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Abstract
Many state-of-the-art results in di�erent machine learning areas are presented on day-to-day
basis. By adjusting these systems to perform perfectly on a specific subset of all general
data, huge improvements may be achieved in their resulting accuracy. Usage of domain
adaptation in automatic speech recognition can bring us to production level models capa-
ble of transcribing di�cult and noisy customer conversations way more accurately than the
general models trained on all kinds of language and speech data. In this work I present
17% word error rate improvement in our speech recognition task over the general domain
speech recognizer from Google. The improvement was achieved by both very precise anno-
tation and preparation of domain data and by combining state-of-the-art techniques and
algorithms. The described system was successfully integrated into a production environ-
ment of the Parrot transcription company, where I am a member of the initial team, which
drastically increased performance of the human transcribers.

Abstrakt
Denno-denne vzniká mnoûstvo öpi�kov˝ch objavov v oblasti strojového u�enia. Prispô-
sobením t˝chto s˝stémov tak, aby �o najlepöie fungovali iba na obmedzenej podmnoûine
vöeobecn˝ch dát, môûu by� dosiahnuté v˝razné zlepöenia v prenosti. Prispôsobením au-
tomatického rozpoznáva�a re�i na doménovo öpecifické dáta je moûné vytvori� produkt
dosahujúci omnoho lepöie v˝sledky ako rozpoznáva� re�i natrénovan˝ na vöeobecn˝ch dá-
tach. Táto práca prezentuje 17-percentné zlepöenie chybovosti prepísan˝ch slov oproti au-
tomatickému rozpoznáva�u re�i ponúkaného sluûbou Google Speech. Toto zlepöenie bolo
dosiahnuté precíznou anotáciou a prípravou doménov˝ch dát a kombináciou öpi�kov˝ch
techník a algoritmov v oblasti automatického rozpoznávania re�i. Popísan˝ systém bol
úspeöne nasaden˝ do v˝robného prostredia transkrip�nej spolo�nosti Parrot, ktorej sú�as�ou
som od jej za�iatku. Nasaden˝ systém v˝razne zv˝öil efektivitu zamestancov pouûívajúcich
v˝stup popísaného rozpoznáva�a.
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Chapter 1

Introduction

Automatic speech recognition (ASR) has achieved many improvements over the last decade
similarly to other artificial intelligence and machine learning areas. New algorithms and
more computational power, especially in a form of graphics processing units (GPUs), al-
lowed researchers to feed the systems with much more data than before which markedly
boosted results and accuracies of such systems. As a result, machine learning products can
be now integrated in various day-to-day scenarios where they can automate the previously
applied manual processes and save both time and money of companies using them.

Automatic speech recognition is a system capable of transcribing speech from the audio
signal form to text. ASR can improve many existing areas like movie captions generation,
or solve completely new problems like automatic meetings and phone calls transcriptions
which was too time consuming and ine�cient to do so manually in the past. One of the
areas opened to automation is the court reporting industry in the USA. All courts, lawyers,
attorneys and other persons and entities in the legal industry need transcriptions of depo-
sitions, witness statements or phone calls on day-to-day basis. Currently, court reporters
take care of their needs and transcribe the audio recordings containing conversations into
text manually. But as this job is highly time consuming and there is not enough court re-
porters to transcribe everything the legal industry needs, the automatic speech recognition
systems may be of great help here.

In Parrot we use ASR as a helper tool for our human transcribers. After obtaining
a transcription request from a customer and generating the automatic transcription, the
human transcribers fix errors in it using a specialised editor tool. This approach is way
more e�cient than transcribing the whole recordings from scratch manually. To improve
the experience and e�ciency of the human transcribers we decided to build a more accurate
ASR system. As until now we’ve been using a general speech recognition, I show in this
thesis that a domain specific system can outperform a general one. The main reason for this
being possible is no need of transcribing all kinds of target domains, situations, acoustic
setups and specific language dialects. Instead, the model focuses only on scenarios that
occur commonly in the legal space. Although this way our models may perform worse in
general, on the other hand they perform way better in our target domain where the speech
recognition model knows the data well as it was trained on similar ones.

The goal of this work was to achieve higher transcription accuracy on our legal based
audio conversations than the one obtained with a general model. The general model used
in our company until now was the one developed by Google1. The thesis demonstrates a

1https://cloud.google.com/speech-to-text/
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contribution of the individual minor and major enhancements implemented to boost the
final model performance. In this thesis, I describe how automatic speech recognition systems
are built in general in Chapter 2. I explain how I collected and prepared the dataset for
training the new domain specific ASR system in Chapter 3 and how I trained the ASR
system itself with this dataset in Chapter 4. Finally, I show how the resulting system
performed in comparison to the general one and what accuracy it achieved in Chapter 5.
Results of di�erent setups are presented and contributions of the individual enhancement
features are shown in this chapter.
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Chapter 2

Current trends in automatic
speech recognition

This chapter describes how automatic speech recognition systems are built in general and
what algorithms, approaches and principles are widely used among the researchers to
achieve state-of-the-art results. I explain basic terminologies like word error rate (WER),
main components of speech recognition systems and major and minor enhancements to
these systems improving their final transcription accuracy.

Automatic speech recognition (ASR) is a system capable of recognising word sequences
in a given speech signal and converting them into a readable text form. It can be a limited
set of words, e.g. commands to control a device where a small set of all recognisable words
is specified upfront [40]. Another common use case of ASR systems is recognising long word
sequences and continuous speech parts composed of words defined by a large vocabulary
or lexicon. While the first use case of the small vocabulary recognition may contain only
several dozen words, the other one may have to be capable of recognising a vocabulary of
tens to hundreds of thousands words which is obviously a much more di�cult challenge.
Large vocabulary continuous speech recognition (LVCSR) [35] systems have to be capable of
recognising words in day-to-day conversations, meetings or phone calls. Complexity of such
tasks increases drastically in comparison to the ones solved by small vocabulary systems. To
be more specific, according to WordNet, the English language contains more than 200,000
words [8]. While learning these words by an ASR system, di�erent word pronunciations
have to be also considered which increases the lexicon size even more.

To solve this di�cult problem, ASR systems often stand on complex architectures com-
posed of several subsystems. Specifically, acoustic models (AM) are trained to match every
word in a speech signal to a sequence of acoustic units called phonemes. To do this, Hid-
den Markov models (HMM) [34] are currently one of the state-of-the-art approaches to
solve this sub-problem. However, there are words with similar pronunciation but di�erent
transcriptions. Additionally to that, di�erent background noises may degrade the acoustic
signal and make the phoneme or word recognising even more challenging. Thinking about
how humans percept the speech, we can often understand the specific speech sequence al-
though some words aren’t pronounced perfectly or are covered with noise. It is because
of a word context. To simulate this human perception step language models (LM) predict
probabilities of word sequences in a given language. As an example, the ”I am“ word pair
have a higher probability than ”I are“ in the English language.

4



Acoustic and language models both create a core of each ASR system. Together they
search for a word sequence W = w1, w2, ..., wn with a maximum posterior probability given
the input acoustic observations X = x1, x2, ..., xn. The acoustic and language model com-
bination can be expressed in a form of the Bayesian rule shown in Equation 2.1, where the
probability P (X|W ) is modeled by an acoustic model (finding the highest probability of
the acoustic observation given the word sequence), while a language model estimates and
models the second part of the rule, P (W ). Assuming P (X) is the same for all possible
transcriptions, we do not have to consider that at all and only the numerator part of the
rule remains to be realised by an ASR system.

W
⇤ = argmaxw P (W |X) = argmaxw

P (X|W )P (W )

P (X)
(2.1)

Predictions of both acoustic and language models together with other support compo-
nents like lexicon and context perception are taken as an input into a decoding network.
All components of an automatic speech recognition system and the whole process from
capturing the acoustic signal to the decoding network producing text is shown in Figure
2.1.

Figure 2.1: Components of an automatic speech recognition system transcribing a speech
signal to text (figure obtained from [38]).

Word error rate
Word error rate (WER) is the most common technique for measuring accuracy of an ASR
system. A predicted word sequence is at first aligned with the given ground truth tran-
scription. The WER value is then computed as shown in Equation 2.2, where S is number
of substitutions, D is number of deletions, I is number of insertions and C is number of the
correct words.

WER =
S +D + I

S +D + C
(2.2)
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2.1 Feature extraction
Not all of the information in the high dimensional data recorded by a recording device are
important for speech recognition. Some information can even make the recognition more
di�cult and worsen the results. The sounds generated by humans are shaped by their
vocal tracts including their teeth, tongue etc. The way the vocal tract is used determines
which phonemes are spoken out loud. Besides carrying the phoneme information, the audio
carries other data, e.g. the speaker gender, mood, background noise etc. All of these are
undesired in the speech recognition process because the information is irrelevant during the
recognition. That is why the raw audio signal itself is usually not used as the input to ASR
systems and is instead processed before being passed further.

A necessary step before passing a speech signal into an ASR system is feature extraction.
It is a process of creating suitable data representation which is both compact and carries
the necessary information for later recognising. There are multiple popular feature types
like Mel Frequency Cepstral Coe�cients [24], Linear Prediction Coe�cients [11] or Linear
Prediction Cepstral Coe�cients. In this work Mel Frequency Cepstral Coe�cients (MFCC)
were used as they are one of the most commonly used feature types and are proven over
the years and the research community to be robust and suitable for speech recognition.

Figure 2.2: Mel Frequency Cepstral Coe�cients features extraction process (figure obtained
from [18]).
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MFCC extraction is performed in several steps which can be seen in Figure 2.2. The
signal is at first cut into short frames. They are short enough to be statistically non-changing
and long enough to carry enough information. Their length is typically between 20-40ms.
Similarly to human ears reacting di�erently to di�erent frequencies, power spectrum is
computed from each frame using the discrete Fourier transform. After that Mel filterbank is
applied on the spectrum which is inspired by better human sensitivity to lower frequencies.
As humans don’t hear loudness on a linear scale, logarithms of filterbank energies are
taken as input to discrete cosine transform (DCT) in the last step, where DCT assures
decorrelation of the overlapping filterbank energies.

Speaker identity vectors for speaker adaptation
For an acoustic model to be more robust to channel and speaker variability, it can be adapted
to a target speaker by supplying speaker identity vectors (i-vectors) as input features to the
model in parallel with the regular acoustic features [33]. An i-vector of a given speaker is
concatenated to every frame belonging to that speaker before being passed to a recognition
system. The i-vectors are constant for a particular speaker and change across di�erent
speakers. As additional features they proved to provide significant gains in the WER
scores, see the original paper for more detailed info.

M = m+ Tw (2.3)

Equation 2.3 represents a speaker and channel dependent supervector M (stacked vec-
tors of GMMs (more about GMMs in Section 2.3) representing a high dimensional space),
where m are means of a universal background model (UBM - a GMM modelling many
speakers), w is an i-vector and T is a total variability matrix which transforms the i-vector
w from its subspace into the high dimensional space of the UBM with means m. To extract
an i-vector from an input utterance, an i-vector extractor has to be trained. The i-vector
extractor is defined by m, T and ⌃ (a diagonal covariance matrix of the UBM). The param-
eters are estimated using an expectation maximization (EM) algorithm. The EM algorithm
iteratively estimates the parameters of the model (m, T , ⌃) in two repetitious steps:

• Expectation step - for each utterance u, calculate the parameters of the posterior
distribution of w(u) using the current estimates of m, T , ⌃.

