
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

PERFORMANCE ENGINEERING OF STENCILS
OPTIMIZATION IN GEOMETRIC MULTIGRID

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. RADIM JANALÍK
AUTHOR

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

OPTIMALIZACE VÝPOČTU V MULTIGRIDU
PERFORMANCE ENGINEERING OF STENCILS OPTIMIZATION IN GEOMETRIC MULTIGRID

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. RADIM JANALÍK
AUTHOR

VEDOUCÍ PRÁCE Doc. Ing. JIŘÍ KUNOVSKÝ, CSc.
SUPERVISOR Prof. Dr. OLAF SCHENK

BRNO 2015

Abstrakt
V této práci představujeme blokovou metodu pro zlepšení lokality v cache paměti u výpočtů
typu stencil a dva nástroje, Pluto a PATUS, které tuto metodu používají ke generování
optimalizovaného kódu. Provádíme různá měření a zkoumáme zrychlení výpočtu při použití
různých optimalizací. Nakonec implementujeme vyhlazovací krok v multigridu s různými
optimalizacemi a zkoumáme jak se tyto optimalizace projeví na výkonu multigridu.

Abstract
In this work we present spatial and temporal blocking methods to exploit cache locality
in stencil computations and two state of the art optimizers, Pluto and PATUS, that use
these methods to generate optimized code. We perform various measurement to investigate
the speedup using different optimizations. At the end we implement smoothing step in
multigrid with different optimizations and measure impact of these optimizations on the
performance of multigrid.

Klíčová slova
Stencil, optimalizace, Pluto, PATUS, tiling, spatial blocking, temporal blocking, aritmetická
intenzita, roofline model, multigrid.

Keywords
Stencil, optimization, Pluto, PATUS, tiling, spatial blocking, temporal blocking, arithmetic
intensity, roofline model, multigrid.

Citace
Radim Janalík: Performance Engineering of Stencils Optimization in Geometric Multigrid,
diplomová práce, Brno, FIT VUT v Brně, 2015

Performance Engineering of Stencils Optimization
in Geometric Multigrid

Declaration
Hereby I declare that I was working on this master thesis independently under the guidance
of Prof. Dr. Olaf Schenk and Doc. Ing. Jiří Kunovský, CSc.
I referenced all resources I used in this work.

. .
Radim Janalík
May 27, 2015

Acknowledgment
I would like to thank Prof. Dr. Olaf Schenk for his great guidance and many valuable
advices. I would also like to thank Doc. Ing. Jiří Kunovský, CSc. for his support and
allowing the cooperation with Prof. Schenk.

c© Radim Janalík, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Geometric Multigrid 3
2.1 Residual equation . 3
2.2 Restriction and Interpolation . 4
2.3 V-cycle . 5

3 Stencil code performance engineering 8
3.1 Arithmetic intensity . 8
3.2 Roofline model . 9
3.3 Supercomputer architectures . 10
3.4 Tiling . 11

4 Stencil code generators 14
4.1 Pluto . 14
4.2 PATUS . 15
4.3 Combination of Pluto and PATUS . 16

5 Experiments 17
5.1 Impact of vectorization . 17
5.2 Spatial blocking performance . 19
5.3 The importance of temporal blocking . 23
5.4 Geometric Multigrid . 32

6 Conclusion 35

A Performance with and without vectorization on one and ten cores 39

B Spatial blocking results on one core 40

C Temporal blocking results on one core 42

D Temporal blocking results on ten cores 47

E Content of attached CD 52

1

Chapter 1

Introduction

Many scientific applications depend on solving boundary value systems of partial differ-
ential equations. Large scale systems are solved on supercomputers that provide enought
computational power and memory. Finite difference method, which is based on stencil
computation, is often used to solve such a systems. But finite difference method in its basic
form is far from optimal. To prevent waste of resources, it is necessary to optimize the
computations as much as possible.

Geometric Multigrid is one of the methods how to optimize solving of partial differential
equations. It is a mathematical approach that allows us to speed up convergence of finite
difference method. It uses many grids of different sizes and transformations between them
to make the solution converge quickly.

But for solving the system, Geometric Multigrid uses the same stencil code as the basic
finite difference method. For stencil codes is typical very low arithmetic intensity. Stencil
computations are limited by memory bandwidth and cannot fully utilize computational
power of the computer.

In this work we focus on spatial blocking and temporal blocking optimizations, also
known as tiling methods. These optimizations increase cache locality. Elements loaded from
main memory to cache are kept in cache as long as possible. This results in reduction of
traffic between main memory and cache and allows using more of the computational power.

In chapter 2 we provide introduction to Geometric Multigrid. We describe the basic
idea of Multigrid that quickly eleminate the error and therefore leads to speeding us the
convergence. Then we describe all of the components of multigrid and show how they work
together.

In chapter 3 we describe different stencil kernel operations that we later use in our
experiments. On these kernels we show their limitation by memory throughtput so they
cannot utilize all of the computational power. At the end of the chapter we explain spatial
blocking and temporal blocking techniques to increase cache locality.

In chapter 4 we show a basic implementation of stencil code and two state of the art
optimizers, Pluto and PATUS, that use spatial and temporal blocking techniques. In this
chapter we also describe how we combined these optimizers to use advantages of both in
the same time.

Finally chapter 5 describes experiments we performed. In the first experiment an ef-
fect of vectorization that is done by compiler is shown. Next two experiments show the
effect of spatial and temporal blocking on the performance. In the last experiment we im-
plement smoothing step in multigrid with different optimizations and show how different
optimizations affect the solution.

2

Chapter 2

Geometric Multigrid

Finite difference method is well known method for solving boundary value systems of dif-
ferential equations. The value at the boundary is known and the goal is to compute the
distribution of value in space. To do this, we discretize the continuous space and create
uniformly distributed grid of points. Crucial question is how many points should the grid
contain. More points means better approximation of analytical solution, but the solution
can take a lot of time. On the contrary using grid with less points the solution will converge
quickly, but with lower precision.

Geometric multigrid is widely used method to speed up convergence of numerical meth-
ods. Multigrid uses several grids of different sizes and transformations between them [1].
On a coarse grid it gets rough estimate of the solution and later the solution is improved
on a fine grid. Solution on a grid is done using stencil code, the same way as it is done in
finite difference method.

2.1 Residual equation

To explain the theory we use the same notation as is used in [1].

Au = f (2.1)

represents a system of linear equations. Vector u denotes exact solution and v denotes it’s
approximation. Error e can by expressed as

e = u− v (2.2)

However we don’t know the exact solution u, so we cannot compute the error. But we can
compute residual

r = f −Av (2.3)

For exact solution u, residual equals zero. From equations 2.1, 2.2 and 2.3 we can derive
residual equation 2.4

Ae = r (2.4)

We can see that equations 2.1 and 2.4 are very similar, so the error approximation can
be computed the same way as approximation of exact solution. We only need to replace f

3

by the residual r. If we have some approximation v, we can get residual from equation 2.3.
Then we can compute approximation of error using equation 2.4 and finally use equation
2.2 to get new approximation of exact solution.

u = v + e (2.5)

2.2 Restriction and Interpolation

We cannot compute error estimation on the same grid as the solution v. If we do so, it will
have the same effect as performing more iterations on equation 2.1 and it will not lead to
desired speedup. To get the speedup we need to compute error estimation on coarse grid.

We need to define two operators to move between different grids. The operator for
moving from fine grid to coarse grid is called restriction operator and the one for moving
from coarse grid to fine grid is called interpolation operator. It is possible to move between
any two grid sizes, but for practical use we can assume that the number of points in every
dimension changes by factor of two (2n+ 1→ n+ 1 or n+ 1→ 2n+ 1).

Restriction operator I2hh vh = v2h transforms fine grid vh to coarse grid v2h. The easiest,
but not very good, way how to do the transformation is just to take appropriate points
from the fine grid.

v2hi,j = vh2i,2j , 1 ≤ i, j ≤ n

2
− 1 (2.6)

Disadvantage of this approach is, that the information carried by thrown-away points is lost.
Better solution is to take weighted average of neighboring points. Figure 2.1 shows which
points on 2D grid are averaged. Equation 2.7 describes precise formula of the restriction.

v2hi,j =
1

16

(
vh2i−1,2j−1 + vh2i−1,2j+1 + vh2i+1,2j−1 + vh2i+1,2j+1

)
+

1

8

(
vh2i,2j−1 + vh2i,2j+1 + vh2i−1,2j + vh2i+1,2j

)
+

1

4
vh2i,2j , 1 ≤ i, j ≤ n

2
− 1 (2.7)

Interpolation operator Ih2hv
2h = vh transforms coarse grid v2h to fine grid vh. Very easy

and sufficient is linear interpolation. Value of point that has its equivalent on coarse grid
is taken without any change. The value of the other points can be calculated as average of
the closest points on coarse grid. Figure 2.2 shows which points on 2D grid are averaged.
Equation 2.8 describes precise formula of the interpolation.

vh2i,2j = v2hi,j ,

vh2i+1,2j =
1

2

(
v2hi,j + v2hi+1,j

)
,

vh2i,2j+1 =
1

2

(
v2hi,j + v2hi,j+1

)
,

vh2i+1,2j+1 =
1

4

(
v2hi,j + v2hi+1,j + v2hi,j+1 + v2hi+1,j+1

)
, 1 ≤ i, j ≤ n

2
− 1 (2.8)

4

Figure 2.1: Restriction operation. Arrows show which points from fine grid (black and
blue) are averaged to get point on coarse grid (blue).

2.3 V-cycle

We can look at the error as any other function. And as any function can be decomposed
to sum of sine functions with different frequencies, we can decompose error as well. Doing
that, we can investigate how amplitude of every single sine function changes over time.

