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Abstrakt
Tato práce se specializuje na akceleraci algoritmu z oblasti obli£ejov¥ zam¥°ených anti-
spoo�ng algoritm· s vyuºitím gra�ckého hardware jakoºto platformy pro paralelní zpracov-
ání dat. Jako framework je pouºita technologie OpenCL která umoº¬uje pouºití od výkoných
stolních po£íta£· po p°enosná za°ízení, od r·zných akcelerátor· jako gra�cké £ipy, £i ASIC
aº po procesory typu x86 bez vazby na konkrétního výrobce £i opera£ní systém. Autor p°ed-
kládá £tená°i rozbor a akcelerovanou implementaci ²iroce pouºívaného algoritmu a dopadu
urychlení výpo£tu.

Abstract
This thesis is specializes on algorithm acceleration from the �eld of face-based anti-spoo�ng.
Graphics hardware is used as platform for data-parallel processing. As framework, the
OpenCL is used. It allows execution on devices such as powerful desktop computers or
hand-held devices as well as usage of di�erent kind of processing units such as GPU, ASIC
or CPU without any bound to hardware vendor or operating system. Author presents to
reader analysis and accelerated implementation of widely used algorithm and impact of such
improvement in execution time.
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Chapter 1

Introduction

Despite fast development in the �eld of IT software and hardware, there are problems
computationally too complex to calculate in real-time.

Since the beginning of computer science, programmers tried to �nd ways how to shorten
the time of computation. Common approach is writing programs or its parts in assembler.
With spreading of new technologies and processors came new instructions being able to
process multiple data in one cycle. SIMD instructions such as MMX and SSE often improved
performance.

With introduction of multi-core processors, the trend of algorithm parallelization was set.
There are numerous problems (synchronization, race conditions, etc.) writing algorithms in
way, that unleash nearly full potential of all cores.

In last few years the computation units in graphic accelerators become general enough
to run general-purpose programs and powerful enough to process huge amounts of data
much faster than CPU. It is achieved by thousands of cores processing same instructions
over multiple data.

The rate of CPU innovations signi�cantly decreased over few past years, but the rate
of performance gain of GPU is constant or slightly increasing. Together with wide use of
modern GPGPUs from all PCs and laptops to most of hand-held devices, GPU is ideal
platform for accelerating computations over big data-sets such as image processing and
recognition, voice synthesis and recognition, machine learning and others.

This work is focused on implementing GPGPU algorithm widely used in face based
anti-spoo�ng and evaluating it's use.

In the second chapter, face-based anti-spoo�ng is described as the �eld that will be used
to demonstrate possible target for accelerating algorithms using GPGPU.

Next chapter describes potential target for acceleration and presents several possible
frameworks for GPGPU.

Implementation of serial and parallel algorithm is explained in chapter 4.
Fifth chapter is focused on testing this implementation on low-power device as ideal

future target of face-based anti-spoo�ng techniques.
Last chapter promote bene�ts of implementing algorithms on GPGPU.
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Chapter 2

Face-based anti-spoo�ng

Humans and animals are using body characteristics such as face, voice or body structure
to recognize each other for thousands and millions of years. The system of using a number
according to body measurements was invented in the mid-19th century. While the idea was
gaining popularity, more important discovery was made. It was discovered, that �ngerprints
are unique to every living person. The idea that some of the body features can be unique
when measured properly and then using it to identify person revolutionized criminology.

2.1 Background

There are numerous body characteristics, but only few of them satisfy these requirements:

• Universality each individual should have the speci�ed characteristic.

• Distinctiveness any two individuals are di�erent enough to distinguish them using
only this characteristic.

• Permanence the characteristic is invariant enough to be recognized over the period of
time.

• Collectability the characteristic is measurable quantitatively.

There are numerous other requirements for biometric systems that are used in everyday
life:

• Performance is relation between the ability to achieve su�cient accuracy and resources
needed to achieve recognition in speci�ed time.

• Acceptability indicates how many people are willing to provide biometric information
in everyday use. After the information of government programs to collect personal
information leaked, many security questions arised.

• Circumvention re�ects how easy it is to make false acceptance by spoo�ng methods.

6



2.1.1 Biometrics and access systems

In the past, biometrics was developed mostly due to extensive use in law enforcement to
identify criminals. Nowadays it is still more often used in person recognition systems in a
large number of commercial applications.

A biometric system is pattern recognition system. First step is to acquire data from
person. Second step is extracting a feature set from acquired data. Last step is comparing
against template dataset in database. Depending on application, system works in veri�ca-
tion or identi�cation mode.

• Veri�cation mode In this mode, system compares extracted features against one tem-
plate dataset in database. Template selection is based on other identifying factor as
ID card or username.

• Identi�cation mode System performs one-to-many comparison in order to �nd match-
ing template for extracted features. It is also possible to introduce negative recognition
to prevent user using multiple identities.

2.2 Spoo�ng techniques

2.2.1 De�nition of spoo�ng

According to online dictionary dictionary.reference.com spoo�ng means:

4 to fool by a hoax; play a trick on, especially one intended to deceive.

For our paper, we will extend de�nition to better re�ect spoo�ng in face recognition systems.

• A spoo�ng is, when stolen and/or forged biometric traits are used to gain illegitimate
access to system or resource.

2.2.2 Types and examples of spoo�ng

In face-based authentication systems, spoo�ng attacks are usually performed using pho-
tographs, videos or masks. In speci�c cases it is also possible to use make-up or plastic
surgery. However due to extensive use of social networks as Facebook or Youtube, there is
a lot of resources (especially photographs and videos) that can be used for spoo�ng.

• Image attacks are the easiest option. It is surprisingly e�cient when used on unpro-
tected system [5]. Even non-skilled attacker needs only printer (in some cases also
mono printer is su�cient) and photograph, that can be easily found on internet.

• Video is presented on screen of a hand-held device. It is more sophisticated method
than image spoo�ng and can achieve higher rate of false acceptance than image attacks.

• Mask attacks are the harder way to perform an attack, but even with sophisticated
systems it is more e�cient than other types of attacks when properly executed [15].
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2.3 Anti-spoo�ng techniques

Most of the work in area of face-based anti-spoo�ng is done in research labs or in small and
highly controlled environments, however attempts to spread this technology and provide
widely usable solutions are already in progress [13].

When using 2D face recognition system, anti-spoo�ng methods can be classi�ed in three
categories: motion analysis, texture analysis and liveness detection.

2.3.1 Motion

Motion detection use the di�erence of motion vectors detected in videosequence to detect
spoo�ng. Head usually has di�erent movement vector than near surroundings and back-
ground. It can be also used for detection of small di�erences directly on face, because of 3D
nature of face. This type of anti-spoo�ng methods are usually e�ective against photographs
and other purely 2D methods.

2.3.2 Texture analysis

Texture analysis is usually focused on texture-patterns caused by printing or by screen
projection. It can also detect blur or overall color balance.

Micro-texture analysis focus on light scattering and re�ection or color unbalances on
local level.

Texture analysis usually uses Local Binary Patterns (LBP) as a mean of feature extrac-
tion.

2.3.3 Liveness detection

This method focus on individual parts of face and by computing movement vectors tries
to determine, whether the biometrics data were acquired from live user that is physically
present. As a point of interest can be used eyes, eyelids (blinking), lips or even cheeks.
Algorithm calculate trajectory of speci�ed part of the face using simple optical �ow and
then it is explored by heuristic classi�er.

2.4 Anti-spoo�ng resources

Researchers usually have quite speci�c requirements of software. One of those requirements
is environment allowing fast prototyping and testing of new ideas and at the same time also
easy implementation of �nal piece of software and easy access to large data-set databases.
This requirement is noticeable especially in the �eld of multimedia and its applications.
Next very important requirements for researchers is self-explanatory and clear code with
great documentation.

