
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

A TOOL FOR SHARING AND VISUALIZATION OF SKY-
DIVING RECORDS
NÁSTROJ PRO SDÍLENÍ A ZOBRAZOVÁNÍ ZÁZNAMŮ Z LETU NA PADÁKU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ MADAJ
AUTOR PRÁCE

SUPERVISOR Prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
Purpose of this work is to create a web application which would enable easiest possible
3D visualisation and sharing of uploaded GPS logs. It is intended mainly for aerosports.
The application is built on the full-stack JavaScript platform Meteor.js, it features a web
user interface and utilizes WebGL library three.js for 3D visualisations in browser. This
form allows to achieve intended accessibility and simplicity of usage. The application is a
valuable sports performance analysis tool. It brings accurate view of the actual trajectory
in the sky where it’s otherwise impossible due to the absence of a close visual reference
point.

Abstrakt
Cílem téhle práce je vytvoření webové aplikace, která umožní maximálně jednoduchou
3D vizualizaci a sdílení vložených GPS záznamů. Je určená především pro aerosporty.
Aplikace je postavená na full-stack JavaScript platformě Meteor.js, má webové uživatelské
rozhraní a na 3D vizualizaci v prohlížeči využívá WebGL knihovnu three.js. Tato forma
umožňuje dosáhnout požadovanou širokou dostupnost a jednoduchost používaní. Aplikace
je cenným nástrojem na analýzu sportovních výkonů, protože umožňuje jednoduše získat
přesnou představu o skutečné trajektorii vysoko nad zemí, kde to kvůli absenci blízkého
referenčního bodu není možné jenom vizuálně.

Keywords
web application, GPS logs, full-stack JavaScript, aviation, parachuting, skydiving, data
visualisation, WebGL, three.js, Meteor.js, node.js, mongoDB

Klíčová slova
webová aplikace, GPS záznamy, full-stack JavaScript, letectví, parašutismus, vizualizace
dat, WebGL, three.js, Meteor.js, node.js, mongoDB

Reference
MADAJ, Tomáš. A Tool for Sharing and Visualization of Skydiving Records. Brno, 2016.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Herout Adam.

A Tool for Sharing and Visualization of Skydiving
Records

Declaration
Hereby I declare that this bachelor’s thesis was written as an original author’s work under
the supervision of prof. Ing. Adam Herout, Ph.D.. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. .
Tomáš Madaj
May 23, 2016

Acknowledgements
I would like to thank my supervisor prof. Ing. Adam Herout, Ph.D. for his guidance and
Arttu-Pekka Tavia and Lasse Haverinen from the Oulu University of Applied Sciences for
their essential advices.

c○ Tomáš Madaj, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3
1.1 Topic . 3
1.2 Problem . 3
1.3 Solution and its form . 3
1.4 Outline of this thesis . 4

2 Used Technologies 5
2.1 WebGL and three.js . 5
2.2 Meteor.js . 5

2.2.1 Iron router . 7
2.2.2 Slingshot . 7
2.2.3 xml2js . 7
2.2.4 MaterializeCSS . 7
2.2.5 TWEEN.js . 7

3 Data 8
3.1 Input format . 8
3.2 Conversion of coordinates . 10
3.3 Database . 11

4 Implementation details 13
4.1 Server . 13

4.1.1 Data conversion functions . 14
4.2 Client . 14

4.2.1 Scene . 14
4.2.2 Animation loop . 18
4.2.3 Camera movement animations . 18
4.2.4 Raycasting . 20
4.2.5 User Interface . 20

5 Result 23
5.1 Building the Meteor application . 23
5.2 Testing and known problems . 24

6 Conclusion 26
6.1 Possible future developement . 26

Bibliography 28

1

Appendices 29
List of Appendices . 30

A Content of CD 31

B Manual 32
B.1 Option 1 . 32
B.2 Option 2 . 32

2

Chapter 1

Introduction

Here I’m going to explain my reasons for the problem-to-solve selection and choices regard-
ing the form of implementation.

1.1 Topic
I wanted to be somehow personally involved, to actually be the user of what was to be
the result of this thesis. I wanted to dedicate this work to something I love to do. For
past two years I’ve been doing skydiving. And there certainly is enough room for bringing
information technologies into this wonderful sport.

1.2 Problem
What caught my attention was how sensitive the vertical movement (and horizontal speed
of free fall as well) is to my body position. I first realized this during my visit of the vertical
wind tunnel. The difference which made it so evident was having a close static reference
point (glass walls and net floor in this case). In the real free fall with nothing but air few
thousand meters around you it’s almost impossible to feel this subtle vertical movements
and you get the impression of a perfectly straight fall.

I believe this strong sense of speed from immediately seeing your own movement is also
the main reason that makes BASE jumping so irresistible that many people are willing to
take the undeniably significant risk. And this application should bring that knowledge into
regular skydiving.

1.3 Solution and its form
The obvious goal for me was to accurately capture the real trajectory of free fall and flight
on the parachute, visualize it and share it.

Immensely important was to make it possibly most accessible, comfortable and simple
to use. The usage would be rather occasional, sure not everyday, therefore most of the little
time spent using the application had to be used on the actual core functions.

However 3D graphics and easy accessibility seemed to be quite opposite requirements.
Conventional form of graphics software is compiled C++, which has by far the widest range
of 3D graphics APIs and libraries available. But this wasn’t ideal because the distribution

3

requiring downloading and installation of an application in this form would be strongly
discouraging for any potential users.

Then about the same time I was choosing the thesis’ topic I stumbled across a fascinating
technology of WebGL which enables to create some very advanced 3D graphics scenes in a
standard web browser. Of course web browser is a piece of software installed on literally
every PC, smartphone and tablet. If the client could be a website, it would mean no need
to download and install a dedicated client software, which is always annoying. I believe a
web application is by far the most suitable form to get the best possible accessibility of the
service. So when it became a possibility for this+ project, I decided to go for it.

Name chosen for this application is ”SkyLog“.

1.4 Outline of this thesis
First to come is a listing of technologies used to implement the application with their
description, followed by explanation of data formats which the application works with.
Then key technical details of the implementation are explained. Last is short description
of the final application from user’s view.