We find out that all the amplitudes decrease, as the whole error do. But while the high
frequency errors wanish out within a few iterations, the low frequency errors remain for
hundrets of iterations. This is because when the wave length is short, then value of every
point is quickly spreaded within its half-wave, but when the wave length is long, then it
takes many iterations.

If we resample the function to coarse grid, the frequency remains the same, but the wave
length in matter of grid points gets shorter. We can see transformation of three different
functions from grid with 13 points to grid with 7 points in the figures 2.3 and 2.4.

As the wave length gets shorter when we move to coarse grid, the error decreases faster,
as if the frequency would be higher. But there is a limit for that. The limit is Nyquist-
Shannon sampling theorem, which says that the sampling frequency must be at least double
of the signal frequency. If this condition is not met, then the frequency appears to be lower
than it actually is. We can see this at the third sine function in the figures 2.3 and 2.4. At
the grid with 13 points everything is fine, but after transformation to grid with 7 points
the sampling theorem dosn’t hold anymore. The points now represent sine function with
lower frequency (the blue one). It means that this error will decrease slower on the coarse
grid.

In the context of solving equation 2.1 if we move to coarse grid, the low frequency
errors become high frequency errors and vice versa. To make convergence faster, we can
first perform a few iterations of numerical method to get rid of high frequency errors. Then
we can move to coarse grid and perform a few iterations to get rid of low frequency errors
(which are high frequency errors on coarse grid) and go back to fine grid. However the

5

Figure 2.2: Interpolation operation. Arrows show which points from coarse grid (blue) are
averaged to get point on fine grid (black).

transformation introduces some error and also solution on coarse grid is not as precise as
on fine grid. So after returning to fine grid we need to perform several additional iterations.

We don’t need to move to coarse grid only once. While solving on coarse grid, we
can apply the same idea and move to even coarse grid. This gets us to the deffinition of
V-cycle. First we perform ν1 iterations on equation 2.1 and compute residual by equaion
2.3. Then we restrict residual r to coarse grid and set u on coarse grid to zeros. Then
we call recursively V-cycle for coarse grid, but we swap r and u for the call. After the
computation on coarse grid is finished we interpolate the residual r from coarse to fine
grid and correct the solution according the equation 2.5. Finally, after the correction we
perform ν2 additional iterations on equation 2.1. We can see pseudocode of V-cycle in the
algorithm 2.1.

Function V h(vh, fh):
If Ωh = coarsest grid:

Perform νc iterations on Ahuh = fh with initial guess vh

Else:
Perform ν1 iterations on Ahuh = fh with initial guess vh

f2h ← I2hh (fh −Ahvh)
v2h ← 0
v2h ← V 2h(v2h, f2h)
vh ← vh + Ih2hv

2h

Perform ν2 iterations on Ahuh = fh with initial guess vh

Algorithm 2.1: Recursive definition of V-Cycle. Taken from [1].

6

Figure 2.3: Sine functions with 1, 3 and 9 half-waves discretized at grid with 13 points.

Figure 2.4: Sine functions with 1, 3 and 9 half-waves discretized at grid with 7 point. For
the third function sampling theorem does not hold, so it appears as if the function would
have lower frequency.

7

Chapter 3

Stencil code performance
engineering

Stencil code is frequently used class of computations in many different areas of scientific
computing, for example partial differential equation solvers, celular automata or in image
processing. Stencil code is an iterative computation on a structured grid. Every point is
updated based on values of its neighboring points.

Very important thing is how individual elements are accessed within one iteration. If
there are distinct sets of input and output points, typically one input and one output grid,
then it is called Jacobi iteration. As there is no dependency between two points, the points
can be visited in any order. This is very convenient for optimizations and for paralelization.

If some points are used as both input and output in one iteration, then the order in
which the nodes are visited is important and cannot be changed. This case is called Gauss-
Seidel iteration [2]. This limitation makes optimizations and paralelization difficult. In this
work we will focus only on more suitable case for optimizations, the Jacobi iteration.

In the figure 3.1 we can see four examples of stencil kernels. Three of them we use
for experiments that are discussed in chapter 5. In the figures 3.1a and 3.1b there are 2D
and 3D Laplacian kernels. To update value of an element, only values of its neighbors are
needed. These kernels are also used at smoothing step in Geometric Multigrid. In the
figures 3.1c and 3.1d there are 2D and 3D Longrange kernels. These kernels need values
from radius of 4 from the updated element. Increasing cache locality for these kernels is
more complicated because of limited cache size.

3.1 Arithmetic intensity

The arithmetic intensity of an algorithm is the average number of floating point operations
per one byte of DRAM memory traffic [4].

I =
flops

loads and stores
(3.1)

For stencil computations is typical that memory access pattern is regular. Update of
every grid point requires the same amount of floating point operations, reads and writes the
same amount of data. Strictly speaking, the number of read items is not constant because
data are loaded from DRAM to cache by entire cache line, not one by one element. However
the arithmetic intensity is defined as an average, so to determine arithmetic intensity we

8

can assume loading one by one element.

A[x, y, z] = 0.125 ∗ (B[x+ 1, y, z] +B[x− 1, y, z]

+B[x, y + 1, z] +B[x, y − 1, z]

+B[x, y, z − 1] +B[x, y, z + 1])

+ 0.25 ∗B[x, y, z] (3.2)

Figure 3.1 shows memory access patterns of four stencil kernels. Let’s show how to de-
termine the arithmetic intensity of 3D Laplacian kernel (figure 3.1b). The kernel operation
is also shown in the equation 3.2. We can see that there are 6 additions and 2 multipli-
cations, it is in total 8 floating point operations. Values of 7 elements are needed, 2 are
already loaded in cache after update of previous point, 5 need to be load from memory and
one element will be stored, which requires 2 memory operations in case of Write Allocate1.
This is 7 transfers between memory and cache. We perform calculations in double precision,
every element has 8B. This gives us 56B of memory transfer and the arithmetic intensity is

I =
8

56
= 0.14 (3.3)

We can see arithmetic intensity of the other kernels in the table 3.1.

Stencil kernel Arithmetic intensity [flops/byte]
2D Laplacian 0.15
3D Laplacian 0.14
2D Longrange with variable coeficients 0.16
3D Longrange with variable coeficients 0.14

Table 3.1: Arithmetic intensity of different stencil kernel operations.

3.2 Roofline model

In [4] there is introduced a performance model that can be used in performance engineering.
Because of its shape it is called roofline model. In the figure 3.2 we can see the roofline
model of Intel Xeon E5-2660 v2 Ivy Bridge Processor.

The roofline model is a graph that shows dependance of floating point performance
(flops/s) on arithmetic intensity (flops/byte) of the algorithm. The graph consits of two
lines, the horizontal line shows the peak performance and the other one shows performance
for arithmetic intensity where peak performance cannot be achieved because of a memory
bandwidth limitation. This two lines intersect in a point where the procesor achieves
maximum performance and maximum memory throughput in the same time. This ballanced
state is achieved for arithmetic intensity

I =
Peak performance

Memory bandwidth
(3.4)

We can measure Peak performance and Memory bandwidth by microbenchmark or find
these values in the CPU specification.

1Write Allocate requires a variable to be loaded to cache before updated value is stored. If the variable
is not in cache yet, then write requires to perform both load and store instructions, which takes 2 cycles.

9

If we increase arithmetic intensity from this point, the performance will stay on the
maximum possible value and memory throughput goes down, the line on the right is hori-
zontal. On the other side if we decrease arithmetic intensity, the memory throughput stays
on the maximum while performance decreases. The left line goes from zero (for arithmetic
intensity equals to zero) to the balanced point.

If we know the roofline model of given architecture and the arithmetic intensity of some
algorithm, we can tell whether the algorithm is CPU of memory bounded. If the algorithm
lays in the left part of the graph, it is memory bounded. We are not able to fully utilize the
CPU because the memory bandwidth is the bottleneck. Our focus should be to improve
the memory efficiency of the algorithm. If the algorithm lays in the right part of the graph,
it is CPU bounded. We should look for algorithm that doesn’t need so many arithmetic
operations, e.g. by avoiding some useless computations.

3.3 Supercomputer architectures

According to the list of 500 most powerful supercomputers [5] up to 2008 in all of the
supercomputers were using only classical CPUs. Since most of the supercomputers were
equiped by Intel Xeon processors. In the figure 3.2 we saw roofline model of Intel Xeon
E5-2660v2 Ivy Bridge processor. In the graph we can see that the balanced point is at
arithmetic intensity about 2.9 flops/byte.

In 2008 the most powerful computer and the first computer with peak performance over
1 petaflop/s, Roadrunner, was equiped by hybrid processors IBM PowerXCell 8i. This is
9 cores processor with one PPE2 cores and eight SPE3 cores. Peak performance of this
processor is 102.4 Gflop/s in double precision and memory bandwidth 25.6 GB/s, which
means that the peak performance can be acheved with arithmetic intensity 4 flops/byte or
higher [6].

From 2010 Nvidia Tesla accelerator apears. It is GPU device with many cores and
very low energy consumption. The 2010 model Tesla C2050 has 448 cores, performance
515 Gflop/s in double precision and memory bandwidth 144 GB/s [7]. To utilize the
performance arithmetic intensity 3.6 flops/byte is needed. The newest model of CUDA
accelerator of HPC, Tesla K80 released in 2014, wits 4992 cores, double precision peak
performance 2.91 Tflop/s and 480 GB/s memory bandwidth needs arithmetic intensity at
least 6 flops/byte to use all its computational power [8].

In 2012 first supercomputers with Intel Xeon Phi coprocessors appear. Xeon Phi is a
coprocessor unit with 61 cores, theoretical peak performance in double precision 1208.29
Gflop/s, memory bandwidth 352 GB/s in the latest model 7120A [9]. Required arithmetic
intensity is at least 3.4 flops/byte.