Lot of packages developed for machine learning and/or signal processing are available.
Among others 1, mlpack 2, OpenCV 3 or numl 4. However, just few of them provide com-
plete set of functionality for managing research experimentation such as database interfaces,
alternative API for accelerated versions of algorithms or scriptable drawing utilities. For

1https://github.com/josephmisiti/awesome-machine-learning
2http://mlpack.org/
3http://opencv.org/
4http://numl.net/
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example, OpenCV is developed primarily in C++ and lacks API for database access or
build-in analysis utilities. Among many choices, it seems that only two frameworks are
well-equipped for research works. Scikit-learn 5 and BOB 6. Scikit-learn provides dataset
APIs and machine learning algorithms, but lacks basic signal processing functionality and
a clean C++ API. Researchers using this platform might deal with lack of convenient envi-
ronment for speeding up algorithms.

2.4.1 The BOB System [3]

Biometrics Group at Idiap Research Institute in Switzerland developed BOB framework to
satisfy all requirements stated above. BOB is free signal processing and machine learning
toolbox. Since then, growing community have created many modules to extend function-
ality. BOB provides Python interface for rapid development and C++ parts speeding up
identi�ed bottlenecks. This approach is designed to meet the needs of researchers by reduc-
ing development time and fast and e�cient processing large data-sets.

Python and C++ part is seamlessly integrated ensuring easy of use and great extensi-
bility. BOB also provides reproducible research result technique through integrated exper-
imental protocols for several databases. It currently provides API as interface to several
database protocols. Several protocols for well-known face-based databases are integrated
to provide way of making reproducible and comparable results with other scienti�c publi-
cations. Also one of the main goals is code clarity, documentation and extensible testing
ensuring easy adoption for new developers. Code readability and maintainability is preferred
over optimization.

Bob's abilities and the scope in the �eld of signal processing is rather big including
covering �elds as computer vision and audio processing. It also covers many activities
in �eld of machine learning, to name a few: dimensional reduction, clustering, generative
modeling, and discriminative classi�cation.

Most importantly, Bob was designed to be highly extensible. Bob library system was
designed to easily prototype ideas and algorithms in friendly Python environment, then later
to rewrite it in C++ to gain speed. Bob contains this layer connecting clean Python and
clean C++ environment. Researchers can quickly develop ideas in Python while seamlessly
exploiting rich possibilities of C++ codebase provided by Bob.

Multidimensional data arrays are extensively used to represent various kind of digital
signals. At Python level, it is ensured using NumPy 7 and at C++ level it is handled by
Blitz++ 8. In order to exchange data between Python and C++, Boost 9 template library
is used.

5http://scikit-learn.org/
6https://idiap.github.io/bob/
7http://www.numpy.org/
8http://blitz.sourceforge.net/
9http://www.boost.org/
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Chapter 3

Acceleration of anti-spoo�ng

techniques

3.1 Motivation

Due to the fact, that optical sensors (cameras) has improved signi�cantly over few past
years and number of pixels has increased considerably [6], complex algorithms for image
processing became too slow to execute in real-time [9, p. 11-12] on low-power devices.
On the other hand, still more and more complex spoo�ng methods require more complex
anti-spoo�ng techniques to be used.

As a result, everyday CPU doesn't have enough power to run anti-spoo�ng techniques
being able to reveal basic spoo�ng attacks in acceptable time. Mobile devices, as the most
common target for face-spoo�ng attacks, are despite quick evolution years from being able
to process enough data in real-time to have seamless user experience.

3.1.1 Why is it important?

Face-based anti-spoo�ng techniques are essential part of face authentication systems as it
can prevent false hit and thus compromising whole system. In case of successful attack
on mobile phone, attacker can access list of contacts, conversations, personal �les and also
mostly other accounts as email accounts or Facebook account and in some cases also to
online banking account information. These information can be then used for phishing or
directly as invoice information. Being able to correctly recognize and authenticate user
is crucial. No image based authentication system should be used without some kind of
anti-spoo�ng technique.

Using anti-spoo�ng methods results in higher requirements for processing power. Devel-
opment of CPU technology can not satisfy in near future this demand, but leveraging GPU
power can increase easily usable processing power of device more than hundred times. This
processing power can be used to reduce algorithms execution time or to increase algorithm's
complexity and prevent more sophisticated attacks.

3.1.2 Real-time anti-spoo�ng

For seamless user experience, face-based authentication should not last more than few sec-
onds. As today's devices does not have enough computing power to o�er this experience
with robust algorithms preventing false identi�cation, many companies started to o�er their

10



own cloud-based solutions [2, 14]. This approach can be used when authenticating online
banking transfers or logging into online applications. In case of loosing internet connection
(outlying areas, tunnels, roaming or wi�-only devices), this approach can not be used. In
such cases, the mobile device has to make all computations in acceptable time.

Embedded systems managing physical access such as entrance tourniquets with many
incoming people in short period of time has even higher demands for reducing latency
between obtaining video sequence of person and successful authentication. In ideal state
this latency is just few seconds, but the exact time also depends on the type of access system.
This short time can ensure seamless experience for all users.

3.2 Parallel processing and GPUs

Architecture of GPUs allows executing many threads slowly rather than one thread quickly.
In addition, execution units are organized into groups, that can run only the very same
program as the other units in the same group [1]. It allows very high density of cores on
the chip and e�ective execution of data-parallel algorithms.

3.2.1 Di�erent alternatives for acceleration

Due to big computation potential in GPUs and accelerators, many companies and organi-
zations created through time their own way, how to utilize the power of accelerators. We
will focus on three well known and wide-spread frameworks that are commonly used to
accelerate algorithms through data-parallelism.

CUDA [10]

CUDA is hardware and software interface for programming GPU, created by NVIDIA and
is used only for graphic IP of this company. Its aim is to make it easier to create GPU
computing programs by avoiding using shader languages. First version was introduced in
2006 and �rst SDK was released a year later for G80 architecture. With development
of graphic architecture new versions were released adding new functionality, or extending
compute capabilities. Every version is tighted to corresponding architecture which results
in non forward compatible features. The latest version in time of writing (2Q 2015) is 7.0.

Simpli�ed programming procedure can be described as loading data to host (CPU),
initializing GPU device, copying data from host memory to device memory, running com-
putation and �nally copying result back from device to host.

Programming can be done through C language with additional library functions and
syntax extensions to express parallelism. CUDA SDK also provides extensions for C++
and Fortran. Third party extensions also provides CUDA functionality to Python, Perl,
Java, Ruby, Lua, Matlab, etc.

There are two main models in CUDA programming.

Execution Model
CUDA program consist of functions capable running on host (CPU) or the device (GPU).
Functions running on GPU (kernels) can be executed asynchronously from the host and
across multiple processors in the same time. To decide what function should run on host
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or on device, quali�ers as __device__ , __global__ or __host__ are used in source
program. Note, that __host__ quali�er is usually omitted, as it is default quali�er.

Figure 3.1: Kernel executed on GPU is organized as a grid of parallel blocks that contains
parallel threads.
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Grids and blocks can be divided to up to three dimensions. In order to obtain the best
performance boost, size of grids and blocks should be tuned for every architecture. Following
example shows the computation of grid size and block size:

dim3 g r i dS i z e ( imageX/blockX , imageY/blockY , 1 ) ;
dim3 b l o ckS i z e ( blockX , blockY , 1 ) ;
someKernel <<<gr idS i z e , b lockS ize >>>(param1 , param2 ) ;

Con�guration parameters for individual kernels are speci�ed in triple angular brackets.
First parameter speci�es number of blocks in grid and the second one speci�es number of
threads in every block as can be seen in �gure 3.1. Both parameters can be composed of 1, 2
or 3 dimensions. These dimension sizes can be accessed from kernel through built-in variable
gridDim and blockDim. Individual threads can communicate through shared memory and
barrier synchronization. Each thread is then identi�ed by threadIDx built-in variable and
blockIdx built-in variable. Unique identi�er can be then calculated from two dimensions as
follows:

i n t x = threadIdx . x + blockIdx . x ∗ blockDim . x ;
i n t y = threadIdx . y + blockIdx . y ∗ blockDim . y ;
i n t id = x + y ∗ gridDim . x ;

Memory Model
Very important part, that needs to be considered when creating GPU compute programs,
of CUDA platform is it's memory model. It describes GPU memory access and hierarchy.
In addition to large high-latency memory (global memory), model describes also caches,
registers, shared memory, constant memory and texture memory.

