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Abstract
This thesis provides an analysis of the available software VPN solutions and its performance
on the Linux system. This analysis is then used as a basis to determine performance
bottlenecks, suggest performance improvements and further design and implement the most
promising of them. The result of this thesis is a Linux kernel module which does TLS
and DTLS transmission and reception in kernel space. The module utilizes key material
established during a TLS or DTLS handshake in user space. Despite the fact that our
developed module was designed for use by VPNs we identified several other use-cases which
can take advantage of our module.

Abstrakt
Tato práce se zabývá analýzou stávajících a aktivních VPN řešení, jejich výkonu a slabých
stránek. Výsledkem práce je jaderný modul pro Linux, který implementuje datový přenos
pomocí protokolů TLS a DTLS na základě konfigurace ustanoveného spojení v chráněném
režimu. Primárním cílem bylo odstranit datové kopie a změny kontextu z chráněného režimu
do režimu jádra během datových přenosů ve VPN řešeních založených na protokolech TLS
a DTLS. Práce analyzuje cenu těchto operací a na základě analýz lokalizuje další kroky
nutné k využití implementovaného jaderného modulu ve VPN řešeních. Práce se dále
zabývá analýzou dalších možných využití implementovaného jaderného modulu mimo VPN
řešení.
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Chapter 1

Introduction

A Virtual Private Network, also commonly known abbreviated as VPN, is a technology,
which enables users to connect to local area networks (LAN) from a wide area network
(WAN). After establishing a VPN connection, a user can both access and use resources
provided by LAN as if they have been accessed from the local network. To respect LAN’s
restrictions and rules it is necessary to secure an established VPN connection.

Nowadays, this technology is widespread in corporations, which expose devices situated
in LAN via VPN for employees. By enabling to establish remote access to the local network,
employees can access remote machines, printers or servers without physical access or the
need to be directly connected to LAN. This gives employees the power to easily work
remotely.

This work is mainly focused on optimization of existing tools which directly or indirectly
implement VPN solutions. The main focus is given to open source solutions because of open
implementation and the available source codes.

The thesis is organised as follows: In the first section 1 one can find the basic principles
of VPN and available open source VPN tools. There are introduced available open source
projects of VPN solutions, their liveness, upstream status and their primary focus. There,
it is also stated the importance of analysing weak parts and bottlenecks. In the following
section 2, one can find an analysis of current implementation status, analysis of the packet
path and transmission in kernel and user space, list of available ciphers within solutions and
their security and speed impact. Benchmarks and environment created for benchmarks are
analysed in the section 3. The section 4 is focusing on work done in order to bring optimized
solution. In the following section, 5 is analysed an implemented solution based on results.
Based on these results, future work that needs to be done in section 6 is discussed. The
last section, 7 summarizes this thesis.

1.1 The Purpose of Optimizing a VPN
As stated in the introduction, VPNs are used widely in order to provide secured a connection
to remote LANs and access servers, printers and other network devices situated in a LAN
remotely. This concept is suitable for small offices or even for large corporations which
want to provide employees with remote access.

Introducing a VPN to a network involves additional computation and memory con-
sumption for the involved network devices, which need to deal with packet encryption,
packet decryption and routing. The additional load can be partially reduced with well
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designed optimizations. The purpose of this thesis is to analyse current open source VPN
solutions, find weak points and based on discovered weak points, implement optimizations
which could increase VPN performance.

There are currently available three main VPN projects, OpenConnect [7, 8], Open-
VPN [11] and Libreswan [6]. These projects are introduced in the following sections.

A term context switch in the text refers to a context switch from user space to kernel
space and vice versa, if not stated otherwise. There is also used a term record, which
stands for one unit of the referenced protocol type (TLS or DTLS).

1.2 OpenConnect
OpenConnect is the youngest VPN project apart from OpenVPN and Libreswan. Open-
Connect was originally designed as an open source implementation of CISCO’s proprietary
AnyConnect VPN, and, according to authors [39], it should be capable to interoperate
with AnyConnect VPN. The implementation consists of two applications: OpenConnect
client [7] and OpenConnect server (also known as ocserv) [8].

The OpenConnect project was originally started by David Woodhouse, who is currently
upstream maintainer too. Later on, OpenConnect was enhanced to support Pulse Connect
Secure protocol (originally known as Jupiter SSL VPN). Both OpenConnect server and
OpenConnect client are released under the terms of Gnu Lesser Public License, version
2.1. Both support all major platforms, such as Linux (including Android), various BSD
distributions (like FreeBSD, OpenBSD), Mac OS X, OpenSolaris, Solaris 10/11, Windows
and Mac OS X [7, 8].

OpenConnect server and OpenConnect client support IPv4 and IPv6 networking. Open-
Connect project and AnyConnect VPN respectively, deliver a new protocol based on ex-
changing XML messages for authentication. They are designed to use existing TLS [15]
and DTLS [17] protocols to deal with security. These protocols handle transmission over
both reliable and unreliable layers. DTLS and TLS were not reimplemented, OpenConnect
uses GnuTLS library in order to serve DTLS and TLS records. GnuTLS [23] library is open
source as well and is handled by the Gnu project [21].

OpenConnect is referred to be an “SSL based VPN”. The abbreviation SSL can be
substituted with more accurate TLS, but the term “SSL based VPN” is spread nowadays
because of historical reasons.

Project OpenConnect is very live and the community behind this project is relatively
active. More information can be found at project’s home pages [7, 8].

1.3 OpenVPN
OpenVPN is currently the biggest open source VPN project. It was started by James Yonan
and the very first usable release was published in 2001. OpenVPN is currently maintained
by organization called OpenVPN Technologies, Inc. Nowadays, OpenVPN is the most used
VPN application [11].

OpenVPN is currently available on all major platforms – Linux (including Android),
Solaris, OpenBSD, FreeBSD, NetBSD, Mac OS X, and Windows XP or newer. It is released
under the terms of Gnu GPL license, version 2. OpenVPN is registered trademark of
OpenVPN Technologies, Inc.
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OpenVPN is tightly bound to OpenSSL library [9] and uses its capabilities to secure a
connection. It supports IPv4, even IPv6 and OpenVPN is capable to operate over reliable
or even unreliable networks. There are no separate client and server applications – instead,
OpenVPN provides one user space application, which can act like a client or a server based
on configuration and command line arguments.

OpenVPN introduced its own protocol used to transfer encrypted messages. This pro-
tocol is not standardized and is currently only used within OpenVPN application, so called
OpenVPN protocol. This protocol is similar to the TLS protocol. More information about
OpenVPN can be found at the project’s home page [11], deep analysis of OpenVPN cryp-
tography can be found in documentation [12].

1.4 Libreswan
Libreswan is not a standalone pure VPN application. It is based on a standardized VPN
protocol based on IPsec and IKE (Internet Key Exchange) format. Both protocols are
maintained by Internet Engineering Task Force (IETF) [24].

Libreswan was introduced back in 1997, originally named FreeS/WAN. The original
authors are John Gilmore and Hugh Daniel. The project was later renamed to Openswan
in 2003 but from 2012 its name was forced to change to Libreswan due to legal issues.
Libreswan is released under the terms of Gnu GPL license, version 2 [6].

Libreswan runs on Linux 2.4 or higher, FreeBSD and Apple OSX. Rather then intro-
ducing a standalone VPN user space client, Libreswan uses built-in IPsec stack (XFR-
M/NETKEY) or its own stack called KLIPS. As can be seen, Libreswan operates mostly
in kernel space and uses other kernel parts in order to operate. Libreswan relies on IPsec
technology, thus it tends to hide communication details, such as IP protocol version.

In order to secure the connection, Libreswan uses Mozilla’s Network Security Services,
also known as NSS. Even NSS is a user space library, it is utilized by Libreswan IKE daemon
(pluto) for cryptographic operations.

Libreswan is currently an active project. It is maintained by community called The
Libreswan Project. Even though Libreswan is based on IPsec and extends this technology
to serve VPN connections, it is considered to be a VPN solution. Documentation, source
codes and project’s details can be found at the project’s home page [6].
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Chapter 2

Current VPN Technologies

In this section one can find a brief overview of OpenConnect, OpenVPN and Libreswan
implementation status. We describe their architectures, dependencies and provide protocol
analysis. An overview of record transmission and encryption handling are described as well,
with respect to supported encryption algorithms.

2.1 User Space and Kernel Space
In the section 1, there was introduced three VPN solutions, which are currently available
and used. To generalize these solutions, we can distinguish the solutions into two main
categories – kernel space solutions and user space solutions.

The introduced user space solutions, OpenConnect and OpenVPN, are pure user space
applications. They use kernel only for sending and receiving records. All operations,
such as record assembling, record encoding, record disassembling, are implemented in user
space. The kernel only provides an interface to handle and forward IP packets. Such
implementation of the interface is called TUN/TAP device [36]. Both OpenConnect and
OpenVPN use TUN/TAP device in order to send and receive packets.

Even though the VPN term is often referred to a user space solution, there are available
implementations which handle VPN inside kernel. This could benefit when running VPN
on heavy traffic. There can be omitted user space operations which need context switches
every time a record is going to be handled by user space application. To support this, test
comparison scenarios for user space versus kernel space implementations could be evaluated.

Implementing all user space applications and protocols to kernel space would lead to
completely omit user space and kernel space separation. Implementing VPN in kernel space
does not mean to force all user space implementations (not only VPN applications) to the
kernel. This would lead to enlarging kernel and would lead to a huge and difficult to manage
kernel. All user space benefits (memory management, security, process management and
much more) would be lost. Implementing some parts of protocols to the kernel can benefit
specialized machines and optimize their performance. These optimizations for specialized
machines should be possible to turn on when required.

2.1.1 TUN/TAP Device Driver

The TUN/TAP driver is a kernel interface, which provides IP packet reception and trans-
mission for user space programs. User space programs can use read and write operations
on an appropriate file in order to inject IP packets into networking stack. Receiving and
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sending is transparent to the user space applications and all of the details like type of media
are hidden [36].

An application, which wants to use TUN/TAP driver, has to open /dev/net/tun and
register a network device with the kernel by calling ioctl(2). From version 3.8, Linux
supports multiqueue TUN/TAP. This approach is suitable for multicore systems, where
sending or receiving records can be parallelized. Unfortunately, this approach has minimal
positive impact on single core systems. Moreover, it could have a negative impact, since
multiple resources are allocated but none of them are used at the same time. This leads
to degradation to serialization as if no multiqueue TUN/TAP would be used [36]. This
optimization is used in OpenVPN in multiplexed mode [12].

The TUN/TAP driver can operate on both Ethernet frames and IP frames. TAP driver
is used for Ethernet frames and TUN driver is used for IP frames [36].

A more detailed explanation of a packet path can be found in [31].

Figure 2.1: A diagram of a communication flow using TUN/TAP device driver

The functionality of TUN/TAP device driver is illustrated on figure 2.1. Data source
application (Data source app) is sending data to TUN device using write(2) operation.
The application knows only the destination IP of the receiver. After sending records to
the TUN device, all decisions on record routing are done in the kernel. Kernel, based on
configured routing tables and knows how to handle the record. Data receiver application
(Data receiver app) can be situated on local or even on a remote host. Based on routing,
records are send to local application (red path) or to a remote machine using appropriate
network device (green path).

2.2 OpenConnect
OpenConnect’s protocol uses the TLS [15], Datagram TLS protocol (DTLS) [17] and the
HTTP protocol. It was designed to operate on DTLS (UDP), but can fallback to TLS
(TCP) if necessary.

The OpenConnect VPN protocol supports three main types of client authentication:
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• password

• certificate

• HTTP SPNEGO (Kerberos, GSSAPI)

All methods use XML sent over the HTTP protocol secured with TLS or DTLS based on
network [39].

OpenConnect VPN protocol is designed to be a client – server protocol. The server can
be configured to route desired subnets or act like a default gateway for all connections from
a client. It usually listens on port 443 because of TLS used, but it can be configured to listen
on any desired port. All control messages from server to client are in an XML format. The
main advantage of OpenConnect VPN protocol is that it uses the standardized protocol
TLS and DTLS for communication. Any communication done in a VPN tunnel seems to
an observer to ordinary encrypted HTTPS traffic.

There can be used various ciphers to encrypt communication between client and server.
Since OpenConnect uses GnuTLS, supported ciphers are subset of ciphers available in
GnuTLS [23]. The current implementation of OpenConnect VPN server supports AES128
GCM, AES256 GCM, AES128 SHA and DES CBC3 SHA ciphers. Ciphers are managed up-
stream and during handshake, when establishing secured connection, negotiation of ciphers
is completed. There is pre-configured cipher priority, but all ciphers could be prioritized or
even disabled if necessary (via priority strings [22]).

Figure 2.2: A diagram of a record transmission in OpenConnect

As mentioned above, when establishing a secured connection there is a TLS handshake
done. After the handshake, data can be sent. On the figure 2.2 there is illustrated data flow
after the handshake. The OpenConnect client wants to send data to OpenConnect Server
(ocserv application). Record, which should be used in remote LAN, is encrypted in GnuTLS
library using cryptographic functions; this is done in user space. An encrypted record is
after that sent to an appropriate network device and travels through the network. The
OpenConnect client reads record from network device using read(2) operation. Record
has to be decrypted using negotiated algorithm using GnuTLS library. After decryption,
the packet is sent from OpenConnect server to TUN device in order to packet record to
desired host in ocserv’s local network network.

8



2.2.1 Transport Layer Security – TLS

Transport Layer Security, also referred as TLS, is a mechanism used to authenticate and
establish secured session between two communicating nodes [15]. TLS was introduced in
1999 by Internet Engineering Task Force (IETF) [24] as a successor of SSL, which was ori-
ginlly developed by Netscape Communications. Nowadays, SSL and TLS terms are often
exchanged due to historical reasons. TLS uses asymmetric cryptography in order to ex-
change keys for symmetric cryptography. After key exchange only symmetric cryptography
is used due to speed.

The TLS protocol is mostly connected with web browsers which use TLS in HTTPS
(Hypertext Protocol Secure).

TLS is suitable to be used over a reliable transport layer such as TCP. On the other
hand, datagram TLS (DTLS) [17] is designed to be used on reliable as well as on unreliable
transport layer, such as UDP.

An open source implementation of TLS in C programming language can be found in
a Gnu project called GnuTLS [23]. Its original author is Nikos Mavrogiannopoulos. It
supports various TLS and DTLS versions – TLS 1.2, TLS 1.1, TLS 1.0, DTLS 1.0 DTLS
1.2. and even SSL 3.0. There can be used various authentication standards (e.g. X.509)
in order to verify certifications of communicating nodes. The implementation is split into
three cooperating parts – TLS protocol part (TLS protocol itself), certificate part (certificate
parsing and verification based on libtasn1 library) and cryptographic back-end (based on
nettle and gmplib libraries) [23].

