show higher error values (refer to Section 3.3). But as the template grows, the system
gets more and more adapted to the user’s behaviour and is not so impacted by negative
effects during the enrolment such as stress or confusion. The early adjustment method also
requires less attention from the user.

3.2 Biometric evaluation

In static biometrics, a distance metric and a threshold is usually used to evaluate genuine-
ness of a particular sample. It implies that the genuine user’s mistake can cause rejection
when logging in. This quite simple approach does not suit continuous authentication, since
the user types in a common way and he can make mistakes. Therefore, Bours [6] introduced
the concept of trust to overcome that problem.

3.2.1 Concept of trust

As mentioned in Section 3.3, the FAR and FRR do not suit measuring quality of a continu-
ous biometric system. They are limited to a certain number of samples, so they can be used
at best for evaluating periodic authentication. In a dynamic system, the biometric evalua-
tion should be done with every sample (i.e. in context of this work with every keystroke).
Since nobody is perfect and not every sample from a genuine user is mated, the user must
not be locked out immediately after one non-mated sample. On the other hand, the system
should allow only a limited number of “bad” actions in order to reveal an impostor quickly.

Therefore Bours [6] implemented the trust level (TL) – a scale of genuineness of a user.
The TL is expressed as the probability that the currently typing user is genuine. When the
system has started and the genuine user has just logged in, the TL is set to the value 100
to express 100 % genuineness of the user. Then, while he types, each sample is compared
and classified10 whether it belongs to the genuine user or not.

Once the sample is classified, the trust level value is adjusted. Bours [6] introduced
the penalty & rewards function for that purpose (see below). If the TL drops below the
configured threshold Tlockout, the currently typing user is treated as an impostor and is

10 Many approaches for making this decision exist. Their application for keystroke dynamics is discussed
in Section 4.2.
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locked out. He has then to re-authenticate statically to restore the session (and to reset the
TL back to 100 %).

3.2.2 Penalty & rewards function

When a sample is recognised as genuine, the user should be rewarded, i.e. his TL should
increase. On the other hand, when it is non-mated, he should be penalised. It depends on
the recognition algorithm, however, using statistical methods is a quite popular solution [6,
8]. The distance between the sample and the template is calculated and compared with the
distance threshold η as mentioned in Section 2.1.1.

There are more options how to implement the penalty & rewards function. They vary
in how much they increase or decrease the trust level with a single sample. Basically, fixed
or variable changes can be used. Practically, the function usually contains both of those
options.

Using a fixed change, the trust level is adjusted for a certain fixed ∆+ when a sample
is mated and another fixed ∆− for a non-mated sample. By way of contrast, ∆+ and ∆−

based on the distance can be used as the variable change. It is also possible to combine
those approaches and, e.g., to use a fixed ∆+ and a variable ∆−. Making that decision is
up to the developer.

Of course, the distance can be calculated only for those samples that have patterns
included in the template. If a sample is not found in the template, it may be ignored or
the trust level may be decreased by a small constant.

3.3 Error metrics

The performance of a static biometric authentication system is usually measured by two
error rates.

false acceptance rate (FAR) expresses how many times an impostor would gain access
to the system, i.e. how many times the system would classify impostors as genuine users.
FAR is defined as [2]:

FAR =
# of false matches

Total # of impostor attempts
(3.1)

false rejection rate (FRR) tells how many times the system would not recognise the
genuine user. FRR is defined as [2]:

FRR =
# of false rejections

Total # of genuine user attempts
(3.2)

Example 3.1 Let’s consider a static biometric system for logging in a program. In the
table below, Ti denotes the template of user i, Sji denotes jth sample of user i and the
number in the table represents the distance between the particular sample and the particular
template. For clarity, the genuine samples are highlighted.
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T1 T2 T3
S1
1 94 102 166
S2
1 99 124 122
S3
1 131 105 148
S1
2 240 99 112
S2
2 133 61 147
S3
2 201 105 126
S1
3 188 121 124
S2
3 135 102 87
S3
3 144 194 104

Let’s now consider a global threshold η for classifying the sample as genuine or not. If
the distance d is lower or equal to η, the sample is mated.

Let’s set η = 125 and calculate corresponding FAR and FRR. We will denote that
as FAR125 and FRR125. Let’s start with simpler FRR125. We need to count how many
genuine samples (i.e. the highlighted ones) are above η. According to Equation 3.2 we get:

FRR125 =
1

9
≈ 11.1 % (3.3)

For calculating FAR125 we have to count the number of non-highlighted samples with
the distance lower or equal η. We get:

FAR125 =
7

18
≈ 38.9 % (3.4)

The FAR in the example above is unacceptably high, it means that approximately two
of five impostor’s trials to log into the system would be successful. We can change the
threshold η to achieve better FAR, but one should note that the FAR and the FRR change
simultaneously. When one indicator increases, the second decreases and vice versa.

A frequently used option how to display the quality of a biometric system is to plot
the dependency of the FAR and the FRR on the threshold η. Such a plot for Example
3.1 is shown in Figure 3.1. At the point where the FAR and the FRR are equal, there
lies a significant point – equal error rate (EER), a frequently used indicator for measuring
quality. [2, 6]

Nevertheless, those metrics do not suit the continuous biometrics, since we need to
express how fast the system locks out an impostor or a genuine user. Average number of
impostor actions (ANIA) and average number of genuine actions (ANGA) metrics fit this
[29]. We can express them for each particular user or as an average over the whole dataset.

Average number of impostor actions (ANIA) metric expresses an average number
of actions an impostor can perform before the system recognises him and locks him out.
Naturally, a general effort is to decrease this number as much as possible, i.e. to reduce the
damage the impostor can make.

Average number of genuine actions (ANGA) metric is the opposite of ANIA. It
shows how many actions can a genuine user perform on an average before being locked
out. As the system should be as unobtrusive as possible, ANGA should limit to infinity,
i.e. a genuine user should be never locked out.
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Figure 3.1: Plot of dependency FAR (increasing) and FRR (decreasing) on the set thresh-
old with marked EER point.
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Example 3.2 Let’s now consider periodic authentication with the keystroke dynamics, per-
formed every n = 30 keystrokes. Periodic authentication allows us to transform the FAR
and FRR metrics to ANIA and ANGA. Let the FAR be 3 % and the FRR 0.2 %.

First, let’s transform FAR to ANIA. When an impostor comes to a computer, he can
always type 30 keystrokes. After that, he is not recognised and can type further 30 keystrokes
with a FAR = 3 % probability. ANIA is therefore defined as the infinite series:

ANIA =
∞∑
i=0

n · FARi =
∞∑
i=0

30 · 0.03i ≈ 30.928 (3.5)

In the same way, we can transform FRR to ANGA:

ANGA =

∞∑
i=0

n · (1− FRR)i =

∞∑
i=0

30 · 0.998i ≈ 15000 (3.6)

Example 3.3 If we use the continuous verification and Bours’s trust model as announced
in Section 3.2.1 instead, we have to test the system with the genuine user’s data (different
from the enrolment dataset) and with some impostor data. Let’s use vectors G and I for
collecting the numbers of actions since last lockout for a genuine user and an impostor (in
that order). Both vectors are initially empty. Let’s start the simulation of the authentication
system and every time the user is locked out, let’s append the number of actions since last
lockout to the vectors G (for the genuine user lockouts) and I (for the impostor lockout).
After each lockout the lock is removed and the trust level restored to 100 % value.

The error metrics would be then calculated in the following way:

ANGA =

∑
G

|G|
(3.7)

ANIA =

∑
I

|I|
(3.8)

Summary

The biometric-based authentication is one of the methods from ID-based authentication
category. Although physiological biometrics is quite popular, the behavioural biometrics is
more suitable for continuous authentication. Static biometric recognition usually evaluates
a whole large feature set at once. In opposite, continuous authentication operates upon
much smaller sets, since every single sample is evaluated individually.

Due to its lower classification precision for a single sample, the prediction are aggregated
using so-called concept of trust. That allows a genuine user not to correspond his template
perfectly while it can still recognise an impostor in a short time.

For quality evaluation, several error metrics are used. The differ for static and continu-
ous authentication due to impossibility to compare samples directly. While FAR, FRR and
EER are the most common error metrics for static biometrics, ANGA and ANIA describe
average success rate in impostor detection.
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Chapter 4

Keystroke dynamics

Every human being types the keyboard in a different way. In the history, even the skilled
telegraphers were able to recognise who was transmitting on the wire. The way how one
types depends on his typing skill, the context (i.e. the surrounding n letters, so called n-
graph), the application and the language he types in, handedness, frame of mind, familiarity
with used vocabulary and many other circumstances [8, 43, 6, 4, 40]. It can also be
temporarily influenced by hand injuries, typing with one hand or by typing on different
types of keyboards [40]. The human’s keystroke dynamics (KD) is not only unique, but it
is also hardly artificially imitable and is therefore robust against automated attacks [45].