CPU chips has limited number of cores and caches associated with those cores. Size
of those caches can be relatively large, due to it's limited number. GPU chips usually has
hundreds or thousands of cores and every core has it's own cache. Due to this large amount
of caches, every cache has very limited size.
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Figure 3.2: Memory hierarchy in CUDA system

In traditional CPU programming, all caches are transparent to programming model and
programmer can not easily directly modify it's content. In GPU programming many of
caches and di�erent types of memory can be, and should be, controlled by programmer.

In case, that some cores needs to exchange data with other core and due to parallel
access, synchronization techniques must be introduced.

Shared memory is relatively small and low-latency memory within every SM. This mem-
ory is divided into memory blocks called banks, that can be accessed in parallel. In case,
that multiple threads tries to access the same memory bank in the same time, access is
serialized to prevent data inconsistency. Shared memory is de�ned by programmer and it's
purpose is to allow communication between individual threads and to exchange often used
data.

Constant and texture memory is not located on-chip, but o�-chip (on device) together
with global and local memory. The constant memory is used to contain constant variables
used by many threads (global variables) and texture memory is mostly used to store graphic
data. Because of the nature of those data types stored in this type of memory, access can
be highly cached, as data �ow is usually one-directional (read-only from device). Storing
data in this type of memory usually result in faster access, than accessing data in global
memory. texture memory also bene�ts from hardware units performing interpolation when
accessing data. Hardware units can also perform clamp and wrap memory access to prevent
out-of-bounds access.

CPU can access GPU's global, constant and texture memory, but access is usually done
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through PCI-Express bus and is considered as bottleneck in CUDA programming, because
the limited bandwidth introduces latency. Due to this limitations, transfers between host
and device should be limited.

Programmers speci�es variable location by using keyword __device__ for global mem-
ory, __shared__ for shared memory and __constant__ for constant memory. If there
is need to allocate memory on device, functions cudaMalloc() and cudaFree() can be used
to reserve or to free memory respectively. Allocated memory can also be copied by using
function cudaMemcpy() in combination with a keyword specifying data location of source
and target. Possible data locations can be host �> host, host �> device, device �> host, or
device �> device.

OpenACC [11, 12]

Low level APIs such as CUDA and OpenCL provide rich set of features enabling �ne con-
trol of GPU hardware. Managing every aspect of execution model and memory model can
however be di�cult for programmer. To simplify GPU programming, NVIDIA, The Port-
land Group, CAPS and Cray created simpler way, using compiler directives, to program
accelerators such GPU.

The OpenACC standard was �rst released in November 2011 as version 1.0 and API
consist of compiler directives, library functions and variables. Version 2.0 was released in
June 2013.

The OpenACC API and its directives can be used within C, C++ and Fortran programs.
Compilers are available across wide range of operating systems and hw accelerators. In
April, 2015, GNU GCC 5.1 was released and it includes a preliminary implementation of
the OpenACC 2.0a speci�cation. OpenACC is maintained and developed by OpenACC
corporation, which includes (in addition to founding members) organizations such as Swiss
National Supercomputer Center, Georgia Tech, Allinea or Oak Ridge National Lab.

Figure 3.3: OpenACC parallel loop

i n t main ( ) {
double var = 0 . 0 ;
# pragma acc k e rn e l s
f o r ( long i =0; i < N ; i ++) {

double r = ( double ) ( ( i +0.5)/ N ) ;
var += 1 . 618/ (1 . 0 + r ∗ r ) ;

}
}

OpenACC consist of compiler directives used to describe what loop or what portion of
code should be executed in parallel on accelerator. In this simple scenario, compiler will
decide what optimizations will be used and create target code. Programmer itself does not
have to need know anything about memory and execution model. However, there is still
need to recognize algorithms and it's ability to run in parallel. OpenACC also has features
for more explicit control over program execution.

OpenACC can be similar in many ways to OpenMP standard, due to the fact, that
many developers of OpenACC standard take also part in OpenMP Architecture Review
Board and long term of OpenACC is to become something like 'OpenMP for accelerators'
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Figure 3.4: OpenMP parallel loop with reduction

i n t main ( ) {
double var = 0 . 0 ;
# pragma omp p a r a l l e l f o r r educt i on (+: var )
f o r ( long i =0; i < N ; i ++) {

double r = ( double ) ( ( i +0.5)/ N ) ;
var += 1 . 618/ (1 . 0 + r ∗ r ) ;

}
}

rather than separate and independent standard. This e�ort resulted in publishing 'OpenMP
for accelerators' [4] and implementing some of the proposed ideas in OpenACC standard
version 4.0 published in July 2013.

As can be seen in both examples (3.4 and 3.3), C code uses #pragma compiler directive
followed by the name of standard and then followed by standard-speci�c command.

OpenACC standard de�nes only API and it is up to developers to implement OpanACC
functionality into compilers. From beginning there were available only commercial compilers
such as those form PGI and CAPS, but as mentioned earlier, GCC in version 5.1 has prelim-
inary implementation of standard OpenACC 2.0a and there is also accULL, The OpenAcc
research implementation developed by University of La Laguna. Most of implementations
of OpenACC standard are based on translating code into CUDA or OpenCL.

Execution Model

OpenACC is mostly used for heterogeneous systems with host processor and accelerator,
but when translating into OpenCL, also multicore processor can be used. On such systems,
program is executed in serial until the point of intensive data-parallel section, usually con-
taining one or more loops that can be distributed between multiple threads (work-items)
and processor o�oad such execution to accelerator for fast parallel processing. After exe-
cution on accelerator is done, results are transferred back to host processor. This behavior
is known as host-directed execution model.

The process of execution is following: host allocate device memory, initiate data transfer,
transfer code to the device, pass required arguments, wait for the execution to complete,
transfer results back to host memory and deallocate device memory. Vast majority of this
steps are done automatically by OpenAcc compiler, but there are also ways how to in�uence
those steps by programmer.

Parallel code can be executed synchronously using #pragma acc kernels directive or
asynchronously (eg. more loops) using #pragma acc parallel directive.

Memory Model

Memory is usually separated in systems with host CPU and attached accelerator device,
such as GPU. These heterogeneous systems are primarily focused by OpenACC.

All data allocation and data movement between host and device must be managed by
host through library calls. OpenACC also has notion about private and shared memory,
where shared memory is usually software cache-like memory and private memory is used
as hardware cache. Many of memory constraints and data location changes are handled
automatically by compiler based on directives speci�ed by programmer or speci�ed directly,
eg. that memory should be allocated on device, that data should be copied only in one
direction or that data already is on device.
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In a typical application with parallel region, data is copied to the device from the host
at the beginning of each parallel region and copied back from device to host memory in the
end of such region. When there is some form of pipeline, compiler may not recognize it and
move data from device to host and back again. This data copying is redundant and cause
slowing down whole algorithm. Programmer can specify region by #pragma acc data to
prevent such behavior and keep data on GPU between multiple kernel runs. Compiler also
automatically creates barrier constructs to prevent simultaneous access to the same memory
block, that might result in memory inconsistency.

3.3 The OpenCL framework

OpenCL was developed by Apple Inc., and then under the auspices of Khronos group pub-
lished as industry standard. Since then many hardware and software vendors adopted
OpenCL as standard for heterogeneous computing. OpenCL programs, kernels, can run
on various devices such as x86 CPUs, various GPUs, FPGAs, ARM under Windows, Mac,
Linux, FreeBSD and Android. Programming model is based on separate programs running
on accelerating device called kernels, written in language based on C99 and host code writ-
ten in C/C++. There are also wrappers for many languages like Java, Python, Haskell
etc.