We can see that the trend in supercomputer design is using energy efficient accelerators
that require high arithmetic intensity to use all the computational power. For algorithms,
it is inportant to follow this trend, otherwise it is not possible to use all the advantages
that supercomuters offer.

2Power Processor Element
3Synergistic Processing Elements

10

3.4 Tiling

Tiling is set of techniques for increasing arithmetic intensity of algorithm by reusing ele-
ments that are loaded to cache. We can see the principle in the figure 3.3. In normal order
when the whole row is updated before proceeding to the next row, the element is loaded to
cache, the update is done and after a while the element is released from cache to free space
for another element. When the computation continues to the next row, the element must
be loaded again when updating an element nearby.

If we split the grid to blocks with width of the block so small that several lines of the
block fit in the cache, then the element is loaded, all the updates that require this element
are done and after that the element is released. This saves many load operations and
therefore increases the arithmetic intensity. This optimization is called spatial blocking.

Tiling can also be done in time domain. If we set tile size small enough that the whole
tile fits in the cache, then after updating the whole tile, all the elements remain in the
cache. We can immediately start next iteration in this tile and achieve additional increase
of arithmetic intensity. Scheduling of work is more complicated than at spatial blocking
because it is necessary to ensure that for each update only values from previous iteration
are used. This technique is called temporal blocking.

In the section 3.1 we showed how to compute arithmetic intensity of the basic algorithm
without any optimization. Now we show on the same example how arithmetic intensity
increases using spatial blocking. We found that arithmetic intensity of 3D Laplacian kernel
(equation 3.2) is 0.14. Using spatial blocking the number of floating point operations
remains the same, but but number of elements loaded from main memory changes. Number
of elements to read goes down from 5 to 1 and 1 element to write remains the same. It is 8
floating point operations and 3 memory operations (one for load and two for write allocate).
This gives us arithmetic intensity

Ispatial =
8

3 ∗ 8
= 0.33 (3.5)

which is about twice better than without spatial blocking, so we can expect twice better
performance because the algorithm is memory bounded.

If we add temporal blocking optimization, then the number of loads and stores remains
the same as at the spatial blocking, but number of floating point operations increases as
more iterations are performed. The arithmetic intensity for k iterations is then

Itemporal = k ∗ Ispatial (3.6)

In chapter 4 we describe two optimizers and code generators, Pluto and PATUS, that
implement the spatial blocking and temporal blocking strategies to increase arithmetic
intensity.

11

(a) 2D 5point Laplacian stencil. (b) 3D 7point Laplacian stencil.

(c) 2D 17point Longrange stencil. (d) 3D 25point Longrange stencil.

Figure 3.1: Examples of stencil kernels. Figures 3.1b and 3.1d taken from [3].

12

 4

 8

 16

 32

 64

 128

 256

 0.0625 0.25 1 4 16 64 256

3D 5pt stencil,
no optimizations
3D 5pt stencil,
spatial blocking
3D 5pt stencil, spatial
+ temporal blocking

AVX

A
tt

a
in

a
b
le

 G
Fl

o
p
s/

s
(D

P
)

Arithmetic intensity (flops/byte)

 4

 8

 16

 32

 64

 128

 256

 0.0625 0.25 1 4 16 64 256

3D 5pt stencil,
no optimizations
3D 5pt stencil,
spatial blocking
3D 5pt stencil, spatial
+ temporal blocking

No vectorization, FMA

A
tt

a
in

a
b
le

 G
Fl

o
p
s/

s
(D

P
)

Arithmetic intensity (flops/byte)

 4

 8

 16

 32

 64

 128

 256

 0.0625 0.25 1 4 16 64 256

3D 5pt stencil,
no optimizations
3D 5pt stencil,
spatial blocking
3D 5pt stencil, spatial
+ temporal blocking

No vectorization, FMA

No vectorization, no FMA

A
tt

a
in

a
b
le

 G
Fl

o
p
s/

s
(D

P
)

Arithmetic intensity (flops/byte)

Figure 3.2: Roofline model of Intel Xeon E5-2660 v2 Processor.

(a) Without spatial blocking. (b) Spatial blocking.

Figure 3.3: Example of spatial blocking. Blue - item to update, green - item already in
cache, yellow - item needs to be loaded to cache.

13

Chapter 4

Stencil code generators

There are several ways how to generate a stencil code. The easiest is basic implementation
that is very simple but its performance is far from optimal as we saw in section 3.1 and 3.4.
In the listing 4.1 we can see the basic implementation of 3D Laplacian stencil.

In this chapter we introduce two state of the art optimizers and code generators, Pluto
and PATUS, that can be used to generate better stencil code. They use spatial blocking
and temporal blocking strategies (section 3.4) to generate optimized code. On the example
of 3D Laplacian stencil code we show how to use these tools. Basic implementation of this
stencil is in the listing 4.1.

for (t = 0 ; t < T; t++) {
for (i = 1 ; i < N+1; i++) {

for (j = 1 ; j < N+1; j++) {
for (k = 1 ; k < N+1; k++) {

A[(t +1)%2][i] [j] [k] =
0.125 ∗ (A[t %2][i +1] [j] [k] + A[t %2][i −1] [j] [k]

+ A[t %2][i] [j +1] [k] + A[t %2][i] [j −1] [k]
+ A[t %2][i] [j] [k−1] + A[t %2][i] [j] [k+1])

+ 0 .25 ∗ A[t %2][i] [j] [k] ;
}

}
}

}
Listing 4.1: Basic implementation of 3D Laplacian stencil code.

4.1 Pluto

Pluto is a general purpose optimization and paralelization tool. It takes C source code as
an input and produces optimized code. It is able to apply spatial and temporal blocking
strategies as well as vectorization and paralelization using OpenMP [10].

In the source code we define regions that we want optimize using #pragma scop and
#pragma endscop. Pluto takes these regions and replaces them with the optimized and
paralelized code.

To generate optimized stencil code we can take the basic implementation (listing 4.1),
enclose the code by #pragma scop and #pragma endscop and let Pluto generate the code.

14

However Pluto doesn’t support all of the C constructs and has some constraints on using
control variables in loops. Because of that it can be quite tricky to use Pluto compiler.

In our case there is problem with modulo operator in the index of array to select which
array is used as an input and which one as an output. To avoid using modulo in index of
array, we used if statement instead. Then the code can be optimized by Pluto without any
problems. The final code ready to optimize by Pluto is in the listing 4.2.

#pragma scop
for (t = 0 ; t < T; t++) {

for (i = 1 ; i < N+1; i++) {
for (j = 1 ; j < N+1; j++) {

for (k = 1 ; k < N+1; k++) {
i f ((t+1)%2) {

A[1] [i] [j] [k] =
0.125 ∗ (A [0] [i +1] [j] [k] + A [0] [i −1] [j] [k]

+ A[0] [i] [j +1] [k] + A[0] [i] [j −1] [k]
+ A[0] [i] [j] [k−1] + A [0] [i] [j] [k+1])

+ 0 .25 ∗ A[0] [i] [j] [k] ;
} else {

A[0] [i] [j] [k] =
0.125 ∗ (A [1] [i +1] [j] [k] + A [1] [i −1] [j] [k]

+ A[1] [i] [j +1] [k] + A[1] [i] [j −1] [k]
+ A[1] [i] [j] [k−1] + A [1] [i] [j] [k+1])

+ 0 .25 ∗ A[1] [i] [j] [k] ;
}

}
}

}
}
#pragma endscop

Listing 4.2: Stencil code implementation ready to optimize by Pluto compiler.

4.2 PATUS

PATUS (Parallel Auto-Tuned Stencils [2]) is a software framework which generates opti-
mized stencil codes for different hardware architectures. Stencil is specified by domain
specific language and on the basis of this specification a stencil code for target architecture
is generated. The advantage of using the domain specific language is that code for different
target architectures can be generated based on the same stencil specification.

As a specialized tool for stencil computations, PATUS generates very good code. It
implements spatial blocking optimization and uses auto-tuner to get tile size that maxi-
mizes the performance on the target computer. However PATUS doesn’t support temporal
blocking optimization, so as we can see in the section 5.3, for more iterations Pluto achieves
better performance than PATUS.

The generated code together with the auto-tuned parameters can be used in any appli-
cation. We can see example of PATUS stencil specification in the listing 4.3.

15

s t e n c i l k e rne l (
double g r id A(0 . . N+1, 0 . . N+1, 0 . . N+1) ,
double g r id B(0 . . N+1, 0 . . N+1, 0 . . N+1)
)

{
i t e r a t e whi l e t < 1 ;
domains ize = (1 . . N, 1 . . N, 1 . . N) ;

opera t i on
{

A[x , y , z] = 0.125 ∗ (B[x+1, y , z] + B[x−1, y , z]
+ B[x , y+1, z] + B[x , y−1, z]
+ B[x , y , z−1] + B[x , y , z +1])

+ 0 .25 ∗ B[x , y , z] ;
}

}
Listing 4.3: Stencil code specification for PATUS code generator.

4.3 Combination of Pluto and PATUS

As we can see in the section 5.2, PATUS achieves very good performance on one iteration.
Because PATUS supports only spatial blocking and not temporal blocking, Pluto overper-
forms PATUS on more than one iteration. We would like to improve performance on more
than one iteration by extending PATUS generated code of temporal blocking approach. To
do it we decided to generate by Pluto and PATUS code for the same stencil operation and
then manually combine them.

PATUS generates a function that is called from OpenMP parallel region. The function
detects ID of the thread and number of threads and performs one iteration on the selected
area of the grid. Programmer cannot change this behavior and it cannot be combined
with the paralelization done by Pluto. So we let Pluto to do only tiling and not the
parallelization.

First we generated code by PATUS and let auto-tuner to find the best tiling configura-
tion. Then we let Pluto to do tiling with the tile size found by auto-tuner.