If we consider a static biometric recognition by the KD, we may face a problem with
high FRR, especially when the conditions during enrolment and recognition are different
(e.g. typing a PIN code on different ATM keyboards). High rejection rate makes the system
less user-friendly, so the system administrators are still moderate with deploying behavioural
biometrics solutions in order to give their customers no reason for discontent. [25]

The static biometric authentication can operate in a challenge-response mode, in which
the user is attempted to copy the displayed text. It can also be used for strengthening
authenticating with a username and a password. This approach is often referred to as
credential hardening [4].

In 1995, Shepherd [42] showed KD is also capable of user recognition on the free text.
It was a very simple algorithm based on keystroke cadence11 without distinguishing keys.

In the last few years, KD on a free text has become more popular method of continuous
biometrics, because it requires neither any special hardware nor user interaction. The
typing manner can be captured on a computer keyboard or any input device with physical
or emulated keys, which includes mobile phones, PDAs or tablets. Every device which can
capture timing information can be used. [23, 6]

Several studies focus on the keystroke dynamics usage for continuous authentication.
They vary in data acquisition, in classifying methods and in features contained in the
template.

According to [13], the first trial keystrokes dynamics analysis based on a free text was
performed in 1997. Before that, studies used to concern the static and predefined text only,
although the text was sometimes quite long. Authenticating the user by copying a text gave
quite good results for static recognition (e.g. observing whether the password was written

11 Although term keystroke cadence means number of keystrokes per second, Shepherd used the term for
average value of duration and latency (see Section 4.1.1).
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in a genuine way). However, it gave very poor results for continuous recognition, since it
did not reflect a way of typing a common text.

4.1 Features

A base of KD is a keystroke. It is delimited by two events recognised by an operating
system: a key-down and a key-up event [4]. We can derive more features from a single
keystroke or from a sequence but all of them are based on those two events. The features
are more deeply discussed in Section 4.1.

Creating a template during the enrolment phase means to select significant charac-
teristics of the sample set. The majority of research studies use the duration of a single
keystroke12 and the latency of an n-graph (a digraph, a trigraph, etc.). The features are
related to a particular key or n-graph. It is good to point here that not all the keys must
be stored in a template. For example, Bours [6] selected the most frequent characters and
digraphs in English in order to obtain a representative pattern. However, this approach
has one large drawback which should be pointed. Restricting the template to a language-
characteristic-based subset limits world-wide spreading the algorithm.

According to [2], few older studies tried to include also a key pressure in the template.
However, a special keyboard was necessary, which goes against the collactability require-
ment mentioned in Section 2.2.2. Other advanced features for long-term user authentication
include typing speed, frequency of correcting errors (i.e. frequency of using Backspace and
Delete), use of Shift key to capitalise letters, using navigation keys (arrows, PageDown,
PageUp, . . . ), etc. [49, 40].

The user environment is sometimes also taken into consideration [2, 6]. The most
observed variables are the keyboard layout and the running application the user is typing
in. A separate template can exist for each combination of the environment variables.

4.1.1 Duration and latency

Having a digraph composed from keys K1 and K2, two events for each key press can be
observed, as shown in Figures 4.1 and 4.2: the key-down events when the key was pressed
down (in times t(1)down, t(2)down) and the key-up events when it was released (t(1)up , t(2)up ). We can
then calculate the duration dur of key Ki as [6]:

dur(Ki) = t(i)up − t
(i)
down (4.1)

The duration can be only a positive number, since the key is always released after it is
pressed down.

It should be stressed here that the key-down event is fired for all the time the key is
held pressed. The speed of generating the event is customisable and is usually referred to as
repeat rate13. Anyway, the intermediate key-down events between the initial key-down and
finishing key-up should be ignored when extracting the duration. To prevent such a long
pressed key from influencing the template, a maximum-time threshold for duration can be
set.

The latency lat of a digraph14 (K1,K2) is a bit more confusing property, since studies
differ from each other in defining the latency. A frequently used approach is defining latency
12 Also reffered to as held time [43] or dwell [40].
13 In Microsoft Windows, the repeat rate is a parameter of the WM KEYDOWN event messsage. [27]
14 Also referred to as inter-key or flight time.

19



K1

K2

Events

Figure 4.1: Events of a digraph with non-overlapping keys.

K1
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Figure 4.2: Events of a digraph with overlapping keys.

of a digraph as the time delay between releasing the first key and pressing down the next
key [6, 8, 25, 43]:

lat(K1,K2) = t
(2)
down − t

(1)
up

As defined this way, latency of a digraph can be negative when the second key is pressed
before the first is released. This approach is usually called release-to-press or inter-key time.
Stefan and Yao [45] declare in their research that many users tend to write with negative
inter-key times.

Other works define the latency by press-to-press or release-to-release time [2] which
always results in a positive value. They are also easily extended to a latency of a general
n-graph. For example, Sim and Janakiraman [43] describe it as

”
the time interval between

the down keyevents of the first and last keystrokes that make up the n-graph“.
Since only the n-graphs that two samples have in common are used during the authen-

tication phase, n could be limited to a certain maximum value. Sim and Janakiraman [43]
observed that n should be limited up to four to keep the n-graph discriminative.

4.1.2 Advanced features

As mentioned earlier, the template should store only the significant features extracted from
the user’s KD. The decision what information to store depends mainly on the classification
method, this problem is discussed in Section 4.2. However, some general features must be
considered with all the classifiers.
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Keyboard layout A user is usually more familiar with a certain layout than with another
one. This does not apply only to the computer keyboard where different logical layouts can
be used, but also for other devices. For example, if a user gets a new mobile phone with
a different size or a different key layout, his typing behaviour would probably take a while
to adjust and keep stable. The same stands for different types of laptops etc.

Modifier keys Special keys Shift, Ctrl and Alt which modify functions of other keys
can be handled either as any other key (and then e.g. Shift + T is considered as a digraph)
or they can be stored in the template as a flag. Separate templates for any combination of
these modifier keys can be then generated. The last approach is to ignore them completely
in order to keep the design simple, but then a piece of information about different typing
manners with the modifier key pressed are lost.

Dead keys Dead keys do not generate a character but modify a key pressed right after it.
Examples of those are ´ (acute) or ˇ (caron). Pressing ´ and a generates á. The keystroke
dynamics should always be based on keys, not on characters.

Automatic key repeat When a letter key is held for a long time, the operating system
starts to repeat writing down the letter automatically. Although the manner of using this
feature may be included in the template, the circumstances when this event occurs happen
so rarely that it does not pay off to use it. To eliminate this event, we can set a threshold of
maximum time between key-down and key-up event. The repeat rate was more thoroughly
discussed in Section 4.1.1.

Frequency of errors The less experienced typist, the more errors occur in the text.
Error frequency can be measured as number of Backspace or Delete keys depressions. [42]

How the user feels Stress and tiredness also influence typing behaviour largely. How-
ever, including this kind of information in the authentication system is almost impossible
in order to keep it unobtrusive. The template should be compiled from a large enough
number of the reference records to be able to handle different users’ temper.

Environment Results of the experiments also vary according to the environment where
the users attend the experiment. Two environment classes are usually distinguished: con-
trolled environment, typically run in a lab on the lab computer with programs specified by
the researcher. Uncontrolled environment represents the second class. The user works on
his own, familiar computer and performs common work as usual. The capturing program
runs on the background and captures and stores the keyboard events.

4.2 Existing solutions

Using statistics (i.e. statistical algorithms or statistical classifiers), artificial neural networks
(NNs) and machine learning (supervised or unsupervised) are the most popular approaches
for the sample classification. [2]

Killourhy and Maxion [20] tested 14 classification techniques proposed by various au-
thors in order to compare their results on a unified dataset. Although their work operates
with static recognition, the classification techniques correspond to continuous recognition.
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They covered distance-based probabilistic and statistical approaches with miscellaneous dis-
tance metrics, as well as supervised and clustering machine learning (ML) methods. Seven
of tested classifiers were observed as sufficient, but the authors chose none of them as the
best, since the results were compared with several methods. Moreover, those results were
obtained using static recognition and their validity for continuous KD should be verified.

4.2.1 Statistical methods

The statistical methods operate with aggregating functions of the feature vectors. The mean
and the standard deviation of every key and every digraph are quite frequent, but some
studies also operate with minimum and maximum values and other measures. In statistics,
a distance metric is calculated to evaluate how much the sample and the template differ
from each other. A distance threshold based on the standard deviation is set to classify the
sample as genuine or not. However, several systems also use a system-wide threshold value.