Low level access to system allows simultaneous execution of kernels on more devices and
improving performance by user-managing multi-level memory. Cooperation and memory
sharing between OpenCL and other graphics APIs such as OpenGL improve usability and
performance. Speci�cation speci�es

�
Full pro�le� that is common in PCs and

�
Embedded

pro�le� that is common in mobile devices. Main di�erence is �oating point accuracy and
support for 3D images (optional), writing to 2D image array or limitations to channel data
type operations. OpenCL is an API that de�nes access and control of OpenCL-capable
devices and it includes a C99-based language that allows implementation of kernels on
them. OpenCL simpli�es execution of task-based and data-based parallel tasks on sequential
and parallel processors. Currently, there are OpenCL implementations on CPU and GPU.
However, several e�orts have been made to port the code into other processors and platforms,
such as application speci�c multi-cores or multicore DSP.

OpenCL (Open Computing Language) is essentially an open standard for parallel pro-
gramming of heterogeneous systems. It consist of an API for coordinating parallel com-
putation across di�erent processors and cross-platform programming language with a well-
speci�ed computation environment. It was conceived by Apple Inc., which holds trademark
rights, and established as standard by Khronos Group in cooperation with others and is
based on C99. The purpose is to recall OpenGL and OpenAL, which are open industry
standards for 3D graphics and computer audio respectively, to extend the power of the GPU
beyond graphic facilitation General Purpose computation on Graphic Processing Units.

In the OpenCL model, the high-performance resources are considered as Compute De-
vices connected to a host. the standard supports both data and task based parallel pro-
gramming models, utilizing a subset of ISO C99 with extension for parallelism. OpenCL
is de�ned to e�ciently inter-operate with OpenGL and other graphics APIs. The current
supported hardware ranges from CPUs, GPUs and DSPs to mobile CPUs such as ARM
with Mali graphic core.

To be able to use OpenCL on such platforms and devices, the standard de�nes four
abstract models (layers).
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• Platform model speci�es one host and one or more devices running OpenCL code

• Execution model de�nes, how is OpenCL set on host and how it will be executed on
device

• Memory model de�nes memory hierarchy used by OpenCL kernels

• Programming model describes, how is speci�ed model mapped to physical device

Platform model
The OpenCL Platform model de�nes a high-level representation of any heterogeneous

platform compatible with OpenCL. This model is shown in the �g. 3.5. The host can be
connected to one or more OpenCL devices (GPU, CPU, DSP, FPGA, ...). Kernel execute
on the device. Device is composed of CUs (compute units) and those are divided into PEs
(processing elements). Computation is made in PEs. Each PE executes SIMD.

Figure 3.5: Platform model speci�es host and connected devices composed of compute units
having processing units.

OpenCL

device

Compute

unit

Processing

element

Host

Execution model
Execution is composed of two parts. First part is host program, the second one is one or

more kernels. Due to OpenCL layer, the exact steps of kernel execution on various devices
(CPU, GPU, ...) are abstracted away. Kernels are executed on devices transforming input
memory objects into output memory objects. There are two types of kernels, OpenCL
kernels and Native kernels.

Kernel execution can be described by following points:

• Host de�nes kernel.

• Command is issued by host to execute kernel on device

• OpenCL runtime creates an index space

• Instance of kernel is called work-item, work-items are organized in work-groups. This
division is shown on �gure 3.6
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Figure 3.6: Work-items (instance of kernel) are organized into work-groups and all work-
groups represent execution of kernel. Organization structures can be 1D, 2D or 3D

Work-groupsWork-items

(0, 0, 0)(1, 0, 0)(x, 0, 0)

(0, 1, 0)(1, 1, 0)(x, 1, 0)

(0, y, 0)(1, y, 0)(x, y, 0)

(0, 0, 0)(1, 0, 0)(x, 0, 0)

(0, 1, 0)(1, 1, 0)(x, 1, 0)

(0, y, 0)(1, y, 0)(x, y, 0)

Memory model
The OpenCL memory hierarchy model is structured in way, that abstract and/or mimic

most common memory con�guration of NVIDIA/AMD/ATI hardware. There are some
di�erences since every company de�nes their memory hierarchy di�erently. Abstraction
was possible since most of companies somehow de�nes top memory (global memory) and
local memory per work-group. Also every work-item has small private memory in form of
registers.

Communication and synchronization of individual work-items in work-groups is done
through shared memory, but access of every work-item to shared memory is independent of
other work-groups. The OpenCL framework de�nes relaxed consistency between individual
work-groups. Memory access of work-items is not protected in any way. Reading or writing
out-of-scope does not result in error.

3.4 Discussion of advantages and disadvantages

As discussed previously, face-based algorithms are required to operate on wide range of
devices. OpenCL is open standard currently working on many devices. Compilers are
available for platforms from hand-held devices to supercomputers. CUDA is limited only
on hardware solutions produced by nVidia company. While having big share in PC and
laptop market, only few hand-held devices based on Tegra K1 and Tegra X1 were launched.
OpenACC is open standard, but rather few compilers support this standard.

Table 3.1: Framework properties

Framework OpenCL CUDA OpenACC

SW platform
Windows, Linux,
MacOS, Android

Windows, Linux,
MacOS, Android

OpenCL & CUDA

HW platform
AMD, ARM,
Intel, Nvidia

Nvidia
AMD, ARM,
Intel, Nvidia

Programming complexity high medium low

Performance gain high high medium

On the other hand, OpenAcc and CUDA provide faster and easier way how to leverage
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GPU potential. However, low level approach enables wide variety of possible optimizations,
some of that automated compiler can not make from high level code.

3.5 Accelerating anti-spoo�ng techniques

Image analysis is composed out of two groups of operations. Image to feature extraction and
making decisions based on those features. The core of image-based anti-spoo�ng techniques
is usually based on computation with the extracted features. However algorithms used to
operate with extracted features are very hard to parallelize and the computation is usually
not that long. Higher potential to bene�t from acceleration is in accelerating image based
algorithms.

3.5.1 Identifying bottlenecks

There are two major bottlenecks when accelerating image based algorithms. Memory bot-
tleneck and computation bottleneck.

Memory bottleneck

This type of bottleneck is usually seen on algorithms involving very simple computation
algorithms with many pixels. Accelerator then has to read lot of data, perform simple
computation and write back relatively lot of data. In this case acceleration is bene�cial only
in case that data is already on device.

Platforms that share memory between host and accelerator and the only bottleneck is
memory bottleneck can not reduce computation time by o�oading computation to device.
For example addition of two vectors is memory bound algorithm. After fetching data from
memory follows very simple operation of addition and writing data to memory back. ALU is
underutilized and memory subsystem is fully utilized. In such cases, GPU can not perform
operation faster than CPU.

Platforms that do not share memory between host and device are even slower in perform-
ing memory bound algorithms due to data round-trip from host to device and from device
to host. The only case when it is bene�cial to o�oad computation to device is pipeline
processing when data are already on the device and after computation data will be further
processed. In those cases algorithms bene�ts from high bandwidth interface present on de-
vice. While DDR3 memory at 2.4GHz has bandwidth only 19.2 GiB/s [8], HBM memory
used in AMD's Fury series has bandwidth 512 GiB/s. The bandwidth of GPU's planned
for next year is 1TiB/s.

Computation bottleneck

This bottleneck is seen with algorithms that use little of data and perform complex oper-
ations with lot of arithmetic calculations. Memory subsystem of host is not fully utilized,
whereas ALU or/and FPU units are usually busy. Host CPU usually has only few ALU and
FPU whereas GPU has thousand computation units. In this case, data can �ow to device
faster due to higher computation ability of accelerator device.

Example of this bottleneck is matrix multiplication. Processor has to perform a lot of
arithmetic operations (mainly multiplication and addition) over relatively small chunk of
data.
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3.5.2 Analysis of parallelization opportunities

There are many di�erent algorithms used for anti-spoo�ng in face-recognition systems. To
bene�t most, image-based algorithms with medium or high complexity should be acceler-
ated. Due to fact, that face-based anti-spoo�ng is still beginning to emerge and is undergoing
rapid development, no standard image algorithms are established.