The output of Pluto contains many nested for-loops with boundary conditions not read-
able for human. But after some experiments like printing the boundary conditions of the
loops and watching the traversal on the grid in debugger, the main idea is clear. The outer
loops take care about selecting the tile position on the grid and temporal blocking and the
two (2D) of three (3D) innermost loops take care about iterating within one tile.

Finally, we replaced the innermost loops by the function generated by PATUS. From
the range on which every loop iterates we determined the position of the tile and the tile
size and passed these information to the function. In this way the Pluto code takes care
about spatial and temporal blocking and PATUS takes care about the computation within
the tile.

Performance achived by the combination of these two optimizers we can see in the
section 5.3.

16

Chapter 5

Experiments

We make all our experiments on Emmy cluster at Regionalen Rechenzentrums Erlangen.
This cluster is equipped by 10 cores Intel Xeon E5-2670v2 Ivy Bridge processors [11]. All the
benchmark applications we use are compiled by the newest Intel compiler, version 15.0.2.

In our first experiment we show the effect of vectorization on the performance. In the
next experiment we measure performance and memory bandwidth when using different
number of cores. In the third experiment we show the importance of spatial blocking in
stencil computations. We perform these experiments with these four stencil codes:

• 2D Laplacian on grid size 40022

• 3D Laplacian on grid size 1503

• 3D Laplacian on grid size 5023

• 3D Long-Range on grid size 1503

In the last experiment we measure the effect of different optimizations of stencil code
on the time of solution in Geometric Multigrid.

For the first three experiments we used heat example that is included to Pluto com-
piler [10]. Based on this example various stencil codes with different optimizations were
implemented. The multigrid implementation for fourth experiment we got from [12] and
implemented different smoothing step optimizations.

To perform the measurements as precise as possible we use likwid-pin tool that allows
us to pin threads to physical cores [13]. The pinning ensures that during the experiment
all the threads remain on the selected physical cores. This makes the measurements more
precise and it also ensures the same performance when we rerun the measurements. We pin
all threads to cores on one socket, so the application cannot take an advantage of running
on two sockets, as it would do otherwise.

To measure memory bandwidth we used likwid-perfctr tool [13]. This tool measures
statistics of memory usage within defined regions in the source code.

5.1 Impact of vectorization

In the first experiment we measur the the effect of vectorization on the floating point perfor-
mance of different stencil codes. We used the basic implementation and the code optimized
by Pluto, both compiled with and without vectorization. We measure the performance on

17

1 and 10 cores of 10-cores Intel Ivy Bridge processor. In this experiment only one iteration
was performed, so the temporal blocking in Pluto doesn’t take an effect.

In the figure 5.1 we present the results on 1 core and in the figure 5.2 on 10 cores. Tables
A.1 and A.2 (in the Appendix A) contain the measured values. On 1 core we can see that the
performance without vectorization is about the same for all Laplacian stencil codes. With
vectorization the performance is about 1.5-2 times better. But on 10 cores there is only
minimal improvement with vectorization, in the case of icc version no improvement at all.
We can also see that the performance is only 5 times better compared to the measurement
on 1 core. Using 10 cores, the memory bandwidth is saturated, so the vectorization or
adding more cores cannot improve the performance.

0

1000

2000

3000

4000

5000

6000

7000

2D Laplacian, 4002² 3D Laplacian, 150³ 3D Laplacian, 502³ 3D Long Range, 150³

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Impact of Vectorization on Performance on Ivy Bridge (1 core)

PLUTO PLUTO (vectorized) icc icc (vectorized)

Figure 5.1: Impact of Vectorization on Performance on 1 core of Ivy Bridge processor.

0

5000

10000

15000

20000

25000

2D Laplacian, 4002² 3D Laplacian, 150³ 3D Laplacian, 502³ 3D Long Range, 150³

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Impact of Vectorization on Performance on Ivy Bridge (10 cores)

PLUTO PLUTO (vectorized) icc icc (vectorized)

Figure 5.2: Impact of Vectorization on Performance on 10 cores of Ivy Bridge processor.

18

5.2 Spatial blocking performance

This experiment is performed by running 1 to 10 threads at an Intel Ivy Bridge 10-cores
socket, with different kernel operations and different grid sizes. Auto-tuning in PATUS is
performed at the 10-threads experiments only. For each of the thread scaling results we
report the performance and the memory bandwidth usage of the corresponding threading
experiment.

Figures 5.3 to 5.5 show performance and memory bandwidth for different kernels. The
measured values we can find in the table B.1 (Appendix B). In both 2D and 3D we can see
tha PATUS performs very well up to 5 threads. Then the memory bandwidth saturates
and the performance does not increase anymore.

Performance and memory bandwidth of PLUTO with vectorization is in 3D more or
less the same as in case of PATUS. In 2D PATUS overperforms Pluto for lower numbers
of threads, but for 7 and threads and more Pluto achieves the same performance. Non-
vectorized version of Pluto has obviously worse performance, but eventually it gets to the
same performance as the other versions because of the memory bottleneck.

19

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Threads

Performance of 2D Laplacian Stencil, 4002²

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO (ideal) Patus Patus (ideal)

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Threads

Memory Bandwidth of 2D Laplacian Stencil, 4002²

PLUTO (non-vectorized) PLUTO (vectorized) Patus Stream Vector-Triad (Peak)

Figure 5.3: Performance and Memory bandwidth of 2D Laplacian stencil (grid size=40022)
at 1 iteation on Intel Ivy Bridge processor.

20

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Threads

Performance of 3D Laplacian Stencil, 150³

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO (ideal) Patus Patus (ideal)

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Threads

Memory Bandwidth of 3D Laplacian Stencil, 150³

PLUTO (non-vectorized) PLUTO (vectorized) Patus Stream Vector-Triad (Peak)

Figure 5.4: Performance and Memory bandwidth of 3D Laplacian stencil (grid size=1503)
at 1 iteation on Intel Ivy Bridge processor.

21

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Threads

Performance of 3D Laplacian Stencil, 502³

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO (ideal) Patus Patus (ideal)

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Threads

Memory Bandwidth of 3D Laplacian Stencil, 502³

PLUTO (non-vectorized) PLUTO (vectorized) Patus Stream Vector-Triad (Peak)

Figure 5.5: Performance and Memory bandwidth of 3D Laplacian stencil (grid size=5023)
at 1 iteation on Intel Ivy Bridge processor.

22

5.3 The importance of temporal blocking

As we saw in the roofline model (figure 3.2), to achieve maximum performance, it is nec-
essary for the algorithm to have arithmetic intensity at least 3 flops/byte. Stencil compu-
tations have much lower arithmetic intensity, as we showed in the section 3.1. In section
3.4 we showed that using spatial blocking we can increase the arithmetic intensity approx-
imately twice. However this is not enough to get the full performance, we need to add
another optimization – temporal blocking.

In this experiment we performed 1 to 20 iterations on 1 and 10 cores of Intel Ivy
Bridge socket, for the same stencil codes as at previous experiments. We measured the
performance and memory bandwidth of the basic implementation without optimizations,
optimized version by Pluto with temporal blocking and combination of Pluto and PATUS,
where the temporal blocking is done by Pluto and iteration within one tile is done by
PATUS. We can see results in the figures 5.6 to 5.13 or in Appendix C and D.

We can see that performance and bandwidth of the icc version (the basic implemen-
tation) with increasing number of iterations stays constant. Pluto uses temporal blocking
optimization, so with the increasing number of iterations, the arithmetic intensity decreases.
Because of that the memory bandwidth decreases and performance increases, as we can see
in the results.

The combination of Pluto and PATUS uses the same optimizations as stand-alone Pluto,
so we would expect similar behavior. On one core the behavior of Laplacian stencils is
similar to Pluto, but the behavior of Longrange stencil is different. For 1 and 2 iterations it
starts similar as Pluto, but then the memory bandwidth starts increasing. It seems that the
tile size found by auto-tuner is too large for temporal blocking. For 3 and more iterations
all of the elements don’t fit in the cache, which causes more traffic between memory and
cache.

Very strange behavior we can see at the combination of Pluto and PATUS on 10 cores.
Even though 10 cores were used, the performance and bandwidth is the same as on 1 core.
It seems that only one thread is doing all the work and the other threads are not doing
anything. This is probably caused by the way how we combined Pluto and PATUS. PATUS
code is called to compute every tile one by one, but in the results we can see that this is not
optimal. It is necessary to find a way how to call PATUS code for several tiles in parallel.
This will be matter of our future work.

23

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 2D Laplacian, 4002², 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 2D Laplacian 4002², 1 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus

icc (non-vectorized) icc (vectorized) Stream Vector-Triad (Peak)

Figure 5.6: Performance and Memory bandwidth of 2D Laplacian stencil (grid size=40022)
on 1 core of Intel Ivy Bridge processor.

24

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 2D Laplacian 4002², 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Matrix Multiplication, 2D Laplacian, 4002², 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus

icc (non-vectorized) icc (vectorized) Stream Vector-Triad (Peak)

Figure 5.7: Performance and Memory bandwidth of 2D Laplacian stencil (grid size=40022)
on 10 cores of Intel Ivy Bridge processor.

25

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 3D Laplacian, 1503, 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 3D Laplacian, 1503, 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus

icc (non-vectorized) icc (vectorized) Stream Vector-Triad (Peak)

Figure 5.8: Performance and Memory bandwidth of 3D Laplacian stencil (grid size=1502)
on 1 core of Intel Ivy Bridge processor.

26

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 3D Laplacian, 1503, 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 3D Laplacian, 1503, 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus

icc (non-vectorized) icc (vectorized) Stream Vector-Triad (Peak)

Figure 5.9: Performance and Memory bandwidth of 3D Laplacian stencil (grid size=1502)
on 10 cores of Intel Ivy Bridge processor.