4

Chapter 2

Used Technologies

The main factor in the selection of technologies used to implement the application were my
skills, previous experiences and personal preferences and sympathies. There was little to
none objectiveness in the decisions.

2.1 WebGL and three.js
Indispensable part of the client would be the 3D visualisation module. For reasons explained
in section 1.3 I decided the client will be a website, therefore the visualisation had to be
done using JavaScript API WebGL.

”WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics API
based on OpenGL ES 2.0, exposed through the HTML5 Canvas element as Document
Object Model interfaces. Developers familiar with OpenGL ES 2.0 will recognize WebGL
as a Shader-based API using GLSL, with constructs that are semantically similar to those of
the underlying OpenGL ES 2.0 API. It stays very close to the OpenGL ES 2.0 specification,
with some concessions made for what developers expect out of memory-managed languages
such as JavaScript.

WebGL brings plugin-free 3D to the web, implemented right into the browser. Major
browser vendors Apple (Safari), Google (Chrome), Mozilla (Firefox), and Opera (Opera)
are members of the WebGL Working Group.“ [4]

To make the development significantly faster and easier I decided to use the most pop-
ular WebGL library three.js (http://threejs.org). It provides all classes of 3D objects,
cameras, raycaster etc. I needed. Probably the biggest advantage of this library is that
it has seemingly perfect official documentation [8], hundreds of examples and introduction
guides available. I also used 3rd party class THREE.OrbitControls (implementation located
in file ∖client∖OrbitControls.js) which provides camera controls with mouse.

2.2 Meteor.js
The client website had to be written in HTML, CSS and JavaScript naturally. However the
application also needed a back end. I had only one experience with PHP framework and I
did not enjoy working with it at all, therefore I was looking for some different solution. I
considered a node.js server with its lately fantastic reputation. Main reason was that the
applications in this environment are written in JavaScript.

5

http://threejs.org

In January 2016 I was working on another school project in Finland, where I had to
make a working demo web application in just 7 weeks. However the learning curve of node.js
seemed to be too long. I was advised to try the Meteor.js. And it turned out to be the
right choice. In fact I was so satisfied with the development speed that I decided to use it
in this thesis too.

”Meteor is a full-stack JavaScript platform for developing modern web and mobile ap-
plications. Meteor includes a key set of technologies for building connected-client reac-
tive applications, a build tool, and a curated set of packages from the Node.js and general
JavaScript community.

∙ Meteor allows you to develop in one language, JavaScript, in all environments: ap-
plication server, web browser, and mobile device.

∙ Meteor uses data on the wire, meaning the server sends data, not HTML, and the
client renders it.

∙ Meteor embraces the ecosystem, bringing the best parts of the extremely active JavaScript
community to you in a careful and considered way.

∙ Meteor provides full stack reactivity, allowing your UI to seamlessly reflect the true
state of the world with minimal development effort.“ [7]

The Meteor.js actually builds the node.js back end of application. It uses mongoDB
NoSQL database. That was also a huge convenience for me as my previous experiences
with SQL were everything but positive.

Client-side JavaScript libraries can be included directly in form of a JavaScript source
code file placed in ∖client∖ subfolder. More convenient way to use libraries is install a
package from Meteor’s native package catalog Atmosphere. This brings the advantage of
automatic updates of the libraries, but some major updates of the Meteor caused huge
problems with many packages which became incompatible and were causing crashes of
the whole application. Since version 1.3 meteor also natively supports the npm (package
manager for the node.js).

Quality and extent of the Meteor’s documentation are also very high, there are excellent
official guides for developers on all experience levels.

When building the Meteor application I’m using ’eager loading’. That means all HTML,
CSS and JavaScript files in application’s root folder and all subfolders are included.

”There are several load order rules. They are applied sequentially to all applicable files
in the application, in the priority given below:

1. HTML template files are always loaded before everything else

2. Files beginning with main. are loaded last

3. Files inside any lib/ directory are loaded next

4. Files with deeper paths are loaded next

5. Files are then loaded in alphabetical order of the entire path“ [5]

Most important Meteor packages / extensions / libraries I used:

6

2.2.1 Iron router

This router was created specifically for Meteor. Its purpose is to parse route, parameters,
options hashes, data etc. from the accessed URL, evaluate them and ’render’ the proper
template with proper data. Basically URL deep linking and its analogies. The templating
concept is not particularly useful in this application, however ability to evaluate parameters
given in URL, such as identifiers of tracks, is critical for the sharing functionality. hard
linking

2.2.2 Slingshot

This package is used to upload user track files to AWS S3 (Amazon Web Services – Simple
Storage Service) bucket. It’s needed not because of data volumes, which are tiny in this
application, but because no server hostings for Meteor applications that I know of allow the
running process to create new directories and files. Using 3rd party cloud storage service
is common solution for this.

2.2.3 xml2js

I use this npm package to convert GPX track files uploaded by users (detailed explanation
will follow in 3.1) to more convenient JSON, which is naturally much simpler to work with
in JavaSript. It’s also the format of entries in mongoDB collections.

2.2.4 MaterializeCSS

Materialize (http://materializecss.com) is a CSS and JavaScript (jQuery) framework
based on bootstrap. It allowing easy styling of web pages in Material Design (https:
//www.google.com/design/spec/material-design) by simply assigning classes to the
HTML elements. CSS styles and JavaSript interactivity for these classes are provided by
the library.

2.2.5 TWEEN.js

This library (the name is abbreviated ”between“) is an engine made for easy animations.
In this case it’s used for fluent translations of camera position and camera’s target point
position.

The library enables to simply select a numeric variable or even an object with multiple
variables, which is particularly useful in case of 3-coordinate position changes, then choose
an ”easing“ function (function in mathematical meaning, see graphs in Figure 4.2) to which
the value change will be mapped and duration of the change.

Usage is explained in 4.2.3.

7

http://materializecss.com
https://www.google.com/design/spec/material-design
https://www.google.com/design/spec/material-design

Chapter 3

Data

3.1 Input format
A user of this service has to record a trajectory first. Indubitably the most convenient
and most wide-spread way to do this is using the GPS system. For many years now it has
been a standard feature of literally all mid-range and high-end smartphones and tablets,
there are dedicated GPS recorders in countless forms and in all price ranges, even most car
navigations are able to record the track.