Often used algorithm within BOB system is LBP-TOP. This is image based algorithm
with video sequence with some additional parameters on input side and with comparably
less data in form of histograms on output. Algorithm is described more in section 3.5.3 and
4.1.

3.5.3 Justi�cation of the choices

OpenCL is used in this work because CUDA is not hardware multi-platform and OpenACC
doesn't have fully functional compilers for platforms that are functional with OpenCL. In
order to run OpenCL programs, nothing else than appropriate drivers is required. Even
though that many devices are OpenCL capable, serial C++ code is provided as reference
implementation and as fall-back for platform not supporting any of required technologies of
OpenCL runtime.

Even though, that OpenCL 2.0 was announced more than 2 years ago [7], very little
device on market implement this standard. For that reason OpenCL 1.2 is used in this
work. There are no OpenCL 1.2 only features used, but OpenCL 1.2 C++ wrapper �x
several bugs with respect to the version 1.1. However, all algorithms developed within this
work can be rather easily rewritten to use OpenCL 1.1 that is widely supported across many
hardware and software platforms.

As the algorithm to accelerate we choose LBP-TOP. This algorithm is pixel independent
with medium algorithm complexity and takes long time in overall process to execute. Those
are signs of good candidate for acceleration.
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Chapter 4

Implementation

4.1 Algorithmic description

LBP (Local Binary Pattern) is e�cient, yet simple algorithm for feature extraction from
images.

Algorithm is very simple in it's nature and the simplest form can be described as follows:

Figure 4.1: The simplest form of LBP algorithm

1 . Mark every p i x e l as c ent e r p i x e l and do f o l l ow i n g :
a ) Compare ne ighbor p i x e l s with cent e r p i x e l in

counter−c l o ckw i s e manner .
b ) I f the value o f c en te r p i x e l i s h igher than

compared neighbor record "1" , e l s e record "0" .
c ) Merge a l l recorded va lue s f o r c en t e r p i x e l i n to

s i n g l e binary s t r i n g .
2 . When computed a l l the binary s t r i n g s , c r e a t e histogram

of a l l b inary s t r i n g s .
3 . Opt iona l ly normal ize histogram .

To fully understand principle of this algorithm, �gure 4.2 presents usage on data sample
for one pixel with 8 neighbors.

Implemented algorithm however is not the simplest case presented. It is variation called
LBP-TOP (Local Binary Pattern on Three Orthogonal Planes) [16], which also includes 3rd
dimension. LBP then has to be done for every plane (x-y plane, x-t plane and y-t plane)
separately gaining three di�erent histograms. Algorithm used in BOB computing LBP-
TOP for video sequence also allows to specify additional parameters. Version for Matlab is
declared as follows:

4.2 Reference implementation

f unc t i on Histogram = LBPTOP(VolData , FxRadius , FyRadius ,
TInterval , NeighbourPoints ,
TimeLength , BorderLength ,
bB i l i n e a r I n t e r po l a t i on ,
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Figure 4.2: LBP applied on random sample of image data

(a) choose data sample
(b) mark every pixel a center and do for
each center pixel next steps
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(e) if value of center pixel is greater
than neighbor's value record 1, else 0

1
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001

1

10001100
(f) merge counter-clockwise values to
gain binary string

Bincount , Code )

• VolData keeps brightness of individual pixels in three dimensions

• FxRadius, FyRadius and TInterval specify radius interval along X, Y and T axis.
Only values 1, 2, 3 and 4 are accepted, values 1 and 3 are recommended. Pay attention
to parameter TInterval, where TInterval*2 must be smaller than length of the video
sequence.

• NeighbourPoints represents number of neighboring pixels to central pixel. This
input is in form of three item array specifying number of neighbor pixels in planes
XY, XT and YT. Only values 4, 8, 16 and 24 are accepted and recommended value is
8 for every plane, [8 8 8] as a argument.

• TimeLength and BorderLength are parameters for cropping center pixels in space
and time. TimeLength is usually equal to TInterval and BorderLength to the greater
one of FxRadius and RyRadius.

• bBilinearInterpolation is switch enabling bilinear interpolation when getting value
of neighbor pixel in circle. When set to 1, bilinear interpolation is used, when set to
0, nearest interpolation is used.
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• Bincount represents, how many values will be used in resulting histogram. If Bin-
count is set to 0, then number of resulting values is computed as 2Y TNP where YTNP
is number of neighbor points in YT plane.

• Code: when Bincount is not 0, then this if transformation function for distributing
2NeighbourPoints values into Bincount values.

Full implementation in Matlab can be seen in appendix B.

4.3 Parallel implementation

Parallel implementation in OpenCL was done twice. First implementation is naive and tries
to mimic serial code as much as possible. Second implementation is done using knowledge of
how is GPU architecture build and how certain optimizations can help improve performance.

Implementation consists of two parts, host code and kernel code. Host code is written in
C++ with C++ OpenCL wrapper provided by Khronos Group. This wrapper signi�cantly
reduce boilerplate code and allows quicker development reducing cost and deploy time on
devices.

4.3.1 Di�erences between naive and optimized kernel

Due to mobile architecture of development platform, the amount of possible optimizations
is limited.

Passing arguments as constants at compile time

This optimization is to pass as many variables as possible as constants when building kernels.
Optimizer can then unroll loops, optimize arithmetical operations and eliminate dead code
if any.

Following parameters that can be passed at compile time.

• VALUES Number to indicate how many values will be produced by LBP. Used to
specify size of local histograms.

• NEIGHBOURXY, NEIGHBOURXT, NEIGHBOURYTValues to be passed into loops.
Optimizer can unroll the loops and boost performance

Host code changes only minimally and only in code snippet building kernel and passing
arguments. Arguments that are passed as constants do not have to be passed again to
kernel through parameters. Excess code for argument passing can be eliminated and kernel
declaration can be simpli�ed. Only thing to change in host code is building options string.
For example instead of empty string passing ′′−DV ALUES = 256′′ ensures de�ning macro
named V ALUES to have value 256. In kernel code then instead of using parameter values,
V ALUES is used.

Using every work-item for computation

In naive kernel implementation every pixel of input video sequence refers to one work-item.
In optimized kernel implementation every pixel producing output values refers to one work-
item. In naive implementation border pixels that do not output values do not pass condition
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and end without any useful output. In optimized version border pixels are ignored and only
pixels with useful output are considered.

For video sequence 30 frames long, 640px wide and 480px high with 1px borders, over 7%
of all work-items does not produce useful output in naive implementation. When considered
same video sequence with 4px borders, over 27% of work-items does not produce useful
output.

Size of work-group depends on dimensions of the problem. Work-group size in each
dimension has to divide the size of problem in the corresponding dimension without any
remainder. While work-group size in naive implementation depends only on video sequence
size which is usually easily dividable by higher numbers, the work-group size in optimized
implementation depends also on border size. As a result work-group size in optimized version
is usually smaller than in naive implementation leaving some of work-items not utilized.

Global computation of shared values

Optimization is based on not computing trigonometric functions for every work-item sepa-
rately, but to compute it once using CPU and distribute this information to all work-items.

Relative position of neighbors is same for all pixels throughout whole problem. Com-
puting all values on CPU and then distributing table of all necessary coordinations is in this
case faster than computing coordinates for every work-item separately.

Caching global data

This optimization is not implemented in optimized kernel, because of target platform does
not have local memory on chip. Local memory is substituted by reserved memory are in
global space. Utility clinfo shows this situation as followed:

• Local memory type: Global

• Local memory size: 32768

Host code doesn't have to change (except compilation options, discussed in section 4.3.1).
Kernel code has to have initialization and data loading to cache, synchronization point and
every read has to be altered to read from cache. Cache can be created as local array of
values. In OpenCL 1.2 C language is limitation, that all local arrays has to be of constant
size known at compilation time. This constants can be passed as compilation arguments,
this is discussed in section 4.3.1.