2.3 OpenVPN
OpenVPN provides two main authentication modes on cryptographic layer [12]:

• Static key

• SSL/TLS mode

When static key mode is used, keys used in session are exchanged between clients before
the tunnel is established. On the other hand in SSL/TLS mode an TLS session is established
with bidirectional authentication. If both clients are authenticated, keys used in session are
randomly generated [12].

Figure 2.3: A diagram of a record transmission in OpenVPN
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OpenVPN is designed to be a client – server protocol, but unlike OpenConnect, Open-
VPN uses its own protocol for client – server communication. A different approach can be
seen in the way how clients are accessed as well. OpenVPN server acts like a NAT and
based on destination port it multiplexes communication to clients [12]. This way of im-
plementing VPN is sparing resources but it consumes additional computational power on
the server. Moreover, it is not easy to parallelize communication on server side and the
current implementation does not support it. Running OpenVPN on multicore system does
not benefit the communication in any way.

As can be seen on figure 2.3, record path is very similar to OpenConnect’s path. When
a client wants to send record to a server, record is encrypted using OpenSSL. Encrypted
and encapsulated record is then sent to OpenVPN server. A record is then decrypted and
routed via TUN device to appropriate host in server’s LAN.

2.3.1 OpenSSL

OpenSSL [9] was the very first open source library that implemented a secure communica-
tion based on SSL. It contains implemented TLS and DLTS protocols (DTLS 1.2 is still in
beta). It supports modern cryptographic algorithms and hash functions.

OpenSSL’s license is not compatible with Gnu project licensing, so GnuTLS was intro-
duced as a substitution of OpenSSL. There exist various forks of OpenSSL, which try to
be compatible with OpenSSL, such as LibreSSL [5].

2.4 Libreswan
Libreswan VPN is based on IPsec [6]. It’s main advantage over OpenConnect and OpenVPN
is the optimization of doing all operations on encrypted records in kernel space. This
optimization saves context switches and user space operations that can be moved to kernel.

On the other hand, Libreswan VPN does not provide a way how to count transmitted
record between peers, there is no easy way how to limit speed for certain clients or do more
advanced operations like client idle timeout (even some could be done by kernel, but most of
them strongly depend on the kernel for providing such features). Libreswan creates a virtual
tunnel between two hosts. This can be an disadvantage when using broken firewalls too.
ESP packets, which are used to encrypt connection, can be restricted in desired network.
In this situation it is not possible to use IPsec in general.

Currently, Libreswan is the fastest open – source way to use VPN on Unix-like systems
supporting IPsec. More about IPsec and its performance analysis can be found in [44], The
main advantage is in kernel space optimizations.

2.4.1 Crypto API in Linux Kernel

The early Linux kernel versions introduced a cryptographic framework. This cryptographic
framework allowed to expand kernel features and gave birth to implementations of disk
encryptions in kernel or IPsec implementation.

Crypto API in Linux is accessible to kernel modules and kernel itself. It implements
all well – known block ciphers and hash functions [26]. IPsec uses Linux Crypto API to do
encryption in kernel. One of the major advantages of Linux Crypto API is the ability to
use transparently cryptographic accelerators [1, 40, 41],
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Chapter 3

Benchmarks and Identifying
Bottlenecks

This section discusses initial benchmarks done in testing environment, which was created
in order to study the principles, compare and test available VPN solutions. The testing
environment is explained in detail and illustrated in this section.

3.1 Testing Environment
Originally, tests were done on a simulated environment made on Red Hat’s OpenStack
platform [10]. This platform provides easy to set up and run prepared images of various
Gnu/Linux distributions. All images run in a pool of operating system instances. Unfor-
tunately, this testing environment was not suitable for VPN testing purposes, since the
software network was very restricted and traffic limits were easily reached. Network in
OpenStack is fully hidden from a user and could be highly scalable, so it relies on par-
ticular configuration of a deployed environment. Benchmarks reached the platform limits
and we noticed no significant differences between cryptographic algorithms nor any traffic
performance differences.

To avoid real traffic and overload differences in traffic (delays on routers, unrelated
traffic overhead), there was used Docker [19]. Docker’s goal is to provide easily deployable
images, called containers. Docker uses Linux kernel feature called name spaces in order
to run a container. This minimizes resources to run the operating system without adding
software layer above the kernel to virtualise hardware for a guest operating system. To
virtualise a network, there is a software bridge between guest and host operating system.
More about Docker can be found in section 3.2.

There was an effort to eliminate all factors that could introduce noise when evaluating
benchmarks of VPN solutions, on the other hand, creating a new environment which differs
from a real world usage introduces new paths which have to be analyzed. Figures 3.1 and
3.3 demonstrate how a connection looks like when using a VPN connection in a real world
situations. We can distinguish two main VPN configurations – a remote access VPN and a
site to site VPN.

Figure 3.1 demonstrates a remote access VPN. There is a VPN server, which enables
connected VPN clients, which are not situated on the local LAN, to access local LAN
devices. If we analyze a path of the record, we have four possible directions how can a
packet flow through the system – from LAN device through VPN server to VPN client,
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from VPN client to VPN server, from VPN client through VPN server to a LAN device
and from VPN server to VPN client.

The first path stated, from LAN device through VPN server to VPN client, is commu-
nication from the LAN device to the remote host, which is mediated by a VPN server. The
VPN server has to encrypt packed (if configured to do encryption) and encapsulate the
record from the LAN and send it to appropriate output interface. There can be multiple
clients connected to the server.

The second path stated is from VPN client through VPN server to a LAN device. This
connection is opaque of the first path and is used for exchanging data as well.

The third and fourth path stated, from the VPN server to VPN client and vice versa
is mostly used for VPN protocol itself. These messages are control messages, such as
establishing or termination session, dead peer detections and many others. Another use of
this path could be if a VPN server is configured to provide some services only for devices
connected to the LAN. This path is a special case for the first and the second path.

If we look under the hood of server and clients, there can be distinguished two main
categories of VPNs – pure kernel space and pure user space connections, depending on
where the record encryption and encapsulation is done (where VPN server and VPN client
operates), see 2.1. There are solutions where a VPN server can be run in the kernel and
VPN clients are run in user space, but we will focus on ready to made and fully supported
solutions.

Figure 3.1: A real world record path overview for remote access VPN – user space VPNs

Figure 3.2: A real world record path overview for remote access VPN – IPsec

As stated before, we should eliminate parts of the system, which can introduce noise
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in our benchmarks. In general, if there is a network in the system, it may add additional
paths delays in router queues, delays on physical media or different routing paths which
can occur. Thus it would benefit us to remove random network effects from our testing
environment.

Figure 3.3: A real world record path overview for site to site VPN – user space VPNs

Another part of our system which can introduce noise in benchmarks, are different con-
nected devices. There could be significant difference in benchmarks according to the device
used as a server or as a client. If we focus only on Gnu/Linux distributions, VPN applica-
tions could be compiled with different compiler flags or there could be different application
versions. Moreover, packagers of different distributions can make downstream patches for
various issues (compatibility, security, downstream features, etc.). If we focus on hardware,
OpenSSL, GnuTLS and even kernel’s crypto API use specialized CPU instructions to make
encryption faster, if available. Device configuration has a significant impact as well.

We will try to make a testing system as minimalistic as possible to eliminate impact of
other parts of the system. If we omit networks and we move benchmarking on one machine
we can get rid of various delays in other devices (queues on routers, routing computation,
etc.) and we can get rid of impact of potentially other traffic to our system. Thus we can
introduce solution on one physical device. Ideally we can make benchmarks on Gnu/Linux
distribution installation, but this is impossible to set up for kernel based VPN solutions,
since there is only one network device. To make testing environment the same for kernel
based VPN solutions and as for user space based VPN solutions, benchmarks were done
using Docker container on one system.

Versions of applications used for benchmarks can be found in appendices, section D.
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Figure 3.4: A real world record path overview for site to site VPN – IPsec

3.2 Docker
Testing environment differs from real world usage of a VPN solution, so impact of using
Docker has to be deeply analyzed. IBM did a deep research of Docker and it’s performance
impact [34]. Results promise very small impact on actual system performance in solutions
based on containers.

Docker [19] is not a virtual machine. There is no hypervisor used and the image, which
runs inside Docker (Docker container) does not use its own kernel, see 3.5. Docker is
based on Linux feature called Linux control groups (name spaces). Name spaces introduce
separation for processes (PID), network, users, IPC, filesystems and hostnames [25]. This
approach gave a birth to container technologies, such as Docker.

Figure 3.5: Comparison Docker with a virtual machine

Since the Docker container does not need its own kernel, there is no additional layer
between host operating system and the container itself. This could be an advantage for
applications that do not rely on their own, virtualized kernel and a limitation as well. The
choice whether to use containers instead of virtualization depends on the requirements.
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Figure 3.6: A VPN environment schema using Docker container – user space VPNs

Figure 3.7: A VPN environment schema using Docker container – IPsec, in this setup the
VPN server is omitted as it is not part of communication
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3.3 Benchmarks of Throughput
To respect various encryption algorithms implemented and used in OpenConnect, there
were done tests on all currently supported ciphers. To test transmission speed, iperf tool
was used. Iperf uses client – server architecture. The iperf server was run on VPN server
side and the client was transmitting data. Results of the tests can be seen in the table B.4
in appendices.

Tests were done on Intel Core i7-4600U CPU with 2.10GHz and 12GB DDR3 RAM.
Concrete CPU flags of the CPU used can be seen in cpuinfo available on attached DVD.
The CPU has accelerated AES and GCM instructions (see pclmul and aes flags in cpuinfo).

As stated in section 3.1, tests were done using Docker. There was made ready to use,
autoconfigured Docker image described by Dockerfile. Docker image used latest to the date
Fedora 23 release with all packages actualized. The deployment of Docker image is easy and
fully automated process. All VPN solutions run on their standardized ports, these ports
are exposed to host operating system. All information necessary to connect to a VPN are
printed during setup to standard output. Dockerfile is available on attached DVD.

There should be noted that the current release of OpenVPN does not support trans-
mission over AES GCM which was intended to compare with other VPN solutions, but
there is already an open ticket in order to add support1.

3.4 Benchmarks of Ciphers
This section presents comparison of benchmarks done in the Docker container and it’s host
system for GnuTLS library, OpenSSL and Linux crypto API. These tests should prove that
a Docker container does not have any significant impact for our testing environment.

3.4.1 OpenSSL Benchmarks

Results of OpenSSL benchmarks for host can be found in table 3.8, for the Docker container
in table 3.9. As we can see, Docker container does not have any significant impact to
cryptographic algorithms in OpenSSL library.

Cipher Run #1 Run #2 Run #3 Average
AES-128 CBC SHA1 0.61 GB/s 0.60 GB/s 0.61 GB/s 0.61 GB/s

AES-128 GCM 2.49 GB/s 2.52 GB/s 2.54 GB/s 2.51 GB/s

Figure 3.8: Benchmarks on host system, OpenSSL cipher, payload size: 16384 bytes

Cipher Run #1 Run #2 Run #3 Average
AES-128 CBC SHA1 0.59 GB/s 0.61 GB/s 0.61 GB/s 0.60 GB/s

AES-128 GCM 2.50 GB/s 2.51 GB/s 2.50 GB/s 2.50 GB/s

Figure 3.9: Benchmarks done in Docker container, OpenSSL cipher, payload size: 16384
bytes

1https://community.openvpn.net/openvpn/ticket/301
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3.4.2 GnuTLS Benchmarks

Cipher MAC Run #1 Run #2 Run #3 Average
AES-128-CBC-SHA1 0.60 GB/s 0.61 GB/s 0.59 GB/s 0.60 GB/s

AES-128 GCM 2.52 GB/s 2.51 GB/s 2.52 GB/s 2.51 GB/s

Figure 3.10: Benchmarks on host system, GnuTLS cipher-MAC combinations, payload size:
16384 bytes

Cipher MAC Run #1 Run #2 Run #3 Average
AES-128-CBC-SHA1 0.59 GB/s 0.59 GB/s 0.58 GB/s 0.59 GB/s

AES-128 GCM 2.50 GB/s 2.48 GB/s 2.52 GB/s 2.50 GB/s

Figure 3.11: Benchmarks done in a Docker container, GnuTLS cipher-MAC combinations,
payload size: 16384 bytes

As we can see in tables 3.12 and 3.10, there is no significant difference when using Docker
container as well. These results conform with the research paper done by IBM [34], where
authors emphasize very low cost to Docker container, its resource and memory usage. Since
TCP has different path for server and client, the actual impact of the this path can be seen
in an IBM research paper as well [34]. Authors state no significant difference on performance
when using Docker image. This confirms selection of Docker as a benchmarking and testing
platform for VPN comparison.

3.4.3 Linux Kernel Crypto API Benchmarks

There is a kernel module tcrypt available which can be used to test Linux Crypto API.
This kernel module can be inserted and based on parameters, it can do performance tests
of implemented ciphers. Unfortunately it was unable to run AES-GCM (“gcm(aes)”)
benchmarks due to a bug in this module on tested kernels (4.4.8-300.fc23.x86_64 and
4.4.8-303.x86_64) and AES-128-CBC-SHA1 performance test was not implemented.

On the other hand, it was possible to run benchmarks of RFC 4106 implementation (The
Use of GCM in IPsec Encapsulating Security Payload [14]). The tcrypt kernel module can
run performance tests only for payload equal or smaller than 8192 so the benchmarks cannot
be directly compared to GnuTLS nor OpenSSL.

Cipher MAC Run #1 Run #2 Run #3 Average
AES-128 GCM 1.91 GB/s 1.96 GB/s 2.00 GB/s 1.96 GB/s

Figure 3.12: Benchmarks of Linux Kernel Crypto API, payload size: 8192 bytes

Interesting founding can be seen on actual speed trend based on payload size demon-
strated in figure 3.14. The performance is significantly increasing until the page size (4096B)
is reached. This founding is studied in the section 5.6.1.

3.4.4 Cryptodev-linux kernel module

Cryptodev-linux [1] is a kernel module which delivers all major cryptographic algorithms
implemented in Linux Crypto API in kernel space to user space. This gives an advantage
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Payload size in bytes 16 64 256 512 1024 2048 4096 8192
Performance in GB/s 0.074 0.268 0.750 1.071 1.511 1.773 1.993 1.994

Figure 3.13: Performance results of RFC 4106 AES-GCM implementation based on payload
size
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Figure 3.14: Trend of RFC 4106 AES-GCM implementation based on payload size

of using hardware accelerators transparently from user space.
A user space process has to open /dev/crypto and issue ioctl(2)’s CIOCGSESSION call

in order to initialize Cryptodev-linux module. The kernel module is state-full. It stores
all information, such as cipher type and key for user space session. After initialization,
CIOCCRYPT is used to encrypt and decrypt messages. A session identifier and all other
necessary information, such as plain text or cipher text, initiate vector and operation type
(encryption or decryption) are passed via parameters.