Distance metrics

Among other methods, Killourhy and Maxion [20] compare also the performance of Eu-
clidean, Manhattan and Mahalanobis metrics. Generalisation of the first two is called
Minkowski distance.

Minkowski distance [32] d(X,Y), where X,Y are feature vectors of the same length
n, is a parametric metrics with a parameter p. It is defined as:

d(X,Y) = (

n∑
i=1

|xi − yi|p)
1
p (4.2)

If p is substituted with 1, resp. 2, we get well-known Manhattan (p = 1, see Equation
4.3) and Euclidean (p = 2, see Equation 4.4) distance metrics, respectively.

dM (X,Y) =
n∑
i=1

|xi − yi| (4.3)

dE(X,Y) =

√√√√ n∑
i=1

(xi − yi)2 (4.4)

Mahalanobis distance [23] can be used in situations when the feature vectors are too
complex for Minkowski distance. The distance is calculated between mean feature vector
X and the sample feature vector Y. S denotes covariance matrix.

dMH(X,Y) = (X−Y)TS−1(X−Y) (4.5)

If the covariance matrix is diagonal, the resulting distance metric is called normalised
Euclidean distance:

dEN (X,Y) =

√√√√ N∑
i=1

(xi − yi)2
σ2i

(4.6)
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where σi denotes standard deviation of ith feature in the training set. Its huge advantage
over the Euclidean distance is its range. The minimum range of Euclidean distance is zero
(meaning identity) but the maximum range is unknown. With normalisation, the distance
will remain in multiples of σi which wouldn’t usually exceed 3 for normal distribution.

4.2.2 Machine learning approaches

The user verification is a 2-class classification problem (a genuine user vs. an impostor).
However, we have to handle the problem with non-available impostor data. Although the
reference data of other users in the system can be employed as the impostor data to train the
classifier, they are not always available (e.g. when running the continuous authentication
system on a single-user PC). This problem can arise rather in static authentication, since
the other users would have to type the same password as the genuine user. On the other
hand, continuous KD system can run on a single-user computer.

Marsters [25] employed RapidMiner framework for testing three different classifiers on
a continuous KD dataset – Bayesian Belief Network (BayesNet), K-Star and RandomForest
classifiers. He tested them against the key durations set. They hugely vary in training
time, but both BayesNet and RandomForest fit under one minute with the error rate of
2.39 %± 0.88 % and 2.25 %± 0.98 %, respectively15.

Yu and Cho [50] selected a support vector machine (SVM) for its short training time,
which is 1,000 times shorter than the time required by a NN. They also introduced a novelty
approach for selecting features to be included into the template and to pass to classifiers.
The method employs genetic optimisation algorithm. They achieved the average error rate
of 0.81 %.

Revett et al. [36] employed a probabilistic neural network (PNN) for authentication.
The PNN operates in the supervised mode and both genuine and impostor samples are
required to train it. They reported a much faster learning phase compared to a back-
propagation based NN. The PNN algorithm achieved approximately 4 % error rate.

As seen from this short overview and the overview in [2], the ML algorithms can achieve
similar results like statistical approaches. However, only a few studies worked with the
dynamic verification and more research is needed to compare statistical and ML approaches.

4.3 Performance

A performance of the keystroke dynamics in continuous authentication is somewhat vari-
able, depending on many factors. In general, better results were achieved with digraphs,
especially if a word [43] or an application [6] context was taken into consideration. However,
the penalty & rewards function plays a big role as well. The best results in the studied
literature were achieved by Bours [6] with detecting an impostor in 98 keystrokes on average
(considering an application context).

Summary

In this chapter, several studies exercising the keystroke dynamics were presented. The
features mainly concerning duration and latency of a digraph were discussed. Several clas-
sification methods were introduced, including both statistical and machine learning meth-

15 Marsters, however, does not specify what error metrics he uses. We can only suppose it as EER.
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ods. Although machine learning approaches perform quite well for static authentication, no
study employed them for the continuous keystroke dynamics yet. The statistical approach
is very popular with continuous verification researchers and several distance metrics were
shown in the text.
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Chapter 5

Collecting user data

It is not necessary to implement the whole authenticating system to show characteristics
of different kinds of templates. Instead, I simulated the authenticating system on captured
keyboard events captured on volunteers’ computers during their common work.

The keyboard events are usually implemented as hardware interrupts and as such are
processed by the operating system. The operating system transforms the interrupts to the
form of event messages. Therefore it is possible for a program to capture and process these
messages along with the OS. Several tools for capturing keyboard events already exist in
the research world. A short overview of available applications is provided in section 5.2.

Since a large amount of data is essential for proper analysis, many participants should
be involved and observed for a long time period. A capturing program should follow similar
guidelines as a continuous authentication system, especially be unobtrusive and completely
automated. Additionally, it should consider users’ privacy and therefore it should not log
any sensitive information such as passwords or bank account numbers.

The continuous biometric authentication is still a young discipline and only a few tools
are available for that purpose. Many of the tools are moreover intended for using in different
research areas such as human-computer interaction (HCI) (e.g. [21]) and they do not meet
all the demands placed.

5.1 Existing databases

In the literature, many researchers collect data for their work. However, those datasets vary
in quality and are often adapted to needs of the particular research. Moreover, most of the
publicly available databases are designed for static authentication research (such as [12])
due to the risk of present sensitive information in the common work recording.

Montalvão and Freire [30] built a publicly available database of free-text samples from
15 participants. The sample is unfortunately pretty short, it consists of only 10 rows of text,
about 110 keystrokes each. In addition, the text was collected during only two sessions,
which is a very small number for the purpose of my experiment.

Banerjee and Woodard’s survey [2] provide an overview of existing KD databases. Most
of them concern static biometrics and, moreover, almost none of them is available now.
Only one of the databases is marked as dynamic in the survey – the Montalvão’s and
Freire’s mentioned in the previous paragraph.
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To summarise it, I have not found any publicly available database for continuous KD.
I understand the worries about privacy of participants of the experiments, however, making
such a database public could allow others to compare their results to each other.

5.2 Capturing tools

Many of the available tools are originally not meant to be employed in an authentication
research, but rather in HCI area. However, some tools dedicated for biometric research
have been developed.

Unfortunately, I have not found any truly cross-platform tool. Most are targeted for
Microsoft Windows systems, however few of them cover also Mac OS X or GNU/Linux16.

RUI (Recording User Input) is a tool introduced by Kukreja et al. [21]. It is intended for re-
search in area of HCI and is able to capture keyboard and mouse events. The binaries
are available for Microsoft Windows and Mac OS X operating systems. Unfortunately,
as the tool is developed primarily for HCI research, it records only key-press events,
not both key-down and key-up events. For that reason, it is useless for behavioural
biometrics research, which needs to measure duration and latencies of the keys.

AppMonitor could be a great tool for logging keyboard events if it was extended a little.
As its authors mention, only two applications (Microsoft Word and Adobe Reader)
are supported and only special key combinations are captured in order to protect user
privacy. [1]

Inputlog logs both key-down and key-up events and a researcher can obtain it on re-
quest. However, a participant has to start and stop recording manually and has to
remember to stop the tool when typing sensitive data like passwords or bank account
numbers. [22]

BAKER by Marsters [25] favours user privacy and therefore captures wider context of
the typed key, a trigraph for capturing durations and a quadgraph for storing sta-
tistical data about latencies. Therefore both duration and latency are stored in
a 3-dimensional matrix, which the author preferred to ordered logs to keep the users’
privacy. The statistical data are represented by the count of occurrences, the mean
and the variance.

For all the mentioned reasons, BAKER would look as an ideal program for collecting
data. However, the websites proposed in the work are not available any more, and
the tool neither.

TUBA is not really a tool for the continuous authentication, but rather for periodic au-
thentication triggered by certain combinations of network and typing events. TUBA
is mentioned since it employs X window system (X11) and therefore represents the
only tool available for Linux of those I have found. Its architecture is composed from
a remote authentication server and a client. If a network security breach is detected,
the server challenges the user to re-authenticate himself.

TUBA is also interesting for reducing the timing vector dimensions using principle
component analysis (PCA), a method from data mining area. [45]

16 The Stefan and Yao’s work [45] covers particularly Linux systems with X Windows System (X11 in
short). Actually, X11 can run also on other operating system, so it is partially platform-independent.
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BeLT (Behaviour Logging Tool) by Stenvi, Øverbø and Johansen [46] is a tool specially
developed for capturing user interaction in Microsoft Windows. It captures keyboard,
mouse and software interaction events and relevant information about hardware (such
as screen resolution etc.).