Cache �lling is heavily dependent on the type of application and will not be shown here,
but strategy is to divide reading from global memory between all work-items evenly.

Kernel caching

Compilation of kernel take some time, especially when various optimizations are performed.
Caching kernel and not compiling it on every run is way how to gain performance. This
performance boost can be observable mainly with smaller data sets, when computation
times are rather short.

For caching is possible to use static variables in simple cases or even more complex
caching libraries taking into account also input parameters.
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Figure 4.3: Code snippets of cache initialization and usage

// c r e a t e l o c a l cache
__local f l o a t cache [AREAX] [AREAY] [AREAZ] ;

// synchron i ze work−i tems in work−group
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// read from cache
f l o a t CenterVal = cache [ coords . x ] [ coords . y ] [ coords . z ] ;

Adjusting arithmetic operations

As every graphic architecture works in little bit di�erent way, this optimization method
heavily depends on accelerator architecture. On the architecture of the testing machine is
code 4.5 slower than 4.4 despite the fact that is written on more lines.

Figure 4.4: Optimized accumulation of bits

i f ( currentVal >= CenterVal )
BasicLBP += 2^8;

BasicLBP = BasicLBP >> 1 ;

Figure 4.5: Non-optimized accumulation of bits

i f ( currentVal >= CenterVal )
BasicLBP += pow( ( f l o a t ) 2 , p ) ;

The trick here is, that with uniform distribution of input data, function pow() is called
in 50% of cases. In optimized version, shift is done always, but only by one place. Function
pow receives arguments 2 and number from 0 to 7 for 8 neighbors. Average number of places
to shift is 3.5 then.
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Chapter 5

Experiments

Figure 5.1: Testing machine with mobile system architecture

All experiments are done on low-power architecture very similar to today's architec-
tures of hand-held devices. Not by processor's ISA when experimental setup supports only
AMD64 instruction set and most of mobile devices are ARM type, but by it's shared memory
subsystem and low-power constraints of speculative execution in form of branch prediction
and memory prefetch. Most of mobile devices also has shared memory between CPU and
GPU. Similarly also experimental setup has shared memory in form of reserved separate
memory space for GPU.

Full speci�cation of device can be found in table 5.1

5.1 Experimental setup

All experiments were done in the very same environment with strictly set input data. Video
sequence of faces was chosen as testing data. Data was converted from webm format to 8bit
gray-scale as appropriate input to program. Width of video sequence is 512px and height
344px. For the sake of experiments, length of sequence was limited in source code to 10
frames.

Number of neighbors was set to 8 in every orthogonal plane as recommended. This
creates histograms with 256 values, but also some other possible values were tested.

Radius in all orthogonal planes is set to 1px and thus borders are also set to 1px in
every plane. Setting radius and borders to same value ensures, that algorithm will not read
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Table 5.1: Experimental setup

OS: Lubuntu 15.04

Kernel: 3.19.0

Device: Lenovo G585

Processor: AMD E1-1200 @ 1400MHz

Memory type: DDR3 @ 1066 MHz e�ectively

Memory size: 4GB (GPU 384MB)

Graphics: AMD Radeon HD 7310

Pipelines: 80 @ 500 MHz

Driver: 14.501

Compiler: GCC 4.9.2

out of bounds. Reading out of bounds is safe on GPU returning border color, color of pixel
in mirrored image or few other possibilities, but on CPU it could result in memory rules
violation and ending program by OS.

Bilinear interpolation is enabled to show full potential of running algorithms on GPU,
as it has electronic blocks dedicated to perform bilinear interpolation with almost no per-
formance impact, whereas while computing bilinear interpolation on CPU, whole algorithm
gets noticeably more complex.

Experiment was done ten times and table 5.2 shows arithmetic average of all values to
eliminate OS timing and other di�erences between individual computations that can not be
directly in�uenced.

5.2 Performance measurements

Optimization of arithmetic operations (4.3.1), optimal use of work-items (4.3.1), using con-
stants (4.3.1) and pre-computed values (4.3.1) improved speed boost of order of magnitude
against serial code. Kernel caching itself added speed boost twenty times.

Table 5.2: Measured speedup

Method C++ Naive Optimized

Total time [s] 341.836 14.037 6.968

Speedup 1 24.3525 49.058

In table 5.3 can be seen in�uence of kernel caching. First run of optimized code is faster
than naive code due to all other optimizations, but kernel cache was just �lled. Second and
all following runs (in appendix C) of optimized code are much better from the perspective
of performance. From the records can be determined, that kernel loading and compilation
took about 400ms. It is relatively long time in comparison to total time of execution. Over
36% of time is accounted to kernel loading and compilation.

As table 5.3 shows, when caching take place, overall performance boost with using
optimized techniques is more than twice the performance of unoptimized code and more
than �fty times faster than serial code.
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Table 5.3: In�uence of kernel caching

i C++ [ms] Naive [ms] Optimized [ms]

0 38005 1637 1138

1 37966 1580 726
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Chapter 6

Conclusion

The goal of this work was to explore and demonstrate algorithm acceleration in the area of
face-based anti-spoo�ng. During research one convenient area of acceleration was discovered
and it is image based operations. Image based operations are not speci�c to face-based anti-
spoo�ng techniques, but accelerated algorithm LBP-TOP was designed to be used in this
area.

It was shown on the architecture of GPU how data-parallel algorithms can be accelerated
as well as what is needed to be done in order to achieve it. Utility written in C++ and
OpenCL was developed as proof of concept and to measure performance boost. It is very
useful utility showing developers, whether accelerate image based algorithms on various
platforms or not. On systems with strong CPU and relatively weak GPU it might not be
bene�cial, but as shown low-power architectures should bene�t.

6.1 Implications

Great performance boost gained from accelerating algorithms on GPU, as shown in this
work, can be used to approach to ideal state of real-time face-based anti-spoo�ng, to make
current systems smaller and cheaper or to allow more complex and secure algorithms to
take place in production environment.

Due to really signi�cant di�erence, developers should consider changing frameworks and
tools to re�ect heterogeneous systems better. Then it would be possible to develop algo-
rithms directly using CUDA, OpenCL, OpenACC etc. or re-implement already developed
algorithms to use data-parallel accelerators.

6.2 Utility, advantages, limitations

Utility was developed to measure performance gain from accelerated version of algorithms.
Even though that one of the most important acceleration technique (caching global data
4.3.1) was not convenient to implement, performance gain is high. If this technique would
be implemented, it would cause high performance gain on more advanced architectures with
on-chip local memory, but due to low-power architecture and placing local memory into
global memory, it would cause slowing down the algorithm.

It was not convenient to implement this accelerated algorithm into BOB framework
due to nature of script-based systems and the fact, that initialization of program takes
more time, than simple computation. In table C.1 is this relation visible. First run is
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very slow and all other consequential runs are much faster. However, this e�ect of �rst
slow run also observable after few minutes of activity other than OpenCL computation.
This unpredictability needs to be solved before integrating OpenCL algorithms into BOB
framework.

In the end, the developed tool is more 'proof of concept' than integrated solution, which
limits its potential for practical use. We do not support any video processing library and
thus data needs to be prepared to speci�c format to use. It is also convenient for video
sequence to have dimension of 2n + border ∗ 2 in every dimension for work-groups to scale
optimally.

6.3 Future directions

The trend of accelerating algorithms is set and not only from this work can be seen why.
Many professional programs already o�er some kind of acceleration 1 2 and many other are
in stage of implementation 3.

This trend will lead to smaller form factors, higher computing capabilities, longer battery
life and richer user experience.

Relatively new standard, HSA (heterogeneous system architecture) can further improve
performance, decrease power consumption and enable new technologies like GPU OS.

Face-based authentication will play a big role in future and even now we can see �rst
attempts4 of deploying this technologies in practice. However this technique is cloud based
with potential security risks.