Cryptodev-linux kernel module looks like a suitable candidate for optimizing VPN traf-
fic. As stated in section 2.1, the main disadvantage and bottleneck for VPN traffic are
context switches. As Cryprodev-linux runs in kernel space, encryption algorithms could
be reused and whole traffic could be done in kernel space. Records can be encrypted or
decrypted in kernel space and sent to TUN or output interface without sending them to
user space just for encryption or decryption.

This kernel module is not part of upstream vanilla kernel, even there was an effort
to merge Cryptodev-linux with mainline [32]. The Cryptodev-linux kernel module uses
ioctl(2)-based API, which uses pointers and variable length data. According to upstream
this introduces more error prone code, so lately there is an effort to avoid such module
implementations [32].
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3.5 Benchmarks of VPN Components
Measuring the throughput is good for comparison of various VPN technologies, but to
optimize VPN, we have to also find bottlenecks in the system. Since iperf tool measures
throughput, it sends and receives generated data of various size. To detect parts where the
most of the time is spent in different VPN solutions, tests should be evaluated with same
amount of data being sent.

Gnu time [2] was chosen to test the time spent in kernel and user space of an application.
On testing environment, Gnu time uses wait4(2) system call to receive information about
process. This system call does not influence benchmarked process. Information relating to
executed process are returned by the kernel after the process termination. This information
is stored in task structure (often referred as Process Control Block (PCB) in operating
system theory) of the benchmarked process, so it does not affect the process at all.

In order to detect parts of the system where records spend most of the time, a file was
generated of a size 10MB. This file consists of random bytes generated from /dev/urandom
to simulate random data. These data were sent using Netcat [20] to handle TCP packe-
tization and connection details. Testing environment did not change – Docker container
with the same setup was used. Output file was redirected to /dev/null so no filesystem
operations were done.

The Linux kernel provides an interface, which is used to do performance tests and debug
various issues in kernel. This interface is accessible via a tool called perf [13]. Using this
tool, one can find useful information, such as number of voluntary and involuntary context
switches done during process run, and its children as well. Tracing forks is very important,
since some VPN solutions, such as OpenConnect, ocserv respectively, make a separate
process for every connected client due to security features.

To deeply understand what system calls are called from a process, strace was used.
This tool wraps all system calls in order to monitor process’s and kernel communication.
To trace library calls, similar tool was used – ltrace [29]. These tools were used separately
to study process communication. They were not run during benchmarks, since they make
additional layer between process and library or kernel, which has significant impact on
process performance. They also perform output operations, which can slower the process
execution also.

In order to evaluate comparison results, tests were performed on ciphers and MAC
supported by all tested VPNs.

3.5.1 OpenVPN & OpenConnect Context Switches

In order to test user space VPN applications, we evaluated tests based on communication
of a process with the operating system to see how a VPN solution interacts with the
operating system. The system was configured to use MTU of size 1500 bytes, which is
the most common MTU used in basic traffic nowadays because of Ethernet technology.
Moreover, the default value of MTU for OpenVPN and OpenConnect equals to 1500 bytes
so there could be an expectation of usage of the same MTU size by a user.

Since we are testing on a simulated network, using higher MTU would cause to lower
the ratio of header payload and actual data transmitted, so the protocol would look more
efficient to a user. This is an important factor, which has to be kept in mind when doing
benchmarks of network applications.

The results for OpenConnect server are harder to distinguish because of fork(2) and
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VPN Run #1 Run #2 Run #3 Average Average in %
OpenVPN 5.15/3.36 4.68/2.97 5.08/3.03 4.970/3.211 60.750/39.250

OpenConnect 4.49/1.32 4.41/1.23 4.39/1.25 4.430/1.267 89.442/10.558

Figure 3.15: Ratio kernel space / user space time for VPN server spent when transmitting
1GB file, encryption AES 128 SHA1 used, results in seconds

VPN Run #1 Run #2 Run #3 Average
OpenVPN 2061/2060 2299/2298 1894/1893 2084.67/2083.67

OpenConnect 2150/2149 1849/1848 1955/1954 1984.67/1983.67

Figure 3.16: Number of read/write context switches of VPN client when transmitting 1GB
file, encryption AES 128 SHA1

VPN Run #1 Run #2 Run #3 Average Average in %
OpenVPN 5.11/3.95 4.43/3.58 4.84/3.86 4.793/3.797 55.80/44.20

OpenConnect 4.99/1.68 4.67/1.54 4.94/1.50 4.867/1.573 80.80/19.20

Figure 3.17: Ratio kernel space / user space time for VPN client spent when transmitting
1GB file, encryption AES 128 SHA1 used, results in seconds

VPN Run #1 Run #2 Run #3 Average
OpenVPN 2061/2060 2298/2297 1894/1893 2084.33/2083.33

OpenConnect 2150/2149 1849/1848 1955/1954 1984.67/1983.67

Figure 3.18: Number of read/write context switches of VPN server when transmitting 1GB
file, encryption AES 128 SHA1

simultaneous writev(2), recvfrom(2) calls. This needs to be analyzed deeper, but since
there is predefined MTU size, OpenConnect has to transmit exactly the same amount of
records as ocserv receives in this particular environment.

As can be seen on tests shown in tables 3.15, 3.16 and 3.18, 3.17, OpenConnect VPN
spent a lot of time in user space space. Time spent in kernel includes times spent on
context switching, copying data from user space memory to kernel space memory and vice
versa. Time spent in user space mostly covers time spent in GnuTLS for encryption and
decryption.

Values in the table include handshake and application start as well. Number of read-
/write before actual data were transmitted are constant and this value can be subtracted
in order to get pure data transmission context switches. Connection establishment takes
only small part compared to actual data transmission.

Context switches are done only because of records assembling/disassembling and de-
cryption in user space libraries. If we are able to move these operations to kernel space,
we can save at least partially context switches. This optimization has to be studied more
deeply and it is a future work of this thesis.
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3.5.2 Libreswan

Since all encryption and record assembling is done in the kernel, there are no system calls
at all during communication. Thus the only indication of Libreswan speed is Libreswan
throughput, which is the best compared to OpenVPN and OpenConnect (based on 3.3).

The actual encryption is specified during configuration. The initial handshake is done
via IKE (Internet Key Exchange). More about IPsec protocol can be found in CISCO
documentation [4].

There was an effort done to make run IPsec with VPNC client. The actual connection
establishment passed, but it was not possible to exchange any data. VPNC is written to
be CISCO compatible VPN client. Deeper inspection of protocol and exchange messages
needs to be made in order to make VPNC work with IPsec. On the other hand, VPNC
is just a standalone CISCO compatible client, which does encryption in user space. The
compatibility with Libreswan is not guaranteed across all versions. Investigating this issue
is out of scope of this thesis and it would not benefit this work anyhow, since VPNC is
tightly bound to proprietary CISCO IPsec VPN.

3.6 Choosing VPN Solution for Optimization
Each VPN solution has its pros and cons. The main focus in this thesis is given to SSL
based VPN OpenConnect. OpenConnect is, in contrast to Libreswan, an application level
VPN. It is easier to configure for a user since there are available user space applications,
both, client and server.

Another big advantage of OpenConnect VPN could be standardized TLS/DTLS pro-
tocol that is used. This can be seen as a benefit when using OpenConnect on firewalls
used for censorship. The traffic cannot be distinguished from a regular HTTPS traffic (in
contrast to Libreswan and OpenVPN), so the connection cannot be easily filtered.

OpenConnect by its design enables to do advanced accounting for users. This enables
to restrict bandwidth or connection time. OpenConnect also enables to easily configure
user authentication across various authorities (such as LDAP or Kerberos) [8].

There are other benefits as well, some of them are listed in the article [42], which was
published by one of the authors of OpenConnect.
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Chapter 4

A Faster Approach:
Implementation

In this section we present implementation and initial optimization design of VPN solutions.
There are presented TLS and DTLS records that carry encrypted data.

4.1 Optimization Design
As we can deduce based on info from section 3.5.1, the main bottleneck of OpenConnect
implementation appear to be context switches and data copies. There are done two context
switches per each record, just to encrypt the record and pass it to appropriate output
interface or TUN device. This adds additional CPU time needed just for doing context
switches. By designing a kernel module which would be configurable from user space and
would do the encryption or decryption in the kernel space we might save additional time
and possibly increase throughput.

By moving the whole TLS/DTLS protocol to the kernel, we would probably increase
speed. On the other hand, the implementation of the kernel would enlarge and would be
really hard to maintain. If we consider, that the handshake is done only from time to
time, we don’t need to bother kernel space with actual handshake. Moreover, errors which
can occur during handshake are easier to handle because of user space client and server
implementations.

The actual encrypted communication based on symmetric cryptography is much more
interesting to be optimized since it typically accounts for the majority of the transmission.
The symmetric encryption/decryption is used on every record which carries actual data and
exactly this part we want to optimize. The key concept of optimizing OpenConnect is to
move TLS/DTLS record assembling, disassembling and symmetric encryption, decryption
of records into kernel space. If anything goes wrong, we should notify user space about
errors via standardized return codes of system calls.

There were made several approaches during writing this thesis. All of them are discussed
in the following sections.

4.2 TLS and DTLS protocol
The TLS protocol requires an underlying protocol which carries TLS records to be relia-
ble [15]. That means that this protocol has to deliver records in order, duplicates have
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to be dropped and underlying protocol has to deal with out of order delivery as well. An
example of such protocol is TCP, which is also the primary protocol for TLS. Figure 4.2
describes record structure for AEAD ciphers, such as AES GCM, with 16 bytes tag. Other
ciphers have different structure, which is described in RFC 5246 [15].

Figure 4.1: TLS 1.2 record for AEAD ciphers with 16 bytes long tag

A record in DTLS of version 1.2 has different structure than TLS of version 1.2. This
structure is demonstrated on figure 4.2. DTLS is designed to operate on unreliable proto-
cols [17], such as UDP, where out of order delivery, duplicates or congestion avoidance is
not implemented. That means that DTLS has to add some mechanism that would uniquely
distinguish records transferred within a session. This requires DTLS header to add epoch
and sequence number to the record header. Epoch is incremented every time a re-keying is
done within a session, a sequence number uniquely specifies a record in epoch.

Figure 4.2: DTLS 1.2 record for AEAD ciphers with 16 bytes long tag

DTLS protocol has to guarantee that duplicate records get discarded and implementa-
tions of DTLS protocol use a sliding window in order to operate on a constant size window
that would discard duplicates. However, out of order delivery is not handled by DTLS
protocol [17] for packets within the window.

All examples cover data records (content type is of value 0x17). Other control messages
specified by TLS and DTLS protocol are out of scope of this text. All details can be found in
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appropriate RFCs, namely RFC 5246 [15] for TLS 1.2 protocol definition and RFC 6374 [17]
for DTLS 1.2 protocol definition.

Both, TLS and DTLS, limit the maximum number of bytes that can be carried within
the record payload to 214. This limit is not easily reachable on real networks nowadays.

From OpenConnect point of view, it is more interesting to focus on DTLS. OpenConnect
uses DTLS for data transmission, but fallbacks to TLS if DTLS connection is not possible
as described in section 2.2.

4.3 Reusing the Cryptodev-linux Implementation
Our original plan for implementation intended to use Cryptodev-linux kernel module to
optimize DTLS. Even the implementation of Cryptodev-linux is not part of upstream source
code as stated in 3.4.4, the very first optimizations of OpenConnect protocol started in this
module. The design of Cryptodev-linux kernel module was pretty straightforward. Since
we want to keep benefits of user and kernel space separation, we had to choose carefully
which parts are suitable for kernel space.

After the handshake was done using GnuTLS, the control was then moved to a custom
DTLS handling part in Cryptodev-linux. Since DTLS is a standardized protocol, it is
possible to use any user space library to do handshake (e.g. even OpenSSL or GnuTLS).
The library has to support retrieving key material and other data that are needed for
connection.

The implementation that would support Cryptodev-linux was partially finished. It does
not handle re-keying and record assembling/disassembling is done in user space, Cryptodev-
linux is used for decryption and encryption. There were not any benchmarks made for the
implementation. This implementation is slower because of Linux Crypto API “aes(gcm)”
implementation (see 4.6.8) and two additional context switches that were needed in order
to pass key material to Cryptodev-linux 4.6.8 (which were intended to be removed in the
future development).

The main reason of dropping Cryptodev-linux support was Facebook’s patchset intro-
ducing kernel TLS socket [49, 33]. The actual work and implementation was focused on
newly introduced TLS implementation by Facebook.

4.4 TLS Kernel Socket by Facebook
As stated in the previous section 4.3, the implementation based on Cryptodev-linux was
dropped and the main focus was given to kernel sockets.

On 23th November 2015, Facebook proposed a patchset which implemented TLS en-
cryption in the kernel [33, 49]. The main idea was pretty much the same as the original idea
of optimizing OpenConnect – do the handshake in user space and use kernel only for en-
cryption or decryption of actual data. Facebook’s patchset was introduced by Dave Watson
and it consists of two parts.

The first patch implements RFC 5288 [16] (AES GCM Cipher Suites for TLS) on top of
an already implemented RFC 4106 [14] (The Use of GCM in IPsec Encapsulating Security
Payload). These RFCs discusses about AES GCM implementation. The key difference is,
that RFC 4106 uses 16 bytes of associated authentication data, whereas RFC 5288 uses 13
bytes which are zero padded to 16 bytes[14, 16].

24



The second patch implemented actual socket handling. The implementation was based
on kernel’s AF_ALG which exposes kernel Crypto API similar to Cryptodev-linux does.
The implementation of AF_ALG is part of upstream even so it appears to be slower than
Cryptodev-linux according to [1, 48].

The difference in user space API between AF_ALG and Cryptodev-linux is, that AF_ALG
introduces a new protocol family. Based on AF_ALG protocol family, the user space can use
basic socket operations such as accept(2), bind(2), sendmsg(2), recvmsg(2) in order to
handle encryption.

The implementation of AF_ALG adds a possibility to extend AG_ALG with a custom
type – custom module implementation wrapped by AF_ALG. The implementation of such
module has to provide basic operations such as setting keys, setting authentication data
size, sendmsg(2) or recvmsg(2) handling etc.

The Facebook’s patchset implemented TLS framing, sending and receiving messages.
Moreover, the proposed patch [49] introduced the implementation that can be used with
sendfile(2) system call.

The original author of Facebook’s patchset, Dave Watson, claimed that speed was in-
creased by 2 - 7% when using sendfile(2) system call with 128KB buffer [33, 49]. This
speed increase was not reproduced on tested hardware. Actually speed decreased by 10%
(tested with tool “ktls” referenced by Dave Watson on Linux Crypto mailing list on Lenovo
ThinkPad T440s with CPU that supports AES-NI instructions). There were proposed three
patches to Dave in order to make ktls application work on our testing environment.