• Maximization step - update T and ⌃ by solving a set of linear equations in which the
w(u)’s play the role of explanatory variables

2.2 Hidden Markov models
Hidden Markov model (HMM) is a statistical model computing joint probability of a set
of hidden states given a set of observed states. Once we know the joint probability of a
sequence of hidden states, we determine the most probable sequence of observations. The
purpose of HMMs in speech recognition is to find a phoneme sequence (hidden states) with
maximum posterior probability given the incoming acoustic signals (observed states) which
is the P (X|W ) part of Equation 2.1. HMM is a generative model with similar characteristics
to finite state automatons. It consists of probabilistic transitions aij from a state i to a
state j. The topology of ASR HMMs is left to right so that the model can accept incoming

7



speech sequences (frames). For each frame the model moves from one state to another
according to a specific transition probability.

An HMM is fully defined by a state transition probability matrix A (probability of
moving from one state to another), an observation emission probability matrix B (proba-
bility of observing a particular output given being in a particular state) and an initial state
probabilities � (probability that the sequence starts in any of the possible states). Thus an
HMM as a whole is defined as ⇡(A,B,�). Given the list of observations X the goal is to set
the HMM parameters using training data so that the model is able to answer the following
questions:

• What are the probabilities of observing X, i.e. P (X|�)

• What is the most likely sequence of hidden states which yielded the observed sequence,
i.e. argmaxx P (W |X)

2.3 Gaussian mixture models
To estimate how well a feature vector fits a certain HMM state representing a specific
phoneme, various machine learning methods can be applied. Before the neural networks,
Gaussian Mixture Models (GMM) were a common modelling tool. Although the neural
networks replaced them as a primary function of HMM states representation, GMMs are
still found useful as a preprocessing step before the neural net training. As mentioned in
[29], GMMs help to force-align phonemes in the individual speech utterances before sending
them into a neural network based model for training.

Gaussian mixture is a function consisting of several Gaussians, each identified as k 2
{1, ...,K} where K is a number of clusters in the data. Each Gaussian k is defined by
its mean value µ, covariance matrix ⌃ and a mixing probability ⇡ specifying weight of
each gaussian. The general Gaussian density function is shown in Equation 2.4 where x
represents data points, D is the number of data dimensions and µ and ⌃ as specified above.

N (x|µ,⌃) =
e
� 1

2 (x�µ)T⌃�1(x�µ)

q
(2⇡)

D
2 |⌃|

(2.4)

To estimate the parameters of each Gaussian so that it represents the target data clus-
ters, in our case phonemes, the expectation maximization algorithm is typically applied,
introduced in [7]. Figure 2.3 demonstrates a simple example of three 1-dimensional Gaus-
sians (the full lines) trying to approximate three data clusters (the dotted lines).

2.4 Feedforward neural networks
Current state-of-the-art approaches in HMM states representation use deep neural networks
(DNN) [9]. An artificial neural network (NN) is a set of connected nodes called neurons
which were loosely inspired by biological neurons in a human brain. Similarly to the bio-
logical neurons, the artificial ones send signals to the neighbouring neurons through their
connections. Each connection is defined by a weight specifying the amount of the input
signal being transferred to the connected neuron.

8



Figure 2.3: Example of three 1-dimensional Gaussians (the full lines) trying to approximate
three data clusters (the dotted lines) (figure obtained from [18]).

The neuron function is to transform its multidimensional weighted input xTw to its
single output by applying a non-linear function (e.g. sigmoid, Rectified Linear unit (ReLu)
[25] or p-norms [43]). In feedforward neural networks the output of a neuron is input to
neurons in the following neuron layer. A feedforward NN consists of an input layer, hidden
layer(s) and an output layer. If an NN has multiple hidden layers it is called a deep neural
network [16]. Deep neural networks in comparison to the shallow ones are able to learn
representations of data with multiple levels of abstraction, which is very useful in complex
tasks solving like image or speech recognition.

The output of a neural network is typically normalised to represent a valid probability
distribution. The most commonly used normalization layer is a softmax function defined
by Equation 2.5, taking a vector of K real numbers as input, and normalizing it into a
probability distribution consisting of K probabilities proportional to the exponentials of
the input numbers [3].

A feedforward neural network with one hidden layer can be then defined by Equation
2.6, where W are weight matrices, b are bias vectors, x is an input feature vector and h
is an activation function. A detail of a single neuron and an NN with two hidden layers
are depicted in Figure 2.4. More information about neural networks structure and neural
networks in general can be found in [2].

softmax(z) = exp ziPK
j=1 exp zj

(2.5)

y = softmax(W (2)h(W 1x+ b1) + b2) (2.6)

Gradient descent and backpropagation training
Values in W and b from Equation 2.6 are objects of an iterative training process. The goal
of the training process is to estimate the parameters on a training dataset so that the NN
is able to predict correct output values on unseen data.

The gradient descent algorithm serves to estimate the NN parameters [31]. To find a
local minimum of a function, a step in a direction negative to a gradient of the function in a
given point is taken. While training an NN the gradient descent method is applied in a form
of the backpropagation algorithm [32]. The backpropagation algorithm is performed in two
steps. The first step is a forward pass in which the input vector is propagated to the end of
a neural network and a loss value of an objective function is computed. The error value is

9



Figure 2.4: A detail of an artificial neuron function and a simple feedforward neural network
with one input layer, two hidden layers and one output layer (figure obtained from [21]).

then propagated back using a chain rule of derivatives. Weights of the neural network are
then updated according to Equation 2.7, where wt are all neural net parameters in a step
t, including weight matrices and biases, ⌘ is a learning rate and rEn is a gradient of the
objective function.

wt+1 = wt � ⌘

MX

n=1

rEn(w
t) (2.7)

The accuracy of a DNN during the training is approximated by an objective function. A
basic objective function commonly used for a 1-of-K classification problem is a multi-class
cross-entropy (CE). However, later studies proved that replacing the cross-entropy objective
function with sequence-discriminative criteria (e.g. maximum mutual information (MMI))
improves the overall results in the ASR task as it is a sequence classification problem [37].
Further on, usage of a so called lattice-free version of the MMI objective function (LF-MMI)
decreases the computational costs by omitting the need of pre-computation of the lattices
for all possible word sequences (the reference word sequence lattice remains) and avoiding
the initial training with a CE model to create a precise weights initialisation [29].

Convolutional neural networks
A convolutional neural network (CNN) is a neural network with one or more convolutional
layers. CNNs were firstly introduced in image processing [17] but due to their ability to
break down complex spatial information abstractions, they were transferred to other areas
like natural language processing and automatic speech recognition [1]. A convolution is
sliding a filter over an input while creating a new output.
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Figure 2.5: A convolutional neural network as presented in the original paper [17] can
recognise spatial relationships by performing convolutions over its input (e.g. over an
image).

Each convolutional layer contains series of filters known as convolutional kernels. A
filter is a matrix of values that are used to multiply a subset of the input values. The sum
of the multiples is as a single value transferred to the input of another layer. The values of
the filters are objects of the CNN backpropagation training as described in Section 2.4, so
that each convolutional layer and its kernels learn to find specific important information in
the input data. A simple convolutional neural net is depicted in Figure 2.5.

Time-delay neural networks
Dynamic nature of speech causes many di�culties to automatic speech recognition systems.
Specific speech features may be an important clue in recognising certain aspects of speech
but they often appear not at the exactly same position and time in a phoneme sequence.
Thus ASR systems have to be able to represent temporal relationships between acoustic
events, while at the same time providing for invariance under translation in time. The
time-delay neural network (TDNN) architecture successfully solves this problem [39]. To
recognise a single phoneme, a window of both past and future feature frames is taken as
input into a multi-layer neural network.

Additionally, as shown in Figure 2.6, later studies showed that not all connections be-
tween all frames are necessary, which significantly improves performance and lowers the
amount of computations needed while training the network [26]. A factored form of TDNN
(TDNNf) which is structurally the same as a TDNN whose layers have been compressed
via SVD and is trained from a random start with one of the two factors of each matrix con-
strained to be semi-orthogonal also proved to lower the WER score of a system integrating
it [27].

2.5 Language modelling
The aim of a language model (LM) is to estimate word sequences apriori probabilities in
a given language (e.g. English). An LM models the P (W ) part of the Bayes rule from
Equation 2.1. In practise, given a sequence of words w1, w2, ..., wt, an LM computes a
probability distribution of the next word wt+1, while choosing a word from a pre-defined
set of words in a lexicon.

11



Figure 2.6: Pruned time-delay neural network as presented in [26] computes with sub-
sampling (red) instead of using all connections (blue+red).

n-gram language models
Multiple approaches in language modelling exist (statistical LMs, neural network based
LMs). A commonly used statistical language model is n-gram language model. Its main
goal is to identify occurrence counts of sets of n, n� 1, ..., 1 words in a large text corpus.
The n-gram model is then used to predict n-th word given an n � 1 long word sequence,
see Equation 2.8.

P (wt+1|wt, wt�1, ..., wt�n+2) =
count(wt+1, wt, ..., wt�n+2)

count(wt, ..., wt�n+2)
(2.8)

If a specified n-gram isn’t found in the training text corpus, a lower n is used until
iteratively n equals one. This approach is called backo�. However, if a word wasn’t seen in
a training text corpus, the associated n-gram gets a zero probability. That’s why techniques
like Kneser-Ney smoothing [14] were introduced to improve the original n-gram algorithm.
The Kneser-Ney smoothing adds a small non-zero probabilities to all words from the lexicon
even if not present in the training text corpus which helps to overcome the mentioned
problem.

Another n-gram LM disadvantage is the necessity of storing all corpus n-grams in the
memory. Also, n-grams with similar meaning may be assigned di�erent probabilities de-
pending only on their usage frequency in the training text corpus, while their similarity is
not taken into account at all. This results in a need of huge training text corpuses contain-
ing all possible word combinations. Additionally, a word context should play an important
role during the next word prediction, which is strictly limited while using n-grams as higher
n brings new complications.
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Recurrent neural network language models
Neural network based language models, specifically recurrent neural network (RNN) LMs,
try to solve these problems by not counting on exact word orders as n-grams do. Instead,
the RNNs create their own internal representations of the input word sequences by taking
theoretically infinite word sequences as input which is done by recurrent neural blocks
shown in Figure 2.7 [19]. Also, the words are not represented by their alphabetical form.
Instead, every word is assigned a high dimensional vector embedding (e.g. word2vec [20])
which the RNN takes as input. The main idea of word embeddings is assignment of close
vectors to words with a similar meaning. The vector embeddings can be easily used in
mathematical equations without loosing information about their true meaning.

Figure 2.7: A simple recurrent neural network with one recurrent block taking its output
as input in the next time step (figure obtained from [19]).

A recurrent block is a simple neuron which, besides other weighted values, takes its own
output from a previous time step as input. This allows the RNN block to be influenced by
an infinite number of the previously generated words. However, the word infinite is really
true only theoretically. In reality, during the training of the RNN architectures di�erent
problems occur preventing the RNN blocks to be influenced by all of the past outputs.
Long short-term memory (LSTM) blocks try to solve the problems of vanilla RNNs by
introducing more complicated structures to preserve as much information from the past
states as possible [10].