27

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 3D Laplacian, 5023, 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 3D Laplacian, 5023, 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

Figure 5.10: Performance and Memory bandwidth of 3D Laplacian stencil (grid size=5022)
on 1 core of Intel Ivy Bridge processor.

28

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance Stencil of Matrix Multiplication, 3D Laplacian, 5023, 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 3D Laplacian, 5023, 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

Figure 5.11: Performance and Memory bandwidth of 3D Laplacian stencil (grid size=5022)
on 10 cores of Intel Ivy Bridge processor.

29

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 3D Long-Range, 1503, 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 3D Long-Range, 1503, 1 core

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus

icc (non-vectorized) icc (vectorized) Stream Vector-Triad (Peak)

Figure 5.12: Performance and Memory bandwidth of 3D Longrange stencil (grid size=1502)
on 1 core of Intel Ivy Bridge processor.

30

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rf
o

rm
an

ce
 [

M
Fl

o
p

/s
]

Iterations

Performance of Stencil Matrix Multiplication, 3D Long-Range, 1503, 10 cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus icc (non-vectorized) icc (vectorized)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e

m
o

ry
 B

an
d

w
id

th
 [

M
B

/s
]

Iterations

Memory Bandwidth of Stencil Matrix Multiplication, 3D Long-Range, 1503, 10
cores

PLUTO (non-vectorized) PLUTO (vectorized) PLUTO+Patus

icc (non-vectorized) icc (vectorized) Stream Vector-Triad (Peak)

Figure 5.13: Performance and Memory bandwidth of 3D Longrange stencil (grid size=1502)
on 10 cores of Intel Ivy Bridge processor.

31

5.4 Geometric Multigrid

In the last experiment we investigate how different stencil optimizations influence the time
of solution in Geometric Multigrid. We have the same multigrid code with different im-
plementations of the smoothing step – basic implementation, implementation optimized by
Pluto with both spatial and temporal blocking and code generated by PATUS. The auto-
tuning in PATUS is performed for three different grid sizes (312, 10232 and 40952) on 10
cores.

In the figures 5.14 and 5.15 or in the tables 5.1 and 5.2 we can see the times of solution
on the grid size = 163832 on 1 and 10 cores of Intel Ivy Bridge processor. Second column
of the tables show how many V-cycles are needed to achieve required precision 10−12. As
we can expect, for more smoothing steps, less V-cycles are needed. We can also see that
best performing PATUS tuning is for grid size=10232.

Next thing we can see is that the best number of smoothing steps for basic implementa-
tion (mgm) and PATUS is 2 on both one and ten cores, but for Pluto it is 4 on one core and
6 or 8 on ten cores. As we saw in the previous experiment (section 5.3), thanks to temporal
blocking Pluto achieves much better performance when more iterations are performed. So
it is preferable for Pluto to perform less V-cycles with more smoothing steps compared
to PATUS.

32

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 f

o
r

so
lu

ti
o

n
 [

s]

Pre-/Post-smoothing Steps

Performance Geometric Multigrid Solver [1 core Ivy Bridge]

mgm mgm-pluto mgm-patus-31 mgm-patus-1023 mgm-patus-4095

Figure 5.14: Times of solution of Geometric Multigrid for different numbers of Pre- and
Post-smoothing steps and different optimizations of the smoothing step stencil code. Mea-
sured on 1 core of Intel Ivy Bridge processor on grid size=163832.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 f

o
r

so
lu

ti
o

n
 [

s]

Pre-/Post-smoothing Steps

Performance Geometric Multigrid Solver [10 cores Ivy Bridge]

mgm mgm-pluto mgm-patus-31 mgm-patus-1023 mgm-patus-4095

Figure 5.15: Times of solution of Geometric Multigrid for different numbers of Pre- and
Post-smoothing steps and different optimizations of the smoothing step stencil code. Mea-
sured on 10 cores of Intel Ivy Bridge processor on grid size=163832.

33

Pre- / Post- V-cycles icc-15.02 Pluto PATUS PATUS PATUS
smoothing steps (31) (1023) (4095)

1 28 184.0 347.8 328.0 176.1 179.8
2 17 147.9 210.1 322.0 137.3 142.9
3 14 151.5 185.9 365.7 138.0 145.0
4 13 168.0 182.9 433.4 151.6 160.3
5 12 180.3 184.0 486.8 161.2 171.3
6 11 188.8 186.7 526.0 167.2 178.9
7 11 212.1 201.3 605.5 187.0 200.2
8 10 213.7 191.5 621.8 187.8 201.7
9 10 234.9 206.5 694.9 205.7 220.8

10 10 255.8 208.1 767.0 223.5 241.1

Table 5.1: The time of solution (in s) in Geometric Multigrid for different optimizations of
smoothing step and different numbers of Pre-/Post-smoothing steps on one core of an Intel
Ivy Bridge processor.

Pre- / Post- V-cycles icc-15.02 Pluto PATUS PATUS PATUS
smoothing steps (31) (1023) (4095)

1 28 41.1 52.4 52.8 42.3 42.3
2 17 34.4 32.8 48.5 35.7 35.8
3 14 36.1 28.0 53.6 37.7 37.7
4 13 40.8 27.2 62.4 42.7 42.8
5 12 44.3 26.3 69.1 46.6 46.6
6 11 46.7 25.7 74.2 48.9 49.1
7 11 52.7 27.3 85.0 55.4 55.8
8 10 53.5 25.6 86.9 56.5 56.3
9 10 59.1 26.9 96.5 62.5 62.7

10 10 64.6 27.7 106.2 68.2 68.6

Table 5.2: The time of solution (in s) in Geometric Multigrid for different optimizations
of smoothing step and different numbers of Pre-/Post-smoothing steps on ten cores of an
Intel Ivy Bridge processor.

34

Chapter 6

Conclusion

In this work we studied the principles of performance engineering of stencil codes. We
studied spatial blocking and temporal blocking strategies to exploit cache locality. We got
familiar with two state of the art stencil compilers, Pluto and PATUS, which implement
these methods and allow generating optimized stencil code.

Then we implemented various stencil codes with different optimizations. We measured
floating point performance and memory bandwidth to see the influence of different opti-
mizations. We performed all the measurements on RRZE Emmy Cluster, equiped by Intel
Ivy Bridge processors.

We also tried to combine both optimizers while generating a stencil code to use advan-
tages of both. PATUS as a specialized stencil generator tool produces very good code, but it
doesn’t support temporal blocking, so it cannot benefit from performing several iterations.
Pluto is a general purpose optimizer. It takes advantage over PATUS when more iterations
are performed because it implements temporal blocking.

We managed to combine these two tools and created working code. This code however
performs well only on one core. On more cores it doesn’t split the work between threads
well. Solving these problems is a matter of future work.

Finally, we studied Geometric Multigrid, a widely used method to solve partial differ-
ential equations. We implemented smoothing step of multigrid with different optimizations
and measured a time of solution with these optimizations.

In chapter 2 of this work we introduce Geometric Multigrid. There is described how
multigrid works, how using several grids help make the solution converge quickly and there
is also description of all parts of multigrid.

The next chapter focuses on performance engineering of stencil code. There is explained
how to analyze memory usage of an algorithm and why performance of stencil code is limited
by memory throughput. There are also discussed different types of architectures used in
recent years to show the trend of using various accelerators, which require higher arithmetic
intensity than classical CPUs to utilize the performance.

Chapter 4 describes the optimizers Pluto and PATUS and the way how we combined
them. And in the last chapter there are described the the measurements we performed and
the results are discussed.

As is shown in the section 3.3, in the last years a lot of new supercomputers are equiped
by accelerators. Usually are used Nvidia CUDA devices and Intel Xeon Phi. We can expect
that these devices will be used also in the future, so it is good to be prepared for that.
The work started in this thesis could continue by investigating stencil code optimizations
for these accelerators. All of the devices are suitable for tasks that can be computed in

35

parallel on high number of cores. In the stencil codes, all of the points can be updated
independently, so it is easy to paralelize. But the accelerators require higher arithmetic
intensity than regular processors to work effectively. To increase arithmetic intensity, the
same approach as is described in this work can be applied.

Modification of program to run on Xeon Phi is not difficult, so there shouldn’t be any
problem to try the same experiments as are described in this work. Modifications to run
program on CUDA are more difficult, but there shouldn’t be any serious problem as well.
PATUS is able to generate code for CUDA architecture, but with Pluto some problems
may appear. Parallelization on CUDA is done different way form CPU, but tiling done by
Pluto should work on CUDA as it works on CPU.

36

Bibliography

[1] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid
Tutorial (2Nd Ed.). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2000.

[2] Matthias Christen. Generating and Auto-Tuning Parallel Stencil Codes. PhD thesis,
University of Basel, Switzerland, 2011.

[3] Stencil code. http://en.wikipedia.org/wiki/Stencil code, 2014-07-25 [cit.
2014-01-14].

[4] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM, 52(4):65–76,
April 2009.

[5] Top 500 [online]. http://www.top500.org, 2015-05-25 [cit. 2015-05-25].

[6] Richard Walsh, C. Earl Joseph, Steve Conway, and Jie Wu. White paper with its
new powerxcell 8i product line, ibm intends to take accelerated processing into the
hpc. August 2008.

[7] Tesla c2050 board specification.
http://www.nvidia.com/docs/IO/43395/Tesla C2050 Board Specification.pdf,
2010-05-07 [cit. 2015-05-25].

[8] Tesla k80 gpu accelerator board specification.
http://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317

-001-v05.pdf, 2015-01-30 [cit. 2015-05-25].

[9] Intel xeon phi coprocessor peak theoretical maximums [online].
http://www.intel.com/content/www/us/en/benchmarks/server/xeon

-phi/xeon-phi-theoretical-maximums.html, [cit. 2015-05-25].

[10] Pluto - an automatic parallelizer and locality optimizer for multicores [online].
http://pluto-compiler.sourceforge.net/, 2014-07-27 [cit. 2014-01-12].