The TLS socket introduced by Facebook looked very interesting since it shared the idea
with our design. After the patchset arrived to mailing list, we studied the patchset and
contacted Dave Watson via e-mail. We notified him about our purpose of optimizing VPN.
Since the main focus was to optimize DTLS, Dave claimed that Facebook had no use case
for optimizing DTLS, but was opened for cooperation and help.

4.5 Reusing AF_ALG Socket
The implementation of AF_ALG TLS socket was analyzed and studied with respect to its
reuse or expansion to support DTLS. Since TLS is using connection oriented communica-
tion, such as TCP, the implementation of AF_ALG TLS socket is relaying to the supplying
TCP socket, which is wrapped by AF_ALG.

We have done initial work to support UDP socket and to use DTLS protocol. The
result was not easy to handle from user space. There had to be passed some key material
via control messages that can be supplied with sendmsg(2) system call, some were passed
via setsockopt(2). Which could be supplied how is strictly restricted to AF_ALG imple-
mentation. This makes TLS/DTLS socket handling from user space very difficult and error
prone.

Even the handling from user space was difficult, there were necessary three socket
instances – raw TCP/UDP socket, AF_ALG socket that is used for configuration and the
TLS/DTLS socket implemented as a kernel module wrapped by AF_ALG, which was used
for configuration and sending/receiving as well.
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4.6 Introducing Custom AF_KTLS

After implementation in Cryptodev-linux and reused AF_ALG interface, we decided to in-
troduce a standalone kernel TLS type socket, which would use standard socket interface,
would encapsulate the whole process of record assembling, disassembling, encryption, de-
cryption and will be easy to use from user space. The main reasons why AF_ALG-based
implementation by Facebook was not reused are:

• There are necessary 3 socket instances for each TLS connection – AF_ALG, raw TCP
socket and socket for the actual TLS transmission.

• The API can be confusing, since some data are passed via setsockopt(2), some are
passed via ancillary data (control information) in sendmsg(2) call.

• Tight dependency on the AF_ALG kernel module.

• Overall, the interface is hard to manage and error prone for user space.

This concept led to introduction of a kernel type TLS and DTLS socket, so called
AF_KTLS. This socket is implemented as a standalone kernel module and can be used as a
built-in module in kernel or it can be inserted on demand just like any other kernel module
based on modular Linux kernel architecture.

4.6.1 Zero copy AF_KTLS

In order to introduce a new kernel module, there have to be use cases where the module is
useful. Optimizing a VPN is one of them.

The main purpose of optimizing was to save context switches, which is possible due to
available Linux kernel module system calls such as sendfile(2). Another advantage is to
save unnecessary copies of data from kernel space to user space and vice versa as much as
possible. Linux kernel by its design can operate internally on pages. Pages are described
by struct page kernel structure, which carries all the information necessary to be able to
correctly handle page usage within kernel subsystems.

Based on kernel modules type, a kernel module can expose its allocated pages to other
parts of the kernel, which can operate on them with respect to page usage.

To understand how pages are manipulated within a kernel modules, consider following
code snippet (includes and error checks removed intentionally):

26



Listing 4.1: Explanation of splice(2) syscall
1 int main(void) {
2 int f1 , f2
3 int pipefd [2];
4

5 f1 = open("/etc/ passwd ", O_RDONLY )
6 f2 = open(" output .txt", O_WRONLY | O_CREAT | O_TRUNC );
7

8 pipe( pipefd );
9

10 splice (f1 , NULL , pipefd [1], NULL , 10, 0);
11 splice ( pipefd [0], NULL , f2 , NULL , 10, 0);
12

13 main_end :
14 close( filefd );
15 close( pipefd [0]);
16 close( pipefd [1]);
17

18 return 0;
19 }

The code was simplified to demonstrate principles. There are no checks whether calls
succeeded. For example if there are no sufficient permissions to create the testing file,
program will not work.

The idea of the code snippet 4.1 is pretty straightforward – to read 10 bytes from the
input file /etc/passwd and place it to the pipe with the first splice(2) call. The second
splice(2) call causes reading 10 bytes from the pipe and writing in to the output file
output.txt. In this particular example, there will be no copies done in the best case.
There will be allocated a page cache for the input file (if not allocated already) and there
will be passed appropriate page from the allocated page cache to the pipe which is acting
here as an explicit buffer. The pipe will mark page as used so this page will not be removed
from the page cache once kernel tries to drop caches. The second splice(2) call will cause
reading 10 bytes from the pipe and writing it to the output file. Again, there should not be
done any copy because appropriate kernel_sendpage (see 4.6.5) is called in order to write
10 bytes from the pipe to the output file. This causes that page will be removed from pipe
(marked as not used in pipe) and moved to appropriate page cache of the output file. This
page will be flushed to disk once kernel issues sync (see sync(2)) because of dirty flag in
the page cache of the output file. The typical size of a page is 4096 bytes. Even so that 10
bytes can be placed in 10 pages in the worst case, the kernel will try to align kernel buffers
(even page cache) to size of a page because of efficiency.

The example 4.1 discusses about zero copy page moving inside kernel. Even so this
example demonstrates principles, the underlying implementation is hardly dependent on
file system being used and its implementation.

4.6.2 Asynchronous Record Decryption

CPUs nowadays are designed to be multi-core and multi-threaded. This benefits applica-
tions that have parallel computation. Even if there is no parallel execution, unused CPU
can be occupied by kernel which can operate on a single core or can be spread on all
available cores.

From TLS and DTLS point of view, the unused computational power can be used, if
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available, to decrypt records asynchronously and prepare them for user space. If user space
asks for records, the kernel can offer pre – decryped record with speed of a copy.

4.6.3 DTLS Sliding Window Implementation

DTLS protocol is designed to operate over both reliable and unreliable type of protocols.
DTLS protocol does not compensate for lost or re-ordered data traffic, but requires replay
detection [17]. According to RFC 6347 which discusses DTLS 1.2 [17], DTLS maintains a
bitmap window which is responsible for replay detection.

RFC 6347 does not specifies the size of bitmap window. Implemented AF_KTLS kernel
module uses bitmap window implemented as sliding window on 64 bits same as GnuTLS
does.

4.6.4 User Space AF_KTLS socket handling

All protocol families implemented in the kernel have to provide struct net_proto_family
which describes protocol family constant used for referring protocol family and create
method which is called when user space issues socket(2) system call in order to instantiate
a socket of the given family.

System call socket(2) requires to define domain (which is AF_KTLS for implemented
module), type and protocol. Currently type distinguish socket type that will be bound to
the socket. The semantics is same as for well – known AF_INET socket – SOCK_DGRAM if UDP
socket will be bound or SOCK_STREAM if TCP socket will be bound. The last parameter
can specify protocol, currently this parameter can specify OpenConnect protocol if socket
will be used in OpenConnect VPN in order to forward only data records on OpenConnect
protocol layer.

The Linux kernel has predefined set of operations for sockets. These operations are
defined by struct proto_ops structure which can be seen in include/linux/net.h.

Implemented AF_KTLS kernel module implements subset of these operations. This subset
was chosen according to AF_KTLS and operation semantics; moreover there is no need to
implement all of them since some of them are not useful for AF_KTLS. Not implemented
operations are held by kernel, which fallbacks to default behaviour (propagating appropriate
errors such as ENOTSUPP).

After socket creation, user space should bind a socket using bind(2). There is intro-
duced a custom struct sockaddr called struct sockaddr_ktls with following fields:

Listing 4.2: Custom structure definition for bind(2)

1 struct scokaddr_ktls {
2 __u16 sa_cipher ;
3 __u16 sa_socket ;
4 __u16 sa_version ;
5 };

The design is intended to be type safe, so there should be a constant which would specify
cipher type for sa_cipher field. Even so there is implemented only AES GCM 128 support,
there could be easily added support for other ciphers as well in the future. This constant is
mapped to appropriate string used in Crypto API that describes cipher in kernel’s Crypto
API. The mapping is done inside kernel, so there is type safety guaranteed and all imple-
mentation details, such as which cipher implementation and its memory organization will
be used, is held by kernel transparently to user space.
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Field sa_socket is referring a socket on which handshake was done and the data trans-
mission will be done. Bound socket should respect type parameter supplied when AF_KTLS
socket was created using socket(2) – UDP socket for SOCK_DGRAM (in this case DTLS will
be used) and TCP socket for SOCK_STREAM (TLS will be used).

The last field sa_version specifies TLS or DTLS version. Currently there is support
for 1.2 TLS/DTLS. Introducing this field makes the implementation of AF_KTLS ready to
be extended with possible new future standards. Older versions are not considered to be
implemented since they should be substituted with the newer ones.

Once there was done bind(2) on AF_KTLS socket, user space should supply all commu-
nication configuration based on handshake (IV, key, salt for receiving and sending). This
is done by using setsockopt(2) call. The configuration can be received back to user space
by calling getsockopt(2) with appropriate optname.

Once the communication is over, user space should call close(2) to correctly deallocate
socket and free all resources used by socket in the kernel.

4.6.5 Supported System Calls for Data Transfers

System calls described in subsection 4.6.4 are used to configure AF_KTLS for transmission.
To actually transfer data, there are supported copy-less system calls such as splice(2) or
sendfile(2). For splice(2) instantiated and correctly prepared AF_KTLS can be used as
source and destination in copy-less transfers.

To make possible to use AF_KTLS socket as a source, there has to be implemented appro-
priate splice_read operation in struct proto_ops kernel structure. The implementation
introduces tls_splice_read, the prototype of such operation is following:

Listing 4.3: Prototype of splice_read function
1 ssize_t tls_splice_read ( struct socket *sock ,
2 loff_t *ppos ,
3 struct pipe_indoe_info *pipe ,
4 size_t size ,
5 unsigned int flags );

The very first parameter sock is a pointer to instantiated socket structure. Since
splice(2) system call requires one of the arguments to be a pipe, pipe refers to pipe
where pages should be given. Argument size conforms to data size that was requested to
be read and flags are used as additional options (see splice(2) documentation for list of
all available flags).

To support copy-less writing to AF_KTLS socket, there was introduced tls_sendpage
operation, which conforms to sendpage operation of struct proto_ops structure. The
prototype of the implemented function is following:

Listing 4.4: Prototype of sendpage function
1 ssize_t tls_sendpage ( struct socket *sock ,
2 struct page *page ,
3 int offset ,
4 size_t size ,
5 unsigned int flags );

The first parameter is, again, a pointer to instantiated socket structure. The second
parameter is a list of pages that should be written to AF_KTLS socket. Parameter offset
describes offset (not used in AF_KTLS). Besides available user space flags that can be supplied
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in splice(2) system call, additional flags specified by kernel, such as MSG_MORE if there are
going to be more pages sent or MSG_OOB if out of bound data are transferred (not supported
by AF_KTLS).

Moreover the implementation supports system calls commonly used for example on
Berkeley sockets – sendmsg(2) and recvmsg(2). These system calls are the generic ones
and are directly mapped to appropriate kernel_sendmsg() and kernel_recvmsg() ope-
rations. These system calls are using struct msghdr which can pass additional ancillary
data (see sendmsg(2) or recvmsg(2) for more info). This structure is mapped by ker-
nel to kernel’s structure, which adds additional in-kernel related attributes. Mostly user
space uses “lightweight” system calls such as send(2) and recv(2) to simply pass directly
buffer with data (not scatter/gather array as in sendmsg(2) or recvmsg(2)). These system
calls are mapped to more generic kernel_sendmsg() and kernel_recvmsg() implemen-
tations by kernel before requested operation is called (the same applies to sendto(2) and
recvfrom(2)). There can be even called write(2) and read(2) system just like on a
file descriptor. These system calls get mapped to kernel_sendmsg(), kernel_recvmsg()
respectively as well.

4.6.6 Synchronized User Space Operations on AF_KTLS and Bound Socket

A very important note for user space is how both – bound and AF_KTLS sockets should
be handled. The AF_KTLS socket is basically a kernel space wrapper above the bound
socket which does TLS/DTLS record assembling or disassembling, MTU handling in case
of sendpage operation and encryption or decryption. Important is to notice that AF_KTLS
does caching as well, based on asynchronous record decryption explained in section 4.6.2.
User space has to follow the implementation specific requirements.

It is not possible to use both, AF_KTLS and bound socket from user space (without ex-
plicit synchronization). Once AF_KTLS is used, it is expected that user space uses this socket
for data transfers and uses bound socket only if an error occurs or there are received control
messages that cannot be processed by AF_KTLS socket. If user space uses both AF_KTLS and
bound socket at the same time, received data and sequence numbers will become inconsis-
tent. If the underlying protocol is TCP, there could be requested a re-handshake since state
that has to be maintained due to secured connection becomes inconsistent in user space
library (OpenSSL, GnuTLS or any other implementing TLS/DTLS) and in AF_KTLS. For
UDP socket bound (DTLS in use) there can be received same data multiple times due to
sliding window and its state.

If user space is serving any control messages, new key material has to be passed to
AF_KTLS module if used in order to use renewed session. The cache used within AF_KTLS
module gets correctly flushed if there is done any operation that requests TLS/DTLS state
change to guarantee TLS/DTLS session consistency.

It is recommended for user space to respect these restrictions otherwise applications
could be prone to reply attacks.

4.6.7 Supported and Unsupported Flags for Operations

Currently there are supported two bound socket types – TCP and UDP sockets. The im-
plementation design allows to extend support with other socket types as well (such as Unix
sockets, or socket type for SCTP protocol).

Each socket can have different requests. One of the requirements that AF_KTLS has, is
to have MSG_PEEK support on a bound socket. This flag tells socket to read data but not
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to remove them from the receiving queue, which will be removed only if the record could
be processed. If an error occurs during record processing, there has to be left record in
receiving queue for user space to handle it.

Handling other flags defined on sockets (such as MSG_PEEK) is worth to consider for
AF_KTLS and they require a discussion at the kernel mailing list.

There has to be also stated, that even AF_KTLS uses kernel’s generic kernel_recvmsg()
and kernel_senmsg() interface there are differences in socket handling. For example re-
moving a record from receiving queue differs for UDP and TCP sockets. This removal
shouldn’t copy data from receiving queue (since they were already copied once peek was
done). On UDP socket this can be performed by reading zero bytes from the bound socket.
On the other hand, TCP requires to fully specify length (since TCP is streaming protocol,
there is no explicit end of the record like on a UDP datagrams) and MSG_TRUNC flag.

4.6.8 Linux Crypto API and AF_KTLS

Thy Linux Crypto API was used in order to do encryption and decryption for TLS and
DTLS records. AES cipher with key size 128 bits was chosen for the traffic encryption in
Galois Counter Mode (AES GCM) because of its usage.