MasterCard solution of security according to Valuewalk 5 is:

The facial recognition software will also create a code which will be sent to
MasterCard via the Internet

Security experts at the company think that blinking is the best way to prevent
fraud involving people showing photos of the card owner to a smartphone, and
tricking the system.

Even though these measures ensures some level of security, real-time anti-spoo�ng would
be great asset in such applications as banking or personal information sharing.

1https://blogs.adobe.com/premierepro/2012/05/opencl-and-premiere-pro-cs6.html
2http://www.macinchem.org/applications/gpuScience.php
3http://wiki.blender.org/index.php/OpenCL
4http://timeso�ndia.indiatimes.com/tech/tech-news/Your-sel�e-will-soon-verify-online-

payments/articleshow/47954441.cms
5http://www.valuewalk.com/2015/07/mastercard-sel�e-app-veri�es-online-payments/
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Appendix A

CD content

• bob This directory contains specially edited versinon of BOB framework. To use it to
compute LBP-TOP, �rst install all dependencies from:

https : // github . com/ id i ap /bob/wik i /Dependencies

then use 'zc.buildout' method to install it:

$ python boots t rap . py
$ . / bin / bu i ldout

After installing BOB, insert testing database into 'database' directory inside 'bob'
directory. this database can be obtained through

https : // id i ap . g ithub . i o /bob/

or on request. Recomended database set is 'replay' ( https://www.idiap.ch/dataset/replayattack
) Due to big size of this database set (3.3GiB) it was not possible to pack it on this
CD.

When database is on it's place, follow

https : // pypi . python . org /pypi / an t i s poo f i n g . lbptop /

for usage instructions.

• data Directory contains one sample video sequence and script converting video data
into 8bit grayscale format to be processed by program. Script requires libavconv to
be present on system, but can be easily rewritten to use �mpeg instead.

• doc This directory contains all necessary �les to build thesis.

Research work is written using latex and can be build by running

$ make

• example Contains executable �le for testing performance boost. It also cantains two
OpenCL �les and data �le. Executable is built for Linux AMD64 platform.

• src All source �les needed to build program are placed in this directory. Before building
it is necessary to change MAKEFILE to re�ect directory of OpenCL includes and
OpenCL linkable library.
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• README.TXT Document describing content of CD with some useful instructions
how to use individual �les.
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Appendix B

LBP-TOP matlab implementation

function Histogram = LBPTOP(VolData , FxRadius , FyRadius ,
TInterval , NeighbourPoints ,
TimeLength , BorderLength ,
bB i l i n e a r I n t e r po l a t i on ,
Bincount , Code )

% This f unc t i on i s to compute LBP_TOP f e a t u r e s f o r a v ideo sequence

% Copyright 2009 by Guoying Zhao & Matti Pe t i ka inen

% Matlab ve r s i on was crea t ed by Xiaohua Huang

% Edited by Ondrej Benus

[ he ight width Length ] = s ize ( VolData ) ;

XYnPoints = NeighbourPoints ( 1 ) ;
XTnPoints = NeighbourPoints ( 2 ) ;
YTnPoints = NeighbourPoints ( 3 ) ;

i f ( Bincount == 0)
% normal code

nDim = 2^(YTNeighborPoints ) ;
Histogram = zeros (3 , nDim ) ;

else
% uniform code

Histogram = zeros (3 , Bincount ) ;
end

i f ( bB i l i n e a r I n t e r p o l a t i o n == 0)
for t = TimeLength + 1 : Length − TimeLength
for yc = BorderLength + 1 : he ight − BorderLength
for xc = BorderLength + 1 : width − BorderLength

CenterVal = VolData ( yc , xc , i ) ;

%XY plane

BasicLBP = 0 ;
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FeaBin = 0 ;

for p = 0 : XYnPoints − 1
X = f loor ( xc + FxRadius ∗ cos ( (2 ∗ pi ∗ p) / XYnPoints ) + 0 . 5 )
Y = f loor ( yc − FyRadius ∗ sin ( (2 ∗ pi ∗ p) / XYnPoints ) + 0 . 5 )

CurrentVal = VolData (Y, X, t ) ;

i f CurrentVal >= CenterVal
BasicLBP = BasicLBP + 2 ^ FeaBin ;

end
FeaBin = FeaBin + 1 ;

end

% When Bincount i s 0 , then ba s i c LBP−TOP i s performed wi thou t

% performing changing d i s t r i b u t i o n us ing Code lookup t a b l e

i f Bincount == 0
Histogram (1 , BasicLBP + 1) = Histogram (1 , BasicLBP + 1) + 1 ;

else
Histogram (1 , Code (BasicLBP + 1 , 2) + 1) =

Histogram (1 , Code (BasicLBP + 1 , 2) + 1) + 1 ;
end

%XT plane

BasicLBP = 0 ;
FeaBin = 0 ;

for p = 0 : XTnPoints − 1
X = f loor ( xc + FxRadius ∗ cos ( (2 ∗ pi ∗ p) / XTnPoints ) + 0 . 5 )
Z = f loor ( t + TInterva l ∗ sin ( (2 ∗ pi ∗ p) / XTnPoints ) + 0 . 5 )

CurrentVal = VolData ( yc , X, Z ) ;

i f CurrentVal >= CenterVal
BasicLBP = BasicLBP + 2 ^ FeaBin ;

end
FeaBin = FeaBin + 1 ;

end

% When Bincount i s 0 , then ba s i c LBP−TOP i s performed wi thou t

% performing changing d i s t r i b u t i o n us ing Code lookup t a b l e

i f Bincount == 0
Histogram (2 , BasicLBP + 1) = Histogram (2 , BasicLBP + 1) + 1 ;

else
Histogram (2 , Code (BasicLBP + 1 , 2) + 1) =

Histogram (2 , Code (BasicLBP + 1 , 2) + 1) + 1 ;
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end

%YT plane

BasicLBP = 0 ;
FeaBin = 0 ;

for p = 0 : YTnPoints − 1
Y = f loor ( yc − FyRadius ∗ sin ( (2 ∗ pi ∗ p) / YTnPoints ) + 0 . 5 )
Z = f loor ( t + TInterva l ∗ cos ( (2 ∗ pi ∗ p) / YTnPoints ) + 0 . 5 )

CurrentVal = VolData (Y, X, t ) ;

i f CurrentVal >= CenterVal
BasicLBP = BasicLBP + 2 ^ FeaBin ;

end
FeaBin = FeaBin + 1 ;

end

% When Bincount i s 0 , then ba s i c LBP−TOP i s performed wi thou t

% performing changing d i s t r i b u t i o n us ing Code lookup t a b l e

i f Bincount == 0
Histogram (3 , BasicLBP + 1) = Histogram (3 , BasicLBP + 1) + 1 ;

else
Histogram (3 , Code (BasicLBP + 1 , 2) + 1) =

Histogram (3 , Code (BasicLBP + 1 , 2) + 1) + 1 ;
end

end
end

end
else % b i l l i n e a r i n t e r p o l a t i o n

for t = TimeLength + 1 : Length − TimeLength
for yc = BorderLength + 1 : he ight − BorderLength
for xc = BorderLength + 1 : width − BorderLength

CenterVal = VolData ( yc , xc , i ) ;

%XY plane

BasicLBP = 0 ;
FeaBin = 0 ;
for p = 0 : XYnPoints − 1
%b i l i n e a r i n t e r p o l a t i o n

%f l o a t = s i n g l e −− in matlab

x1 = s i n g l e ( xc + FxRadius ∗ cos ( (2 ∗ pi ∗ p) / XYnPoints ) ) ;
y1 = s i n g l e ( yc − FyRadius ∗ sin ( (2 ∗ pi ∗ p) / XYnPoints ) ) ;

u = x1 − f loor ( x1 ) ;
v = y1 − f loor ( y1 ) ;
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l t x = f loor ( x1 ) ;
l t y = f loor ( y1 ) ;
lbx = f loor ( x1 ) ;
lby = ce i l ( y1 ) ;
r tx = ce i l ( x1 ) ;
r ty = f loor ( y1 ) ;
rbx = ce i l ( x1 ) ;
rby = ce i l ( y1 ) ;