It observes user interface interaction employing UI Automation framework. [28]
Therefore it can recognise types of user input fields and does not record passwords.
This is a huge advance over the other tools since it improves users’ feeling of security.

The program starts on system startup, runs minimised in the system tray and does
not require any additional action from the user. Thus it fulfils the requirement of
unobtrusiveness.

I was permitted to use BeLT for collecting the data for this master’s thesis.

5.3 Data capturing

This section describes the structure of participant set and how they took part in collecting
the data.

5.3.1 Target participants

I had to restrict possible participants to Microsoft Windows users as BeLT is only available
for Windows. The participants should actively use the computer in a period of at least two
weeks to obtain enough data.

Originally, I intended to ask only people who currently learn to type the keyboard.
However, I found only six high school students willing to participate and all of them rejected
later for various reasons. Therefore the participant set consists users with different level of
typing skill and wide range of how often they use the computer.

In total, almost 50 people promised to participate but only 22 of them eventually de-
livered the data.

5.3.2 Participants’ task

The participants were informed about the purpose of the experiment and how to collect the
data to keep high quality of the samples. They were acquainted with BeLT installation,
interface, proper settings and operation. Every participant was also informed about the
risk of collecting sensitive data and instructed how to prevent it. In order to keep the data
free of other people’s samples, I also asked the participants to pause BeLT when they lend
the computer to someone else, even for a short time.

The task was to do their common computer work with BeLT running in the background
for at least two weeks. After that period, they were asked to send me the data for further
analysis.

27



300 M M 162_31 7142677 299

301 M D 162_31 7142802 296 1 0 95 1350 711

302 S FC firefox.exe 7142848 301 4 Suche oder Adresse eingeben |empty| 107 25 906 40

303 M U 162_31 7142864 301 1 107 25 906 40

304 K D d 7143488 302 0

305 K U d 7143550 304 0 1

306 K D i 7143613 302 0

307 K U i 7143675 306 0 1

Figure 5.1: Excerpt of BeLT CSV file (opened in LibreOffice Calc).

5.4 BeLT data format

BeLT exports captured data into CSV17 files. Each row in the file represents one captured
event message. BeLT captures keyboard, mouse and some software events and also logs
some hardware information (mainly the screen resolution).

The row format varies18 depending on the event type. A sample excerpt from BeLT
CSV file is shown in Figure 5.1. The first three columns have identical meaning for all event
types. The first contains event ID, a number unique within every file. In the second field,
there is a basic event type (K for keyboard, M for mouse and S for software). An action
is determined by the third value: e.g. for keyboard events, D denotes key down event and
U denotes key up event.

Considering only the keyboard events, next columns provide information about the key,
the event timestamp (in miliseconds from starting the computer), an ID of related event
(for key up event refers to its respective key down event), flags indicating active system
keys (e.g. Shift, Ctrl, Alt etc.) and repeat count (see Section 4.1.1). [46]

BeLT can also store the data in raw format19. It is not a binary format as one might
suppose, but an ordinary text file. Its rows are more verbose than rows of the CSV format.

However I discovered a bug in recording the time. On some special occasions (e.g. switch-
ing the keyboard layout with Shift + Alt), a LCtrl key up event is generated (with no
related key down event) and the time jumps about 50 days forward. Therefore the CSV
format is a preferred way for collecting data.

5.5 BeLT drawbacks

It is advisable to be able to compare users from different countries. In real use, it would
be necessary to build a solid database for training the classifier. Therefore storing the
numerical key code (which is transformed to a key based on set keyboard layout in the OS)
would be a better choice than storing the key. Although the keyboard is the same (usually
generic 104/105 layout), the keys are not. I encountered this issue when I created templates
for several users who had set a Cyrillic layout.

17 Comma-separated values (CSV) is a simple file format for tabular data. The format was specified in
RFC 4180 [41].
18 The BeLT-exported data does not comply with the CSV specification due to variable column count

and data types.
19 BeLT’s raw format uses file extension .raw. This can be a bit confusing since .raw files usually store

photographs in the camera.
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The problem also occurred with Czech characters that have to be typed using a dead
key20. In that case BeLT interpreted the combination Shift + ˇ, n as ˇn instead of ň.
Particularly this issue discouraged about 10 potential data collectors from collaboration.

When processing the data, storing data in single-byte encoding proved not to be very
comfortable to work with. The files are stored in system-wide set encoding instead of
UTF-8 which is treated as present-day standard. Since the data collectors were of various
nationalities, I had to convert each user’s data to UTF-8 separately. Without that, the
data would not be comparable.

Summary

In this chapter, the existing tools for capturing keystroke dynamics were presented, as well
as some existing databases. Unluckily, none of the tools and the databases has sufficient
capabilities for the purpose of continuous dynamics. BAKER software would represent one
exception, if it had been still available. Fortunately, I was permitted to utilise BeLT for
acquiring the data from the users which made the data collection reachable.

BeLT is a program users install to their computers and keep it running in the back-
ground. It collects data about how the user behaves, notably it tracks keyboard and mouse
actions. BeLT stores data in CSV files where each line corresponds to one action.

20 Regarding dead keys, refer to Section 4.1.2.
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Chapter 6

Data processing

Before the data can be pushed to classifiers, it has to be prepared to a suitable form. That
includes converting from BeLT format to list of features. This way from BeLT to Python
is not that straightforward as it might seem. It consists of four steps we will take a look at
in the following sections:

Pre-processing normalises file names, encoding and formats (see Section 5.4 for more
information on BeLT formats).

Converting CSV to EventList transforms each BeLT line to an instance of Event class
and joins them in a list.

Extracting features step takes EventList as an input and creates features consisting of
more events.

Packing for later use is a necessary step preventing from extracting the data again every
time the data is required.

The first step was performed manually due to need of manual interception for selecting
proper encoding. The others were run as a batch using script extractfeatures.py.

In the real continuous authenticator, the feature extraction would run online as soon
as the data was captured. However, batch processing is much more convenient for the
simulation.

6.1 Pre-processing

In Sections 5.4 and 5.5 we discussed how BeLT stores the data. The first precondition
for convenient work with bash21 is to remove spaces from file names and convert them to
common encoding. That was achieved with rename and iconv commands.

In order to determine proper initial encoding, python package chardet was employed. It
provides also Linux command that can be called directly without starting Python shell and
evaluates probabilities of various encodings. The proper one should be selected manually
with knowledge of the originator operating system.

Moreover, two of the participants did not follow the instructions properly and collected
data to the raw BeLT format. I wrote converting script raw2csv.py that performs the

21 Bash is a UNIX shell providing easy scripting language. It allows direct calls of programs and is
therefore more convenient for semi-batch processing of files.
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Figure 6.1: Feature count of participants by feature type.
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Figure 6.2: Feature time mean and standard deviation of participants.
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Figure 6.3: Single keys e and p durations and their respective standard deviations.

conversion. The time bug discussed in Section 5.5 is not bypassed by the script, since only
relative times between two consequent events are calculated. Therefore time jump twice
a day would not make such a big difference to be worth fixing it.

6.2 Creating event list

The cleansed data are processed by Python csvreader and converted to a dictionary22.
Only keyboard data are currently stored but the script is designed to be easily extended.

6.3 Feature extraction

When the list of events is generated, the features can be extracted. Although it is against
common naming conventions in biometrics, here features denote type of higher-level events.
Two type of features are extracted from keyboard events – a key feature and a digraph
feature. Properties of features (i.e. biometric traits) are called feature properties. I collected
key, time (duration or latency) and modifier keys of the feature, as defined in Section 4.1.
Moreover, I extracted further properties which are calculated also from the samples in the
past. Those are:

Context is an estimated position in the text. Its value can gain one of the following values:
first key of the word, in-word key, space (i.e. space, backspace or delete), shortcut
(i.e. a key pressed together with Ctrl, Alt or Win key) or last digraph in the word.
Note there is no such context for last single key feature, since it is not possible to
recognise it in the stream incoming to classifier23.

22 Python dictionary is essentially an associative array as known from other programming languages.
23 In the simulated environment the experiment was taken at, it would naturally be possible. But in

order to keep the simulated reality in place, the last key feature flag was omitted.
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Figure 6.4: Context of each participant.

Typing speed measurement is implemented as two counters: number of observed features
in the last 15 and 60 seconds. This property was added as a trial to eliminate impact
of typing speed variance.

By experimental testing with Gaussian Näıve Bayes classifier(see Chapter 7), these
features improved the results slightly.

6.4 Packing

Because feature extraction takes about 5 minutes for the dataset, the final feature list is
packed using the built-in Python package cPickle. The package is designated for serialising
Python objects (the method is called pickling).