The Linux Crypto API provides a suite of implemented ciphers available within the
kernel. These ciphers can be used in various modes and can have architecture dependent
implementation. There is a way how to describe cipher that should be used, and mode
which should be applied. The chosen cipher AES GCM has a string identifier “gcm(aes)”.
By supplying this parameter besides all of the necessary configuration, Linux Crypto API
does AES GCM encryption or decryption.

The very first implementation of AF_KTLS was using “gcm(aes)” implementation of AES
GCM. Unfortunately the decryption and encryption was too slow, much slower than user
space AES GCM implementation in GnuTLS on tested hardware. This issue was analyzed.
When using “gcm(aes)”, Linux crypto API uses AES implementation, which does not use
optimized AES-NI instructions. On x86_64 architecture, Linux crypto API chooses AES
implementation which is implemented with basic x86_64 instructions. Moreover, the GCM
part is computed separately independently on desired cipher type (GnuTLS can be forced
to override CPU flags that clarify whether AES-NI instructions are available during run
time by exporting GNUTLS_CPUID_OVERRIDE=1 environment variable, this is applicable for
OpenSSL as well by exporting OPENSSL_ia32cap=~0x200000200000000).

Nevertheless, there are available implementations which support AES-NI instructions.
There is available “rfc4106(gcm(aes))” implementaton that was intended to be used
with IPsec Encapsulating Security Payload (ESP) [14]. This implementation was done by
Intel and it uses AES-NI optimized instructions, moreover GCM part is not done sepa-
rately, so “rfc4106(gcm(aes))” on x86_64 is a standalone cryptographic driver (whereas
“gcm(aes)” uses “gcm” driver for GCM computation and “aes” driver for AES encryp-
tion/decryption). The implementation of “rfc4106(gcm(aes))” consists of multiple im-
plementations of AES GCM depending on targeted CPU. If targeted CPU supports AVX
of version 2 (which contains AES-NI instructions), there is chosen the most powerful opti-
mization available. There are also available optimized version for AVX of version 1, SSE
and basic (core) x86_64 instructions. Since the implementation is hardly dependent on
CPU used, one can find implementation under arch/x86/crypto/aesni-intel-glue.c in
Linux git repo tree.

The reason why “rfc4106(gcm(aes))” implementation covers implementation using
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x86_64 that could be reused from “gcm(aes)” instructions is twofold. The first one is,
that Linux crypto API uniquely identifies driver by its name. So if there would be no AVX
extension nor SSE available, “rfc4106(gcm(aes))” would not have any implementation
available.

The second reason is, that “rfc4106(gcm(aes))” requires different memory organiza-
tion in passed scatter lists for encryption and decryption (see RFC 4106 for more info how
associated authentication data are organized [14]). This is also reason, why it is harder to
switch to different crypto driver in AF_KTLS, since memory organization for different crypto
drivers can differ. That’s one of the reasons why should AF_KTLS kernel module encap-
sulate crypto API and its configuration (in comparison the first AF_ALG implementation
where crypto driver was specified from user space).

Facebook proposed one patch in sent patchset [49], that added RFC 5288 [16] support
to Linux Crypto driver. Instead of introducing own AES GCM implementation, Facebook
reused the one from RFC 4106 [14]. The difference is, that RFC 5288 requires associated
data to be padded to 21 bytes and “key” is of length 20 bytes, where 16 bytes are actual
key and 4 bytes are salt (nonce implicit). Explanation of AES GCM and different RFCs is
out of scope of this text. For more details refer to appropriate RFC [14, 16].

4.7 Optimization Design Based on Specific Scenario
Following sections discuss designed optimizations based on available Linux kernel system
calls. These optimizations reflect particular scenarios which are possible to optimize based
on the current AF_KTLS kernel module implementation.

4.7.1 Optimization of File Transfer

With sendfile(2) optimization, we want to optimize copy content from a file to user space
just for encryption and then copying it to socket sending queue:

Listing 4.5: Use case for sendfile(2) optimization
1 read(fd , buf1 , size)
2 encrypt (buf1 , buf2 , size)
3 send(sd , buf2 , size)

Calling read(2) causes one context switch. During this context switch, data from file
are copied to buf1. Call that is issued in the kernel is tightly bound to file type fd and it
depends on Linux Virtual File System layer. It can be a local file on a local hard drive or
even a file from a network file system. Ideally this file can be cached in kernel’s page cache
memory but the copy has to be issued every time read(2) is called in order to fill user’s
buffer buf1.

After the content is copied to buf1, context can be switched back to user space where
is issued encryption. Implemented cipher AES GCM is more effective when destination
buffer differs from source buffer. After the encryption, encrypted data can be sent to socket
descriptor sd.

If we summarize this approach, there can be seen 2 context switches – one for read(2),
one for send(2). We do not allocate any memory, however we do 2 copies – one when
read(2) is called to copy the content and one in send(2) in order to queue encrypted
content of buf2 in socket sending queue.
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If we look at originally proposed optimized scenario with sendfile(2), we get one only
following system call:

Listing 4.6: Optimized use case of sending a file
1 sendfile (fd , sd , /* offset */NULL , size)

We do not copy anything to user space and all work is done in kernel space. It costs us
one context switch, but if we look more closely we have to read content of the file and pass
it to the socket descriptor sd.

The current implementation is using already implemented kernel routines on VFS layer
that does copy-less reading (it passes pages from page cache), if pages are not cached. After
it, pages are passed to sd via kernel_sendpage() adapter, which issues tls_sendpage()
function of AF_KTLS socket. This function accepts page (among others parameters), does
encryption and record assembling based on MTU and sends encrypted content to the socket.

AES GCM is more effective when the encryption is not done in situm. This involves
allocation of memory that would be passed to the socket. Current implementation preallo-
cates memory on socket creation and reuses this memory each time a tls_sendpage() is
issued. After encryption there is called kernel_sendmsg() on appropriate socket. Function
kernel_sendmsg() is an adapter for appropriate sendmsg(2) implementations based on
socket type. Implementations of TCP and UDP sockets does copy in sendmsg(2) routines.
The memory used in sendmsg(2) for content cannot be queued in the socket queue, because
it can be reused after sendmsg(2) call.

4.7.2 Optimization of OpenConnect VPN

The scenario we want to optimize is listed in 4.7. This scenario is applicable for OpenVPN
as well.

Listing 4.7: OpenConnect use case to be optimized
1 recv(tun , buf1 , size)
2 decrypt (buf1 , buf2 , size)
3 send(sd , buf2 , size)

There are used two syscalls - recv(2) and send(2), so we have two context switches
involved. By calling recv(2), kernel issues appropriate recvmsg(2) implementation of
TUN device socket in kernel_recvmsg() which does one copy. By calling send(2) there
is done one more copy to sd socket sending queue. To sum it up, we have two copies, two
context switches.

The optimized version can use splice(2), with AF_KTLS socket sd like listed in 4.8. This
optimization can be seen on figure 4.3, which conforms to optimized version of transmission
demonstrated in figure 2.2.

Listing 4.8: Optimized OpenConnect use case (simplified pseudo – code)
1 splice (tun , pipe)
2 splice (pipe , sd)

There cannot be used sendfile(2) (see section 5.1 for more info). With this approach,
context switches will not be saved. There are still two context switches involved, but there
is no copy done. Section 5.1 analyzes splice(2) system call and its implementation details.
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Figure 4.3: A diagram of transmission in the implemented AF_KTLS, dotted arrows pinpoint
copy-less operations

HAProxy

All of the optimizations designed in section 4.7.2 are also applicable for HAProxy. HAProxy
stands for High Availability Proxy [3]. It is a reliable and very fast implementation of an
open source load balancer. According to project’s homepage it is an open source standard
for load balancing of TCP and HTTP protocols. It is used by big clouds solutions and the
optimization designed in OpenConnect VPN could be applicable in HAProxy.

On figure 4.4, there can be seen a basic principle of HAProxy usage. It does not use
TUN device as OpenConnect does. Instead, HAProxy reads records from one interface and
sends them to another. HAProxy can be configured to use TLS in order to serve encrypted
traffic (there are specific versions that support SSL). If HAProxy is configured to use TLS,
the traffic is decrypted before it is sent to an output interface. In that case, the scenario
of sending records is exactly the same as for OpenConnect (but TUN device is substituted
with a socket). This makes HAProxy another candidate for optimization with AF_KTLS
kernel module.
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Figure 4.4: A diagram of a load balancing in HAProxy
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Chapter 5

Verification and Testing of The
Implementation

In order to estimate performance improvement of previous implementation, in this section
we introduce our designed tool for benchmarks based on OpenConnect, HAproxy imple-
mentation and file transfer use cases. There is also introduced the main idea of testing and
implementation verification.

5.1 Limitations of sendfile(2) System Call
The original idea of optimizing copies to user space was based on use sendfile(2) syscall.
This system call has following prototype:

Listing 5.1: Prototype of sendfile(2) function
1 ssize_t sendfile (int out_fd , int in_fd , off_t *offset , size_t count );

The purpose of this system call is to transfer data from in_fd to out_fd without
copying data to user space. This is handy when one wants to transfer data efficiently
without necessary copying to user space. For example a web server can use sendfile(2)
syscall to send a file from a local disk drive to a socket without need to iterate over content
of file, which would be copied to user space and from user space to the socket.

Basically, sendfile(2) transfers count bytes from file referenced by in_fd file descrip-
tor to file descriptor out_fd. If offset parameter is not NULL, offset describes offset
within the file (to be more accurate, see sendfile(2) manual page).

The implementation of sendfile(2) in Linux kernel is based on splice(2) system call.
The prototype of splice(2) is following:

Listing 5.2: Prototype of splice(2) function
1 ssize_t splice (int fd_in ,
2 loff_t *off_in ,
3 int fd_out ,
4 loff_t *off_out ,
5 size_t len ,
6 nsigned int flags );

This system call was designed to transfer data between file descriptors without copying
to user space like sendfile(2) does. The difference here is that splice(2) syscall operates
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on pipes, so one of the arguments has to be a pipe (source or destination). This system call
is more universal and there can be implemented sendfile(2) syscall using splice(2) in
user space. However this would lead to more context switches and a need of a pipe creation.

System call splice(2) is not part of POSIX standard. It is not portable, for example
BSD does not introduce same system call. However, there can be seen system calls like
sosplice(2), somove(2) on BSD systems with different semantics, not part of POSIX as
well.

System call sendfile(2) is Linux specific too, it is not considered to be portable. On
the other hand, BSD systems introduce system call with exactly same name but slightly
different semantics (and different prototype).

The implementation of splice(2) is very effective and does zero copy of data when
transferring. The implementation operates directly on pages because of effectiveness. When
there is issued splice(2) in the Linux kernel, pages are transferred from source to destina-
tion without any need of copying. This implementation is very effective, but involves special
care of pages. For example when pages are moved to a pipe, they cannot be overwritten
(to be more precise, there cannot be overwritten parts of pages that are given to a pipe).
The underlying logic is discussed in 4.6.1.

There can raise a question why there is used a pipe as a mediator. This was heavily
discussed on mailing list when splice(2) system call was introduced [28]. One of the core
limitations of sendfile(2) is a restriction that this system call cannot operate on two
or more buffers. There cannot be supplied any flag like SPLICE_F_MORE for splice(2).
Calling sendfile(2) involves iteration over in-kernel VM page cache so each requested
page is sent via appropriate sendpage operation (with respect to offset and size that needs
to be processed). Once the last page is going to be processed, sendpage operation is called
without MSG_MORE flag that tells sendpage implementation that no more pages are going
to be processed in the current action.

By calling splice(2), user space can process multiple input buffers by explicitly telling
that there are more caches to be process by supplying SPLICE_F_MORE. Since splice(2)
uses pipes, this flag is useful mostly for destination file descriptors. Code snippet 5.3
demonstrates a usage of splice(2) call when multiple input buffers are processed (this
cannot be simulated using sendfile(2) as Linus Torvalds pointed out [28]).

Listing 5.3: Example of splice(2) chaining
1 splice (fd_in1 , NULL , pipe_out , NULL , len1 , 0);
2 splice (fd_in2 , NULL , pipe_out , NULL , len2 , 0);
3 // fd_out will consist of fd_in1 , fd_in2 without user space copy
4 splice (pipe_in , NULL , fd_out , NULL , len1 + len 2, 0);

Both system calls, sendfile(2) and splice(2) use pages. System call sendfile(2) is
implemented on top of splice(2) system call with use of a private pipe, but requires mmap
operation defined (available file page cache). This approach limits sendfile(2) so it cannot
be used with file descriptors that refer to a streaming device. On the other hand this is one
of the key benefits of using splice(2). Having explicit pipe gives user space an ability to
correctly recover if an error occurs on receiving file descriptor. If data are read from source
file descriptor (that could be a streaming device for example) and written to the pipe using
splice(2), subsequently there is issued splice(2) call which transfers data from pipe to
destination file descriptor and an error occurs on destination file descriptor, data are still
available in the pipe so user space can decide what to do in such error situation. If there
would be no pipe, data would be (possibly irrecoverably) lost.
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Not all file descriptors (or socket descriptors) support sendfile(2) and splice(2)
system call. A file descriptor can be used as a source or as a destination. On implemen-
tation level, we are considering the file descriptor to be source of data or receiver of data,
source of pages or consumer of pages. For socket implementation it means, that we need
to define splice_read operation when defined socket is used as a source in splice(2)
call or sendpage when defined socket is used as a destination in splice(2) system call
(analogically for sendfile(2)). Explanation to socket operations is given in section 4.6.5
section.

Not all sockets in Linux kernel can be used as source or destination in splice(2) system
call. For example datagram socket from AF_INET family (UDP socket) cannot be used as
a source in splice(2) system call, because there is no splice_read operation defined in
proto_opts structure.

5.2 The Cost of a Context Switch and Data Copy
Operating system by its definition provides a set of system calls that can a process is-
sue. Processes are running in unprivileged mode so there is supported encapsulation and
safety between processes. The mechanism behind executing system call is very difficult and
there have to be given spacial care, since system calls are the only way how can a process
communicate with the world.

If we look introspectively on Intel x86 architecture family, which is the leading architec-
ture on desktops, the way how to perform a system call was to issue int 0x80 interruption
in the past. This instruction is pretty expensive. Some operating systems implemented
system calls by issuing invalid instruction in order to avoid the cost of int 0x80 instruc-
tion [30].