Interpolation of di�erent domain language models
Having multiple di�erent-domain text corpuses mixed together only to increase the corpus
size may result in worse prediction abilities of an LM trained on such data. Instead,
similarly to humans, assigning di�erent probabilities to the same words depending on a
domain and situation is prosperous to ASR systems. Building separate domain-specific
language models and applying an interpolation technique to combine them into a single
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language model optimised for the target use case showed better performance [30]. The
simplest interpolation technique is a linear interpolation [12] expressed by Equation 2.9.
The probability of a word w given its history h, while strongly assuming that p(h|i) is
independent of a domain i, where �i is a learned parameter - a weight of the domain i.

p(w|h) =
X

i

�ipi(w|h) (2.9)

Di�erent improvements of the original algorithm were developed. One of them is a
normalised log-linear interpolation of backo� language models introduced in [13]. A log-
linear interpolated model uses the weights �i as powers. To form a probability distribution,
the product is normalised with a normalization factor Z, where x are all words in the
combined vocabulary, see equations 2.11 and 2.10.

p(w|h) =
Q

i pi(w|h)�i

Z(h)
(2.10)

Z(h) =
X

x

Y

i

pi(x|h)�i (2.11)

Inter-word silence probabilities
As shown in [5], modelling not only probabilities of words following each other but also
the inter-word silence pronunciations may improve the final predictions of an ASR system.
As an example, zero-silence is less likely to follow the word White in “Gandalf the White
said” than in “The White House said”. The mentioned work proves that although the final
improvement isn’t huge, it’s consistently beneficial on multiple di�erent datasets.

2.6 Decoding with finite state transducers
As a final step in an automatic speech recognition pipeline, all the above mentioned compo-
nents are combined in a decoding network represented by a finite state transducer (FST).
A finite state transducer is a finite state automaton which besides accepting the input also
produces an output. An FST consists of a finite number of states which are linked by tran-
sitions labeled with an input/output pair. The FST starts out in a designated start state
and jumps to di�erent states depending on the input, while producing output according to
its transition table. Besides an input/output pair each transition is assigned a weight (e.g.
probability).

Considering hybrid ASR system, a final FST is a composition of four transducers [22].
Transducer H from Equation 2.12 represents an HMM topology as described in Chapter 2.2.
C as a context dependent transducer accepts context dependent phonemes, i.e. phoneme
pronunciation depends on neighbouring phonemes (e.g. triphone is a context dependent
phoneme). The pronunciation lexicon L assigns specific words to phoneme sequences ac-
cording to a pre-defined list of word/pronunciation pairs. Finally, grammar G, i.e. language
model, estimates probabilities of recognised word sequences.

HCLG = H � C � L �G (2.12)
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Word lattice as output of decoding
Possible word sequences are an output of the decoding network. Several hypotheses com-
pactly stored in a word lattice format are assigned to a set of input frames. A word lattice
is a weighted automaton representation of alternative word sequences together with prob-
abilities of the individual words. A simple example of a word lattice is depicted in Figure
2.8.

Figure 2.8: A word lattice representing alternative hypotheses of word sequences together
with the weights of the individual transitions (figure obtained from [21]).

Recurrent neural network lattice rescoring
Although RNN language models (RNNLM) show better results in comparison to the n-gram
models, because of the RNNLM theoretically infinite history input lengths it is technically
impossible to compile the model into a static decoding graph. Thus RNNLMs are usually
not directly used in the decoding. Instead, lattice rescoring is a common approach to take
the advantage of recurrent neural language models in the decoding process [41]. After a
word lattice is generated from the 1st-pass decoding, its probabilities are then rescored with
an RNNLM.

2.7 Kaldi - speech recognition toolkit
Kaldi1, introduced in [28], is a free open-source toolkit for speech recognition researchers.
It consists of many tools and utilities for di�erent parts of an ASR pipeline from data pro-
cessing and feature extraction, through GMM and DNN based HMM training and speaker
adaptation techniques, to finite state transducers, decoding graphs and lattice rescoring
algorithms implementations. Kaldi is a C++ library providing binaries implementing the
specific speech operations. Besides the speech processing components themselves, Kaldi
also demonstrates how to integrate the binaries into a usable ASR system. It is via a set of
python and shell scripts showing how to use the Kaldi binaries in meaningful ways. Kaldi
contains many of such recipes obtaining state-of-the-art results for di�erent widely known
datasets. The recipes are usually a good starting point when working on your own speech
recognition problem.

The most interesting parts of Kaldi are the src and egs directories. src contains the
core C++ functionality of Kaldi while egs contains all of the recipes built for di�erent ASR
datasets. A typical recipe consists of a run.sh script which calls all the necessary programs

1https://kaldi-asr.org/
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from the steps (mostly scripts calling the C++ binaries) and utils (mostly data preparation
scripts) directories. Also, a data directory needs to be in a Kaldi defined format. A typical
data directory is a set of csv files mapping utterance texts, ids, audio segments, speakers
and features between each other. More detailed information can be found in the Kaldi
documentation2.

The most similar toolkit to Kaldi is probably the HTK3 toolkit. The HTK toolkit
also builds on top of HMM based ASR systems and implements tools necessary to create
a speech recognition system. However, I chose to use Kaldi for several reasons. Kaldi’s
supportive community is a huge advantage of Kaldi. The Kaldi project is much more
alive than the HTK project and even a new version of Kaldi is currently being in progress
which is important, especially nowadays when the research moves forward so fast. The
huge number of prearranged recipes and tools in Kaldi are also very helpful and could be
di�cult to reproduce in HTK in some cases.

Forced alignment tools based on Kaldi
To align manually created transcriptions to its audio, a simple ASR with a language model
biased to the reference transcription itself precisely can decode the audio. The decoded
transcription contains timestamps which are the result of the force alignment.

A sequence of two tools built on top of the Kaldi toolkit performed the forced alignment
in this work. First, the Gentle4 tool trains a biased LM on the input transcriptions. Then,
using a Kaldi acoustic model, the input audio is decoded. After decoding is finished, the
Gentle output alignments are recursively realigned using a Canetis5 tool. Forced alignment
implemented in Canetis based on [23] works as follows: After the alignment is applied on
the whole input text, the text is split into successfully aligned parts and unaligned parts.
The parts of the transcript alignment that are most confidently correct are anchors. The
anchors divide the utterance into unaligned and aligned parts. Iterative applying of the
alignment on the individual unaligned parts results in a very precise overall alignment. The
alignment process in depicted in Figure 2.9.

2https://kaldi-asr.org/doc/
3http://htk.eng.cam.ac.uk/
4https://lowerquality.com/gentle/
5https://github.com/nsheth12/canetis
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Figure 2.9: Recursive utterance alignment process - an alignment technique is iteratively
applied on incorrectly aligned parts until an ending condition (figure obtained from [23]).
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Chapter 3

Dataset creation

As the proposed ASR system was meant to outperform the existing general domain ASR
systems on our target domain, the data used to train it had to perfectly represent the
target domain and the accuracy of the data annotation had to meet high expectations.
This chapter describes in detail our data scenarios and the process of the data annotation.

3.1 Data scenarios description
Data obtained from our customers may be divided into the following categories:

• Depositions. Relatively clear audio with three to five persons in a quiet room, usually
sitting around a table with a microphone device on top of it. The conversation is
formal and partly managed by a moderator (a court reporter). There is less crosstalks
(speakers speaking over each other). If a part of speech is inaudible the speakers are
asked to speak more clearly.

• Witness statements. This scenario covers various kinds of situations thus I find it
best to divide them into three subcategories:

– Police station statements. This setup is very similar to the depositions setup.
The di�erence is often a more loosely managed debate as the persons present
are often criminals arrested by police. The microphone device may be of a lower
quality and with a worse placement (usually somewhere in the top of the room).

– Outdoor witness statements. This is the most di�cult setup as it can take place
in any outdoor or indoor environment. Often very noisy audio with street or
wind background noise. The microphone is usually placed on a body of a police
o�cer.

– Driving under influence (DUI). A specific outdoor scenario where a police o�cer
inspects a driver for alcohol influence or intoxication. A similar scenario to the
previous one except the conversation content is highly predictable.

• Phone calls. As the scenario name suggests, the subjects of this scenario are phone
calls between two persons. It may be a phone call from a prison, a 911 call or any
other kind of a phone call which is used in a particular legal case.

• Court room testimony. A challenging scenario with many speakers often far from a
microphone. However, there are not many of these recording types in our dataset.
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The scenarios described are a di�cult task for a single ASR system and the best solution
would be to build a separate ASR system for each of them. Although this is true, the most
frequent recording types received from our customers are the depositions and good quality
witness statements. For now, we wouldn’t be able to collect enough data for each of these
use cases separately. This problem will be partly handled with data augmentation described
later in the text.

Another bright side of our use case is that many speakers (the customers themselves
or persons from the customers’ work surroundings) are often repeatedly present in the
incoming audio. Although this will help our production systems, this work doesn’t use this
information and the train and test sets contain unique speakers as mentioned later in the
text.

3.2 Data annotation process
The goal in this project was to annotate 300 hours of audio conversations. Because of
product reasons our data annotation pipeline is divided into two steps:

1. Audio transcription.

2. Transcription cleaning and audio alignment.

Audio transcription
Immediately after obtaining a recording from a customer, the transcription team makes a
verbatim transcription of the conversations in the obtained audio recordings. A verbatim
transcription means all speech parts, every significant noise (e.g. knocking on door) and
every spoken noise or filler words like ”Uhm“ and ”Um-mm“ are transcribed. The tran-
scriptions often contain meta-information e.g. ”Nodes her head a�rmatively“ (in case of
video files). These transcriptions are meant primarily for a customers usage and not to be a
part of a dataset. This is corrected in the second annotation step. In the first transcription
step the recordings are also segmented into parts spoken by di�erent speakers. The created
segments are assigned start and end timestamps using an automatic forced alignment tool.

Transcription cleaning and audio alignment
As ASR models are typically trained on short speech utterances ideally 10-30 seconds long,
too long one speaker segments are not suitable for the ASR training. Thus the transcriptions
from the previous transcription step need to be cut into shorter utterances every of which
has to carry a timestamp information specifying where the utterance starts and ends in the
recording audio.

Although the automatic alignments showed to be good enough for the customer facing
application, their accuracy is not perfect as many utterance alignments failed with several
seconds inaccuracies (mainly because of crosstalks, unintelligible speech and long silence
periods). That’s why I had to solve the problem by manually adjusting the automatically
generated timestamps. A part of this annotation step was also adjustment and normal-
ization of the transcription texts as they sometimes contained undesired meta-information.
This was also a good review of the transcription quality from the first annotation step.
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Failed annotation approaches
As data annotation is a highly time and money consuming process, it is important to choose
the right approach so that the resources are not wasted. The annotation procedure should
match the three main criteria which are time, money and accuracy. A several hundred
hours big dataset annotation may take months of work and thousands of dollars if managed
wrongly. Thus it is very important to choose an appropriate annotation software and a
group of the right responsible people to finish the task successfully.

My first attempt of this data annotation project involved third party annotation appli-
cations (SpokenData.com1, TranscriberAG2) and a group of students which is a common
way of small annotation projects (e.g. [36]). Students would fix the automatically generated
timestamps using an annotation tool. After finding out both applications weren’t totally
suitable for our use case due to missing functionalities, ine�ciencies or implementation
problems I decided to pause the in-house annotation project.