Unfortunately, there is a drawback of cPickle in storing the object together with its
methods. Therefore when you unpickle the feature list, you can work with the methods
only in the version when it was pickled. For that reason, it is a good idea to inherit the
feature list from some built-in type and after unpickling use only the built-in methods.

6.5 Data statistics

This section provides several statistics on the extracted data.
Figure 6.1 shows number of features that were captured by each participant. As it can

be observed in the plot, the number of total features varies from 166, 942 (User 18) to 5, 725
(User 22). The average feature count is 72, 468 features.

The collected data contained slightly more key features than digraphs. This small
difference points out that most of the keystrokes were captured when typing a word or
pressing a keyboard shortcut. Contexts of the features are illustrated in Figure 6.4 and
they also support that hypothesis.
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Average keystroke durations and digraph latencies are depicted in Figure 6.2. Keystroke
durations are slightly shorter than digraph latencies for most of the participants. However,
that does not hold for User 11 and User 17; according to Figure 6.1 are both fairly advanced
typists. The digraph latency error bars in Figure 6.2 confirm assumption from Section 4.1.1
that latencies can be also negative, especially for advanced typists.

Although key durations might seem not to have required variance, it turns out, when
filtered by a particular key, this variance is in place. Figure 6.3 gives such example for
keys e and p. The differences between average durations of e’s and p’s are relatively
small but should be enough for correct classification. Obvious contrast can be observed by
Users 7, 13, 17 and 22. One can suppose similar differences are present for other participants
with different combination of keys.

Summary

This section provided an overview on what has to be done before one can use the BeLT
data. The users’ data were processed by Linux and Python tools to eventually receive
a Python list of features per user.
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Chapter 7

Training the classifier

As the user types, the keyboard events are generated by operating system and processed
by a classifier. The incoming event stream can be generalised as a data vector D =
(d1, d2, d3, . . . ). The classifier tries to uncover regular patterns in D and select the best-
suiting hypothesis h from the hypothesis space24 H = {h1, h2, . . . , hN}. Based on the
classifier, the hypothesis space can be finite or infinite.

As it was explained in Section 2.1.1, the biometric system can operate in identification
or verification mode. In verification mode, the classifier evaluates D and decides between
hypotheses hgenuine (denoting the last observed data point belongs to the genuine user) and
himpostor.

In identification mode, the classifier operates upon the database ofN users and estimates
likelihood for each hypothesis in H = {h1, h2, . . . , hN , hnone}.

Each hypothesis hi ∈ H has its prior probability p(hi) that expresses probability of hi
without observing any data. By normalisation,

∑
i p(hi) = 1. Probability of hypothesis hi

after observing data vector D, p(hi|D), is called a posteriori probability.
The data vector D is usually, especially under supervised setting, split in train data

Dtrain, validation data Dval and test data Dtest. Train data are used for learning the
classifier (fitting) and correct labels (target) are required for fitting. Since many classifiers
are set by parameters invariant on train data, validation data is usually used to estimate
best setting of these parameters. As you can see, there is need of a large amount of data
for setting the classifier properly. Fortunately, cross-validation (see Section 7.3) may help
to solve the problem with data amount and allows omitting validation data.

The data, originally stored in a feature list (see Chapter 6 for how the raw data is
transformed to a feature list), has to be transformed to suit individual classifier’s needs.
Section 7.1 describes how the data is processed.

The best hypothesis, arg maxhi p(hi|D), is then used for predicting class of each sam-
ple. However, as it was described in Section 3.2.1, the decision about a user’s genuineness
cannot be made from a single sample. A wrapper class TLClassifier observes values
predicted by nested classifier and adjusts the trust level according to the predictions.

As the behaviour changes in time, it is favourable to maintain the user’s template up-
to-date. In machine learning, this approach is known as continuous or online learning. The
online learning keeps learning also in the recognition phase. The concept of online learning
is discussed in Section 7.4.
24 In context of this work, hypothesis space represents space of all possible templates.
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Figure 7.1: Overview of machine learning algorithms scikit-learn library provides. [47]

7.1 Introduction to scikit-learn library

Machine learning algorithms are nothing new. It would be unwise to code them again when
specialised well-tested libraries already exist. One of such libraries is scikit-learn [35]
which I decided for because it covers pretty wide area of machine learning and data mining
including also pre-processing, selecting useful features and model evaluation. This section
provides a short overview of scikit-learn design and capabilities. Thanks to the library’s
interfaces it is possible to insert custom code that cooperates with the library functions.

The basic building block of the library is an estimator. Those blocks can be pipelined in
such manner that the each block in the pipeline receives the output of the preceding block
to its input. The first block receives the raw data.

Developers can create a custom estimator if non of those included in the library do not
satisfy their needs. However, the library itself provides a large set of estimators which are
of one of the following types:

Transformer is an estimator used to pre-process the data according to needs of the fol-
lowing blocks in the pipeline.

An example of such transformer is class DictVectorizer that takes a list of Python
dictionaries as input and transforms it into 2-dimensional array of real numbers.

Most of the transformers need some data to create rules how to transform the data.
This operation is called fitting and all estimators have to implement method fit() in
order to be integrated in a pipeline. DictVectorizer scans keys in the dictionary and
creates a column in the output array for each input numerical feature. This cannot be
applied to string features, so those are transformed to M boolean indicators where M
denotes number of unique values for the key in the input list. This behaviour allows
to specify categorical (even numerical) data simply by transforming them to string
before handing them in the DictVectorizer.
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Once fitting is finished, the following data is only transformed (by method transform()

each transformer has to implement) without modifying the transformation rules.

Classifier is usually the last step in a pipeline in such setting that the data should be
divided in classes based on previously seen examples. Classifier therefore works in
supervised mode. An unsupervised analogue is a cluster (see below).

As each estimator, a classifier has to provide method fit() that is used for training
the classifier. Moreover, several classifiers can operate also in an online setting. The
classifier can be learnt online if it provides method partial fit().

Once the classifier is trained, it can predict novel data using methods predict() or
predict proba(). The former method simply returns the most probable class, the
latter estimates likelihood for all classes that the novel sample belongs to it.

Regressor is similar to classifier in the manner it works as the last step of a pipeline.
However it differs in prediction target. While classifiers tries to find a model that
determines a class for the data, regressors approximates a mathematical function
that generates the data.

Cluster is an estimator that does not need to fit data since it is an instance of unsupervised
classifier. Its aim is to divide the incoming data into clusters based on their distance.
Several distance metric were discussed in Section 4.2.1. Note that distance metric are
not solely clustering domain, they can be used in supervised statistical learning as
well.

The estimators can be pipelined together, making one compact estimator to work with.
The pipeline automatically decides what actions should be taken by each of the estimators.
It usually starts with some pre-processing transformers, continues with optional feature
selection that reduces complexity of the data and finishes with a classifier or a regressor as
the last step.

Overall, scikit-learn library is a great helper to work with and makes creating custom
estimators much easier.

7.2 Supervised classifiers

Classifiers that need to observe several training examples before predicting classes for unseen
samples, are called supervised. The supervisor is commonly referred to as a teacher.

This section provides overview of three classifiers that were compared in this work.
The first two of them, Näıve Bayes a k-Nearest Neighbours are multiclass classifiers, i.e.
they can generally predict class of all the samples. I used them in two-class setting though
(genuine user vs. impostor) to be able to compare them with the third classifier, a one-class
statistical classifier.

7.2.1 Näıve Bayes

One of the simplest supervised is classifiers is the näıve Bayes classifier. It assumes i.i.d.
(independent and identically distributed) data. In practice, this assumption is often violated
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but even though the näıve Bayes classifier performs surprisingly well. Its performance can
be even improved by boosting25. [3, 39]

The classifier employs Bayes probabilistic model with independent variables. For a data
point x = (x1, x2, . . . , xD) where xi denotes one discrete variable, the probability of being
classified as class c ∈ C is:

p(c|x) =
p(c) · p(x|c)

p(x)

=
p(c) · p(x|c)∑

ci∈C p(ci) · p(x|ci)

(7.1)

Prior probability p(c) can be set explicitly or be proportional to c occurrence in the
training set. From the i.i.d. assumption, the p(x|c) is just a simple product:

p(x|c) =
D∏
i=1

p(xi|c) (7.2)

Discrete variables For some applications, the likelihood of variable xi assuming class c
can be deducted from a model. But usually the underlying model is unknown and in that
case, p(xi) can approximately expressed as:

p(xi|c) ≈
count(xi ∧ c)
count(c)

(7.3)

where count(a) denotes number of occurrences of a in the training set [10].

Continuous variables When dealing with continuous data, those are usually assumed
to be distributed according to Gaussian distribution [3, 39]:

p(xi|c) =
1√

2πσ2i,c

e
−

(xi−µi,c)
2

2σ2
i,c (7.4)

where µi,c denotes mean and σ2i,c denotes standard deviation of continuous variable xi in
class c.