By far the most common format of tracks export in Android, iOS and Windows Mobile
GPS tracker applications, as well as in dedicated GPS tracker devices is the GPX (GPS
Exchange Format) file. This open data format was extended from the XML. Example of
the structure of a GPX file is shown in Figure 3.1.

The relevant part of the GPX structure for this application is the <trk> element con-
taining whole recorded track. Inside this <trk> element is one or more <trkseg> elements,
each containing one continuous segment of the track. If recording is interrupted, or GPS
position fixation is lost, <trkseg> element is closed and after the recording is resumed or
position fixed again, new <trkseg> is started. This turned out to be very useful later.

The segments of trajectory are then represented in form of collections of points (<trkpt>
elements). Each of these points contains latitude and longitude coordinates expressed in
decimal degrees using the WGS 84 (The new World Geodetic System) datum. The other
important reading – altitude – is inside the <ele> (elevation) element, unit of this one being
meters above mean sea level.

The speed is usually also recorded here as an extension parameter, however it is the
ground speed – the horizontal speed relative to the ground. Therefore it’s usefulness is
slightly limited.

8

<?xml version =’1.0 ’ encoding =’UTF -8’ standalone =’yes ’ ?>
<gpx version ="1.1" xmlns=" http: // www. topografix .com/GPX /1/1"... >

<metadata >
<name >26.6.2015 16 :34:37 </name >
<author >Recorded in Geotracker for Android f... </ author >
<link href=" https: // play. google .com/store/apps /..." />
<time >2015 -06 -26 T14:34:37 .90Z</time >

</ metadata >
<trk >

<name >26.6.2015 16 :34:37 </name >
<src >Recorded in Geotracker for Android from ... </src >
<link href=" https: // play. google .com/store/apps /..." />
<extensions >

<geotracker:meta >
<length >4496.9 </ length >
<duration >3181094 </ duration >
<creationtime >2015 -06 -26 T14:34 ... </ creationtime >
<activity >0</ activity >

</ geotracker:meta >
</ extensions >
<trkseg >

<trkpt lat=" 48.997192 " lon=" 18.189203 ">
<ele >272.58 </ele >
<time >2015 -06 -26 T14:34:45 .53Z</time >
<extensions >

<geotracker:meta s="0.79" />
</ extensions >

</trkpt >
<trkpt lat=" 48.997231 " lon=" 18.189272 ">

<ele >277.25 </ele >
<time >2015 -06 -26 T14:34:57 .99Z</time >
<extensions >

<geotracker:meta s="0.11" />
</ extensions >

</trkpt >
...
<trkpt lat=" 48.997234 " lon=" 18.189236 ">

<ele >269.65 </ele >
<time >2015 -06 -26 T14:35:16 .00Z</time >
<extensions >

<geotracker:meta s="0.41" />
</ extensions >

</trkpt >
</ trkseg >

</trk >
</gpx >

Figure 3.1: An example of input GPX file

9

3.2 Conversion of coordinates
Generally in all computer graphics and just as well specifically in WebGL scenes the the
Cartesian coordinate system is used. A position in the Cartesian system is specified by
numerical coordinates in three orthogonal axes, conventionally named 𝑥, 𝑦, 𝑧.

As was explained in 3.1, on the input the positions are recorded as geographic coor-
dinates, therefore they must be converted. GPS systems use the latest revision of World
Geodetic System – WGS 84.

South Pole

North Pole

Equator

Prime Meridian

La
tit

ud
e

Lo
ngitu

de

0
30

60
-60

-30

90
-90

0

30

-60

60
90

-90

-30

180

-120

-150 150

120

o

o

o
o

o

o

o

Figure 3.2: Geographic coordinate system

I have decided that easiest way would be setting the centre of each drop zone as the
origin point [0, 0, 0] of the scene.

Firstly the latitudinal and longitudinal angular distances between each point of the
track and the selected centre of the drop zone need to be calculated, which is a trivial task
of subtraction.

Then we need to convert these angular distances into linear lengths. That is of course
dependant on the position on the WGS 84 spheroid, on the latitude to be specific. Length
in meters of one degree of latitude at latitude 𝜙 can be calculated by equation (3.1).
Equation (3.2) shows how length in meters of one degree of longitude at latitude 𝜙 can be
calculated. [9].

111132.92− 559.82 cos 2𝜙+ 1.175 cos 4𝜙− 0.0023 cos 6𝜙 (3.1)

111412.84 cos𝜙+ 93.5 cos 3𝜙− 0.118 cos 5𝜙 (3.2)

In the few tens of kilometres large areas around drop zones, which is the size of a scene,
these linear lengths of a degree vary insignificantly little, therefore it is entirely acceptable
to precalculate them at latitude of the centre of each drop zone and use those constants for
calculations of the Cartesian coordinates of individual points.

10

Example calculations (Table 3.1) for drop zone Prievidza (N 48.767869 ∘, E 18.590970 ∘)
shows, that differences in lengths of one degree of latitude and longitude at latitudes 25 km
north and south of the drop zone are only 0.008 % and 0.887 % respectively. This tiny level
of distortion in visualisation is not a problem.

at latitude N 48.984323 ∘ N 48.541976 ∘

length of 1 ∘ of latitude [m] 111 209 111 200
length of 1 ∘ of longitude [m] 73 038 73 686

Table 3.1: An example precalculation of the linear lenght of 1 ∘ of latitude and longitude
at given latitudes ∼ 50 km apart in north-south direction using Equations (3.1) and (3.2)

The altitude can be of course used directly as the 𝑥 parameter of a point in the three.js
scene as it already is expressed in meters.

3.3 Database
NoSQL mongoDB database is used here, as it is natively supported by the Meteor.js. It
utilizes the JSON format for storing the data, which is very convenient and easy to work
with in JavaScript.

User accounts database is not created explicitly, instead its management is left entirely
on the Meteor’s packages accounts-ui and accounts-password. To further enhance user
experience, sign in using Facebook or Google account is also easily possible thanks to
accounts-facebook and accounts-google packages.