The second approach involved a cloud-sourcing annotation company. After talking to
several candidates I chose FigureEight3 as they’re proven by working with big customers like
Facebook, ebay or Oracle on various annotation tasks. They were opened to design a special
tool for the timestamps adjustment task. We started a trial period during which they tried
to prove to be able to achieve the required results. Because of the cloud-sourcing approach
many cheap workers could work on the task which would save plenty of time. However,
the cloud-sourcing approach also turned out to be a disadvantage of this approach as many
workers cannot be managed properly which results in bad annotation accuracy. Even after
several trial iterations the company wasn’t able to deliver the desired annotation accuracy,
i.e. the utterances often overlapped, words were cut out from the audio or the utterance
audio contained speech not present in the utterance transcription. Because of both high cost
and inaccurate annotations, which I think were caused by ine�ciency of their annotation
tool and too many unmanaged workers, I decided to stop the collaboration.

Final annotation approach
With the newly gained knowledge of annotation processes I decided to return to the in-
house annotation project. I designed a new annotation application with all of the needed
functionalities, see Figure 3.1. The application o�ered easy-to-use user interface with prop-
erly chosen keyboard shortcuts for the most common actions. A built-in review system
helped the new annotators to learn the task quickly. The application, given my design, was
implemented by our company front-end engineers so I won’t go into detail as it is not my
work. The tested annotation speed and e�ciency showed to be the best from the so far
tested software. The annotation in the proposed tool takes between two to four times the
original audio length depending on audio quality.

As a workforce a group of 15 students was chosen with agreement of 15 hours of work
per week. During the first weeks of the annotation project I reviewed the work of the
annotators. Using a built-in application system of utterance commentaries I taught the
workers what results and accuracies were expected of them. After several weeks I chose the
best annotator to be a reviewer instead of me.

This approach also turned out to have a problem. It was the workers time - the students
couldn’t be made to spend the desired amount of time on this job due to their school

1https://www.spokendata.com/
2http://transag.sourceforge.net/
3www.figure-eight.com/
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Figure 3.1: A proprietary highly e�cient audio annotation tool designed by myself and
implemented by our team of engineers to meet our specific dataset preparation needs.

responsibilities. Having more students in the team would make the project unbearable for
me from the managing point of view thus the workforce was enriched by another annotation
company - CloudFactory4.

The di�erence between cloud-sourcing companies like FigureEight and the CloudFactory
annotation company lies in the size and management of their teams. While the cloud-
sourcing companies tend to have big teams with just a small focus on their management,
CloudFactory provides small dedicated and trained teams which behave like a part of the
client’s own team.

While letting our old annotators and reviewers in the pipeline and joining the force
with the CloudFactory full-time dedicated workers, the plan was to deliver 300 hours of
annotated data in two and a half month. However, the project finished with 110 annotated
audio hours. The payment system of the CloudFactory workers (dollars for a human hour)
caused the workers to be too slow. The most e�cient annotation approach turned out to
be usage of a proprietary annotation tool and a team of in-house annotators payed by a
finished audio hour and controlled by skilled reviewers. This made the annotators both fast
and accurate.

3.3 Freely available legal domain dataset
Besides our own transcription data, an additional freely available dataset was used. The
Supreme Court Oral Arguments5 dataset consists of roughly 7,000 hours of transcribed
audio of di�erent court hearings recorded during the last several decades in the US Supreme
Court. Except di�erent room impulse responses of the big court rooms, the scenario is
supposed to be very similar to deposition and partly witness statement setups mentioned
in 3.1 which is formal conversation speech in a legal domain.

Usage of data augmentation corrected the room impulse response di�erences to better
match our target domain. Data from [15] were used for augmenting the Supreme Court

4https://www.cloudfactory.com/
5https://www.supremecourt.gov/oral_arguments
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dataset. The augmentation dataset was composed of real room impulse responses (RIRs),
simulated RIRs and various manually recorded noises.

Due to the lattice-free MMI objective function sensitivity to incorrect transcripts [29]
[6], the Supreme Court acoustic data were cleaned from the utterances with supposedly
incorrect transcriptions. The cleaning was performed using a Kaldi script6. The script
removed utterances whose, after decoding with a biased LM, lattice oracle path was still
far from the reference transcript. This way, 12% of the acoustic data was considered to
be incorrect and thus removed from the dataset. The removed utterances often contained
crosstalks or the audio was cut in the middle of the utterance text.

3.4 Text corpuses for language model training
To train the language models (both n-gram and RNNLM), di�erent text corpuses were
experimented with. Firstly, the company transcriptions were used as one text corpus. Sec-
ondly, the whole Supreme Court hearings dataset transcriptions created the second text
corpus (4M sentences). The rest consisted of a general language text corpus (a 42M sen-
tence subset of Google Billion Word Benchmark [4]), a set of legal deposition transcriptions
collected on the Internet (3M of conversational data) and a set of publicly available court
decisions from The Caselaw Access Project (“CAP”)7 (20M sentences of non-conversational
data), a part of which is free to download, specifically court hearings from the states
Arkansas, Illinois, New Mexico a North Carolina.

6https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/
clean_and_segment_data_nnet3.sh

7https://case.law/about
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Chapter 4

Automatic speech recognition
system architecture proposal

This chapter describes all components assembled together to create the proposed automatic
speech recognition system. The whole architecture pipeline (Figure 4.1) is divided into four
main steps, each of them described in the chapter sections in detail:

Acoustic 
datasets

Texts
cleaning and normalization

Lexicon 
preparation

Separate n-gram 
LMs

i-vectors 
extractionMFCC extraction

Acoustic 
augmentations

LMs interpolation

Decoding graph

CNN-TDNNf model

RNNLM training

GMM sequence for 
phoneme alignment

Text datasets

Lattice rescoring

CMVN

Figure 4.1: The overall architecture of the proposed ASR system from data processing
to individual models training is dividable into four main steps: data processing, language
models training, acoustic model training and decoding.

• Data processing - the text transcriptions from all sources are normalised to be in a
common format suitable for speech recognition training. All of the data are split into
unique train and test sets. The train set is augmented using room impulse responses
and speed perturbation.
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• Language modelling - all of the text data are fed into separate n-gram language models
training which are thereafter interpolated to compose a single language model. A
recurrent neural network language model for lattice rescoring builds on the top of the
interpolated n-gram model when applied in the lattice rescoring process.

• Acoustic modelling - gaussian mixture and neural network based HMM acoustic mod-
els are trained on the augmented audio data.

• Decoding - the trained language and acoustic models together compose a decoding
network being able to transcribe the audio conversations into a text format. After a
lattice is generated from the acoustic model decoding, it is rescored with an RNNLM
to improve the prediction quality.

4.1 Data processing
Both the text transcriptions and audio data have to meet certain requirements before be-
ing fed into the training. The lexicon should include every valid English word from the
transcription texts and as few out of vocabulary words (OOV) as possible should exist in
the dataset. Also, transcriptions should be normalized, meaning processing of punctuation,
numbers and letter cases. See an example of a text before (a) and after (b) text normal-
ization.

(a) I’m Bond, James Bond. It’s nice to meet you! My ID is 007.
1964, what a year...

(b) I’m Bond James Bond it’s nice to meet you my I D is zero zero
seven nineteen sixty four what a year

The dataset audio has to be prepared too. All audio files are converted to a common
audio format with the desired specifications. The audio is then augmented to increase
the dataset size and to enhance robustness of the final model. The whole data processing
pipeline is depicted in Figure 4.2.

Text normalization
As only the company transcriptions were manually normalized and transformed to the
fully verbatim form, automatic normalization had to take place for all the other texts
available. The annotated datasets often contained more texts than just the plain letter
sequences which are typically the output of an HMM based speech recognition system. The
transcription text should consist only of words and symbols present in the lexicon. In this
work that means only alphabetical characters and the apostrophe character to represent
the marking of the omission of one or more letters (as in the contraction of do not to don’t)
or of possessive case of nouns (as in the eagle’s feathers). Thus the rich text produced
by the annotators containing punctuation, theoretically infinite number of digit character
combinations and inconsistent letter cases had to undergo automatic normalization process.

The normalization script was prepared by iterative rules updates and testing on a subset
of the text data which is demonstrated by Figure 4.3. First, a simple test set composed
of texts before and after normalization containing several examples was prepared. Then
the normalization script normalized a subset of the whole text corpus. The output of the
normalization round was examined manually. If incorrectly normalized texts were found,
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Figure 4.2: Data processing pipeline preparing texts for language models training, tran-
scriptions and audio data for the acoustic model training and a set of recognisable words
for the lexicon.

new rules fixing them were implemented in the normalization script, the problematic text
sequences were added to the test set and the updated normalization script was tested on the
test set to find out whether the new rules didn’t broke any of the old test examples. This
procedure of normalizing a new subset of text corpus, manual examination of the output,
updating the rules and the test set according to the errors found and running the updated
normalization on the test set was repeated several times until the manual checks stopped
discovering incorrectly processed text sequences. The final normalization script was run on
all the remaining texts.

The normalization script consisted of these main procedures:

• Letter case sensitivity - the letter cases are in some ASR systems not taken into
account. As the Parrot product e�cient usage requires correct letter case sensitivity,
I tried to keep this information from the original data. However, I decided not to
keep all of the original letter cases. Only the proper nouns remained capitalized.
The rest of the upper case words (e.g. sentence beginnings) had to be replaced to
the lowercase form. Counting on a heuristic saying which upper case letter should
be switched to its lower case version, I adjusted the input text letter cases using the
following process. The words not at the sentence beginnings starting with an upper
letter kept their form as they were considered to be transcribed correctly by a human
annotator. Words at the sentence beginnings underwent an additional control. A
trained named entity recognition model from a Spacy 1 python package estimated a
role of the word at a sentence beginning. If the word represented a certain entity, the

1https://spacy.io/
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Figure 4.3: The normalization script was prepared by iterative rules updates and testing
on a subset of the text data. Each iteration of the subset normalization was manually
examined and if errors were introduced, the normalization rules were updated accordingly.
To not break the existing rules by creating the new ones, a test set was maintained. After
enough iterations (when I considered the normalization script to be robust enough), the
normalization was run on all remaining data.

first letter kept its upper form. Otherwise it was transformed to a lower case. There
were several other specific use cases in the transcriptions. For example abbreviations
with fullstops after letters couldn’t be considered to be ends of sentences (e.g. Mr.
Underhill or J. F. Kennedy) and had to be processed di�erently.

• Digits to words conversion - adding a theoretically infinite number of numbers in
their digit form into a lexicon is obviously impossible. Instead of inserting all of them,
every number expressed by digits was converted to its appropriate alphabetical form
(e.g. 5,010 to five thousand ten). As an example, to express all numbers between
0 and 5,000 with this enhancement, only a bunch of words is needed instead of all
5,000 words representing all numbers from this range. A python package num2words2

performed the digits to words conversion in the basic use cases. Several exceptions
had to be handled such as .5 processed as point five as these were not processed by
the mentioned package.

• Special characters processing - special characters like dollars and percents were
replaced with their alphabetical equivalents in an appropriate way ($100,000 as one
hundred thousand dollars, Marks & Spencer as Marks and Spencer, ’70s as seventies,
john@somewhere.com as john at somewhere dot com etc.).