For executing instruction that does system call on Linux is responsible standard C li-
brary. Functions from this library do all the work necessary to perform system call (such as
arguments preprocessing if needed). C on Linux x86 in ELF format uses cdecl calling con-
vention because of architecture support. C declaration calling conversion (cdecl) expects
parameters on the stack, Gnu libc wrapper should ensure that these parameters are passed
in correct registers and that correct number of system call is issued (on x86 architecture,
system call number is passed in AL, AX, EAX, RAX register respectively based on architecture
bit version). How arguments of a system call are passed to the kernel is heavily dependent
on architecture and kernel’s ABI for particular architecture.

Once the system call is executed, the return value of system call is handled by Gnu
libc wrappers, which names correspond to system calls. The convention of return value
says that negative return values mean errors. If a negative number is returned from kernel,
the absolute value of return value (on x86 is return value placed in AL, AX, EAX or RAX) is
assigned to errno variable (Gnu libc implements errno as a macro, that ensures that the
access of errno value is thread-safe). On error, Gnu libc wrappers return -1 to indicate
an error. There can be other post-processing done depending on the actual system call
semantics.

There is a possibility to call directly a system call that does not have implemented Gnu
libc wrapper. More info can be seen in systemcall(2) man page.

Since system calls are quite common, there was optimization done on x86 architecture.
This architecture tends to be always backwards compatible with previous generations, so
there can be still executed int 0x80 interrupt in order to call kernel’s system calls. Modern
operating systems, as Linux is, implement a mechanism called Virtual Dynamically Linked
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Shared Objects, more known in an abbreviated form vDSO. This mechanism makes system
calls faster. By using vDSO, there can be mapped kernel space routines into user space
process. The routines that can be mapped have to be carefully chosen – there can mapped
only routines that are safe to handle from user space (like gettimeofday(2), getpid(2)).
More difficult routines (such as open(2), sendmsg(2), etc.) require big kernel processing,
checks and logic, so there is issued a “real” system call. More information regarding vDSO
can be found in vdso(7) man page.

On x86_64 architecture, system call is currently implemented by using syscall in-
struction (this instruction is not available on AMD processors and is invalid on x86 32 bit
architecture; there is available sysenter with different handling).

There is also significant difference in system call type. If a system call can immediately
return there is a fast path mechanism in Linux kernel. This can be applied to system calls
such as sendmsg(2), which should not block. On the other hand, there are system calls
that can block. It can be expected that there will be a context switch so kernel prepares
for it.

Once we enter kernel code, there has to be ensured that memory management is consis-
tent, so the kernel can correctly handle pointers (both, from user space and in the kernel).
To ensure this, Linux maps kernel memory into each process memory. The process cannot
directly use this memory, but once the process does context switch, the kernel does not
have to invalidate memory management unit (MMU) for correct addressing (if there is not
scheduled another process). This has a serious impact, since the process cannot use possibly
whole range of a pointer. On 32 bit architecture there is no possibility to address whole
range (232 – 4GiB) without any special care. On 64 bit architecture, this is not a big issue
now because limit 264 is currently not reachable. In the kernel, there can be seen terms like
highmem and lowmem, which correspond to kernel virtual address space – highmem mapped
into upper part of process virtual address space (lowmem).

If we consider these optimizations, measuring a context switch is very hard. There were
approaches to measure the cost of a context switch [38], but all of them approximate actual
cost because of complexity and factors that affect a context switch time. Nevertheless
it appears that primary focus on a context switch is not necessarily a bottleneck on x86
architecture. On the other hand, OpenConnect can be used on different architectures, such
as ARM or MIPS where design and cost of a context switch is different.

5.3 Benchmarks Design
There were introduced ideas behind OpenConnect implementation in section 4. OpenCon-
nect reads TLS or DTLS records from a socket, decrypts them and sends them to TUN
device in order to do routing in the kernel. All benchmarks tend to simulate scenarios listed
in sections 4.7.1 and 4.7.2.

Since TUN device is a file of a special type, the implementation qualifies TUN device as
a special socket type (see drivers/net/tun.c of Linux git tree for implementation details).
In order to focus as strictly as possible on bandwidth optimization, there was written a tool
that does separate benchmarks to specific sections, which should be benchmarked.

ehe implementation of this tool is part of appendices, it uses GnuTLS library in order
to perform handshake and based on an established connection, passes key material with
sequence numbers to AF_KTLS (see ktls.c for implementation details). There are also
implemented scenarios that simulate OpenConnect, HAProxy and unoptimized sending a
file as it is used nowadays.
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The following subsections discuss implemented benchmarks and what scenarios they
simulate. The implementation of benchmarks can be found in source file action.c of
implemented af_ktls-tool.

5.3.1 Benchmarks of file transfer

To benchmark Facebook’s approach of sending a file using sendfile(2) system call, there
were designed appropriate scenarios. Optimization design can be seen in section 4.7.1.

Since we want to compare results, by supplying ––sendfile-user FILE one can test
currently used approach of sending files via TLS or DTLS protocol. The application se-
quentially reads file to a buffer, encrypts it and sends it via user space library (GnuTLS).
There can be specified payload which describes buffer size (payload carried within TLS or
DTLS record).

DTLS deserves a special note. Since benchmarks that use DTLS use a UDP socket,
there is no congestion and delivery guaranteed. If a user supplies a file that size is too big,
most likely some parts of the file will be lost, since receiving queue fulfills and kernel starts
to drop UDP datagrams if the server does not read datagrams fast enough.

Optimized version uses implemented AF_KTLS Linux kernel module, that does record
assembling and encryption based on handshake done in GnuTLS. To run sendfile(2)
with AF_KTLS socket, there can be specified ––sendfile FILE. Implemented tool correctly
instantiates implemented AF_KTLS socket and uses this socket to send desired file (the
payload is configurable via setsockopt(2) call and implemented tool can adjust payload
by supplying ––senfile-mtu SIZE).

Linux kernel offers an ability to map a file into memory and operate on file’s content in
memory. This operation can be done using mmap(2) system call. This approach was also
studied. A file can be mapped by supplying ––sendfile-mmap FILE option. The content
of the file will be mapped to memory and implemented tool will iterate over the content, it
will encrypt it using GnuTLS and send it. The payload for transfer can be also adjusted.

There were also tested scenarios when there was no TLS/DTLS encryption and decryp-
tion involved. This helped to compare the cost of system calls used without TLS/DTLS im-
pact. Since sendfile(2) can be emulated using splice(2), this scenario was also studied.
These scenarios can be evaluated by supplying ––raw-sendfile FILE, ––raw-splice-emu
FILE and ––raw-sendfile-mmap FILE.

5.3.2 Benchmarks of OpenConnect and HAProxy simulation

In order to test OpenConnect and HAProxy scenario, there were designed benchmarks,
which focus on particular splice(2) optimization as stated in section 4.7.2, there were
designed benchmarks based on OpenConnect implementation. These benchmarks are also
applicable to HAProxy as stated in section 4.7.2. The current implementation of Open-
Connect and HAProxy uses approach listed in section 4.7.2.

Since OpenConnect uses TUN device, there was designed a scenario, which reads from
an AF_KTLS socket ksd (which does decryption and record disassembling) and writes to a
pipe because of splice(2) system call design. With the second splice(2) system call
the decrypted record is sent to a socket sd, which simulates TUN device. For testing
purposes, there was initialized one connection with a server. The server was receiving
unencrypted data, which were encrypted and echoed back in TLS/DTLS record. This
approach corresponds to designed optimization listed in section 4.7.2 (on client side). The
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key part of benchmark is listed in 5.4. There has to be done initial send of data, that are
transmitted between the client and the server.

Listing 5.4: Optimized OpenConnect and HAProxy use case
1 send(sd , buf , mtu , 0); // initial send
2 start_timer ();
3 while (! benchmark_should_finish ) {
4 splice (ksd , NULL , pipe [1], NULL , TLS_RECORD_MAX_LEN , 0)
5 splice (pipe [0], NULL , sd , NULL , TLS_RECORD_MAX_LEN , 0)
6 }

The implementation uses splice(2) so there is no copy to user space involved even
there has to be a pipe used. There is no possibility to use sendfile(2) system call in order
to save one context switch. The reason why sendfile(2) is not possible to use is analyzed
in section 5.1.

This approach was also AF_KTLS involved – just with raw TCP/UDP sockets without
TLS/DTLS. Refer to ––splice–echo–time TIME and ––raw–splice–echo–time TIME ar-
guments in designed benchmark tool. The payload can be adjusted by supplying ––payload
SIZE argument (defaults to 1400).

5.4 Notes to Benchmarks and their Visualization
Even there is implemented encryption using user space library GnuTLS, OpenSSL was
not studied. The reason is that OpenSSL shares cryptographic code implementation that
does AES GCM encryption and decryption with GnuTLS. The implementation of AF_KTLS
socket was tested with OpenSSL by Dave Watson from Facebook who proposed one patch
to make AF_KTLS work with OpenSSL. I accepted this patch.

There were used sockets of type AF_INET, but AF_INET6 could be used as well (for sup-
porting other families, there has to be appropriate implementation for each socket family).
Implemented socket AF_KTLS works with AF_INET6, but there is no performance difference
expected from IPv6.

The original Facebook’s patch implementing TLS with AF_ALG was not included in
benchmarks, as mentioned in 4.4, there was no positive impact reproduced on tested hard-
ware. Moreover, the test case for OpenConnect and HAProxy scenario is not possible to
reproduce, since Facebook’s patch does not support splice_read operation.

There is implemented a server which can run in a separate thread. Running the server
in a thread affects benchmarks results because timer used counts time spent in user space
and kernel space for each thread. It is recommended to run the server part as a separate
process.

It is important to choose the correct timer to measure time. There are different timers
available on Linux. Since we want to analyze time spent in kernel space and in user space,
we have to choose appropriate timer. There was used ITIMER_PROF which decrements when
process spends in kernel space and user space as well. Upon expiration, SIGPROF signal is
delivered. See setitimer(2) man page for more info.

Another important note implies to operating system cache, since operating system does
caching in order to eliminate slow hard disk drive access (compared to memory access).
Before each run of a test there has to be forced cache flush. Linux kernel enables this by
writing appropriate value to /proc/sys/vm/drop_caches kernel’s virtual file. Dropping
cache can be explicitly done in benchmarks by supplying ––drop-caches (root needed).
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To avoid side channels introduced by filesystem or disk operations, tests were also evaluated
using tmpfs file system (which maps directly into memory).

There were implemented two types of benchmarks for OpenConnect (and HAProxy)
scenario. There are available timed benchmarks, which run specified benchmark for n
seconds (see *-time parameters). There can be also done specified number of transmissions
(see *-count parameters). It is recommended to run benchmarks for specified time in order
to avoid impact of various side channels. CPU runs in a power safe mode by default, only
if there is a heavy computation, the frequency is raised. This helps to save energy, but has
bad impact on tests, since CPU is not using its whole potential and frequency can vary
across tests.

5.5 Benchmark Results
The designed and implemented tool for benchmarks can run all studied scenarios based on
command line arguments passed. Benchmarks output is a readable text which is suitable for
a human. To process results of benchmarks automatically, there can be supplied ––json
argument, which tells the application to output results of benchmarks in JSON format.
There was designed automated visualization tool written in Python, which processes JSON,
computes statistics and makes visualization in Gnuplot or in an HTML format.

Automated bash script benchmarks.sh (part of appendices) executes all possible use
cases that are suitable for analysis and comparison. Benchmarks were executed on two
laptops with different configuration. Both laptops have support of AES-NI instructions.

5.5.1 Benchmark Results on Lenovo ThinkPad T540p

Initially were benchmarks done on a laptop Lenovo ThinkPad T540p with CPU Intel Core
i7-4900MQ, 2.80 GHz and 8GB RAM. The main issue was hard drive. There was no solid
state drive (SSD) and it appeared as a main bottleneck in optimization of file transfer
scenario.

When optimization of file transfer scenario was evaluated, there were big variances in
benchmark results. These variances were caused by inconstant access time on rotating
platters. Because of big variance, hardware was changed to Lenovo ThinkPad T440p with
a solid state drive. Nevertheless, results of benchmarks for T540p model with rotating
platters are also available on attached DVD but because of big variance caused by platters,
they are not analyzed here.

5.5.2 Benchmark Results on Lenovo ThinkPad T440p

The second run of benchmarks was done on Lenovo ThinkPad model T440p with CPU Intel
Core i7-4600U, 2.10GHz and 12GB RAM. This laptop has an SSD drive so there can be
expected smaller variances in access time. The benchmarks presented in following sections
were done on tmpfs filesystem because of constant access time.

There were evaluated test cases for different payload size – for payload of size 1280, 1400,
4000, 6000, 9000, 13000 and 16000 (each was run three times, these tests are also available
for T540p model as stated in section 5.5.1). Payload of size 1280 is relevant because it is
minimal payload that can be carried in IPv6 packets. MTU of size 1400 is close to Ethernet
limit 1500 (1400 is just payload, there are additional headers for protocols). Bigger payloads
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(16000, 1300) are nowadays not seen in regular traffic, but there can be seen jumbo frames
that can be up to 9000B on gigabit switches.

Benchmarks also covered both implemented protocols in AF_KTLS – TLS and DTLS. For
each benchmark scenario there were evaluated three runs and the highest rated result was
chosen. For comparison, raw TCP and UDP were also studied.

Since TCP and UDP records can follow different kernel code path when localhost is
used, there was created a testing environment using 2 laptops – Lenovo ThinkPad T440s and
Lenovo ThinkPad T540p (same as stated in sections 5.5.1 and 5.5.2). These laptops were
directly connected using crossed cable with manually configured IP addresses. Benchmarks
with server and client on the same host that were evaluated are available on attached DVD
as well. These benchmarks do not conform to the typical networking usage and because of
the different in – kernel paths, the results are not relevant for desired benchmark purposes.
Studying different kernel paths inside kernel for localhost in use is out of scope of this thesis.

All results of benchmarks are available on attached DVD as an HTML describing each
benchmark configuration and comparison. There are also available benchmarks on DVD,
which are not presented here (see 5.5.1).

Benchmarks of Transmission

In order to compare bandwidth, we evaluated benchmarks of sendmsg(2) and recvmsg(2)
on AF_KTLS socket in comparison to GnuTLS library – gnutls_record_send() for sending
and gnutls_record_recv() for receiving. Results of benchmarks can be seen on figures
5.1 and 5.2. The analysis is given in section 5.6.

The concrete numbers with comparison can be seen in appendices C.1 and C.2. As can
be seen on the plot, AF_KTLS socket implementation is slower than GnuTLS for both – TLS
and DTLS.

Benchmarks of Optimized File Transfer

Scenarios that were evaluated can be seen in simplified pseudo-codes 5.5, 5.6, 5.7 and 5.8.
The pseudo-code listen in 5.5 is a typical approach of sending a file over TLS/DTLS using
GnuTLS (OpenSSL can be used as well). This approach can be optimized with mmap(2)
system call, which maps the content of a file into memory (if there is enough available
memory). There was also studied sendfile(2) and splice(2) approach, the pseudo-
codes can be seen in 5.6 and 5.8. The same idea is shared with benchmarks, that test TCP
and UDP sockets (there is used TCP/UDP socket instead of AF_KTLS and GnuTLS call
gnutls_record_send() is substituted with send(2) with appropriate parameters).