The only collection used in this application is Logs – for storing the tracks. Example
of its structure can be seen in Figure 3.3.

{
name: "AFF course - jump 6 of 8 - backflip , tracking ",
authorID: " YwzoP7uQTzFcA2BS4 ",
publicity: " public ",
recordedDateTime: "2015 -06 -26 T14:34:37 .90Z",
createdAt: "Mon May 10 2016 00 :22:03 GMT +0200 (CEDT)",
color: 0x00ff00 ,
dropzone: "SLA",
track: [

[
{x: -1315 , y: 1081 , z: 10041 , s: 46.82} ,
{x: -1282 , y: 1083 , z: 10054 , s: 44.13} ,
{x: -1248 , y: 1085 , z: 10066 , s: 44.22} ,
{x: -1214 , y: 1086 , z: 10077 , s: 42.11} ,
...
{x: 493 , y: 1309 , z: 9673 , s: 39.12}

]
]

}

Figure 3.3: An example of database entry in collection Logs

11

Stored values are:

∙ name – name of the track displayed in GUI

∙ authorID – reference to the _id field of a document in the Meteor.users collection

∙ publicity – privacy setting inspired by YouTube. Possible values public, unlisted
and private

∙ recordedDateTime – timestamp from the original GPX file

∙ createdAt – timestamp of upload

∙ color – integer value of the color used for the corresponding curve object in the scene

∙ dropzone – identifier of the automatically detected (by distance) drop zone

∙ track – array of track segments. Each track segment is a array of point structures
– 𝑥, 𝑦, 𝑧 coordinates to be directly used to create the curve object in the scene and
speed.

12

Chapter 4

Implementation details

Project structure:

∖
client∖

init.js
main.js
OrbitControls.js
viewer.js

font∖
packages∖
public∖

maps∖
OUL∖
PD∖
SLA∖

textures∖
server∖

init.js
packages.json
settings.json
skylog.css
skylog.html
skylog.js

4.1 Server
Thanks to using the Meteor platform almost all what is needed is already implemented
and run implicitly. That includes all communication with database server, communication
with clients, responses to their requests, responses to data changes, data transfer to some
extent Only custom functions implemented are those managing file transfers to AWS
S3 cloud storage, data conversions and storing them in database.

In in ∖skylog.js Logs mongo collection is created and Iron router initialized. All
remaining server functionality is implemented in ∖server∖init.js file. After server startup
the Logs collection is published for clients to subscribe.

13

Function GPXtoJSON is created a this point in Meteor.methods(Methods). These
Methods are remote functions that Meteor clients can invoke. [6] That is needed after a file
is uploaded by client into the AWS S3 cloud storage to further process it.

Then slingshot (2.2.2) file restrictions and upload directive are created. Informations
about the bucket, authorizing function and file names generating function are set here. User
account log-in is required to upload a file.

4.1.1 Data conversion functions

First to be used is the GPXtoJSON(), invoked from clients. URL of the uploaded file is
passed as only parameter. request package is then used to load it (to memory) on the
server so it could be converted and stored in the database. After this string XML structure
is loaded, it’s converted into a JSON object using the xml2js package (2.2.3) and second
function JSONtoDB() is called.

Purpose of that one is described in 3.2. First the nearest drop zone is detected. It is
done by simple euclidean calculation with the coordinates, which of course wouldn’t work
in some special cases but with this small number of supported drop zones it is good enough.

The relevant elements (latitude, longitude, elevation and speed) are selected, converted
(3.2) and assembled into JSON-like object (Described in 3.3) which can be directly inserted
into the mongoDB collection Logs.

All other server functionality is taken care of by the packages used here.

4.2 Client
First after client script startup subscription to the explicitly published Logs collection is
created in ∖client∖init.js.

Leaving this to the Meteor’s asynchronous autopublish functionality caused huge ran-
domly occurring problems which were extremely difficult to identify. Fixing it was relatively
simple – adding the tracks to the scene had to be triggered by a callback after the data
from Logs collection were recieved.

Also initialization of some active UI elements is done here. It is called along with
WebGL scene initialization by Iron Router after the template containing them is rendered.

Then event listener for the file input is added. When file is selected, uploading to the
AWS S3 storage using Slingshot package is started. After the file is uploaded, GPXtoJSON()
function on the server is called.

4.2.1 Scene

∙ Curve objects representing the track are referred to as ”trajectories“ here.

∙ Terms ”vector“, ”point“ and ”position“ are interchangeable due to their nature – all
are represented by an object of THREE.Vector3 class which has only 3 simple x, y, z
properties.

∙ 1 distance unit in the scene represents 1 meter in real space.

The WebGL scene initialization is defined in ∖client∖viewer.js file. Everything is
done using three.js library. In the scene 𝑦 axis represents altitude, 𝑥 axis north-south and
𝑧 axis west-east direction.

14

Scene initialization steps

1. THREE.WebGLRenderer object bound to the HTML canvas is created and configured.
Purpose of this will be explained.

2. THREE.Scene() object is createed. It serves as the root object to which everything in
the scene is attached (by its add() method).

3. THREE.PerspectiveCamera object is created, configured (including its position) and
added to the scene. It’s position can be controlled just like any other object in the
scene.

4. THREE.OrbitControls object is created. It has 2 functions – it provides mouse camera
controls and it brings the target property (THREE.Vector3 object), which makes
custom camera controls (by mouse wheel and keyboard in this case, will be described
in detail later) much easier to implement. Option controls.noZoom disabling ”zoom“
efect is activated because it used camera’s FoV (Field of View). In low FoV values
it made the rotation control very uncomfortable, therefore I decided to implement
custom ”zooming“ by moving camera towards the camera target (which is the centre
of its rotations).

5. Global exponential fog is added to simulate the visual appearance of atmosphere. It
is not the ideal solution, which would be an exponential fog around the terrain only.