2https://github.com/savoirfairelinux/num2words
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• Abbreviations spelling - regular expression rules took care of detecting abbrevia-
tions in the text (e.g. FBI, CIA). A space was put between the individual letters of
the abbreviations so that the model would be able to learn the representation of the
single spelled letters better. Learning this helped the model with both name spelling,
which appears in almost all client recordings, and transcribing unknown abbreviations
not present in the lexicon as the alphabet to be spelled is a finite set of letters unlike
all possible letter combinations forming specific abbreviations.

• Manual normalization - in some cases the automatic normalization wasn’t able to
process the text into the correct form in which the text was actually pronounced. Such
cases had to be at least partially processed manually to. Years pronunciation was an
often example. If a year 1999 was pronounced as nineteen ninety-nine, the human
annotator had to correct the text to 19 99 (a space inserted) so that the automatic
normalization could process the number in the correct way that matches the real
pronunciation. This was similar with phone numbers etc. The manual normalization
step was performed only on the company transcriptions. In the Supreme Court tran-
scriptions the script automatically normalized all numbers between 1900 and 2000 as
nineteen something as this was the most usual pronunciation in the dataset and it
would done less harm as normalizing these numbers to one thousand nine hundred
something.

• Additional enhancements - as minor improvements, some specific use cases were
also handled automatically. E.g. words like hm-mm and uh-uh were allowed to keep
the dash symbol, while in other use cases like words spelling (e.g. H-A-L-L-O) the
dash symbols were replaced with a space.

Pronunciation lexicon creation
A custom case sensitive lexicon, a list of recognisable words with their pronunciations, was
prepared for the purpose of this project. A multistage process filtered all words in the
company and Supreme Court transcriptions. To let only existing English words remain in
the lexicon and to exclude typos from the lexicon a word cleaning step took place. After
counting occurrences of all words in the training text corpus, only those with an occurrence
count higher than one were kept for the lexicon. Words seen only once throughout the
whole text corpus were checked by a more advanced filter. The Google translate service3

played a role in the advanced filter. If the translation service was able to translate a word
found in the corpus to Spanish, i.e. the output contained a di�erent text than the English
text provided as input, the word was considered to be a valid English word. Otherwise, the
word was searched in a names database of common names from various countries4 and a
brands database of more than 7,000 known brands5. If not found, it was definitely excluded
from the lexicon.

In addition to automatic words cleaning, I examined the whole lexicon manually and
discovered the obviously incorrect words (mostly words with misused single quotes and
misspelled words, e.g. dont, i’m, reuslt etc.) which resulted in about 400 removed words.
The removed words which could be certainly replaced by the corrected versions of the words
(e.g. don’t instead of dont), were used to clean the transcription texts even more. Using

3https://translate.google.com/
4https://github.com/smashew/NameDatabases
5https://github.com/MatthiasWinkelmann/english-words-names-brands-places
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a dictionary with incorrect and correct versions of the removed words, the incorrect words
were found in the text corpus and their corrected version from the dictionary replaced the
incorrect word in the corpus.

The final lexicon resulted in 114,890 words. The lexicon words were assigned pronun-
ciations using a grapheme to phoneme model6 pre-trained on the CMU dictionary7. If the
package didn’t find a word in the CMU dictionary it performed a prediction with the pre-
trained model. However, although the CMU dictionary contains multiple pronunciations
for some words, this package provided only a single pronunciation for a word. Thus the
code of the package had to be adjusted to return all possible pronunciations for a specific
word from the CMU dictionary.

Audio processing
Several audio preparation steps took place in order to prepare the audio data. Firstly,
di�erent audio formats had to be converted to the wav format. Thereafter applying the
acoustic data augmentation to increase the dataset size and making it more suitable for our
target domain. Finally, additional minor enhancements were experimented with to find out
whether they improve the model accuracy.

• Audio format - the original data from customers come in di�erent formats (mp3,
ogg, mp4 and others). Thus as a first step all recordings are converted to wav files.
The further specifications of the wav files are 16kHz frequency and 16 bit mono
channel. For converting the files AWS Elastic Transcoder8 was used as a part of our
production pipeline (out of the ASR system itself).

• Filter out audio with inaccurate transcriptions - some utterance transcriptions
may have an inaccurate transcriptions, especially the utterances from the Supreme
Court dataset as their annotation wasn’t managed in-house. Thus to prevent the
model from learning incorrect phoneme representations, such utterances need to be
filtered out. The cleaning was applied twice. First, before a proper DNN model was
trained, a GMM model trained on not cleaned data performed the cleaning using
an appropriate Kaldi script9. After a newly trained DNN model was available, the
cleaning was performed for the second time on the same subset of the Supreme Court
data as before, using a Kaldi script10. In both cases similar amount of transcriptions
was removed (10% and 12% respectively) which proved the robustness of the cleaning
algorithm and its independence on the acoustic model. The removed utterances often
contained crosstalks or the audio was cut out before the text end of the utterance.

• Augmentation - to increase our own dataset size and for the Supreme Court data to
better match the target domain, both datasets underwent an augmentation procedure
during which room impulse responses (RIRs) from the augmentation dataset described
in Subsection 3.3 were used to augment the data. As our own dataset size was not large
at the moment of the training, speed perturbation was used to create di�erent speed

6https://github.com/Kyubyong/g2p
7http://www.speech.cs.cmu.edu/cgi-bin/cmudict
8https://aws.amazon.com/elastictranscoder/
9https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/

clean_and_segment_data.sh
10https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/

clean_and_segment_data_nnet3.sh
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versions of the original data. Kaldi scripts11,12 performed the RIRs augmentation and
the speed perturbation steps. The actual parameters specifying by how much was the
dataset size increased were based on the original paper and also di�er between di�erent
experiments thus the exact values are stated later in the experiments description
section.

• Silence frames concatenation - the first states in a Kaldi HMM, and the last
states respectively, represent silence (or non-speech in general). That means such an
HMM expects every utterance to begin and end with frames not containing speech.
Otherwise the first or end states would be forced to accept speech phonemes and the
silence would not be modelled correctly which would end up by mixing silence and
speech phonemes frames during the recognition. Although the annotators were in-
structed to add a silence period before and after every annotated speech utterance, in
cases when the speakers spoke fast without a silence period between individual speech
sequences, some utterances did not contain the beginning and end silence (around 50
percent of utterances in the Supreme Court dataset and 20 percent utterances in our
dataset according to a Kaldi script analyze_phone_length_stats.py). To fix this,
a set of di�erent silence frame sequences (⇠30ms audio files) was manually collected
from our dataset. The collected silence frame sequences were thereafter randomly
assigned and concatenated with every speech utterance. This was meant to prevent
the HMMs from using speech phonemes to model silence.

Dataset splitting into unique speaker subsets
To correctly measure accuracy of the system and to objectively compare the training results
between individual experiments, the dataset had to be split into disjunct sets for training
and evaluation - a train set and a test set. For the results to be as unbiased as possible,
the speaker sets present in the individual data splits should be disjunct.

The Supreme Court dataset was split using a Kaldi script, utils/subset_data_dir.sh,
which divided the data directory randomly by selecting certain number of utterances. This
was possible as the speakers in the dataset were assigned unique IDs.

The dataset from our customers doesn’t contain unique speaker IDs. A uniqueness
approximation method had to come in place. The only information about the speakers
we have is their name (e.g. John Smith), or a variant of it (e.g. Detective Smith, Mr.
Smith). This information was set by the customers themselves or by our annotators during
the transcription process. Before splitting the dataset, the speaker names were converted
to more robust identifiers. The requirements of the newly generated identifiers were:

1. Every speaker ID has to be unique, so that any two utterances with the same speaker
ID really have the same speaker.

2. Using the speaker IDs, it has to be possible to split the dataset into two sets such
that no speaker from one set is present in the other.

To ensure the first requirement, every speaker name was concatenated with a unique
recording name. Thus if there would be two di�erent speakers with a same name in di�erent

11https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/data/
reverberate_data_dir.py

12https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/utils/data/
perturb_data_dir_speed_3way.sh
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recordings, they would remain unique due to the unique recording identifier. Uniqueness of
speakers with same names in one recording was secured by adding an index to a recording
speakers list to every speaker.

The second requirement was secured by the following approach: Vast majority of the
speaker names ended with a surname of a person (John Smith, Detective Smith etc.). The
information whether John Smith from one recording is or is not the Detective Smith from
another recording wasn’t available and from the product point of view, we couldn’t ask the
customers to provide better identification. Thus the unique speaker dataset split was done
according to speaker surnames. The speakers with the same surname were clustered to a
common speaker surname set. If the test set contained a set of speakers named Smith, the
train set didn’t contain any speaker named Smith.

Additionally, the ideal dataset split would consider also recording uniqueness between
the individual subsets. This would mean that if a recording X contained speakers A and
B and the speaker A would be assigned to the test set, also the speaker B would have to
be assigned to the test set. Moreover, if another recording Y contained a speaker A, the
speaker would also have to be assigned to the test set together with all the other speakers
from the recording Y and so on.

In our dataset, in which the same speakers often repeat among the recordings, this would
mean a huge chaining of speakers and a reasonably sized test set couldn’t be created. Thus
only the speaker uniqueness condition was fulfilled completely. The recording uniqueness
was achieved only partially: Every speaker was assigned a value representing how many
utterances would be chained to this speaker by fulfilling the recording uniqueness. When
creating the test set, firstly the speakers with the least chained utterances were selected to
be a part of this subset. This allowed at least a few recordings to be unique in the test set.

4.2 Language modelling
Separate language models were trained for decoding and lattice rescoring. Several versions
of both the n-gram language models for the decoding graph and the RNNLMs for the lattice
rescoring were tested and examined using di�erent combinations of text corpuses described
in Section 3.4

Training n-gram language models with KenLM
To train the n-gram language models an open-source tool KenLm13 was used. KenLM bina-
ries estimate language models from text using modified Kneser-Ney smoothing algorithm.
This toolkit also provides other functionalities to manipulate with n-gram LMs such as dif-
ferent LM format conversions (text/arpa), log-linear LMs interpolation and model pruning,
which is a technique to decrease the size of an LM by not saving the n-grams that appear
less than a certain threshold in the training corpus.

A similar widely used toolkit for statistical models building is SRILM14. It also esti-
mates n-gram LMs from text, provides pruning and interpolation techniques but integrates
di�erent algorithms to achieve the results. KenLM claims to be faster, more accurate and
has lower memory requirements than SRILM as it performs all the computations on disk. I
used KenLM in this work laso because of its license which is more friendly with commercial
usage.

13https://kheafield.com/code/kenlm/
14http://www.speech.sri.com/projects/srilm/
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KenLM binaries expect files with individual text utterances on separate lines as input.
The lmplz binary takes the desired n-gram order, pruning settings and the text file on its
input and prepares the resulting LM in the arpa format. Having multiple n-gram LMs
prepared with the lmplz binary, the interpolate binary computes the final interpolated
LM and assigns log-linear weights to the individual n-gram LMs taken on the input. The
interpolation finetunes the LMs’ weights given a tuning text corpus set di�erent from the
test set. The output of the interpolation is an LM in the arpa format, log-linear weights
of the input LMs and the final perplexity on the tuning set. The tuning set on which the
interpolation was performed was a part of the train set not used during the separate LMs
training. The results and experiments with di�erent pruning setups and data combinations
are presented in the following chapter.