Classification For two-class classification C = {c0, c1}, the final decision is made based
on comparison:

p(c0|x) > p(c1|x) (7.5)

p(c0) · p(x|c0)
p(x)

>
p(c1) · p(x|c1)

p(x)
(7.6)

25 Boosting is a process of iterative training where hypotheses from all iterations are used for creating
the final hypothesis.

Each iteration consists of weighted training and validating with the same training set. In the first iteration,
all weights are set to the same value. The classifier is trained and weights adjusted – weights of those
samples that were classified correctly are decreased and weights of incorrectly classified samples increased.
This process repeats K times and the final hypothesis is a weighted majority combination of hypotheses
from all K rounds. [38]
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As the denominator has only normalising function, it can be omitted which simplifies
the comparison:

P (c0) · p(x|c0) > p(c1) · p(x|c1) (7.7)

p(c0) ·
D∏
i=1

p(xi|c0) > p(c1) ·
D∏
i=1

p(xi|c1) (7.8)

If the expression is true, then the classifier evaluates x as belonging to class c0, otherwise
as belonging to class c1.

For multi-class classification, p(ci|x) is calculated for each class ci and the data point is
classified as member of class with the highest probability.

7.2.2 K-nearest neighbours

Another classification method uses distance metric (as mentioned in Section 4.2.1) for de-
termination of nearest samples in the training set26. [3]

When a novel sample x is to be classified, the distance to each sample in the training
set is calculated and k nearest samples (those are called neighbours) are selected. The class
of x is given by the most numerous class within the k nearest neighbours. In the case of
ambiguity, (k + 1)st nearest neighbour is selected and so on.

The template of k-nearest neighbours classifier is very simple, it is a list of training
samples. It determines the speed: although the training is very fast (it consists only of
loading the training set), classification of a novel sample takes n comparisons where n is
the size of the template.

Having the template so simple however simplifies operation in online setting, since
extending the template means only appending the novel training sample.

However, one should be aware of growing the template since the larger the template,
the longer time is required to classify a sample. This problem can be overcome by replacing
a sample in the template with the novel example, instead of appending. If the furthest
sample of the template is replaced, it might lead to reducing the perimeter of the cluster
and thus to rise of false rejections. A better way is designing the template as a circular
buffer, so that always the oldest sample is replaced. This enables adapting the template.

The method of classification also implies a requirement for the template to contain both
genuine and impostor samples. However, it is possible to modify the algorithm to operate
as one-class classifier. Instead of predicting the class of a novel sample, the algorithm cal-
culates distance from the nearest neighbour and checks if it falls into predefined (manually
or dynamically based on the training set) threshold. If so, then the novel sample is classified
as genuine, otherwise as impostor.

7.2.3 One-class statistical classifier

A simple classifier proposed by Bours [6] can handle only continuous properties. In the
original paper, only timing information is relevant and the template is stored separately for
the keys. The idea is though extendible for any number of continuous properties.

The key point here is that the template is created solely from the genuine user data.
Such approach is called one-class classification.
26 K-nearest neighbours are also often used in unsupervised setting, as a clustering algorithm. In that

case, the distance is measured from every sample in the set to each other and clusters are estimated according
to the distance between samples.
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Figure 7.2: Probability density function of normal distribution with µ = 125 and σ = 25.

The underlying concept is an assumption that data from user u and key ki are generated
under normal probabilistic distribution as depicted in Figure 7.2. Maximum of probability
density function pdf(x) lies in x = µ.

Fitting For a key k and ith feature of the feature vector created of N samples, the
template Tk = (µk, σ

2
k). For simplicity, the calculation here is shown only for one feature.

In the implemented classifier, this template holds for every feature in the feature vector.
The mean µk and standard deviation σ2k for key k are calculated as follows:

µk =

∑N
i=1 xk,i
N

σ2k =
1

N

N∑
i=1

(xk,i − µk)2 (7.9)

However, this form does not suit the online learning very well, since it has to store
all previously seen examples. It is favourable to disassemble the equation to the following
form:

µk =
1

N

N∑
i=1

xk,i (7.10)

σ2k =
1

N
(

N∑
i=1

x2k,i − 2µk

N∑
i=1

xk,i) + µ2k (7.11)

and simplified by using two additional variables:

Sumk(N) =

N∑
i=1

xk,i Sum2
k(N) =

N∑
i=1

x2k,i (7.12)
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Substituing in (7.10) gives:

µk =
Sumk(N)

N
(7.13)

σ2k =
Sum2

k(N)− 2µkSumk(N)

N
+ µ2k (7.14)

Now, if we are about to fit (N + 1)st example:

Sumk(N + 1) = Sumk(N) + xk,i (7.15)

Sum2
k(N + 1) = Sum2

k(N) + x2k,i (7.16)

Incrementing in (7.15), (7.16) and recalculating mean (7.13) and standard deviation
(7.14) are the only operations to be taken to fit a novel example. This approach saves
memory space for storing template.

Classification A prediction is made based on calculating distance from the mean. Even
though Bours employs scaled Manhattan distance, i.e. Manhattan distance from (4.3)
divided by the respective variance:

dMS(X,Y) =
n∑
i=1

|xi − yi|
σi

(7.17)

This metric scaling can be applied to any distance metric. One should just be aware of
using the right denominator, e.g. Euclidean distance (4.4) should be divided by standard
deviation σ2i instead of variance. The advantage of using a scaled metric is that that enables
classifying by a fixed threshold.

If the distance of the sample is within some margin around the mean, the sample is
treated genuine. The margin threshold beyond which the sample is treated impostor can
be set even as a hard value or be calculated dynamically according to the train set.

Based on the prediction, the trust level is adjusted. If no template is found for the
particular key or the template consists of very few examples, Bours proposed to decrease
the trust level slightly.

7.3 Cross-validation

When training a supervised classifier, one may face two problems that may happen with
improperly set learning parameters. The first one is underfitting and occurs when the
classifier cannot even predict the train set correctly. There trying better configuration can
help.

The more common problem is overfitting, i.e. fitting to train examples perfectly. Perfect
fit means it includes also outliers or devious samples. Such classifier performs very badly
with unseen examples. A usual way is to take another part of labelled data, the validation
set. The classifier is trained on training set and predicting the validation set can detect
overfitting.

However, one is often dealing with small training set, why should it be shrunk by taking
a part of it as a validation set? Fortunately, cross-validation can help to fix this problem.
The basic approach is dividing the training set in k parts of the same size. Training then
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works in rounds. In the first round, the training set is formed with k − 1 parts and the
validation set with the remaining part. In any next round, another part is chosen as the
validation set and the training is repeated. Each part is used for validation exactly once.

The final score is calculated as an average score for all the rounds.
This can help with choosing the best parameters for the classifier. sklearn library makes

automated testing of many different settings possible by providing grid search functions.
The search runs over a grid of manually set parameters by trying each possible combination.
The best score classifier is then selected and can be directly used for prediction. [35]

An example of such grid is:

param_grid = [{

"tl_threshold": [60, 70, 80, 90],

"tl_learn": [80, 85, 90, 95],

"online": [True],

"tl_history_size": [20, 50, 100],

"distance_threshold": [1.0, 1.5, 2.0]

}, {

"tl_threshold": [60, 70, 80, 90],

"online": [False],

"distance_threshold": [1.0, 1.5, 2.0]

}]

The example shows two separate grids. The former one exercises the classifier in an
online mode and therefore provides also parameters for online learning (tl learn and
tl history size). The latter one needs not be trained for all values of the online-learning-
specific parameters as they have no impact to the performance.

I utilised grid search with cross-validation for every exercised classifier.

7.4 Online learning

A machine learning classifier expects the data to keep independent and identically dis-
tributed over time. The behavioural biometrics, however, cannot guarantee that expecta-
tion since the behaviour usually changes over time.

The online learning classification aims to overcome this problem. It is capable to process
data that change rapidly in a short time or a large dataset that changes gradually. By
contrast to the offline learning (the kind of ML we have seen so far) which stops learning
once it switches from training to recognition phase, the online learning continues learning
also in recognition phase. Some online classifiers even start in recognition phase and learn
from scratch.

In the same way as with the offline classifiers, one can distinguish training with and
without supervision. Both groups are described in the following sections.

However, it is possible to modify supervised offline classifiers to be trained in supervised
setting but adjust their template during recognition.

7.4.1 Supervised pure-online classifier

Block diagram of a supervised classifier is depicted in Figure 7.3. For every novel sample
xi, the classifier predicts ŷi and returns the prediction. After the prediction is made, the
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Figure 7.3: Supervised online-learned classifier.

classifier is provided the correct answer yi and based on comparison between yi and ŷi it
decides whether to update the hypothesis (template).