6. Skybox is an object (usually a cube or sphere) surrounding the rest of the scene and
carrying textures to create an effect of the sky on the background when camera is
located inside.
skybox is created as a cube (THREE.BoxGeometry) with 64 × 64 × 2 polygons on
each side. The cube is textured, however the texture is only on the outside face of
polygons. So it needs to be flipped inwards. This can be achieved by negating one
coordinate of vertices – skybox.scale.x = -1. In objects with axial symmetry this
causes exchange of opposite vertices and also change of normals of the polygons. This
changes so that the texture would be on the inside.
Then each of its vertices is normalized to have distance from the centre equal to 1 –
sphere is made, which is scaled (each vertex is multiplied by scalar value) afterwards.
This way spherical skybox is achieved. It looks more natural and also the interception
with terrain creates the effect of Earth’s curvature. This deformation is the reason
for using that many polygons when creating the box. Sphere object was not used
directly because complications with texturing were expected.
Skybox textures from three.js examples (http://threejs.org/examples/textures/
cube/skybox/nx.jpg . . .) are used here.

7. terrain object (blank THREE.Object3D) is created. It will serve as root for 4 plane
objects, purpose of which will be explained in this subsection 4.2.1. Then function
dropzoneChange() is called to load defaultly selected drop zone.

8. Likewise trajectories object (blank THREE.Object3D) is created. It will serve as
root for all trajectory objects. Note that the variable trajectories was declared
globaly so it could be later accessed from functions defined in other source files.

15

http://threejs.org/examples/textures/cube/skybox/nx.jpg
http://threejs.org/examples/textures/cube/skybox/nx.jpg

9. Light simulating sun is added – THREE.DirectionalLight of white color positioned
inside the skybox to match the sun on the texture.

10. Raycaster is created. This is not a 3D object and it’s not added to the scene. Simply
put – it’s used to determine what object of the scene is mouse pointing at. Details of
usage will follow later.

11. Event listeners for mouse and keyboard actions and for UI controls changes are added
last.

12. The animation ”loop“ is started.

Terrain

Hundreds of square kilometres large area needs to be covered. Texture in high enough
resolution would of course be unacceptably big. The simplest is to use more detailed
texture in the centre around drop zone and lower resolution on the edges where nothing
important happens close to ground. Here it’s done in 4 steps. The textures are exported
from Google Earth Pro – captured from heights 100 km, 30 km, 10 km and 3 km. Square
areas with length 63 km, 19 km, 6.3 km and 1.9 km respectively are covered. Resolution is
2660× 2660 px These textures are applied on simple planes (THREE.PlaneBufferGeometry
objects) and added to the terrain root object tightly one above other to avoid the notorious
Z-buffer related glitches.

This is done in the dropzoneChange() function first during scene initialization and the
after every change of the drop zone done by the HTML select in GUI. Of course according
textures and elevations are used for each drop zone.

16

Figure 4.1: Example of 4 textures for various detail levels for area of drop zone Prievidza,
Slovakia – each one is 2660 px wide. Exported from Google Earth Pro with camera set at
heights 100 km, 30 km, 10 km and 3 km respectively, covering area 63 km, 19 km, 6.3 km and
1.9 km wide.

Trajectories

Trajectories 3D objects are created separately in ∖client∖main.js file in loadTrajs()
function for reason mentioned in 4.2. This function is called after the subscribed Logs
collection is received from the server.

Array of points received from the Logs collection is used to assemble another array
of THREE.Vector3 objects. Then it’s used as parameter (control points) in constructor of
THREE.CatmullRomCurve3.

Centripetal Catmull-Rom curve is used (rather than Bézier curve for example) because
it’s an interpolating spline (intersects each control point). Centripetal variant was cho-

17

sen (instead of chordal or uniform – available through THREE.CatmullRomCurve3.type
property too) because of its many desirable properties. It doesn’t make loops, cusps, or
self-intersection within a curve segment and it follows the control points more tightly. [10]

Using method THREE.CatmullRomCurve3.getPoints() sequence of ”sampled“ points
is acquired which is then used as vertices of the THREE.Geometry for the final THREE.Line
object. That can be now created with THREE.LineBasicMaterial and added to the scene.
Also according UI elements are added at this point.

4.2.2 Animation loop

In the animation loop camera movements must be evaluated and scene rendered.
If a keypress was detected, an offset vector is calculated and added to the camera

position vector. As the time taken to go through the animation loop can’t be guaranteed
to be constant, it must be taken into account in these calculations. The time interval is
measured and the size of the offset vector is simply multiplied by that time.

Next step is updating any ongoing TWEEN translations, updating the camera if changed
by mouse controls and then rendering the scene. The renderer can be also triggered by
windows resize event, camera change by wheel scroll or when the position is changed by
the TWEEN function.

The loop is done by calling the Window.requestAnimationFrame() method. It requests
browser to perform an animation and to call a specified function to update an animation
before the next repaint. The method takes as an argument a callback to be invoked be-
fore the repaint. The callback routine (animate() function in this case) must itself call
requestAnimationFrame(callback). [1]

4.2.3 Camera movement animations

TWEEN.js library introduced in 2.2.5 is used to execute camera movements triggered by
discrete actions like single step of mouse wheel scroll or mouse click on a displayed track.
These actions – unlike the continuous ones like keyboard key press (duration of which can
be measured as the time period between ’keydown’ and ’keyup’ events) – shouldn’t be ex-
ecuted instantly but rather need to be done smoothly over a time period long enough to
look pleasantly to the user.

The usage of the TWEEN.js library is following:

∙ Instance of TWEEN class is created.

∙ Method .Tween(target_var) sets the variable that will be changed. This doesn’t
need to be single numerical variable only, objects with multiple properties are sup-
ported as well.

∙ Method .to(final_value, duration) sets value to which target_var will be
changed to and duration of the change in milliseconds. Again objects with multiple
properties are supported too, but names of their properties need to match those in
the tweened object. If some of the properties aren’t defined here, they will simply be
ignored.

∙ Method .easing(func_name) sets the easing function. Functions available in the
TWEEN class by default (TWEEN.Easing.<name>) are shown on http://tweenjs.

18

http://tweenjs.github.io/tween.js/examples/03_graphs.html
http://tweenjs.github.io/tween.js/examples/03_graphs.html
http://tweenjs.github.io/tween.js/examples/03_graphs.html

github.io/tween.js/examples/03_graphs.html, however custom function can be
used too.