[11] Emmy cluster [online].
http://www.rrze.fau.de/dienste/arbeiten-rechnen/hpc/systeme/emmy

-cluster.shtml, 2014-12-10 [cit. 2015-05-21].

[12] P. Ghysels and W. Vanroose. Modeling the performance of geometric multigrid on
many-core computer architectures. SIAM Journal on Scientific Computing,
37(2):194–216, 2015.

37

[13] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures, San
Diego CA, 2010.

38

Appendix A

Performance with and without
vectorization on one and ten cores

Stencil icc-15.02 PLUTO
no-vector vector no-vector, no temp. vector, no temp.

2D Laplacian (40022) 3.3 4.9 3.0 4.7
3D Laplacian (1503) 3.4 5.5 3.2 6.3
3D Laplacian (5023) 3.4 6.0 3.3 6.6
3D Long-Range (1503) 1.2 2.5 1.2 2.3

Table A.1: The impact of vectorization on the performance (in Gflops/s) for four different
stencil operators on one core of Intel Ivy Bridge processor.

Stencil icc-15.02 PLUTO
no-vector vector no-vector, no temp. vector, no temp.

2D Laplacian (40022) 14.5 14.7 12.2 13.8
3D Laplacian (1503) 16.6 16.0 15.6 22.3
3D Laplacian (5023) 15.0 15.0 19.0 21.0
3D Long-Range (1503) 6.8 7.7 8.0 9.7

Table A.2: The impact of vectorization on the performance (in Gflops/s) for four different
stencil operators on ten cores of Intel Ivy Bridge processor.

39

Appendix B

Spatial blocking results on one core

Thread scaling of 5-point 2D stencil (grid size=40022) with constant coefficient on
a 10-core Intel Ivy Bridge socket.

PATUS (vector.) PLUTO (non vector.) PLUTO (vector.)
Perf. mem.bandwidth Perf. mem.bandwidth Perf. mem.bandwidth

1 4.73 11.07 2.27 5.74 3.11 7.68
2 8.87 20.83 4.39 11.69 5.91 15.49
3 10.80 24.97 6.37 16.00 8.15 20.71
4 12.86 29.45 8.16 21.15 10.32 25.52
5 15.54 35.10 9.68 24.49 11.92 29.50
6 15.39 28.63 11.06 27.21 13.05 32.58
7 14.88 33.13 12.21 30.55 13.65 33.72
8 14.04 32.13 13.02 31.71 14.10 36.59
9 13.22 29.47 13.61 32.87 14.47 34.68
10 16.08 35.47 13.64 32.43 14.71 34.58

Thread scaling of 7-point 3D stencil (grid size=1503) with constant coefficient on
a 10-cores Intel Ivy Bridge socket.

PATUS (vector.) PLUTO (non vector.) PLUTO (vector.)
Perf. mem.bandwidth Perf. mem.bandwidth Perf. mem.bandwidth

1 6.33 10.39 3.36 5.47 6.21 10.35
2 11.42 18.41 6.12 10.21 11.76 18.67
3 15.58 24.54 7.58 12.62 14.29 22.45
4 16.66 25.47 10.13 15.52 17.07 25.97
5 19.73 28.33 15.34 22.24 21.93 29.44
6 19.91 28.04 14.67 20.61 21.30 29.94
7 19.04 27.58 15.16 20.26 21.15 26.07
8 17.44 24.70 14.59 18.81 19.32 24.58
9 19.22 24.39 13.82 18.62 18.86 22.21
10 20.22 27.24 21.78 27.07 22.94 26.24

40

Thread scaling of 7-point 3D stencil (grid size=5023) with constant coefficient on
a 10-cores Intel Ivy Bridge socket.

PATUS (vector.) PLUTO (non vector.) PLUTO (vector.)
Perf. mem.bandwidth Perf. mem.bandwidth Perf. mem.bandwidth

1 5.94 10.16 3.25 5.85 5.97 10.67
2 11.07 18.82 6.35 11.41 11.70 20.56
3 16.07 27.48 9.18 16.50 15.90 29.17
4 18.82 32.43 12.55 23.45 19.48 35.19
5 21.68 37.33 14.23 25.68 20.13 36.33
6 21.50 37.25 16.22 29.68 20.68 37.48
7 21.90 38.27 18.75 33.49 21.79 39.70
8 21.87 38.51 20.91 38.57 21.73 39.55
9 22.60 40.17 20.35 37.43 21.81 39.63
10 22.15 40.16 19.02 34.90 21.00 38.16

Thread scaling of 25-point long-range 3D stencil (grid size=1503) with constant coefficient
on a 10-cores Intel Ivy Bridge socket.

PATUS (vector.) PLUTO (non vector.) PLUTO (vector.)
Perf. mem.bandwidth Perf. mem.bandwidth Perf. mem.bandwidth

1 2.05 7.98 1.20 5.08 2.28 8.89
2 3.67 14.77 2.22 9.28 4.12 16.26
3 5.70 22.08 2.84 13.31 5.17 20.37
4 6.78 27.22 3.75 14.30 6.27 24.54
5 8.15 31.42 5.34 20.95 8.39 32.90
6 8.78 34.10 5.54 20.64 8.36 32.24
7 9.58 35.65 5.65 20.49 8.19 31.24
8 9.38 36.20 5.92 20.10 7.77 29.79
9 9.47 36.48 5.61 25.18 8.01 29.80
10 10.03 36.91 8.80 33.27 10.37 37.01

Table B.1: Spatial-tiling performance (in Gflops/s) and memory bandwidth usage (in
Gbytes/s) for two state-of-the-art stencil compilers for various stencils on one node of Intel
Ivy Bridge processor.

41

Appendix C

Temporal blocking results on one
core

Spatial blocking Perf. (in Gflops/s) and mem.bandwidth usage (in Gbytes/s) for two state-
of-the-art stencil compilers for various stencils on one core of Intel Ivy Bridge processor.

42

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.25 2.28 3.11 4.66 3.28 4.89
2 0.50 3.04 5.62 5.54 3.37 5.11
3 0.75 3.14 6.32 5.95 3.41 5.18
4 1.00 3.16 6.59 6.20 3.43 5.23
5 1.25 3.19 6.83 6.34 3.44 5.26
6 1.50 3.17 6.95 6.45 3.46 5.27
7 1.75 3.18 6.86 6.53 3.46 5.28
8 2.00 3.17 7.03 6.59 3.47 5.29
9 2.25 3.20 7.11 6.64 3.46 5.30
10 2.50 3.19 7.15 6.68 3.48 5.30
11 2.75 3.38 7.20 6.70 3.47 5.30
12 3.00 3.27 7.25 6.73 3.48 5.31
13 3.25 3.22 7.29 6.76 3.48 5.31
14 3.50 3.20 7.31 6.76 3.48 5.31
15 3.75 3.22 7.26 6.79 3.48 5.32
16 4.00 3.22 7.42 6.81 3.49 5.32
17 4.25 3.27 7.34 6.82 3.48 5.32
18 4.50 3.34 7.36 6.84 3.49 5.32
19 4.75 3.21 7.41 6.85 3.48 5.33
20 5.00 3.22 7.47 6.85 3.49 5.33

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.25 5.73 8.26 10.93 7.67 11.48
2 0.50 5.36 9.80 8.75 8.13 12.17
3 0.75 4.10 8.67 6.29 8.21 12.43
4 1.00 3.44 7.70 4.93 8.26 12.56
5 1.25 3.03 6.48 4.05 8.30 12.64
6 1.50 2.75 6.37 3.44 8.36 12.68
7 1.75 2.57 5.59 3.00 8.36 12.73
8 2.00 2.42 5.22 2.66 8.38 12.75
9 2.25 2.32 5.37 2.38 8.39 12.78
10 2.50 2.22 5.13 2.17 8.40 12.79
11 2.75 2.10 4.80 1.99 8.41 12.81
12 3.00 2.06 4.51 1.83 8.40 12.82
13 3.25 2.00 4.42 1.70 8.42 12.83
14 3.50 1.96 4.33 1.59 8.43 12.84
15 3.75 1.90 4.21 1.49 8.41 12.85
16 4.00 1.86 4.13 1.41 8.41 12.86
17 4.25 1.84 4.08 1.33 8.42 12.85
18 4.50 1.81 4.01 1.26 8.42 12.87
19 4.75 1.78 3.97 1.20 8.43 12.87
20 5.00 1.75 3.93 1.15 8.43 12.87

Table C.1: Temporal-spatial tiling scaling of 5-point stencil (grid size=40022) with constant
coefficients on one core of an Intel Ivy Bridge socket.