CurrentVal = f loor (
VolData ( l ty , l tx , t ) ∗ (1 − u) ∗ (1 − v ) +
VolData ( lby , lbx , t ) ∗ (1 − u) ∗ v +
VolData ( rty , rtx , t ) ∗ u ∗ (1 − v ) +
VolData ( rby , rbx , t ) ∗ u ∗ v
) ;

i f CurrentVal >= CenterVal
BasicLBP = BasicLBP + 2 ^ FeaBin ;

end

FeaBin = FeaBin + 1 ;
end

% When Bincount i s 0 , then ba s i c LBP−TOP i s performed wi thou t

% performing changing d i s t r i b u t i o n us ing Code lookup t a b l e

i f Bincount == 0
Histogram (3 , BasicLBP + 1) = Histogram (3 , BasicLBP + 1) + 1 ;

else
Histogram (3 , Code (BasicLBP + 1 , 2) + 1) =

Histogram (3 , Code (BasicLBP + 1 , 2) + 1) + 1 ;
end

%XT plane

BasicLBP = 0 ;
FeaBin = 0 ;
for p = 0 : XTnPoints − 1
%b i l i n e a r i n t e r p o l a t i o n

%f l o a t = s i n g l e −− in matlab

x1 = s i n g l e ( xc + FxRadius ∗ cos ( (2 ∗ pi ∗ p) / XTnPoints ) ) ;
z1 = s i n g l e ( t + TInterva l ∗ sin ( (2 ∗ pi ∗ p) / XTnPoints ) ) ;

u = x1 − f loor ( x1 ) ;
v = z1 − f loor ( z1 ) ;
l t x = f loor ( x1 ) ;
l t y = f loor ( z1 ) ;
lbx = f loor ( x1 ) ;
lby = ce i l ( z1 ) ;
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r tx = ce i l ( x1 ) ;
r ty = f loor ( z1 ) ;
rbx = ce i l ( x1 ) ;
rby = ce i l ( z1 ) ;

CurrentVal = f loor (
VolData ( yc , l tx , l t y ) ∗ (1 − u) ∗ (1 − v ) +
VolData ( yc , lbx , lby ) ∗ (1 − u) ∗ v +
VolData ( yc , rtx , r ty ) ∗ u ∗ (1 − v ) +
VolData ( yc , rbx , rby ) ∗ u ∗ v
) ;

i f CurrentVal >= CenterVal
BasicLBP = BasicLBP + 2 ^ FeaBin ;

end

FeaBin = FeaBin + 1 ;
end

% When Bincount i s 0 , then ba s i c LBP−TOP i s performed wi thou t

% performing changing d i s t r i b u t i o n us ing Code lookup t a b l e

i f Bincount == 0
Histogram (3 , BasicLBP + 1) = Histogram (3 , BasicLBP + 1) + 1 ;

else
Histogram (3 , Code (BasicLBP + 1 , 2) + 1) =

Histogram (3 , Code (BasicLBP + 1 , 2) + 1) + 1 ;
end

%YT plane

BasicLBP = 0 ;
FeaBin = 0 ;
for p = 0 : YTnPoints − 1
%b i l i n e a r i n t e r p o l a t i o n

%f l o a t = s i n g l e −− in matlab

y1 = s i n g l e ( yc − FyRadius ∗ sin ( (2 ∗ pi ∗ p) / YTnPoints ) ) ;
z1 = s i n g l e ( t + TInterva l ∗ cos ( (2 ∗ pi ∗ p) / YTnPoints ) ) ;

u = y1 − f loor ( y1 ) ;
v = z1 − f loor ( z1 ) ;
l t x = f loor ( y1 ) ;
l t y = f loor ( z1 ) ;
lbx = f loor ( y1 ) ;
lby = ce i l ( z1 ) ;
r tx = ce i l ( y1 ) ;
r ty = f loor ( z1 ) ;
rbx = ce i l ( y1 ) ;
rby = ce i l ( z1 ) ;
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CurrentVal = f loor (
VolData ( l tx , xc , l t y ) ∗ (1 − u) ∗ (1 − v ) +
VolData ( lbx , xc , lby ) ∗ (1 − u) ∗ v +
VolData ( rtx , xc , r ty ) ∗ u ∗ (1 − v ) +
VolData ( rbx , xc , rby ) ∗ u ∗ v
) ;

i f CurrentVal >= CenterVal
BasicLBP = BasicLBP + 2 ^ FeaBin ;

end

FeaBin = FeaBin + 1 ;
end

% When Bincount i s 0 , then ba s i c LBP−TOP i s performed wi thou t

% performing changing d i s t r i b u t i o n us ing Code lookup t a b l e

i f Bincount == 0
Histogram (3 , BasicLBP + 1) = Histogram (3 , BasicLBP + 1) + 1 ;

else
Histogram (3 , Code (BasicLBP + 1 , 2) + 1) =

Histogram (3 , Code (BasicLBP + 1 , 2) + 1) + 1 ;
end

end
end

end
end

%% norma l i za t ion

for j = 1 : 3
Histogram ( j , : ) = Histogram ( j , : ) . /sum( Histogram ( j , : ) ) ;

end
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Appendix C

Experiment record

Getting dev i ce in fo rmat ion . . . . .
De fau l t dev i c e i s :

name : Loveland
type ( 4 ) : GPU
3D images :

max width : 2048
max he ight : 2048
max depth : 2048

max WG s i z e : 256
x : 256
y : 256
z : 256

Checking a l l requ i rements .
Device a v a i l a b l e . . . . . . . . yes
Device compi le r a v a i l a b l e . . . . . . . . yes
Support f o r images . . . . . . . . yes
3D image width . . . . . . . . yes
3D image he ight . . . . . . . . yes
3D image depth . . . . . . . . yes
Local atomics . . . . . . . . yes

Device i s ab le to run ke rne l : yes

Loading video in to memory .
Data (26419200) loaded .
Test ing . . . . ok
+−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+
| | k e rne l | na ive | nat ive | speedup +
| i | [ms ] | [ms ] | [ms ] | k e rne l | na ive +
+−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+
| 0 | 1138 | 1637 | 3 8005 | 3 3 . 3 963 | 2 3 . 2 162 |
| 1 | 726 | 1580 | 3 7966 | 5 2 . 2 948 | 2 4 . 0 291 |
| 2 | 762 | 1560 | 38007 | 4 9 . 8 7 8 | 2 4 . 3 6 3 5 |
| 3 | 718 | 1545 | 3 7981 | 5 2 . 8 983 | 2 4 . 5 832 |
| 4 | 730 | 1552 | 3 7976 | 5 2 . 0 219 | 2 4 . 4 691 |
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| 5 | 721 | 1550 | 3 8005 | 5 2 . 7 115 | 2 4 . 5 194 |
| 6 | 720 | 1533 | 3 7976 | 5 2 . 7 444 | 2 4 . 7 723 |
| 7 | 728 | 1543 | 3 7946 | 5 2 . 1 236 | 2 4 . 5 924 |
| 8 | 725 | 1537 | 3 7974 | 5 2 . 3 779 | 2 4 . 7 066 |
+−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+
|SUM| 6968 | 14037 | 341836| | |
|AVG| | | | 4 9 . 0 5 8 | 2 4 . 3 5 2 5 |
+−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+

Table C.1: Time of execution with -DEARLY_EXIT compiler option

i real user sys

0 17.156 0.756 0.156

1 0.753 0.608 0.052

2 0.761 0.604 0.048

3 0.746 0.584 0.068

4 0.757 0.580 0.068

5 0.748 0.612 0.044

6 0.928 0.588 0.072

7 0.758 0.608 0.052

8 0.778 0.576 0.072

9 0.764 0.600 0.060
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