For comparison figures 5.3 and 5.4 demonstrate raw TCP and UDP traffic. The
splice(2) benchmark was implemented to simulate sendfile(2), but the pipe was ex-
plicitly in user space. As stated in section 5.1, sendfile(2) system call is implemented
in the kernel using routines as splice(2) would be called. The splice(2) scenario was
intended to simulate and prove that sendfile(2) is as fast as splice(2) system call (if
we consider cheap context switch, see 5.2). This contention was proven by benchmarks. As
we can see, sendfile(2) and sendfile(2) emulation using splice(2) outperforms user
space sequential reading and sending a file because of zero copy optimization.

There was transmitted 100MB file. It was ensured that the whole file was transmitted
without UDP drops in case of UDP and DTLS benchmarks.
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Figure 5.1: Results of transmission benchmarks – DTLS
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Figure 5.2: Results of transmission benchmarks – TLS
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Listing 5.5: A simplified user space file transfer scenario – user-send

1 for ( size_t total = 0; total != filesize ; total += payload ) {
2 read(fd , buf , payload );
3 gnutls_record_send (session , buf , payload );
4 }

Listing 5.6: A simplified sendfile(2) file transfer scenario
1 // ksd is initiated AF_KTLS socket descriptor
2 senfile (ksd , fd , NULL , filesize );

To analyse implemented AF_KTLS Linux kernel module, there were evaluated similar
benchmarks to raw TCP and UDP sending a file, but the file was encrypted. For user-send
and mmap(2) scenarios, the file was encrypted using GnuTLS library with user space copy;
for sendfile(2), AF_KTLS was used. The sendfile(2) emulation using splice(2) was
not studied because of shared implementation with sendfile(2).

Listing 5.7: A simplified sendfile(2) file transfer scenario
1 mem = mmap(NULL , filesize , PROT_READ , MAP_PRIVATE , fd ,/* offset */ 0);
2 for ( size_t sent = 0; sent < filesize ; sent += payload ) {
3 gnutls_record_send (session , mem + sent , MIN(payload , filesize - sent ));
4 }

Listing 5.8: A simplified splice(2) transfer scenario – user space sendfile(2) emulation
1 for ( size_t total = 0; total != filesize ; total += payload ) {
2 splice (fd , NULL , pipe [1], NULL , payload , 0);
3 splice (pipe [0], NULL , sd , NULL , payload , 0);
4 }

As can be seen on figures 5.5 and 5.6, AF_KTLS outperforms user space reading and
encrypting by 11%.

The exact numbers with comparison of presented benchmarks are available in ap-
pendix C.3 and C.6.

Benchmarks of OpenConnect Scenario

The last presented benchmarks tend to simulate OpenConnect scenario – reading from TUN
and sending to the appropriate socket as and its optimized form using splice(2) system
call as described in 4.7.2.

As can be seen, the current approach used nowadays using GnuTLS outperforms AF_KTLS.
The exact numbers of presented benchmarks for each TLS/DTLS payload tested with com-
parison are available in appendices C.9 and C.10.
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Figure 5.3: Results of sending a file from tmpfs – UDP with payload 1400B
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Figure 5.4: Results of sending a file from tmpfs – TCP with write of 1400B chunks
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Figure 5.7: Results of benchmarks simulating OpenConnect – DTLS
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Figure 5.8: Results of benchmarks simulating OpenConnect – TLS
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5.6 Analysis of AF_KTLS Implementation and Limitations
According to benchmarks introduced in section 5.5, current AF_KTLS implementation ap-
pears to be slower than user space libraries. To study the bottlenecks, there were evaluated
benchmarks with perf, that recorded all the data necessary to diagnose bottlenecks in
implementation based on introduced optimization in section 5.3. There was transferred
a file, generated from /dev/urandom of size 1GB, with highest possible MTU using TLS.
According to perf, 99.74% of whole application run was spent in the kernel. Kernel used
fast path method for context switches (see section 5.2) – time spent in kernel to user context
switches was so negligible that perf reported 0%.

Besides other kernel processing (like permissions check, sendfile(2) system call over-
head, mapping to page reads etc.), there was only 66.61% spent in tls_sendpage() im-
plementation and its subsequent calls. 47.45% of total time was spent in RFC 5288 imple-
mentation, where 30.05% was the actual encryption. Besides that 11.73% of total time was
spent in data copy and 1.24% in additional memory allocation.

On the other hand, on sending there was spent 17.32% in kernel_sendmsg(). Ac-
tual transmission took only 7% and 4.23% of total time was spent on copying record to
sending queue. If we consider that the AES GCM encryption could be optimized to avoid
copy and allocation there could be ideally saved 12.97%. In our code can be also avoided
kernel_sendmsg() that does copy and rather use kernel_sendpage(), which ideally di-
rectly stores pages in sending queue of a socket. This approach could possibly save addi-
tional 4.23% of total time. In total, ideally 17.20% could be saved by introducing additional
optimizations.

There were also studied bottlenecks for OpenConnect and HAProxy optimization. In
benchmarks, 44.24% of total time spent in kernel_sendmsg(), where 38.28% of total
time spent in tcp_push() - on actual sending, 1.15% of total time spent in allocation
socket buffers (skb_stream_alloc_skb()) and nearly 2% on copy from kernel vector (in
copy_from_iter(), memcpy_erms()). On the other hand, 33.14% of total time spent in
splice_read operation, where 13.14% of total time spent in kernel_recvmsg() and a-
nother 2% on copy and allocation (skb_copy_datagram_iter(), copy_page_to_iter()).
Allocation and copy could be avoided as well to save additional 5%.

The main bottleneck in the transmission benchmarks is Linux Crypto API allocation
and copy (which is done twice in this scenario – when receiving and sending).

Even there were diagnosed bottlenecks, introducing new approaches with substituted
kernel_sendpage(), removed copy when receiving records and optimized RFC 5288 im-
plementation could uncover another issues and performance drawbacks due to different call
paths. Test was also evaluated with DTLS, results were similar so they are not explicitly
stated here (the only significant difference was time spent on actual transmission which was
lower because UDP does not need wait for acknowledgments).

5.6.1 GnuTLS and Linux Crypto API Comparison

To compare GnuTLS encryption and Linux Crypto API, there was evaluated a benchmark.
Linux Crypto API can be benchmarked with Cryptodev-linux tool, but at the time of
writing, there was a bug in Cryptodev-linux that made it impossible to run this benchmark
tool.

In order to do comparison, there was simulated transmission with af_ktls-tool, that
send and received 1,000,000 times a record with payload 1400 bytes (the data size is con-
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stant). Time spent in encryption and decryption is shown in table 5.9 (reported by perf).

Operation Linux Crypto API GnuTLS
AES GCM encrypt 10.35% 7.15%
AES GCM decrypt 11.40% 8.42%

Figure 5.9: Time spent in encryption and decryption when transmitting 1,000,000 times a
TLS record with payload 1400B

According to perf, 1.69% was spent on copy and 0.86% was spent on allocation in
Linux Crypto API (0.47% kfree() and 0.39% kmalloc()). This allocation is done only
if associated authentication data, plaintext and tag do not fit within a single page. The
current AF_KTLS implementation is chaining associated authentication data and tag with
preallocated pages for plaintext, so the allocation and copy are done always. By optimizing
Linux Crypto API with allocation and copy removal, similar results as in user space using
GnuTLS could be seen.

5.6.2 TUN/TAP Socket Implementation and its Limitations

In order to use TUN/TAP device with splice(2) system call, even TUN/TAP socket has
to have implemented splice_read and sendpage operations. Unfortunately, TUN/TAP
implementation currently supports only sendmsg(2) and recvmsg(2) system calls.

Lack of splice_read and sendpage implementation is a serious issue, since the original
idea of optimizing OpenConnect and HAProxy was to use splice(2) on a TUN device
socket. Since there is no implementation for splice_read, TUN cannot be used as a source
of data in splice(2) call. Lack of sendpage routine implementation makes it impossible
to use TUN as a destination in splice(2) and sendfile(2) calls.

To make OpenConnect or HAProxy optimization possible with AF_KTLS, there has to
be added implementation for splice_read and sendpage socket routines.

5.7 Testing the Implementation
In order to automatize testing and verify implementation, there were designed tests. Since
different system calls can have different paths inside kernel (as stated in the section 4.6.5),
there were designed benchmarks which test all possible cases.

Implemented af_ktls-tool tries to test implementation based on command line ar-
guments. If ––verify–sendpage was supplied, there is tested kernel_sendpage imple-
mentation. On the other hand, if ––verify–transmission was supplied, there are tested
sendmsg(2) and recvmsg(2) system calls (and system calls that are transparently mapped
to kernel_sendmsg() and kernel_recvmsg() as stated in section 4.6.5). The last sup-
ported transfer test issued on ––verify–splice–read tests kernel splice_read imple-
mentation.

All of the tests are performed on different payload that is transmitted. There are
covered test cases when data transmitted fit within one single page or they are spread
across multiple pages (or size cannot be sent due to TLS/DTLS record limit).

Data transmission is not the only part that needs to be tested. There has to be guaran-
teed correct socket error handling from kernel’s point of view so the kernel implementation
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does not cause crash when wrong arguments are supplied. To avoid such cases, there were
implemented tests, which can be run via ––verify–handling.

In order to test AF_KTLS window implementation, the implementation of AF_KTLS was
isolated and there was designed a test suite. Nikos Mavrogiannopoulos proposed a patch
that enhanced sliding window testing with cmocka support (a lightweight library to simplify
and generalize unit tests for C1).

The implementation of sliding window can be seen in dtls-window.c and tests can be
seen in tests/dtls-window.c. Tests can be automatically run by issuing make check.

1https://cmocka.org
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Chapter 6

Future Work & Vision of AF_KTLS

This chapter summarizes work that needs to be done in order to get AF_KTLS module
upstream. There are discussed possible uses of AF_KTLS that could benefit other user space
applications if the module would get merged by upstream.

6.1 Community Feedback
Even so the implementation was tested and is working, there was not proposed upstream
patch yet. The reason is, that there are still open issues and space for optimization that
should be considered, but the work was already published on GitHub 1 with all the notes
related to implementation.

Since Facebook was interested in optimization of sending files via sendfile(2), Face-
book engineer that was the author of original Facebook approach, Dave Watson, was
contacted. Based on source code review, he pointed out that current implementation of
AF_KTLS uses kernel_sendmsg(), which does a copy of the content to the sending queue
of a socket and kernel_sendpage() should be used instead. The communication is active
and there is possibility of future cooperation in order to get AF_KTLS upstream.

Lately Intel proposed a patch that was implementing TLS-type encryption into Linux
kernel [47] (there were also proposed TLS 1.0 support in 2014 [46]. The author of pro-
posed patch, Tadeusz Struk, was contacted on mailing list with a reference to AF_KTLS
implementation. He pointed out that current implementation is hard to extend with AES-
CBC-HMAC-SHA1 cipher. Nikos Mavrogiannopoulos, the principal author of GnuTLS,
argued that this cipher needs a lot of hacks to be implemented correctlyand it is not suit-
able for kernel space implementation. This cipher is also banned in HTTP/2.0 and it will
be dropped from next TLS version, TLS 1.3 [18, 27].

We expect more community feedback once implementation of AF_KTLS will be proposed
on kernel mailing list.

6.2 Work Needed to Optimize an SSL VPN
Based on work done in order to implement AF_KTLS and its analysis, there were found
bottlenecks in the current implementation. By solving these bottlenecks, AF_KTLS would
have better results, which would lead to OpenConnect optimization.

1https://github.com/fridex/af_ktls
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• The implementation of RFC 5288 should be optimized in order to avoid copy and
allocation. This allocation and copy is done when source does not fit within one single
page. The original author of Facebook’s patch, Dave Watson, is already working on
a patch that would avoid additional copy and allocation.

• To transparently support different actions on AF_KTLS socket based on decrypted
data, such as OpenConnect protocol support, there has to be added support for
Linux Socket Filtering, which is derived from Berkeley Packet Filtering. This will be
added once API of AF_KTLS will be stable.

• There should be introduced peek support for TCP and UDP that would not pop
records from receiving queue. This peek would return directly allocated pages in
socket receiving queue buffer (skbuff) so there would not be a copy involved.

• There should be substituted currently used kernel_sendmsg() call in AF_ALG with
kernel_sendpage() which should avoid copies in most situations. Nevertheless, TCP
and UDP implementations of kernel_sendpage() can do a copy based on sending
queue size.

• TUN device currently does not support splice_read and sendpage operations in
socket implementation (see section 5.6.2). In order to use TUN device with AF_KTLS
socket using splice(2), there should be introduced appropriate copy-less implemen-
tations in TUN device socket.

6.3 Work Needed to Merge Mainline Kernel
Even the implementation of AF_KTLS is tested, there are still open issues, that need to be
done before the AF_KTLS will be proposed upstream to be merged with mainline. In order
to propose AF_KTLS to upstream, there should be done work stated in section 6.2, but there
is additional work that needs to be discussed with upstream and community.

The very first issue is API design. Since Linux kernels are backwards compatible, once
there is added functionality, it should be consistent and ready to be supported.

One of the current API issues is lack of DTLS over TCP support. Even so DTLS was
designed to be protocol that would operate over unreliable underlying protocol (such as
UDP), but even over reliable protocol (such as TCP) [17], the current API design does not
allow to run TLS over UDP, which is correct (since TLS requires underlying protocol to
be reliable). There has to even added possibility to specify other underlying protocols (like
SCTP) for future enhancements.

Another issue are return values. Return values returned to user space are the only way
how a user can space diagnose what went wrong (note that libc assigns these values to
errno global variable as stated in 5.2). These return values have to uniquely distinguish
errors that occurred in the kernel space (such as bad decryption, bad record type, etc) so
user space can adopt control flow based on errors that occurred. There have to be deeply
analyzed errors and return values from crypto API, used sockets and AF_KTLS socket itself
(such as no memory when allocating etc.), so they can be correctly propagated to user
space. If there occurs a collision of return values with slightly different meaning, return
values have to be remapped to correctly distinguish errors.

Even so AES GCM is one of the currently most used modern ciphers, AF_KTLS could
be easily extended with support of different ciphers as well. The list of supported ciphers
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should be selected with respect to cipher usage, Linux Crypto API support and possible
visions to future use.