Recurrent neural network language model for lattice rescoring
The recurrent neural network language model (RNNLM) was built on the letter based
features modelling presented in [42]. The training based on the Kaldi Switchboard recipe15

implementation of the above mentioned algorithm was run on several combinations of the
prepared text corpuses. The specifics of di�erent versions of RNNLMs trained are stated
later in the following chapter.

4.3 Acoustic modelling
Before the training of the final DNN acoustic model, several preparation steps had to take
place. First a GMM model had to be trained to provide phoneme alignments of all speech
utterances as the input for the DNN, i.e. the DNN model had to be aware of the position of
individual phonemes in the utterance audio. After high dimensional features were generated
from the audio and i-vector speaker adaptations were extracted, the DNN training itself
could begin. Most of the training pipelines and the DNN architecture was based on a
Kaldi recipe for the Switchboard database16. Unless otherwise specified, all of the following
algorithms were performed using Kaldi scripts and utilities.

Feature extraction
Both low (13) and high (40) dimensional MFCC features were extracted17. Low dimensional
features were taken as an input for the GMM training while the high dimensional features
were used by the DNN architecture. After extracting the features, cepstral mean and
variance statistics (CMVN) per speaker were computed18. CMVN minimises the distortion
by noise contamination for robust feature extraction by linearly transforming the cepstral
coe�cients to have the same segmental statistics.

Additionally to the MFCC features, the TDNN architecture takes 100 dimensional i-
vectors as input. The i-vector extractor was prepared with a script based on the kaldi

15https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/rnnlm/tuning/
run_tdnn_lstm_swbd.sh

16https://github.com/kaldi-asr/kaldi/tree/master/egs/swbd
17https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/make_mfcc.sh
18https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/compute_cmvn_stats.sh
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Switchboard recipe meant for this purpose19. The extractor was thereafter used to extract
i-vectors from the training and testing subsets.

Gaussian mixture models for phoneme alignment
For a TDNN architecture it is important to know where the individual phonemes of a speech
utterance start and end in the utterance audio. Inspired by the Switchboard recipe20, a
sequence of GMM models was trained for this purpose, each model aligning its input with
the alignments generated with the previously trained model.

Starting with the simplest monophone training21 on a subset of the 10k shortest utter-
ances, an initial HMM model was prepared. A monophone model is an acoustic model that
does not include any contextual information about the preceding or following phone and is
used as a building block for triphone models, which do make use of contextual information.
The small subset of the shortest utterances ensured to minimize the error while aligning
the initially not aligned data. Before selecting the shortest utterances, duplicate utterances
were removed resulting with at most 80 duplicates left (too many utterances with text e.g.

”Okay.“ are not desired in the training set).
The monophone model aligned a larger dataset subset, specifically 30k utterances.

Delta-delta features based model22 took the alignments and was trained twice, while the
first version aligned the utterances for the second version of the same model architecture,
except its parameters representing the model size (number of leaves, number of gaussians)
were set to higher values for the second model.

Following levels of the sequentially trained GMM based models performed Linear Dis-
criminant Analysis and Maximum Likelihood Linear Transform23 (1 model), and Speaker
Adaptive Training 24 (2 models). Additionally, a Speaker Adaptive Training model with
silence pronunciation modelling25 was trained on top of aligments generated from the pre-
vious models.

Time-delay neural network model
The neural architecture used in this work is a Kaldi nnet3 setup with the new chain im-
provements26. The chain models bring lower computation resource requirements and in-
troduce usage of a sequence-level objective function throughout the whole training. The
convolutional time-delay neural network presented in the above mentioned setup consists
of di�erent layer types. The network starts with 6 convolutional layers with batch normal-
izations and a ReLu activation function. The CNN layers are followed by 9 TDNN layers.
After decoding the word lattices are rescored with the previously trained recurrent neural
network language model. Experiments with di�erent architecture sizes are presented in the
following chapter.

19https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/nnet3/
run_ivector_common.sh

20https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/run.sh
21https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_mono.sh
22https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_deltas.sh
23https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_lda_mllt.sh
24https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_sat.sh
25https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/utils/

dict_dir_add_pronprobs.sh
26https://kaldi-asr.org/doc/chain.html
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Chapter 5

Experiments and results

This chapter presents experiments with di�erent combinations of the training datasets and
their augmentations. It also demonstrates the positive and negative contributions of the
individual features presented and described in the previous chapters. Pruning and model
size relationship is examined. Di�erently sized acoustic model architectures and their WER
scores are shown.

5.1 Training on 18 hours of the company data mixed with
the Supreme Court dataset

In this set of experiments, a 29.5 hour dataset of the perfectly annotated company data was
used. The dataset was split into 11.5 hour test set and an 18 hour train set. The company
data were combined with a subset of the Supreme Court dataset. Both datasets underwent
di�erent augmentation procedures. Di�erent combinations of text corpuses for both n-gram
LM and RNNLM were examined to show how manipulation with domain specific data may
help to improve both perplexity and WER scores.

4-gram language models training on di�erent data combinations
While training the n-gram language models I tried to prove the assumption from Section
2.5 stating that building separate domain-specific language models and applying an inter-
polation technique to combine them into a single language model optimised for the target
use case shows better performance than having only a single LM trained on a mixed-domain
dataset. I also show how better text normalization can improve the perplexity of the final
interpolated model.

First I trained four 4-gram LMs on di�erent text corpuses. The corpuses used were
Google Billion Words corpus, all legal speech transcriptions found on the Internet com-
bined with the court decision statements from The Caselaw Access Project, Supreme Court
transcriptions and our company transcriptions. The resulting perplexities and log-linear
weights of the final LM are shown in Table 5.1. In this setup, only a simple text normal-
ization technique was applied. That meant basic numbers normalization (e.g. 1988 - one
thousand nine hundred and eighty eight instead of nineteen eighty eight), letter case pro-
cessing incorrectly handled some cases e.g. Mr. Underhill as a sentence end/beginning and
only several special characters were processed in this normalization version such as dollars
or at symbols inside email addresses.
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Table 5.1: 4-gram language models tested on a subset of 9k sentences of the company tran-
scriptions not seen during the training. Log-linear weights were assigned by the interpolation
procedure using the KenLM tool. The Size stands for number of sentences in the text corpus.

Dataset Size Weight Perplexity
Google Billion Words 42M 0.19 510

All Legal Domain Corpuses 23M 0.13 427
Supreme Court 4M 0.26 407

Parrot Transcriptions 17k 0.59 146
Interpolated LM - - 126

Table 5.2 compares the same text corpuses combination as in the previous setup, except
a more robust text normalization was performed on them. That meant more rare use cases
were handled, such as abbreviations spelling (FBI - F B I), numbers between 1900 and
2000 were normalized with the more common pronunciation (1988 - nineteen eighty-eight),
which was not ideal for all cases, but this numbers range was more often spelled in this
way than the other. More use cases in letter case processing were independently handled.
The normalization procedure also detected and removed lots of structural data mainly in
the Google Billion Words and Court Decisions corpuses (e.g. long IDs, tables and non-
alphanumeric texts) which resulted in less text used for the models training. This was done
by counting alphabetical and non-alphabetical characters in given texts. If the ratio was
above a certain threshold, the text was not used for an LM training. For the results to be
comparable with the ones from Table 5.1, the older version of normalization processed the
test set.

Table 5.2: 4-gram language models tested on a subset of 9k sentences of company transcrip-
tions not seen during the training. Log-linear weights were assigned by the interpolation
procedure. The same text corpuses combination as in Table 5.1 was used except more ro-
bust normalization was applied on them. The robust normalization removed a big part of
the Google Billion Words and Court decisions corpuses.

Dataset Size Weight Perplexity
Google Billion Words 29M 0.18 339

All Legal Domain Corpuses 18M 0.51 214
Supreme Court 4M -0.10 311

Parrot Transcriptions 17k 0.52 139
Interpolated LM - - 124

At this point Google Billion Words corpus represented 56% of all text data available.
Such amount of data makes the size of the final model quite large. As this text corpus was
far from our target domain, in the following two experiments I removed the Google Billion
Words corpus, see Table 5.3. This slightly worsened the resulting perplexity, but given the
amount of the removed text from the training, it is only a minor downgrade. This proved
that a huge amount of training text doesn’t really improves the final model quality if the
data are far from the target domain.

Lastly, all of the text corpuses except Google Billion Words were split into five sets
based on the origin of the data. This followed the main idea of interpolation mentioned
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Table 5.3: 4-gram language models tested on a subset of 9k sentences of company transcrip-
tions not seen during the training. Log-linear weights were assigned by the interpolation
procedure. In comparison to the experiment in Table 5.2, the Google Billion Words text
corpus was not included in the interpolation.

Dataset Size Weight Perplexity
All Legal Domain Corpuses 18M 0.58 214

Supreme Court 4M -0.02 311
Parrot Transcriptions 17k 0.55 139
Interpolated LM - - 125

earlier (more specialized LMs perform better than a single general one) and proved to be
the best solution. The results are shown in Table 5.4.

Table 5.4: 4-gram language models tested on a subset of 9k sentences of company transcrip-
tions not seen during the training. Log-linear weights were assigned by the interpolation
procedure. The same text corpuses as in the previous setups were used except they were
splitted into several subsets depending on the origin of the data.

Dataset Size Weight Perplexity
Court Decisions 15.5M 0.23 340

Legal Transcriptions 2.5M 0.58 176
Supreme Court 1.5M -0.08 337
Supreme Court

from before 2000 2.5M -0.11 340

Parrot Transcriptions 17k 0.48 139
Interpolated LM - - 123

Recurrent neural network language models training
Two RNNLMs for lattice rescoring were trained in this part. The first one used only two
text corpuses for its training - Supreme Court transcriptions and our company transcrip-
tions of the 18 hours of audio data while applying the original version of the simpler text
normalization. The second RNNLM was trained on the same text corpuses as presented
in Table 5.4 as this n-gram setup showed to have the best perplexity. The di�erences in
the achieved WER scores can be seen later in the tables 5.5 and 5.6 for the first RNNLM
version and the improved one respectively.

Acoustic models training
While training the following acoustic models, only several base ASR components were used.
That means previously described n-gram language models, i-vectors and a CNN-TDNNf
acoustic architecture. No online CMVN normalization, silence probabilities modelling or
silence frames concatenation were applied in this set of experiments.

The small 18 hours dataset had to be extended by the Supreme Court data. 500 hours of
the original Supreme Court data were augmented by the room impulse responses resulting
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in 1,000 hours of acoustic data. The 18 hours of the company training data were extended
by a 3-fold room impulse responses (RIRs) augmentation and 3-fold speed perturbation.
The amount of augmentation was the same as in the original paper [15] where both 3-fold
speed perturbation and 2(3)-fold RIRs augmentation was performed on the original data.
This way the original 18 hours were extended to 220 hours of audio.

For all of the following decodings, the best WER score was achieved by setting the beam
size 15, lattice pruning beam 12 and rescoring lattice beam 12. Higher values resulted in
around 0.01% improvement but drastically increased the computing time thus the lower
beam values seem to be more reasonable especially when planning on integrating the system
into a production environment.

Table 5.5 shows how the model performed when trained only on the Supreme Court data
in comparison to training on both the Supreme Court and company data. The augmented
18 hours helped to improve the final WER score by more than 10.6 points. Additionally,
rescoring the lattices with an RNNLM further boosted the results by 3.4 points. The 4-
gram language model used in these setups was the one described in Table 5.1, which means
the basic text normalization and not the ideal text corpuses split during the interpolation
were applied. The presented RNNLM for lattice rescoring was also trained on the basically
normalized texts from the Supreme Court dataset and the company transcriptions. Simi-
larly, the acoustic training stood on the same text normalization as the language models.
The results in the table are compared to the transcriptions by the general Google speech
recognition system.