An example of such algorithm is randomised weighted majority algorithm for
boolean classifiers, described by Russell and Norvig [38]. It operates on a set of boolean
classifiers. Each classifier has an assigned weight which describes its trustworthiness and
which is updated with every sample.

Formally, it is described in Algorithm 7.1. Real number β on the line 9 ranges from 0 to
1 and determines how much the classifier is penalised if it provides an incorrect prediction.

1: procedure RWMA(C = {C1, . . . , CK})
2: Initialize W = {w1, . . . , wK} all to 1
3: for every incoming sample x do
4: {ŷ1, . . . , ŷK} = Predict(C,x)
5: Randomly choose a classifier k∗, in proportion to its weight: P (k) = wk/

∑
k′ wk′

6: Provide ŷ = ˆyk∗
7: Receive correct answer y
8: for each classifier i such that ŷk 6= y do
9: wk ← βwk

10: end for
11: end for
12: end procedure

Algorithm 7.1: Randomised weighted majority algorithm. [38]

However, the set of possible classifiers is very large, even for a small number of features.
For example, it needs 1024 classifiers for a boolean 10-feature space.

Winnow [24] is another classifier operating on a boolean feature space. On the contrary
to the previous algorithm, Winnow manages processing a very large feature space in a short
time.
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Figure 7.4: Unsupervised online-learned classifier.

7.4.2 Unsupervised pure-online classifier

Littlestone [24] introduced a supervised online-classifier Winnow27 that is able to efficiently
eliminate irrelevant features from large boolean feature space.

The algorithm assumes there exists a hyperplane that linearly separates the sample
space X = {0, 1}n. One can find the hyperplane by finding a correct prediction function in
a monotone disjunctive form28:

f(x1, . . . , xn) = xi1 ∨ · · · ∨ xik (7.18)

The hyperplane is then given by xi1 + · · ·+ xik = 1
2 .

Such a function is called a target function and the set of all possible target functions is
called target class.

Winnow maintains vector of weights w = (w1, . . . , wn) (as well as RWMA in Sec-
tion 7.4.1). The prediction is based on comparing

∑n
i=1wixi with a predefined threshold Θ

(the recommended value is Θ = n/2). Every xi for which the classifier made a mistake
(xi 6= y) is either promoted (wi := αwi, where α is a predefined constant), eliminated
(Winnow 1, wi := 0) or demoted (Winnow 2, wi := wi

α ). Thus, in a relatively small number
of steps, the relevant features are selected.

The original Winnow is in fact a supervised online learner. In order to use Winnow for
automated motion detection, Nair and Clark [31] equipped the algorithm with an automatic
labeller. That is a low accurate classifier that satisfies two requirements:

1. Automatic failure recognition: The labeller must be able to tell when the output it
provides is not reliable and thus the sample should not be used for updating the
weight vector.

2. Unbiased labelling: The labeller must be aware of any biases and in case of uncertainty,
it should rather label the sample as unreliable.

27 Although Littlestone calls Winnow a reinforcement-learned classifier, it is in fact supervised classifier
since the reinforcement comes with every sample.
28 Monotone disjunctive form denotes such function that does not contain negated literal in any term.
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The labeller acts for Winnow as the teacher29. Based on the labeller’s feedback, Winnow
decides whether and how to update the weight vector.

Nair and Clark also introduce how to transform Winnow target class from binary feature
space to integer space. The base idea is to transform an integer value in interval [0, N ] to
vector of boolean features of the form x < t and x ≥ t for t ∈ [1, N ]. Although this idea
allows to use Winnow, it changes the sample space size dramatically.

An implementation that kept value of every such boolean feature would be very space-
consuming. Therefore Nair and Clark propose to maintain the weight vector virtually by
storing one weight for entire interval [t1, t2).

However, the target function for KD is not in monotone disjunctive form. It can be
expressed as sum of more disjunctive terms where each term corresponds to a particular
key or digraph. But the disjunctive form functions can be used separately for each key, so
the final form would be similar to:

x = toBoolean(timing)

f(k,x) = xk1 ∨ · · · ∨ xkn
(7.19)

where k denotes the particular key or digraph and toBoolean() denotes function transform-
ing integer value to boolean vector, as described above. The integer value can really acquire
only values from interval [0,MAXkey] for single keys or [−MAXdigraph,MAXdigraph], re-
spectively.

Unfortunately, there rose a problem when I tried to adapt it for keyboard dynamics.
Nair and Clark had a weak classifier for image recognising a person in an image but there is
no such unsupervised classifier that would make such decision. One could raise an objection
TL can be used. But TL is initialised to a fixed value and relies on prediction of another
classifier.

I decided not to exercise this classifier any more due to this deadlock. However, com-
bining Winnow and the one-class statistical classifier from Section 7.2.3 as a weak classifier
might bring interesting results.

7.4.3 Adjusting supervised offline classifiers

Beyond the pure-online classifiers proposed above, one can also adjust supervised offline
classifiers to operate in online mode. The basis is a trained supervised classifier that with
each predicted sample decides whether to include it in the template.

That excludes classifiers which need to process whole training set again to update their
template. Neural networks represent an example of such classifiers because they are trained
iteratively over the whole training set.

Next important step is how the classifier decides which sample should update the tem-
plate and which not. I tested two possible approaches.

Prediction probability is essentially a probability that the sample belongs to a particu-
lar class. From tested classifiers, such probability is provided only by näıve Bayes classifier.

Although scikit-learn implementation of k-NN classifier does not provide the prob-
ability prediction, it can be roughly expressed as number of samples in k-neighbourhood

29 Note that Winnow is in fact a supervised method but the labeller is an unsupervised classifier. The
joined classifier is therefore treated as unsupervised.
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that belong to a particular class. However, the probability would not evince enough en-
tropy for commonly used values of k (k = 3, k = 5). For that reason, this approach was
not implemented with k-NN classifier.

The statistical classifier works with continuous Gaussian probability distribution and
as such the probability of the exact value is always zero. A range around the sample value
would have been selected. But what size should be the range? And how to calculate
joint probability for more features? This approach was not therefore used with statistical
classifier as well.

The approach with prediction probability has another large shortcoming. As it selects
only samples close to the previous, it adds almost no new information. It follows that new
training samples must be selected from wider context to bring new information.

Trust level history Another approach is to maintain a window of H last values of trust
history. If all the values in the window are higher than some threshold tlearn then the
sample can be used for online learning.

This approach is generally independent on the classifier. The learning threshold tlearn
should be set slightly below the maximum TL value. Thus even if the initial TL is at its
maximum value then it drops fast under tlearn for incoming stream of impostor samples.
Value of tlearn therefore depends not only on the window size but also on the specific penalty
& rewards function.

One should also consider what value to fill the history window with. If impostor stream
comes to the input then high level might cause including impostor actions in the template.
On the other hand if the window is filled with value less than tlearn, the stream of genuine
has to wait until all the values in the history window are overwritten.

Perhaps the best option is to use tlearn as the initial filling of history window and
initialize TL to tlearn. Then genuine samples are directly learned and impostor samples are
isolated from online learning.

I decided to start with maximum TL since that little learning examples do not influence
template significantly. This is because size of training set; I used 10,000 samples for each
user.

Summary

Classification is a way how to automatically predict class of previously unseen data on
the base of training examples. The common assumption is the data samples are i.i.d.
(independent and identically distributed) and that is therefore possible to estimate function
that generates them, a hypothesis.

Since machine learning is a well-documented science area, there exist libraries for many
programming languages. The library I used is called scikit-learn and covers both super-
vised and unsupervised offline learning. I selected näıve Bayes and k-nearest neighbours
classifiers for their ability to adjust the hypothesis. Moreover, I added one-class statistical
classifier.

In the following sections, several pure-online classifiers are described but non of them is
suitable for continuous authentication using keystroke dynamics. Therefore I propose how
to adjust the offline classifiers to work in online setting. The biggest difficulty is picking
samples that should be used for online learning. One of the approaches is based on a single
sample, another one on the trust level value of recently evaluated samples.
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Chapter 8

Experimental results

During the experiments, I trained the classifiers with 10,000 samples for each user. The
training set was composed of the first 5,000 genuine user sample in their feature lists and
5,000 randomly chosen samples from other users, all shuffled in random.

I excluded User 22 from experiments due to very little data, as Figure 6.1 shows.
With each classifier, every user was tested against the rest of his dataset for testing

genuine samples and against each other user for exercising the classifier with impostor
actions. The performance was measured by average number of genuine actions (ANGA)
and average number of impostor actions (ANIA) separately for each combination of user
datasets (in total then 21 tests for ANGA and 21 · 20 = 420 tests for ANIA) that were
calculated in the following way.