∙ Method .onUpdate(function) sets a function that will be called after each update.

∙ Method .onComplete(function) sets a function which will be called once after
the tweening of target_var has achieved final_value’s value.

∙ Method .start() activates the TWEEN object to react to updates.

The updates are done by TWEEN.update() calls in the main animation loop.

Funcions tweenZoom() and tweenCameraTo() in file ∖client∖viewer.js are used to
animate camera movements continuously.

First one – tweenZoom() – is called from the onScroll() function, which serves as event
handler of ’mousewheel’ events in the main canvas. It takes two parameters: diffVec,
which is a vector that needs to be added to the camera.position point and duration in
milliseconds. 200 ms is used. Copy of initial camera position is stored (cameraPosition
variable) and the final position (cameraDest) is calculated. Then the instance of TWEEN
class is created. cameraPosition will be tweened, cameraDest is the final value, linear
(TWEEN.Easing.Linear.None – Figure 4.2) easing function is used for this. Nothing else is
needed as this ”zoom“ simulating effect is very easy to follow for a user.

Important is that the camera.position couldn’t be tweened directly because the changes
done by the TWEEN weren’t recognized in some other event watchers for some reason
(which I haven’t investigated further). Simple workaround solved this – it was neces-
sary to tween the local copy of the position (cameraPosition) instead and then after
each update overwriting global camera.position with value of cameraPosition using
THREE.Vector3.copy() method.

Figure 4.2: Graphs of used TWEEN.js easing functions of time. Left: Linear.None, right:
Cubic.InOut

Second one – tweenCameraTo() – is called from the raycast() function (described in
4.2.4) when mouse click over a trajectory is detected. Second parameter (duration) has the
same purpose (1200 ms is being used in this case), first one (targetDest) is different though.
It is the desired final position of controls.target and that is the intersection point de-
tected by the raycaster. Again local copies of the controls.target and camera.position
are made, variable cam_tar is the distance between previously mentioned two used in de-
bugging logs only.

19

http://tweenjs.github.io/tween.js/examples/03_graphs.html
http://tweenjs.github.io/tween.js/examples/03_graphs.html
http://tweenjs.github.io/tween.js/examples/03_graphs.html

Non-linear (TWEEN.Easing.Cubic.InOut – Figure 4.2) easing function is used here to
make the animation easier to follow for the user, especially in its beginning where camera
direction change could be a bit unexpected.

Just like in tweenZoom() the local variable targetPosition is tweened and after every
update the global controls.target is overwritten by the local copy. This change of cam-
era target position is registered by event handlers in OrbitControls library and camera
direction is changed accordingly.

Function onCameraChange() serves debugging purposes only – it ensures that the posi-
tion of camTarget (a simple sphere object) will always match the actual controls.target
property by simply copying it and calling the renderer function.

4.2.4 Raycasting

Tolerance on inaccuracy when – what distance between the ray and line object will be
actually considered to be an intersection – is set after creating the THREE.Raycaster object
by its .linePrecision property to be 20.

Ray in three.js is class with two properties – origin point and vector determining the
direction – both of class Vector3.

The raycast() function is called on every mouse move and mouse click above the canvas
element. raycaster.setFromCamera(mouseNormCenter, camera) updates origin and
direction of the ray. camera.position is used as origin point. mouseNormCenter are 2D
coordinates of the mouse in normalized device coordinates (NDC) – x and y components
are values between -1 and 1, [0, 0] being the centre. Those along with camera position,
direction and Field of View are used to determine the direction of the ray.

Then raycaster.intersectObjects() method is called. Array of objects to check for
intersections with the ray must be passed as parameter. This method finds all intersection
and array of intersected objects is returned (intersects variable). Each object in this
array contains a copy of intersected object and the intersection point. If more objects were
intersected, they are sorted by the distance between the intersection point and the camera.
This makes it easy to determine which was the one user intended to target – the first in
array, nearest to camera.

In the test version of application an HTML overlay element is shown over the intersection
point. It was intended for displaying meta data like speed, but it turned out to be indeed
non-trivial. First reason is that point objects of three.js (THREE.Vector3) don’t feature
any property for storing meta data. Second – one point of the line in scene does not match
exactly one point of the track. The track points are used as control points of the curves
and they can’t be directly determined reversely. Instead, distances between the intersection
point and each track point have to be calculated and closest one found.

4.2.5 User Interface

User interface is kept minimalistic – it consists of a full-screen canvas for 3D visualisations
and retractable side panel containing all control elements. Those are sign in / registration
button, file upload button, drop down selector of the drop zones, switch for camera target
visibility (debugging) and switches controlling visibility of displayed tracks in the scene.
File uploading GUI is displayed in a modal element overlay. Material design is applied
using the MaterializeCSS library (2.2.4).

20

Figure 4.3: Screenshots of GUI side control panel and Sign in options pop-up element.

Figure 4.4: Screenshot of pop-up ”modal“ GUI element for file uploading.

21

Event handlers

∙ Functions onKeyDown() and onKeyUp() – if some of the camera control keys was
pressed down, the information is stored in according variables moveForward, moveLeft,
moveBackward of moveRight as true value. When the key is released, the value
is changed back to false. This values are checked in each run of the function
animate() and if a key is being held down, the camera is moved in according direc-
tion by distance linearly dependant on the time since last run of this function as was
explained in 4.2.3.

∙ onMouseMove() – mouse coordinates are stored in global variables mouse (in basic 𝑥, 𝑦
datum) and mouseNormCenter (in normalized device coordinates datum described in
4.2.4). raycast() function is then called to determine whether any trajectory in the
scene is being pointed at.

∙ onMouseClick() – raycast() is called to determine whether any trajectory was
clicked on.

∙ onScroll() – serves for zooming with mouse wheel. First, direction of scroll has
to be determined beacuse it’s represented differently in the event object in various
browsers. It’s stored in delta as 1 or −1. The the diffVec is calculated as vector
between camera position and camera target position with 20 % of it’s original length
and direction according to scroll direction. The vector will then be smoothly added
to camera position in diffVec() function.