Table 5.5: Convolutional time-delay (cnn-tdnnf) models trained on the cleaned and aug-
mented Supreme Court (s.c.) dataset (500h augmented to 990h) and 18 hours of our com-
pany data. The 18 hours of the company data were extended by augmentations to 220h.
test1 is an 11.5 hour test set of the company data, test2 is a 60 hour subset of the Supreme
Court dataset, both not seen during the training.

Training info: WER [%]
Acoustic model Language model Dataset test1 test2

google-asr unknown unknown 35.0 -

cnn-tdnnf 4-gram 500h s.c. + 440h aug. 38.3 13.8

cnn-tdnnf 4-gram
+ lat. rescoring 500h s.c. + 440h aug. 34.9 15.1

cnn-tdnnf 4-gram 18h parrot + 200h aug.
500h s.c. + 440h aug. 27.63 13.96

cnn-tdnnf 4-gram
+ lat. rescoring

18h parrot + 200h aug.
+ 500h s.c. + 440h aug. 24.21 -

Models in Table 5.6 took advantage of the improved text normalization and an 4-gram
language model interpolated on more appropriately split text corpuses as shown in Table
5.4. The RNNLM shown in this table was trained on the same texts as the 4-gram LM
and the acoustic training used the improved text normalization too. As the data were
normalized di�erently, the table shows WER scores on test sets normalized with both the
basic (test1) and the improved (test3) text normalization.
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Table 5.6: Improved 4-gram LM from Table 5.4 (v2) and a new RNNLM both trained on
the text corpuses normalized with the improved version of the text normalization compared
to the basic normalization (v1). The same AMs as in Table 5.5 used. test1 is the company
11.5h test set same as the test1 in Table 5.5. test3 is the same set except normalized with
the improved text normalization.

Training info: WER [%]
Acoustic model Language model Dataset test1 test3

google-asr unknown unknown 35.0 35.1

cnn-tdnnf 4-gram (v1) 18h parrot + 200h aug.
500h s.c. + 440h aug. 27.63 -

cnn-tdnnf 4-gram (v1)
+ lat. rescoring

18h parrot + 200h aug.
+ 500h s.c. + 440h aug. 24.21 -

cnn-tdnnf 4-gram (v2) 18h parrot + 200h aug.
500h s.c. + 440h aug. 24.65 24.42

cnn-tdnnf 4-gram (v2)
+ lat. rescoring

18h parrot + 200h aug.
+ 500h s.c. + 440h aug. 22.59 22.32

The experiments showed that only a small amount of the target data can rapidly improve
the accuracy of the ASR system. Lattice rescoring seems to bring a constant contribution
in all setups. Both more robust text normalization and appropriate text corpuses split for
the LMs interpolation helped to achieve a better WER score.

5.2 Training on 80 hours of the company data mixed with
the Supreme Court dataset

After annotation of a larger amount of audio hours was finished, other experiments were
performed to show how the additional data help to improve the WER score. The previously
used data together with the newly annotated hours resulted in 90h of audio features. As
the speaker set of the newly obtained audio intersected with the speaker set of the previous
test and train sets, to sustain speaker uniqueness between the test and train sets and to not
waste the audio data needlessly by adding it all to the already existing test set, a new split
of the dataset was necessary. Thus the new WER scores are not directly comparable with
the previous setups. However, using the Google speech recognition as a baseline system,
the results can be still compared at least relatively although di�erent test sets were used.

The new train set of the company data consisted of 80 hours of audio, the test set
remained to have 10 hours of audio. The data in the following experiments were also
mixed with the Supreme Court dataset and augmented with both room impulse responses
and speed perturbation. New language models were prepared containing the additional
company transcriptions.

The newly trained 4-gram language model used the same text corpuses split as in Table
5.4, except the company transcriptions contained more data. The perplexity of the final
interpolated model is shown in Table 5.7. Due to the new test and train sets split, the
test set was di�erent from the one in Table 5.4 thus the results are not directly comparable
between the tables.
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Table 5.7: 4-gram language models tested on a subset of 7k sentences of company transcrip-
tions not seen during the training. Log-linear weights were assigned by the interpolation
procedure. Transcriptions of 80 hours of the company data were used in the Parrot Tran-
scriptions corpus in comparison with the 4-gram in Table 5.4 being trained on transcriptions
of 18 hours of the company data. Di�erent test sets were used thus the perplexities are not
comparable.

Dataset Size Weight Perplexity
Court Decisions 15.5M 0.19 326

Legal Transcriptions 2.5M 0.33 171
Supreme Court 1.5M -0.11 334
Supreme Court

from before 2000 2.5M -0.09 347

Parrot Transcriptions 43k 0.80 92
Interpolated LM - - 94

Next, using the enlarged company dataset, I executed the same experiments as previ-
ously with the smaller dataset. The augmentations of the Supreme Court data were the
same as in the previous experiments, which means 2-fold RIRs augmentation resulting in
1000 hours of features. For the company data 3-fold speed perturbation combined with
2-fold RIRs augmentation was applied resulting in 480 hours of features.

As mentioned above, the improvements cannot be directly compared to the models
in Table 5.6 as they were evaluated on a di�erent test set. Instead, we can estimate the
improvement of the models by measuring the di�erences between our models and the Google
speech recognition system on di�erent test sets.

When training with the smaller dataset, the di�erence between our model and the
Google speech recognition system was 10.68 points without and 12.78 points with lattice
rescoring, see Table 5.6. In the new experiments shown in Table 5.8, the same acoustic
and language models setup brought improvement of 14.8 without rescoring in comparison
to the Google speech recognition system when trained on the dataset containing 80 hours
of the company data instead of 18 hours.

Table 5.8 also demonstrates how di�erent amounts of the Supreme Court hours increase
or decrease the WER score. Visible di�erences were found when testing various Supreme
Court augmentations approaches. Specifically, five approaches in usage of the Supreme
Court data were tested, all of which combined with a constant amount of 80 hours of the
company data augmented to 480 hours:

1. 480 company hours only.

2. 480 company hours with 500 clean (not augmented) Supreme Court hours.

3. 480 company hours with 500 Supreme Court hours all of which contained inserted
room impulse responses.

4. 480 company hours with 500 clean Supreme Court hours augmented to 1000 hours
half of which was the original not augmented data and the second half contained room
impulse responses.

5. 480 company hours with 1000 clean Supreme Court hours without augmentations.
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Table 5.8: Various combinations of the company data (80 hours augmented to 480 hours
using 3-fold speed perturbation and 2-fold room impulse responses augmentation) and the
Supreme Court data both augmented and not augmented (or both). test4 is a 10 hour test
set from the unseen company data.

Training info: WER [%]
Acoustic model Language model Dataset test4

google-asr unknown unknown 37.4
cnn-tdnnf-a 4-gram 80h parrot + 400h aug. 23.88

cnn-tdnnf-b 4-gram 80h parrot + 400h aug.
500h clean s.c. 22.89

cnn-tdnnf-c 4-gram 80h parrot + 400h aug.
500h aug. s.c. 22.57

cnn-tdnnf-d 4-gram 80h parrot + 400h aug.
1000h clean s.c. 23.25

cnn-tdnnf-e 4-gram 80h parrot + 400h aug.
500h clean s.c. + 500h aug. 23.20

The results in Table 5.8 clearly show that the Supreme Court data addition helps to
improve the final WER score (e.g. compare cnn-tdnnf-a and cnn-tdnnf-b models). However
if too much data from this dataset is used during training, the model loses performance
on the company target domain test set (models cnn-tdnnf-d and cnn-tdnnf-e from Table
5.8). Also, inserting room impulse responses to the Supreme Court data tends to result in a
lower WER score than when training on the same subset except not being reverberated, see
models cnn-tdnnf-b versus cnn-tdnnf-c and cnn-tdnnf-d compared to cnn-tdnnf-e in Table
5.8.

5.3 Experiments with additional components
This section describes experiments with all of the additional components mentioned earlier
in the chapters 2 and 4 and their negative or positive contributions. Namely, silence frames
concatenation to the training utterances, silence pronunciation modelling and online cep-
stral mean and variance normalization. Then I show how di�erent pruning options a�ect
the size on the resulting model and its accuracy. Also, acoustic and language models with
di�erent number of layers are compared in the end of the section.

Silence frames concatenation to training utterances
In the setup, results of which are demonstrated in Table 5.9, all utterances in the company
data were concatenated with randomly selected 30ms audio chunks (from a set of manually
prepared 100 chunks) containing silence or non-speech, which was meant to prevent the
HMM states from wrong silence modelling at the starts and ends of utterances. The rest
of the training setup remained the same as in Table 5.8. When comparing the WER scores
obtained by this model, they are worse in all cases by about 1 percent point.

Although the results on the test4 test set may suggest that this feature worsens the
overall ASR performance, I examined the individual decoded utterance texts manually

39



Table 5.9: Model trained on utterances with 30ms silence audio chunks concatenated to their
starts and ends. The results can be compared to Table 5.8 where the same models where
used except for the silence audio chunks concatenation. The WER scores were measured
on two test sets, test4 is the same test set as in Table 5.8, test4silframes is the same test
set except randomly selected silence chunks were concatenated to the individual utterances
stars and ends.

Training info: WER [%]
Acoustic m. Language m. Dataset test4silframes test4

google-asr unknown unknown - 37.4

cnn-tdnnf 4-gram 80h parrot + 400h aug. 24.39 24.46

cnn-tdnnf 4-gram 80h parrot + 400h aug.
500h clean s.c. 23.19 23.55

cnn-tdnnf 4-gram 80h parrot + 400h aug.
1000h clean s.c. 23.75 24.12

cnn-tdnnf 4-gram 80h parrot + 400h aug.
500h clean s.c. + 500h aug. 23.25 24.18

and find out the opposite may be true. The test4 contains many short utterances. As
the utterances of test4 were not concatenated with the silence audio frames although the
train set utterances were, it made it more di�cult for the model trained on utterances
with silence frames concatenated to decode the test utterances without them, especially
when they are very short thus their starts and ends play a bigger role. The model may
have been too confused at utterance beginnings. When it started to recover it was already
at the end of an utterances where it got confused again as no silence was present there.
However, this problem was less observable in long utterances where the model had more
data to recover from the missing silence at an utterance beginning. Table 5.10 compares
WER scores achieved on long utterances by models trained with and without silence frames
concatenation.

Table 5.10: Measurements showing by how much percent the model trained on utterances
concatenated with silence frames outperformed the model trained on utterances without the
silence frames concatenated (negative values suggest the model performed worse). Min.
utterance length was the minimum number of characters in the reference utterances to be
selected for the comparison.

Min. utterance length Utterance count WER di�erence
80 57 0.55
70 117 0.05
60 174 0.13
50 272 0.04
40 427 -0.11
30 663 -0.22

None 8009(all) -0.66
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As the number of long utterances in the test set was relatively small, the comparison
in Table 5.10 doesn’t have to be necessarily correct. Another comparison was performed
on a unique Supreme Court subset disjunct with the training set. The subset contained
6000 utterances all of which were longer than 100 characters. Both models, trained with
and without silence frames concatenation, achieved the same WER score 18.64%. This
comparison also doesn’t answer the question whether the silence frames concatenation really
helps but it suggests that it doesn’t worsen the results on long utterances. This means
that although the feature doesn’t improve the final WER score on our test set, it can be
integrated into the production system where only long utterances exist.