43

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.33 3.36 6.20 5.80 3.38 5.81
2 0.67 3.41 7.07 6.80 3.47 5.79
3 1.00 3.33 7.28 7.19 3.47 6.15
4 1.33 3.34 7.18 7.37 3.50 5.99
5 1.67 3.29 7.58 7.45 3.50 5.97
6 2.00 3.39 7.34 7.52 3.51 6.25
7 2.33 3.37 7.48 7.31 3.51 6.05
8 2.67 3.37 7.26 7.56 3.51 5.99
9 3.00 3.39 7.34 7.54 3.52 5.97
10 3.33 3.39 7.46 7.55 3.52 6.02
11 3.67 3.38 7.49 7.56 3.53 6.00
12 4.00 3.36 7.35 7.59 3.52 6.07
13 4.33 3.37 7.37 7.60 3.52 6.02
14 4.67 3.53 7.46 7.60 3.52 6.00
15 5.00 3.36 7.36 7.58 3.52 6.07
16 5.33 3.48 7.48 7.59 3.53 6.03
17 5.67 3.38 7.39 7.57 3.53 6.02
18 6.00 3.51 7.45 7.55 3.53 6.05
19 6.33 3.38 7.54 7.55 3.52 6.02
20 6.67 3.37 7.41 7.57 3.53 6.03

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.33 5.25 10.35 9.36 5.45 8.96
2 0.67 3.72 7.70 7.26 5.64 9.44
3 1.00 2.72 5.64 5.18 5.70 9.58
4 1.33 2.34 4.89 3.99 5.75 9.70
5 1.67 2.13 4.49 3.24 5.76 9.73
6 2.00 1.98 4.18 2.74 5.78 9.77
7 2.33 1.85 3.93 2.37 5.79 9.81
8 2.67 1.73 3.68 2.09 5.80 9.84
9 3.00 1.61 3.41 1.85 5.80 9.84
10 3.33 1.50 3.38 1.69 5.81 9.86
11 3.67 1.44 3.05 1.53 5.81 9.86
12 4.00 1.42 3.01 1.41 5.82 9.88
13 4.33 1.41 3.01 1.31 5.82 9.88
14 4.67 1.40 2.98 1.22 5.82 9.89
15 5.00 1.39 2.94 1.15 5.82 9.89
16 5.33 1.40 2.88 1.08 5.83 9.90
17 5.67 1.35 2.79 1.01 5.83 9.90
18 6.00 1.29 2.70 0.96 5.83 9.91
19 6.33 1.25 2.65 0.91 5.83 9.91
20 6.67 1.26 2.64 0.87 5.83 9.91

Table C.2: Temporal-spatial scaling of 7-point stencil (grid size=1503) with constant coef-
ficients on one core of an Intel Ivy Bridge socket.

44

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.33 3.24 5.96 5.72 3.41 5.99
2 0.67 3.33 6.45 6.20 3.48 6.25
3 1.00 3.37 6.65 6.39 3.51 6.33
4 1.33 3.38 6.88 6.51 3.53 6.37
5 1.67 3.39 6.83 6.57 3.54 6.42
6 2.00 3.38 7.30 6.59 3.54 6.43
7 2.33 3.39 6.94 6.64 3.55 6.45
8 2.67 3.39 6.96 6.68 3.55 6.45
9 3.00 3.46 6.98 6.67 3.55 6.50
10 3.33 3.48 6.99 6.70 3.56 6.50
11 3.67 3.47 7.01 6.74 3.56 6.52
12 4.00 3.49 7.02 6.71 3.55 6.48
13 4.33 3.43 7.04 6.71 3.56 6.49
14 4.67 3.45 7.04 6.73 3.55 6.49
15 5.00 3.40 7.18 6.70 3.56 6.49
16 5.33 3.40 7.05 6.71 3.56 6.49
17 5.67 3.41 7.05 6.73 3.56 6.50
18 6.00 3.41 7.28 6.73 3.56 6.55
19 6.33 3.40 7.06 6.72 3.56 6.53
20 6.67 3.51 7.07 6.72 3.56 6.50

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.33 5.81 10.67 9.75 5.41 9.41
2 0.67 4.13 8.16 8.67 5.63 9.98
3 1.00 3.10 6.14 7.63 5.70 10.14
4 1.33 2.58 5.15 7.02 5.74 10.31
5 1.67 2.26 4.55 6.60 5.76 10.32
6 2.00 2.05 4.13 6.34 5.77 10.37
7 2.33 1.91 3.84 6.10 5.79 10.44
8 2.67 1.79 3.62 5.92 5.80 10.43
9 3.00 1.72 3.42 5.73 5.80 10.45
10 3.33 1.63 3.27 5.67 5.81 10.46
11 3.67 1.57 3.16 5.58 5.81 10.48
12 4.00 1.52 3.07 5.48 5.82 10.49
13 4.33 1.48 2.98 5.42 5.82 10.51
14 4.67 1.45 2.91 5.37 5.82 10.50
15 5.00 1.42 2.86 5.28 5.82 10.53
16 5.33 1.39 2.80 5.28 5.83 10.53
17 5.67 1.37 2.76 5.21 5.83 10.52
18 6.00 1.35 2.71 5.18 5.83 10.52
19 6.33 1.33 2.68 5.19 5.83 10.52
20 6.67 1.31 2.64 5.09 5.83 10.53

Table C.3: Spatial-temporal scaling of 7-point stencil (grid size=5023) with constant coef-
ficients on one core of an Intel Ivy Bridge socket.

45

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.29 1.19 2.28 1.95 1.20 2.48
2 0.58 1.22 2.37 2.05 1.22 2.50
3 0.87 1.23 2.41 2.02 1.22 2.50
4 1.16 1.24 2.43 1.97 1.22 2.51
5 1.45 1.32 2.44 1.94 1.22 2.50
6 1.74 1.23 2.44 1.95 1.21 2.51
7 2.03 1.23 2.45 1.93 1.21 2.50
8 2.32 1.23 2.45 1.91 1.21 2.51
9 2.61 1.28 2.45 1.91 1.21 2.50
10 2.90 1.26 2.46 1.88 1.21 2.50
11 3.19 1.29 2.46 1.87 1.26 2.51
12 3.48 1.23 2.46 1.86 1.20 2.50
13 3.77 1.28 2.46 1.85 1.24 2.51
14 4.06 1.23 2.46 1.83 1.21 2.51
15 4.35 1.24 2.46 1.83 1.21 2.51
16 4.64 1.24 2.47 1.81 1.21 2.51
17 4.93 1.24 2.47 1.80 1.21 2.51
18 5.22 1.24 2.47 1.79 1.21 2.51
19 5.51 1.24 2.47 1.79 1.21 2.51
20 5.80 1.24 2.47 1.78 1.21 2.51

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.29 4.84 8.87 7.35 5.08 9.16
2 0.58 3.68 7.07 5.75 4.80 9.22
3 0.87 3.29 6.30 6.35 4.57 9.25
4 1.16 3.07 5.92 7.02 4.56 9.26
5 1.45 2.93 5.69 7.20 4.63 9.25
6 1.74 2.82 5.54 7.29 4.56 9.26
7 2.03 2.76 5.42 7.23 4.57 9.26
8 2.32 2.71 5.33 7.22 4.55 9.26
9 2.61 2.67 5.27 7.19 4.57 9.26
10 2.90 2.64 5.21 7.15 4.57 9.25
11 3.19 2.62 5.17 7.14 4.54 9.27
12 3.48 2.60 5.13 7.12 4.56 9.26
13 3.77 2.58 5.11 7.14 4.57 9.25
14 4.06 2.57 5.07 7.13 4.52 9.26
15 4.35 2.56 5.06 7.12 4.52 9.23
16 4.64 2.54 5.04 7.13 4.52 9.26
17 4.93 2.55 5.02 7.17 4.53 9.27
18 5.22 2.54 5.01 7.17 4.52 9.26
19 5.51 2.52 5.00 7.17 4.52 9.28
20 5.80 2.52 4.97 7.23 4.53 9.27

Table C.4: Spatial-temporal scaling of long-range stencil (grid size=1503) with variable
coefficients on one core of an Intel Ivy Bridge socket.

46

Appendix D

Temporal blocking results on ten
cores

Spatial blocking Perf. (in Gflops/s) and mem.bandwidth usage (in Gbytes/s) for two state-
of-the-art stencil compilers for various stencils on 10 cores of Intel Ivy Bridge processor.

47

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.25 13.66 14.43 4.64 16.03 16.15
2 0.50 20.37 21.13 5.52 16.30 16.29
3 0.75 25.58 28.55 5.93 16.30 16.48
4 1.00 28.13 34.19 6.17 16.38 16.45
5 1.25 29.30 38.62 6.31 16.51 16.40
6 1.50 29.91 42.23 6.43 16.59 16.49
7 1.75 30.26 46.16 6.50 16.71 16.55
8 2.00 30.24 49.22 6.57 16.60 16.56
9 2.25 30.00 50.80 6.61 16.42 16.56
10 2.50 30.02 52.48 6.66 16.37 16.58
11 2.75 30.20 53.68 6.67 16.64 16.68
12 3.00 30.50 54.20 6.71 16.68 16.69
13 3.25 30.78 54.93 6.73 16.53 16.37
14 3.50 31.01 56.05 6.76 16.43 16.42
15 3.75 30.77 56.61 6.77 16.50 16.47
16 4.00 31.27 58.38 6.78 16.49 16.72
17 4.25 30.64 58.16 6.80 16.28 16.61
18 4.50 30.52 58.95 6.81 16.51 16.43
19 4.75 30.56 59.62 6.82 16.54 16.66
20 5.00 30.36 59.98 6.83 16.42 16.76

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.25 32.32 33.96 10.63 34.85 38.86
2 0.50 34.83 35.60 8.56 37.16 37.84
3 0.75 32.43 36.05 6.20 38.29 38.51
4 1.00 29.31 36.27 4.87 38.66 38.78
5 1.25 26.90 35.70 4.01 38.75 38.90
6 1.50 24.91 34.93 3.42 38.73 39.14
7 1.75 23.32 35.02 2.98 39.07 39.14
8 2.00 21.75 34.85 2.64 39.17 39.76
9 2.25 20.48 33.80 2.37 39.23 39.72
10 2.50 19.62 34.20 2.15 39.49 39.39
11 2.75 19.02 33.55 1.97 39.18 39.52
12 3.00 18.61 32.60 1.83 39.40 39.69
13 3.25 18.30 32.55 1.70 39.74 39.63
14 3.50 17.81 32.57 1.59 39.63 39.23
15 3.75 17.47 32.14 1.49 39.76 39.83
16 4.00 17.02 32.00 1.41 38.96 39.87
17 4.25 16.79 31.75 1.33 39.30 40.09
18 4.50 16.45 31.56 1.26 39.67 40.14
19 4.75 16.67 31.29 1.20 39.35 39.77
20 5.00 16.13 31.05 1.15 39.11 39.89

Table D.1: Temporal-spatial tiling scaling of 5-point stencil (grid size=40022) with constant
coefficients on 10 cores of an Intel Ivy Bridge socket.