∙ toggleTracks() and toggleCamTarget() – when a switch in GUI is toggled, visibility
of according track is changed to match position of the switch. They are bound by
the id from database which is used both as id of the switch and id of the trajectory
object in scene.
Also visibility of the small sphere representing camera controls’ target is changed in
a similar way.

∙ onWindowResize() – properties of camera and renderer are updated to match new
size of the window.

22

Chapter 5

Result

Live demo of the application (source files on appended CD) will be published on the do-
main http://skylog.meteorapp.com. Guaranteed availability is at least May 25, 2016 –
September 1, 2016.

Camera controls:

∙ mouse wheel scroll – zoom – distance of the camera to the focus point

∙ left mouse button down drag – rotation of the camera around the target point

∙ right mouse button down drag – translation of the camera in directions orthogonal to
camera viewing direction vector.

∙ W, A, S, D and ↑, ←, ↓, → keys – ”FPS-game-like“ movement of both camera and
focus point in forward/backward direction of vector from camera to focus point and
left/right movement in horizontal direction perpendicular to this vector.

∙ left mouse button click on a track – translation of the focus point into the point
clicked

5.1 Building the Meteor application
Application can be built and run (accessible at http://localhost:3000) using command
meteor −−settings settings.json in the project root directory. Path to the meteor
executable must be specified explicitely or in the PATH system variable.

Note of utter importance: Even when run locally the application requires AWS access
data (AWSAccessKeyId and AWSSecretAccessKey) which I cannot publish for obvious secu-
rity reasons. Therefore these must be entered (in the ∖settings.json file) before building
the application, otherwise uploading files to the AWS S3 bucket will not be possible.

Also signing in using Facebook and Google accounts needs to be configured – for Face-
book App ID and App Secret keys have to be entered and for Google Client ID and Client
secret keys.

Database access data are not published in source codes either, however when deployed
locally, mongoDB server is run locally as well by default.

23

http://skylog.meteorapp.com
http://localhost:3000

5.2 Testing and known problems
Application was tested with sample of 12 tracks from 3 different drop zones (Prievidza –
Slovakia, Slávnica – Slovakia and Oulunsalo – Finland) personally recorded by myself using
Samsung Galaxy S III smartphone with application ”GeoTracker - GPS tracker“ (https:
//play.google.com/store/apps/details?id=com.ilyabogdanovich.geotracker).

Client functionality (uploading, GUI and visualisation) was tested in Google Chrome
and Mozilla Firefox browsers, neither showed any problems.

Server functionality was tested with all 12 available GPX tracks and found working
properly. However the server’s upload bandwidth and client’s download bandwidth limit
might cause some uncomfortably long loading times because the size of the terrain texture
files are rather huge (∼ 5 MB for each drop zone).

It seems that resulting trajectories are accurate and reflect the real flight characteristic.
This was partialy proved by visual check of the landing spot in the scene (which was
corresponding to the real one) and by the matching flight pattern.

The track recording itself was quite problematic though. The smartphone used for
testing was often loosing GPS position fixation inside airplanes (two different Cessna 182
and one Let L-410 Turbolet were used during testing). It seemed to be strongly dependent
on direct visibility on the sky. The completeness of the track was affected by my position
inside the airplane (best working was the one under the rear window in Cessna 182) and
by the position of the smartphone – whether or not it was covered by the thick parachute
container straps. I believe using a dedicated GPS tracking device with higher-gain antennas
would result in more completely recorded tracks with less missing segments.

Performance is however a big problem. Testing on a low-end configuration with Intel
Core i3-3227U CPU, Intel HD Graphics 4000 iGPU and 4 GB of DDR3 RAM showed
insufficient framerate (below 20 FPS during camera movements) even with significantly
simplified scene (only one plane and texture used for terrain) and lowest renderer settings
(low precision and no anti-aliasing).

Other two PC configurations tested were Intel Core i5-3570K CPU @ 4.7 GHz, nVidia
GeForce GTX 760 GPU and 8 GB of DDR3 RAM, the second one Intel Core i5-750 CPU
@ 3.8 GHz, ATI Radeon HD 5850 GPU and 4 GB of DDR3 RAM. Performance of both was
hight enough to maintain stable framerate over 60 FPS in any given situation.

Android and Windows Mobile browsers were tested and proved to be incapable of run-
ning this complex WebGL script. Also I suppose that mobile devices would be insufficient
performance-wise too. Significant optimizations are needed here.

In Windows web browsers the WebGL is unable to render lines with a width more than
1 pixel. The cause of this is that both Mozilla Firefox and Google Chrome in Windows
are using ANGLE – WebGL to DirectX wrapper – by default. Apparently the variable
linewidth is not implemented the ANGLE API. It has been long known and ignored
issue. [2]

The ANGLE layer can be disabled and native OpenGL API rendering backend used
instead, however it’s a procedure that cannot be expected from users to undergo. The
current version of Google Chrome ran with –use-gl=desktop option is not able to render
any web page. In Mozilla Firefox the runtime variable webgl.prefer-native-gl (accessible
at about:config address) is still working and the OpenGL rendering as well. [3]

24

https://play.google.com/store/apps/details?id=com.ilyabogdanovich.geotracker
https://play.google.com/store/apps/details?id=com.ilyabogdanovich.geotracker

Figure 5.1: Screenshot of scene with drop zone Prievidza with 5 tracks displayed

25

Chapter 6

Conclusion

In this project I’ve managed to combine some of the latest technologies in web applica-
tions development. I proved that such a complex application can be written entirely using
JavaScript only. That is naturally huge advantage for a beginner single developer, who
therefore doesn’t need to learn second language for the server and how to use its frame-
works and much more complex SQL database.

However this unconventional combination brought up unexpectedly huge number of
problems, solving of which consumed the vast majority of time spent working on this
project.

All assignment points have been accomplished though.
The most fundamental fact I learned during my Erasmus+ studies in Finland is that

any service which is not selling to its users nor its users is never financially viable. And
sadly I came to conclusion that that is also the case of this project.