Current implementation of AF_KTLS asynchronous record decryption handling uses one
worker per module. It should be considered to add a worker per socket instance, since
workers are woken up every time a record arrives to the socket. If there is a socket which is
used heavily and another one that is not used so often, but asynchronous decryption can be
done occasionally, scheduled asynchronous decryption can uselessly wait in worker queue
and once it will be ready to serve a record, the record could be already received by user
space. Per socket worker would solve this, since worker will be instantiated for every socket
instance and all work scheduled would be only for one particular socket.

6.4 Other in–kernel TLS Implementations
As the code patches by Facebook, Intel indicate, our approach of a kernel TLS type en-
cryption and decryption is not new. Following subsections discuss about other kernels that
directly support TLS.

6.4.1 Netflix’s TLS SSL sendfile(2) Optimization

The same use case of sending files over TLS via sendfile(2) was already studied by Netflix.
Netflix implemented TLS into FreeBSD kernel in order to be benefited by sendfile(2) zero-
copy optimization [45]. The implementation is not public, but based on paper published,
the implementation was bound to OpenSSL library where authors introduced a new library
call SSLsendfile(). The idea of dealing with handshake and re-handshake is shared with
AF_KTLS socket implementation – these control messages were dealt by user space library and
all session configuration was sent to kernel by OpenSSL, which probed first if desired cipher
was supported. The main difference is that Netfix used kernel’s implementation only for
sending. If desired cipher was not supported by FreeBSD’s Open Crypto Framework[35, 37],
there was done fall-back to OpenSSL’s buffered sending implementation. Receiving was still
made by adopted user space library.

Netfix’s SSL sendfile(2) optimization was implemented even to nginx HTTP and
reverse proxy server2 in order to test performance impact. The results were not as good
as authors were expecting. The performance increased from 8.5Gps to 9Gps (cca 5.26%).
There were located reasons why performance gains were less then expected are the follo-
wing. The implementation of AES GCM in OpenCrypto Framework did in-place encryption
(which is not effective for AES GCM) and data were copied, since data coming from disc
drive were marked as read–only in FreeBSD. Another issue was AES-NI implementation,
which used floating point unit. FreeBSD normally does not save and restore FPU’s state
when a context switch occurs, but since Open Crypto Framework used FPU, the state had
to be stored and restored on context switch, which required additional computational power
that did not occur within OpenSSL library original approach [45].

6.4.2 Solaris’s SSL in Kernel – kssl

Solaris has an interesting feature called kssl [43]. It is a full TLS protocol implementation
in the kernel, but rather than implementing TLS on a socket, Solaris implemented a kernel
proxy configurable from user space (via ksslcfg) which does TLS completely transparently

2http://nginx.org
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to application layer. This benefits applications, since there is no need to add additional
TLS logic into applications but only TCP communication. The application can be bound
to port, that could be restricted by firewall not to be available on unwanted interface. SSL
proxy is then configured to transmit data between configured ports (the one that application
is bound to and SSL proxy port where application should be exposed). More info can be
found at [43].

6.5 Possible AF_KTLS Socket Usage
The implemented AF_KTLS kernel module can have various uses. DTLS, but mostly TLS
protocol is widely spread nowadays because they are standards of encrypted communication
on the Internet. The module is suitable for kernels 4.2 and newer. It is not possible to use
AF_KTLS with older kernels because of change in Crypto API interface 3.

There are use cases where splice(2) and sendfile(2) system calls are very efficient.
These system calls can be used on AF_KTLS socket, which fully supports them. These
system calls were designed for use cases when user space does not need an actual copy of
the content like OpenConnect VPN or HAProxy.

Since TLS and DTLS protocols were designed to be used on the Internet, AF_KTLS is
mostly, but not necessarily, suitable for network applications. Since there is implemented
asynchronous decryption based on record arrivals, AF_KTLS is suitable for applications which
do not wait in receiving queue. Based on asynchronous optimization design discussed
in section 4.6.2, AF_KTLS will benefit applications on multi-threaded CPUs, which could
execute decryption asynchronously. With this technique involved a user space application
will have decrypted content of a record available with cost of a copy.

Another benefit of AF_KTLS kernel module is the fact that there is reused well known
socket API transparently. This means that applications, that could be configured to o-
perate in both encrypted (TLS/DTLS) or plaintext mode (TCP/UDP), they can reuse
core implementation because of AF_KTLS transparent use. Handshake and initialization
of AF_KTLS could be done separately and the application logic can be reused. This pos-
sibility was limited since libraries like OpenSSL and GnuTLS offers functions, that wrap
the whole sending or receiving process above Berkeley sockets (gnutls_record_send(),
gnutls_record_recv() for GnuTLS, SSL_read(), SSL_write() for OpenSSL).

3https://lkml.org/lkml/2015/6/22/112
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Chapter 7

Conclusion

This thesis provides an analysis of the available software Virtual Private Network (VPN)
solutions and its performance on the Linux system. This analysis is then used as a basis to
determine performance bottlenecks, suggest performance improvements and further design
and implement the most promising of them.

During our analysis we identified that context switches from user space to kernel space,
which are common in software VPNs, are not considered a serious bottleneck on the Intel x86
family of processors. Our focus was set on data copies from user space to kernel space and
vice versa during the VPN packet transmission. The latter, according to our analysis, poses
the most significant performance bottleneck on current software VPN implementations
based on TLS or Datagram TLS.

The result of this thesis is a Linux kernel module which does TLS and DTLS transmis-
sion and reception in kernel space. The module utilizes key material established during a
TLS or DTLS handshake in user space. This reduces the required data copies and context
switches and hence potentially improving the performance of software TLS-based VPNs in
modern hardware, whenever used.

However, the benchmarks we performed on our implementation showed an unexpected
discrepancy between the expected performance benefits and the actual performance. Fur-
ther investigation uncovered a few rough edges on the Linux kernel’s internal interfaces,
which are summarized below. The current TCP and UDP internal API implementation
does not allow zero-copy operations, something that neutralises our data copy elimination
from and to user-space. Furthermore, the current TUN device implementation does not
support the operations necessary for zero-copy operation. This limits the usage of our
developed kernel module on TLS based VPNs without additional kernel modifications.

Another drawback we identified was located in the Linux Crypto API which is used
for AES GCM encryption within TLS/DTLS transmission. The current implementation of
AES GCM does allocation and copies the provided data to ensure alignment, something
which affects performance significantly. Consequently, we require few changes to the existing
Linux kernel in order for our module to achieve its full potential for our VPN use case.

On the other hand, despite the fact that our developed module was designed for use by
VPNs we identified several other use-cases which can take advantage of our module. That
is, encrypted file transfer over TLS or DTLS and packet forwarding (proxying) between
two sockets, one being TLS or DTLS – enabled. In the encrypted file transfer case, we
identified that our implemented Linux kernel module outperforms any available file transfer
mechanism over TLS/DTLS.
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Appendix A

Content of Attached DVD

Directory Description
af_ktls/ C source codes of AF_KTLS kernel module

online: https://github.com/fridex/af_ktls
af_ktls–tool/ C source codes of the tool used for benchmarks and verifi-

cation with shell script to automate testing
online: https://github.com/fridex/af_ktls-tool

af_ktls–visualize/ Python source codes of visualization tool for automated
statistics in HTML or Gnuplot generation
online: https://github.com/fridex/af_ktls-visualize

af_ktls–window/ testing application for AF_KTLS sliding window implementa-
tion
online: https://github.com/fridex/af_ktls-window

cryptodev–linux–dtls/ C source codes of unfinished implementation in Cryptodev–
linux

bin/ binaries built from source codes
docker–vpns/ shell scripts and Dockerfile to automatically set up testing

environment for Libreswan, OpenConnect and OpenVPN
online: https://github.com/fridex/docker-vpns

html/i7-4600U-2.10GHz/ results of benchmarks in HTML performed on CPU Intel
i7–4600U

html/i7-4900MQ-2.80GHz/ results of benchmarks in HTML performed on CPU Intel
i7–4900MQ

latex/ LATEX sources of this thesis
vpn-benchmarks/ scripts and text files with results of VPN benchmarks based

on Docker container in docker–vpns/
projekt.pdf PDF version of this thesis built from template in latex/
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Appendix B

Benchmarks of VPN Solutions
Based on Ciphersuite Used

Cipher Type Run #1 Run #2 Run #3 Average
AES128 GCM 770 817 800 795.67
AES256 GCM 813 787 747 782.33
AES128 SHA 477 473 489 479.67

DES CBC3 SHA 122 122 119 121.00

Figure B.1: Results of benchmarks for various cipher types when transferring 1GB file,
using OpenConnect, results in Mbps

Cipher Type Run #1 Run #2 Run #3 Average
RC2 CBC SHA1 198 194 193 195.00

DES EDE CBC SHA1 124 124 124 124.00
DES EDE3 CBC SHA1 123 121 123 122.33

DESX CBC SHA1 228 222 227 225.67
BF CBC SHA1 290 288 301 293.00

RC2 40 CBC SHA1 197 196 200 197.67
CAST5 CBC SHA1 282 268 266 272.00
RC2 64 CBC SHA1 194 191 192 192.33

AES 128 CBC SHA1 433 433 420 428.67
AES 192 CBC SHA1 415 420 411 415.33
AES 256 CBC SHA1 380 374 436 396.67
AES 192 CBC SHA1 409 417 434 420.00

Figure B.2: Results of benchmarks for various cipher types when transferring 1GB file,
using OpenVPN, results in Mbps
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Cipher Type Run #1 Run #2 Run #3 Average
AES 128 SHA1 455 482 687 541.33

AES 128 SHA2 256 600 505 471 525.33
AES 128 MD5 562 659 566 595.67
AES 256 SHA1 674 608 505 595.67

AES 256 SHA2 256 456 574 391 473.67
AES 256 MD5 517 615 542 558.00
AES 128 CCM 330 328 282 313.33
AES 192 CCM 273 314 312 299.67
AES 256 CCM 257 305 296 286.00
AES 128 GCM 1440 1310 1230 1326.67
AES 192 GCM 1220 965 1250 1145.00
AES 256 GCM 1110 1060 1240 1136.67

Figure B.3: Results of benchmarks for various cipher types when transferring 1GB file,
using Libreswan IPsec, results in Mbps

Cipher Libreswan OpenConnect OpenVPN
RC2 CBC SHA1 – – 195.00

RC2 40 CBC SHA1 – – 197.67
RC2 64 CBC SHA1 – – 192.33
CAST5 CBC SHA1 – – 272.00

AES 128 CBC SHA1 – – 428.67
AES 192 CBC SHA1 – – 415.33
AES 256 CBC SHA1 – – 396.67

3DES CBC – – 124.00
Bluefish CBC – – 293.00
3DES MD5 90.27 –
AES SHA1 541.33 479.67 –
AES SHA2 525.33 – –

AES 128 MD5 595.67 – –
AES 256 SHA1 595.67 – –
AES 256 SHA2 473.67 – –
AES 256 MD5 558.00 – –
AES 128 CCM 313.33 – –
AES 192 CCM 299.67 – –
AES 256 CCM 286.00 – –
AES 128 GCM 1326.67 795.67 –
AES 192 GCM 1145.00 – –
AES 256 GCM 1136.67 782.33 –

Figure B.4: Results of benchmarks for various cipher types when transferring 1GB file –
average comparison, results in Mbps
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Appendix C

Results of AF_KTLS Benchmarks

Payload GnuTLS AF_KTLS
1280 123.659 96.818
1400 134.796 104.527
4000 311.184 229.034
6000 390.075 293.407
9000 466.284 336.609
13000 562.823 398.756
16000 597.171 436.447

Figure C.1: Benchmarks of transmission from section 5.5.2, figure 5.1 – DTLS, results in
MB/s

Payload GnuTLS AF_KTLS
1280 99.325 82.904
1400 103.893 83.514
4000 242.261 196.514
6000 325.226 255.397
9000 404.630 313.895
13000 487.797 365.553
16000 526.075 398.937

Figure C.2: Benchmarks of transmission from section 5.5.2 5.2 – TLS, results in MB/s

File size user-send sendfile(2) mmap(2) splice(2)
TCP 1210.955 1648.777 1168.306 1694.829
UDP 428.994 453.025 444.264 456.262

Figure C.3: Benchmarks of sending a file using TCP/UDP, based on comparison from
section 5.5.2, results in MB/s
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user-send sendfile(2) mmap(2) splice(2)
user-send - 73.324% 103.479% 71.332%
sendfile(2) 136.380% - 141.125% 97.283%
mmap(2) 96.638% 70.859% - 68.934%
splice(2) 140.190% 102.793% 145.067% -

Figure C.4: A percentage comparison of a file transmission benchmarks – TCP

user-send sendfile(2) mmap(2) splice(2)
user-send - 94.695% 96.563% 94.024%
sendfile(2) 105.602% - 101.972% 99.291%
mmap(2) 103.559% 98.066% - 97.370%
splice(2) 106.356% 100.715% 102.701% -

Figure C.5: A percentage comparison of a file transmission benchmarks – UDP

File size user-send sendfile(2) mmap(2)
TLS 563.054 628.780 604.504
DTLS 291.062 322.825 314.801

Figure C.6: Benchmarks of sending a file using TLS/DTLS, based on comparison from
section 5.5.2, results in MB/s

user-send sendfile(2) mmap(2)
user-send - 89.547% 93.143%
sendfile(2) 111.673% - 104.016%
mmap(2) 107.362% 96.139% -

Figure C.7: A percentage comparison of a file transmission benchmarks – TLS

user-send sendfile(2) mmap(2)
user-send - 90.161% 92.459%
sendfile(2) 110.913% - 102.549%
mmap(2) 108.156% 97.514% -

Figure C.8: A percentage comparison of a file transmission benchmarks – DTLS

Payload recv()/gnutls_record_send() splice(2)
1280 153.914 107.360
1400 166.635 116.248
4000 413.391 279.442
6000 541.561 364.345
9000 665.361 458.023
13000 825.372 550.724
16000 895.004 605.048

Figure C.9: Benchmarks of OpenConnect optimized scenario from section 5.5.2, figure 5.8 –
TLS, results in MB/s
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Payload recv()/gnutls_record_send() splice(2)
1280 110.828 91.924
1400 123.404 97.751
4000 310.469 245.362
6000 426.563 323.098
9000 545.686 412.173
13000 699.848 514.279
16000 773.900 568.378

Figure C.10: Benchmarks of OpenConnect optimmized scenario from section 5.5.2, figure
5.7 – DTLS, results in MB/s
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Appendix D

Version of the Used Software

Software Version
Operating System Fedora 23 Workstation
Linux Kernel 4.3.3-303.fc23.x86_64
iperf 2.0.8-3
GnuTLS 3.4.8-1
OpenSSL 1.0.2g-1
Docker 1.10.0
OpenConnect 7.06-1
ocserv 0.9.0-2
OpenVPN 2.3.10-2
Libreswan 3.16-1

Figure D.1: Listing of software versions used in the thesis
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