48

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.33 22.39 22.75 5.73 21.91 22.24
2 0.67 24.29 30.15 6.74 22.30 23.28
3 1.00 26.98 37.83 7.16 22.73 23.32
4 1.33 28.14 42.47 7.29 23.08 23.41
5 1.67 28.91 45.95 7.38 23.33 23.34
6 2.00 29.40 48.13 7.43 23.24 23.65
7 2.33 29.88 50.66 7.47 23.48 23.83
8 2.67 30.00 52.79 7.48 23.03 23.50
9 3.00 30.19 54.27 7.46 23.37 23.76
10 3.33 30.27 55.18 7.52 23.71 23.25
11 3.67 30.31 56.18 7.51 23.50 23.14
12 4.00 30.25 56.30 7.53 23.54 23.77
13 4.33 30.30 56.17 7.52 23.69 22.86
14 4.67 30.32 56.87 7.52 23.75 22.86
15 5.00 30.45 57.41 7.55 23.76 23.10
16 5.33 30.56 58.78 7.50 23.75 22.91
17 5.67 30.32 58.66 7.47 23.40 23.18
18 6.00 30.65 58.78 7.48 23.08 23.01
19 6.33 30.60 59.59 7.48 23.99 23.20
20 6.67 30.86 60.10 7.47 23.78 23.64

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.33 24.19 24.55 8.20 24.41 24.91
2 0.67 22.59 26.57 6.65 29.08 29.78
3 1.00 19.05 24.14 4.82 31.28 34.09
4 1.33 17.67 23.64 3.77 32.95 33.86
5 1.67 16.00 24.37 3.11 35.03 35.00
6 2.00 15.28 24.34 2.64 35.40 36.07
7 2.33 14.60 23.48 2.29 35.27 36.54
8 2.67 13.97 23.42 2.01 35.84 36.98
9 3.00 13.35 22.21 1.80 36.50 36.31
10 3.33 12.46 21.39 1.63 36.42 36.02
11 3.67 12.14 20.96 1.50 37.08 37.12
12 4.00 12.02 20.78 1.40 36.65 37.71
13 4.33 12.02 21.46 1.29 37.39 37.92
14 4.67 11.85 21.34 1.20 37.53 38.01
15 5.00 11.63 20.89 1.13 37.45 37.61
16 5.33 11.52 20.98 1.06 37.76 37.47
17 5.67 11.18 20.41 1.00 37.65 38.27
18 6.00 10.86 20.22 0.95 38.77 38.49
19 6.33 10.63 19.75 0.90 38.24 38.43
20 6.67 10.59 19.76 0.87 37.94 38.56

Table D.2: Temporal-spatial scaling of 7-point stencil (grid size=1503) with constant coef-
ficients on 10 cores of an Intel Ivy Bridge socket.

49

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.33 18.96 20.98 5.70 15.09 15.19
2 0.67 22.17 26.42 6.17 15.21 15.33
3 1.00 23.88 31.02 6.39 15.29 15.39
4 1.33 24.46 34.50 6.50 15.34 15.40
5 1.67 25.26 38.08 6.56 15.32 15.44
6 2.00 25.38 39.49 6.61 15.37 15.45
7 2.33 25.60 40.64 6.61 15.37 15.46
8 2.67 25.64 42.04 6.63 15.39 15.47
9 3.00 25.50 41.76 6.64 15.40 15.50
10 3.33 25.56 42.93 6.65 15.38 15.48
11 3.67 25.76 43.42 6.67 15.37 15.52
12 4.00 25.74 43.73 6.68 15.38 15.53
13 4.33 25.86 44.61 6.68 15.40 15.54
14 4.67 25.95 44.88 6.71 15.40 15.51
15 5.00 25.91 45.55 6.72 15.42 15.49
16 5.33 25.92 45.50 6.72 15.40 15.48
17 5.67 25.84 45.89 6.73 15.44 15.53
18 6.00 25.85 45.50 6.71 15.43 15.52
19 6.33 25.93 45.69 6.73 15.39 15.51
20 6.67 26.00 45.97 6.74 15.40 15.51

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.33 34.74 38.40 9.74 41.17 41.33
2 0.67 29.84 35.24 8.72 41.37 41.43
3 1.00 24.81 32.71 7.65 41.50 41.55
4 1.33 21.67 30.06 7.06 41.42 41.51
5 1.67 19.29 29.16 6.68 41.58 41.54
6 2.00 18.07 27.71 6.36 41.49 41.59
7 2.33 17.03 27.36 6.17 41.64 41.65
8 2.67 16.70 27.07 6.00 41.59 41.65
9 3.00 16.40 26.81 5.86 41.43 41.67
10 3.33 16.11 26.53 5.77 41.61 41.67
11 3.67 15.74 26.41 5.68 41.42 41.69
12 4.00 15.34 26.07 5.54 41.57 41.70
13 4.33 14.79 26.06 5.47 41.59 41.65
14 4.67 14.48 25.27 5.45 41.53 41.54
15 5.00 14.36 24.77 5.47 41.53 41.77
16 5.33 14.30 24.86 5.35 41.64 41.59
17 5.67 14.44 25.07 5.34 41.58 41.68
18 6.00 14.16 24.99 5.28 41.68 41.74
19 6.33 14.13 24.76 5.32 41.45 41.62
20 6.67 13.70 24.62 5.16 41.61 41.73

Table D.3: Spatial-temporal scaling of 7-point stencil (grid size=5023) with constant coef-
ficients on 10 cores of an Intel Ivy Bridge socket.

50

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity Perf. Perf. Perf. Perf. Perf.

1 0.29 8.74 10.31 1.93 7.30 7.88
2 0.58 9.00 11.05 2.02 7.36 7.88
3 0.87 10.15 11.18 1.98 7.37 7.99
4 1.16 10.01 11.37 1.96 7.33 7.94
5 1.45 10.13 11.41 1.93 7.45 7.98
6 1.74 9.99 11.60 1.92 7.43 8.00
7 2.03 9.26 11.57 1.91 7.48 8.00
8 2.32 9.28 11.64 1.89 7.45 7.96
9 2.61 9.23 11.62 1.88 7.40 7.87
10 2.90 9.55 11.67 1.87 7.40 7.86
11 3.19 9.58 11.57 1.85 7.47 7.99
12 3.48 9.71 11.67 1.84 7.49 7.97
13 3.77 9.62 11.55 1.82 7.49 7.99
14 4.06 9.73 11.61 1.82 7.49 7.96
15 4.35 9.56 11.72 1.80 7.42 8.03
16 4.64 9.62 11.74 1.79 7.50 8.02
17 4.93 9.52 11.70 1.77 7.50 7.98
18 5.22 9.51 11.75 1.76 7.50 7.98
19 5.51 9.50 11.70 1.76 7.46 7.96
20 5.80 9.48 11.78 1.76 7.50 8.01

Arithmetic PLUTO (non-vec) PLUTO (vec) PLUTO-PATUS icc-15.02, non-vec icc-15.02, vec
Intensity mem.bandw. mem.bandw. mem.bandw. mem.bandw. mem.bandw.

1 0.29 33.65 37.00 7.16 36.66 37.86
2 0.58 33.69 39.47 5.58 38.12 40.08
3 0.87 33.52 39.92 6.28 38.89 40.51
4 1.16 33.77 40.05 6.97 39.71 41.06
5 1.45 33.68 40.43 7.17 40.02 41.09
6 1.74 33.61 40.62 7.20 39.93 41.35
7 2.03 34.14 40.56 7.19 39.30 41.22
8 2.32 33.85 40.61 7.14 39.58 41.16
9 2.61 34.06 40.73 7.14 40.24 41.10
10 2.90 34.32 40.81 7.11 40.04 41.64
11 3.19 33.61 40.78 7.12 39.90 41.88
12 3.48 34.37 40.75 7.12 39.64 41.60
13 3.77 34.13 40.94 7.10 39.95 41.72
14 4.06 33.98 41.06 7.11 40.28 41.64
15 4.35 33.96 40.83 7.13 40.34 41.78
16 4.64 34.21 40.98 7.12 40.03 41.31
17 4.93 34.18 40.91 7.12 40.58 41.58
18 5.22 34.56 40.97 7.19 39.94 41.74
19 5.51 34.74 41.09 7.20 40.39 41.31
20 5.80 34.44 41.08 7.23 40.52 41.72

Table D.4: Spatial-temporal scaling of long-range stencil (grid size=1503) with variable
coefficients on 10 cores of an Intel Ivy Bridge socket.

51

Appendix E

Content of attached CD

• multigrid - multigrid source codes + measurements

– geometric multigrid tiled avx icc 31 - tuned for tile size 31

– geometric multigrid tiled avx icc 1023 - tuned for tile size 1023

– geometric multigrid tiled avx icc 4095 - tuned for tile size 4095

• stencils - stencil source codes + measurements

– exa2ct-radim-olaf-may15 - source codes

– exa2ct-radim-olaf-may15 run - source codes + binaries + results

– report-results - results used in this report

• tex - LATEX source codes

• DP Radim Janalik.pdf - technical report

52

	Introduction
	Geometric Multigrid
	Residual equation
	Restriction and Interpolation
	V-cycle

	Stencil code performance engineering
	Arithmetic intensity
	Roofline model
	Supercomputer architectures
	Tiling

	Stencil code generators
	Pluto
	PATUS
	Combination of Pluto and PATUS

	Experiments
	Impact of vectorization
	Spatial blocking performance
	The importance of temporal blocking
	Geometric Multigrid

	Conclusion
	Performance with and without vectorization on one and ten cores
	Spatial blocking results on one core
	Temporal blocking results on one core
	Temporal blocking results on ten cores
	Content of attached CD