If I had current knowledge and experiences at the beginning , I would probably avoid
Meteor platform and build the application on bare node.js, which with the right choice
of libraries and npm packages would have taken less time to learn than fixing countless
complications with Meteor did.

6.1 Possible future developement
∙ Improve the GUI, which is current state for testing far from providing the perfect

user experience.

∙ Complete the reactivity on all data changes to require least possible user actions.

∙ WebGL performance optimizations – first to do would be some king of distance-based
texture resolution scaling. Possible solution might be splitting the terrain into smaller
tiles and applying a texture with suitable resolution based on the distance between
camera and each of these tiles.

∙ Real terrain height mapping – this would of course further improve visual experience.

∙ Object-tied fog – three.js library enables only global fog, however if it could be bound
to the terrain object only, the effect of atmosphere would look much more realistic.

∙ Workaround rendering curves with linewidth > 1. Visibility of the line would be
much better on high-DPI monitors.

26

∙ Optimization for mobile devices, however the WebGL support in mobile platforms
browsers is still only partial and therefore a native mobile OS applications might be
needed. But that would require knowledge of other programming languages.

∙ User profiles with listing

∙ Track editor GUI

27

Bibliography

[1] 56 contributors: Window.requestAnimationFrame(). Mozilla Developer Network.
2016. [Online; accessed 19-May-2016].
Retrieved from: https:
//developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

[2] jah...@gmail.com: Issue 119: add support for wide lines. bugs.chromium.org. 2011.
[Online; accessed 19-May-2016].
Retrieved from:
https://bugs.chromium.org/p/angleproject/issues/detail?id=119

[3] JeGX: (WebGL) How to Enable Native OpenGL in your Browser (Windows)/. 2013.
[Online; accessed 19-May-2016].
Retrieved from: http://www.geeks3d.com/20130611/
webgl-how-to-enable-native-opengl-in-your-browser-windows/

[4] Khronos Group: OpenGL ES 2.0 for the Web. 2016. [Online; accessed 14-May-2016].
Retrieved from: https://www.khronos.org/webgl/

[5] Meteor Development Group: Default file load order. Meteor Guide. 2016. [Online;
accessed 19-May-2016].
Retrieved from: http://guide.meteor.com/structure.html#load-order

[6] Meteor Development Group: Documentation of Meteor’s Method (Remote Procedure
Call) API. Meteor API Docs. 2016. [Online; accessed 19-May-2016].
Retrieved from: http://docs.meteor.com/api/methods.html

[7] Meteor Development Group: What is Meteor? Meteor Guide. 2016. [Online; accessed
14-May-2016].
Retrieved from: http://guide.meteor.com/#what-is-meteor

[8] three.js authors: three.js documentation. 2016. [Online; accessed 14-May-2016].
Retrieved from: http://threejs.org/docs/index.html

[9] whuber: Length of a degree: where do the terms in this formula come from?
Geographic Information Systems Stack Exchange. 2013. [Online; accessed
14-May-2016].
Retrieved from: http://gis.stackexchange.com/questions/75528/
length-of-a-degree-where-do-the-terms-in-this-formula-come-from

[10] Wikipedia: Centripetal Catmull–Rom spline. 2016. [Online; accessed 19-May-2016].
Retrieved from:
https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline

28

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://bugs.chromium.org/p/angleproject/issues/detail?id=119
http://www.geeks3d.com/20130611/webgl-how-to-enable-native-opengl-in-your-browser-windows/
http://www.geeks3d.com/20130611/webgl-how-to-enable-native-opengl-in-your-browser-windows/
https://www.khronos.org/webgl/
http://guide.meteor.com/structure.html#load-order
http://docs.meteor.com/api/methods.html
http://guide.meteor.com/#what-is-meteor
http://threejs.org/docs/index.html
http://gis.stackexchange.com/questions/75528/length-of-a-degree-where-do-the-terms-in-this-formula-come-from
http://gis.stackexchange.com/questions/75528/length-of-a-degree-where-do-the-terms-in-this-formula-come-from
https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline

Appendices

29

List of Appendices

A Content of CD 31

B Manual 32
B.1 Option 1 . 32
B.2 Option 2 . 32

30

Appendix A

Content of CD

∖
build_node∖
gpx_samples∖
meteor_src∖

.meteor∖
client∖

init.js
main.js
OrbitControls.js
viewer.js

font∖
packages∖
public∖

maps∖
OUL∖
PD∖
SLA∖

textures∖
server∖

init.js
packages.json
settings.json
skylog.css
skylog.html
skylog.js

poster.pdf
thesis_latex_src∖
video.mp4

31

Appendix B

Manual

B.1 Option 1
1. Access the application deployed at http://skylog.meteorapp.com. Using Mozilla

Firefox 46 is recommended.

2. In order to allow variable width of lines disable the ANGLE – in Firefox at about:config
address set runtime variable webgl.prefer-native-gl to true.

B.2 Option 2
1. Install Meteor 1.3.2.4 (https://www.meteor.com/install)

2. Add meteor executable to system PATH or use full absolute path later

3. Enter AWSAccessKeyId and AWSSecretAccessKey in ∖meteor_src∖settings.json

4. In ∖meteor_src∖ directory build and locally deploy the application using command
meteor −−settings settings.json

5. Access the application at http://localhost:3000. Using Mozilla Firefox 46 is rec-
ommended.

6. In order to allow variable width of lines disable the ANGLE – in Firefox at about:config
address set runtime variable webgl.prefer-native-gl to true.

32

http://skylog.meteorapp.com
https://www.meteor.com/install
http://localhost:3000

	Introduction
	Topic
	Problem
	Solution and its form
	Outline of this thesis

	Used Technologies
	WebGL and three.js
	Meteor.js
	Iron router
	Slingshot
	xml2js
	MaterializeCSS
	TWEEN.js

	Data
	Input format
	Conversion of coordinates
	Database

	Implementation details
	Server
	Data conversion functions

	Client
	Scene
	Animation loop
	Camera movement animations
	Raycasting
	User Interface

	Result
	Building the Meteor application
	Testing and known problems

	Conclusion
	Possible future developement

	Bibliography
	Appendices
	List of Appendices

	Content of CD
	Manual
	Option 1
	Option 2