Silence probabilities pronunciation modelling
According to the original paper introducing the silence pronunciation probabilities mod-
elling, this feature brings small but stable improvements across di�erent datasets. I tested
the feature on two setups. In these experiments, the silence pronunciation probabilities
modelling was included in training of the last model of the GMM models sequence and in
training of the consequent TDNNf architecture. A Kaldi script1 generated the pronuncia-
tion probabilities. The results and achieved WER scores are presented in Table 5.11.

The feature showed no improvement on neither short nor long utterances; the di�erence
in WER scores on long utterances subset was even worse than on the whole test set. Manual
examination of the automatic transcriptions didn’t end up with any reasonable explana-
tion. A common problem of the model with silence pronunciation probabilities modeling
was spelling of single letters. While the model without the pronunciation modelling usually
didn’t have problems with spelling of e.g. names, the model with the pronunciation mod-
elling usually tried to substitute the spelled letters with similar words, e.g. ’and they are J
are high to ya’ instead of ’M A R G A R I T’.

Table 5.11: Silence pronunciation probabilities modelling used with models trained on dataset
with and without concatenated silence frames compared to the model not modelling the
silence pronunciation.

Training info: WER [%]
Acoustic model Language model Dataset test4

cnn-tdnnf 4-gram 80h parrot + 400h aug.
500h clean s.c. 22.89

cnn-tdnnf 4-gramsilprob
80h parrot + 400h aug.

500h clean. s.c. 23.76

cnn-tdnnfsilframes 4-gramsilprob
80h parrot + 400h aug.

500h clean. s.c. 24.87

Online cepstral mean and variance normalization
While training acoustic models, Kaldi provides an option to train with online cepstral mean
and variance normalization. Table 5.12 shows improvement brought by this feature. Both
models in the table are the same except for the online cmvn normalization turned on and o�.

1https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/utils/
dict_dir_add_pronprobs.sh
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The model used was the best model from Table 5.8, meaning cnn-tdnnf acoustic model with
a 4-gram LM trained on 80 company hours augmented to 480 hours and 500 Supreme Court
hours all of which combined with RIRs. Improvement of the online cmvn normalization
turned out to be 0.14 points.

Table 5.12: Models trained with and without online cepstral mean and variance normaliza-
tion.

WER [%]
Model test4

cnn-tdnnfwithout_online_cmvn 22.57
cnn-tdnnfwith_online_cmvn 22.43

RNNLM lattice rescoring
A new RNNLM for lattice rescoring was trained with transcriptions of all 80 hours of
company data used together with other text corpuses present in Table 5.7. Table 5.13
shows how the new RNNLM performs in comparison to the one trained on texts containing
less company data. Only 0.01 improvement was achieved by this data addition which
suggests that such text amount is probably not enough to move the weights of the model.
The table also shows how a bigger architecture performed. It showed that adding one more
recurrent layer (3 instead of 2 LSTM layers) does not change the resulting score at all.

Table 5.13: Comparison of RNNLM rescoring using an LM trained on di�erent amounts
of target domain data and in combination with the same amount of texts from other text
corpuses, specifically texts described in tables 5.4 and 5.7. Also a model with one more
LSTM layer presented with no improvement in the WER score.

Training info: WER [%]
Acoustic model Language model Dataset test4

cnn-tdnnf no rescoring 80h parrot + 400h aug.
500h aug. s.c. 22.57

cnn-tdnnf RNNLMold
80h parrot + 400h aug.

500h aug. s.c. 20.76

cnn-tdnnf RNNLMnew
80h parrot + 400h aug.

500h aug. s.c. 20.75

cnn-tdnnf RNNLMnew_larger
80h parrot + 400h aug.

500h aug. s.c. 20.75

Pruning language models to decrease the decoding graph size
Training an n-gram LM on large portions of text data can make the resulting model size
huge as all of the n-gram combinations have to be stored with the model. Although big LMs
can improve the ASR quality, their usage in a production environment can be impractical
as such model consumes lots of memory, its loading takes more time and the decoding itself
is longer. The bigger the model the higher the requirements for all its resources. To be more

42



specific, the models from Table 5.8 used a 4-gram arpa format LM with size 5.8G, which
resulted in an HCLG decoding graph of 20G, meaning the model takes initially 20GB of
memory before the decoding even starts. Thus I experimented with di�erent sized n-gram
LMs where the size was regulated by pruning the models.

Pruning an n-gram LM means that if a certain (n�i)-gram for non negative i’s appeared
less times than a given threshold in a corpus, the (n� i)-gram won’t be saved in the model.
Setting the threshold to values low enough doesn’t have to necessarily worsen the model
prediction capacities as the (n � i)-grams that appeared only once or twice in the whole
corpus are often not so important or are nothing but noise.

Results in Table 5.14 demonstrate how di�erent pruning thresholds a�ected the final
size of the LM in the arpa format and the achieved accuracy. Di�erent pruning settings for
di�erent text corpuses were applied. The text corpuses that were assigned lower weights
during the interpolation procedure were pruned more then the other LMs. The table uses
KenLM pruning format - (a(1) b(2) c(3) d(4)) are pruning thresholds for unigrams, bi-grams,
3-grams and 4-grams. KenLM doesn’t support pruning of unigrams thus the threshold for
them was set to zero in all setups. I decided not to prune the LM trained on the company
transcriptions at all in any of the setups as this corpus was the smallest and most important
one. The last row of the table shows an LM trained only on the company transcriptions
without any pruning. Although the LM size was very small, it visibly worsened the final
WER score.

Table 5.14: Demonstration of how pruning of an 4-gram LM changes its size (arpa format)
and its prediction capabilities. Di�erent pruning settings were used for di�erent text cor-
puses which were then interpolated. The LMs with lower interpolation weights were pruned
more than the others. The pruning thresholds in this table are in this order: (a(1) b(2) c(3)
d
(4)) for unigrams, bi-grams, 3-grams and 4-grams, each corpus on separate line. The cor-

puses are displayed in this order: court decisions, general transcriptions, Supreme Court
transcriptions, Supreme Court transcriptions before 2000, company transcriptions. The last
row is a 4-gram trained only on the company transcriptions with no pruning.

Pruning thresholds Perplexity LM size WER [%]
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

94.5 5.8G 22.57

0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 0 0

93.9 3.4G 22.60

0 1 1 3
0 0 1 3
0 1 2 3
0 1 2 3
0 0 0 0

94.3 1.8G 22.59

0 3 3 3
0 1 1 3
0 5 5 5
0 5 5 5
0 0 0 0

95.1 1.2G 22.70

0 0 0 0 92 32M 24.26
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Di�erent sizes of acoustic architectures
In this part I examined how di�erent numbers of layers in the acoustic model change the
resulting WER score. Table 5.15 shows setups with di�erent numbers of CNN and TDNN
layers in the model architecture. The first row is the architecture described so far in the
previous setups. It is clear that by increasing the number of layers the WER score is
decreasing. More experiments with even bigger architectures will have to be performed in
the future.

Table 5.15: Comparison of acoustic architectures with di�erent numbers of CNN and TDNN
layers. The data used were from the best previous setup - company 80h augmented to 480h
and 500h of Supreme Court with room impulse responses.

WER [%]
#CNN #TDNN test4

6 9 22.43
7 9 22.35
7 10 22.28
8 11 21.97

Final speech recognition setups with best WER scores
Finally, the best model from all of the above experiments was chosen to represent the overall
achievement of this work. Table 5.16 shows this model compared with the google speech
recognition. The best performance was achieved by training the acoustic model with 8 CNN
layers and 11 TDNNf layers on 80 hours of company audio data augmented to 480 hours by
3-fold speed perturbation and 2-fold room impulse responses. The data were mixed with
500 hours of Supreme Court transcriptions. The Supreme Data were mixed with room
impulse responses (1-fold augmentation). Online CMVN was used and the lattices were
rescored with a RNNLM with 2 LSTM layers.

Table 5.16: The final setup with the best WER score compared to Google speech recognition.
The setup is an architecture of 8 CNN layers, 11 TDNN layers, with online CMVN, trained
on 80 company hours augmented to 480 with 3-fold speed perturbation and 2-fold room
impulse response augmentation in combination with 500 hours from the Supreme Court
dataset (with 1-fold room impulse responses augmentation). The language model is a 4-gram
LM with pruning option set to 0 0 0 1 for all corpuses, meaning only 4-grams occurring
exactly once in the training corpus are removed. The lattices are rescored with an RNNLM.
Both the 4-gram and the RNNLM were trained on data from Table 5.7 (~22M sentences).

Training info: WER [%]
Acoustic model Language model Dataset test4

google-asr unknown unknown 37.4

cnn-tdnnf 4-gram + lat. rescoring 80h parrot + 400h aug.
500h aug. s.c. 20.17
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Chapter 6

Conclusion

This work demonstrated how to build a hybrid automatic speech recognition system using
a Kaldi speech recognition toolkit. Using relatively small amount of the target domain data
together with a freely available Supreme Court hearings dataset, a large 17.2% improvement
over the general ASR system from Google was achieved. This was possible due to precise
manual data annotation and automatic data cleaning together with usage of state-of-the-art
speech recognition techniques provided by Kaldi.

Several experiments were performed while training multiple domain specific 4-gram
language models to be interpolated to a single language model. The work showed how the
target domain data help with improving the WER scores. Experiments were run showing
what is the optimal amount of di�erent domain data to be add to a training to improve
the accuracy of the model the most. Room impulse responses and speed perturbation were
applied as augmentation in di�erent combinations. Recurrent neural network language
models trained on di�erent amounts of data brought a stable improvement in all setups.

Experimental results were presented using silence frames concatenation to the training
utterances. This feature didn’t bring an improvement on the used test sets, however closer
examination of the decoded texts in a subset of long utterances indicated that the feature
may be of help in real world scenarios where only long utterances are usually decoded. This
feature should be further tested and experimented with.

Despite statements in the original cited paper presenting inter-word silence probabilities
modelling claiming that this feature decreases WER scores consistently across datasets,
using it in my work increased the WER score in two experiments.

Di�erent n-gram LM pruning setups were presented to show how does the model size
depends on the pruning frequency. By obtaining a slightly worse performance (0.1%) a
much smaller (x4) decoding graph could be build which is more suitable for production
usage. Additionally, multiple experiments with the size of the acoustic model and RNNLM
architectures showed that more layers tends to decrease the WER score for the acoustic
model while remaining the same for the RNNLM. More experiments have to be run in the
future with even bigger architectures.

Finally, the best ASR setup given the available data was presented, combining the
positively contributing features described or introduced in this work. In the future this ASR
system may be trained on more target domain data to further improve its quality. Also, the
neural architectures used to train this model can be adjusted and the best hyper-parameters
should be found to achieve even better results by e.g. adding more or di�erent layers to
both RNNLM and acoustic models, di�erent learning rate setup and/or di�erent number of
training epochs (early stopping). The silence frames concatenation feature should be also
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examined more in detail to find out if and how much does it help in real world scenarios. In
the future I’m also planning on experimenting with di�erent orders of the n-gram language
model.
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