If the user was not locked out at all, the ANIA / ANGA value equals to the number
of test examples. Otherwise the metric is computed as total number of action from the
beginning to the last lockout divided by number of lockouts:

ANA =
# actions until last lockout

# lockouts

The higher value of ANGA and the lower value of ANIA, the better the classifier per-
forms. As those values are calculated for each user, the presented results are averaged.

8.0.4 Classifiers

In total, I exercised the following four classifiers.

Winnow I rejected the first one, Winnow, after I encountered it is not possible to use
TL as a weak classifier. The problem was already described in Section 7.4.2.

Näıve Bayes classifier For näıve Bayes classifier (NB), I employed the scikit-learn

class GaussianNB which is a classifier suitable for processing continuous variables. The
NB evinced on average excellent 45,448 of genuine actions (ANGA) but very poor 36,108
impostor actions. That means almost no one was ever locked out. Adjusting trust level
threshold did not help here because the TL was keeping around its maximum. Therefore I
left näıve Bayes classifier behind as well.
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Figure 8.1: Average time for predicting one sample by different classifiers. Training set
consisted of 10,000 samples.

k-nearest neighbours classifier Next classifier I exercised, was k-nearest neighbours
classifier. I tested it in default settings, namely with automatic algorithm selection (accord-
ing to documentation, usually the BallTree algorithm is chosen) and k = 5. It performed
much better than NB: a genuine user could make 1,483 actions on average and an impostor
could make on average 145 actions. However it suffered from another large drawback, the
recognition time. Figure 8.1 shows recognition time for all the classifiers. Whilst running
all tests for NB or the statistical classifier took about 20 minutes, tests with k-nearest
neighbours classifier (k-NN) took almost 5 hours each.

Moreover, the k-NN can basically use three different structures for storing the key,
according to used algorithm. For brute-force algorithm, i.e. testing each novel sample with
each template sample, the template consists simply from a list of sample and is therefore
easily extensible. But the recognition time with the training set of 10,000 samples is almost
three times longer than presented in Figure 8.1.

The other algorithms use a tree structure as a template. Nevertheless, the tree structure
is a packed C library and scikit-learn library does not provide source codes for those.
That means, the tree would have to be generated each time a novel sample comes into the
template, which would increase the recognition time even more.

Statistical classifier I implemented the statistical classifier by myself, roughly following
Bours’ work [6]. Beyond that, I implemented the trust level history window for online
learning.

Due to quite large number of possible configurations, I employed GridSearchCV (see
Section 7.3) to find best values for the parameters. Grid search discovered several configu-
rations with same score for each user. I decided for the most common setting: TL history
window size = 20, TL threshold for learning = 80 and lockout threshold = 60.
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Figure 8.2: Improvement of ANGA and ANIA for the statistical classifier with TL history
window size 20, tlearn = 80 and tlockout = 60.

In the offline setting, the average ANGA value was 18,560 actions and average ANIA
value 16,455. However this value is hugely influenced by several large numbers and the
median ANIA value is 4,772.

After switching to online setting, the average ANGA value slightly decreased to 18,539
actions, the average value of ANIA decreased significantly to 12,538 and the median value
to 3,374. That is an average ANIA improvement of 23.7 %.

The proportional change of ANGA and ANIA values from all the users is shown in
Figure 8.2. One can notice that even though the ANGA became worse for most of the
users30 (however making no significant difference on average), the ANIA value, representing
resistance against impostors, has improved for every tested user.

The large changes in ANGA values are caused by small number of genuine user lockouts
both in offline and online setting.

30 Note the almost 100 % improvement for User 15. He was locked out once in the online setting,
approximately in the half of the test set. Online setting did not locked him at all so the ANGA value
increased rapidly for him.
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Chapter 9

Conclusion

This master thesis aimed to exercise whether it is possible to automatically adjust the
template of a continuous biometric system after it is trained. As far as I know, this is the
first work concerning this problem.

Almost 50 people agreed with collecting their keystroke data but only 22 of them eventu-
ally completed the capturing. I used an external program BeLT which runs under Microsoft
Windows for collecting the data. I had to overcome several problems associated with BeLT
because it does not consider different keyboard layouts and system-wide encoding. Thus
all data files were normalised to multi-byte encoding UTF-8. It also allows to store data in
two different file formats and several users selected by accident other file format than the
others. I had to write the script for converting between those two formats.

Next challenge was pre-processing the data. As BeLT captures low-level system events,
those were aggregated to form single key and digraph features. List of such features were
stored for each user, in total 163 MB of data.

The consequent testing exercised four classifiers in order to answer the research question.
The best performing offline classifier was k-nearest neighbours classifier but it operated very
slow and was hard to extend for online learning.

However, an online improvement was achieved using a simple one-class statistical clas-
sifier. The template was adapted based on 20 last seen examples and this enhancement
improved an average impostor recognition rate by 23.7 %.

The first research question is thus answered: yes, it is possible to adjust the template
during recognition phase. Unfortunately, I cannot answer how it differs for various classifi-
cation method as I have found no more methods worth experimenting with.

This topic could be extended in future work by exercising methods of adjusting and
speeding up k-nearest neighbours classifier since it evinced very good results in online set-
ting. Unfortunately it’s implementation in scikit-learn library forced to choose between
inefficient brute force and closed-source trees.
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Acronyms

k-NN k-nearest neighbours classifier. 48, 50

ANGA average number of genuine actions. 15, 17, 47, 49

ANIA average number of impostor actions. 15, 17, 47, 49

BB behavioural biometrics. 8, 9, 17

EER equal error rate. 15, 17, 23

FAR false acceptance rate. 13–17

FRR false rejection rate. 13–18

GUI graphical user interface. 8

HCI human-computer interaction. 25, 26

KD keystroke dynamics. 3, 12, 13, 18–20, 22–26, 29, 45

ML machine learning. 7, 22–24, 42

NB näıve Bayes classifier. 47, 48

NN neural network. 21, 23

OS operating system. 10, 25, 28

PCA principle component analysis. 26

PIN personal identification number. 5, 8, 18

PNN probabilistic neural network. 23

RFC request for comments. 28

SVM support vector machine. 23, 56

TL trust level. 13, 14, 45–49

X11 X window system. 26
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Appendix A

Used software

This master thesis would not be created without several software packages. They are listed
below.

BeLT v2.0.21 BeLT (Behaviour Logging Tool) [46] is a program developed at Høgskolen
i Gjøvik (Gjøvik University College) in Norway to help with collecting users’ data for
behavioural biometrics research. It’s behaviour is more thoroughly described in Chapter 5
including the file format and several bugs.

Python v2.7.9 Data processing and simulation was written in Python 2. I chose the
language for it’s suitable for fast scripting and prototyping as well as for larger software
packages. Moreover, there exist many scientific libraries for Python that are described in
following paragraphs.

numpy library v1.9.2 [48] is an efficient library for mathematic computation in Python.
Especially important for this master thesis was support for operations over arrays and
matrices and generating random numbers according to specified probability distribution.

scikit-learn library v0.16.2 [35] is a Python library implementing classical machine
learning algorithms such as Näıve-Bayes, SVM or k-Nearest Neighbours. It provides a
unified interface for classifiers so all the classifiers implemented this interface so it could be
used in the simulator.

scipy library v0.15.1 [18] is a base library for scitkit-learn and is required for its
run.

matplotlib library v1.4.3 [14] is a Matlab-style library for 2D plots. The plots are
highly customizable and are generated as vector graphics, therefore suitable for including
in printed work.
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Appendix B

CD contents

You can find several subdirectories in the root directory of the attached CD.

src/

+- Makefile

+- common/

+- <source files common for extraction and processing >

+- helpers/

+- graphs.py (generating graphs)

+- raw2csv.py (transform BeLT RAW file to CSV)

+- stats.py (process statistics of results)

+- tests/

+- <tests for covering major classes >

+- extractfeatures.py (creates features lists from CSV)

+- run\_grid.py (compares different classifiers)

+- run\_simulation.py (run simulation and write results)

+- runtests.py (runs all tests)

log/

+- <unprocessed results in CSV >

tex/

+- Makefile

+- <LaTeX source files >

Please note the user data are not stored on the CD nor the extracted feature. This is
due to their private character. The data were burn to a separate CD which is stored by my
supervisor doc. Drahanský.

Directory src/ contains Python scripts for extracting features, classification and simu-
lation. Purpose of individual files is annotated in the listing above or can be deducted from
in-file documentation. Files are documented in compliance with Python best practices31.

31 The documentation conventions are described in PEP 257 (https://www.python.org/dev/peps/
pep-0257/)
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