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Abstract
This thesis deals with the topic of unrestricted grammars, normal forms, and their applica-
tions. It focuses on context-sensitive grammars as their special cases. Based on the analysis
of the set, an algorithm was designed using the principles of the Cocke-Younger-Kasami
algorithm to make a decision of whether an input string is a sentence of a context-sensitive
grammar. The final application, which implements this algorithm, works with context-
sensitive grammars in the Penttonen normal form.

Abstrakt
Táto práca sa zaoberá problematikou obecných gramatík, normálnych foriem a ich apliká-
cií. Zameriava sa na kontextové gramatiky ako ich špeciálne prípady. Na základe analýzy
tejto množiny bol navrhnutý algoritmus využívajúci princípy Cocke-Younger-Kasami algo-
ritmu za účelom rozhodnutia, či zadaný reťazec je vetou jazyka definovaného kontextovou
gramatikou. Výsledná aplikácia implementujúca toto riešenie je navrhnutá pre prácu s kon-
textovými gramatikami v Penttonenovej normálnej forme.
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Chapter 1

Introduction

Syntax analysis is an essential component of many disciplines focusing on string evaluation.
In practice, it has mostly been limited to unambiguous, context-free grammars, as the less
restricted families of grammars had proven both hard to use and too difficult to process.
However, as the aforementioned areas of study have been progressing, the context-freeness
offered by this group of grammars became no longer satisfactory, and a need to decom-
pose the input string in a way reflecting natural language has arisen. Context-sensitive
grammars, and therefore languages generated by them, present a suitable interlink between
these groups, because they allow for context, which is an important aspect of human speech.
Currently, only few parsing method capable of detecting context exist. However, none of
them are capable of processing context-sensitive grammars as a whole. The aim of this
thesis is to design and implement such an algorithm, which can deterministically decide
whether the input string is a sentence generated by some grammar. To allow for maximum
flexibility, the grammar is to be specified by the user.

The algorithm introduced in this thesis is based on the Cocke-Younger-Kasami (CYK)
parsing algorithm for context-free grammars, [5] which works with grammars in the Chom-
sky normal form. To decide a string’s correspondence to any grammar, it considers all
reduction sequences possibly leading to the desired string. It works in a bottom-up way.

The presented algorithm works with grammars in the Penttonen normal form, as an ex-
pansion of the Chomsky normal form. Apart from the way CYK works, it also applies a set
of restrictions to prevent inconsistencies of the syntax tree. If any nonterminal was used
to apply both a context-sensitive and a context-free rule, it could lead to occurrences of
nonterminals that would not appear in the syntax tree under normal conditions. In event
of such context conflict, the syntax tree is split into two versions, of which each propagates
a different rule. In the event of a failure of one such tree, a substitute is chosen and the
process is repeated until the string is either accepted, or there are no other possible syntax
trees to be examined and the string is rejected.

This algorithm offers the ability to parse an input string according to any user-specified
context-sensitive grammar in the Penttonen normal form. Since every context-sensitive
grammar can be converted to an equal grammar in this normal form, the algorithm therefore
works for any such grammar. This design always halts even for cyclic and ambiguous
grammars. Details of its functionality will be further described in the following chapters.

The algorithm was first presented as a part of Excel@FIT 2017.
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Chapter 2

Formal Grammars and Languages

This chapter focuses on the explanation of the formal terms needed to understand the topic
this thesis deals with. It starts by explaining basic terms such as alphabet, word, sentential
form, language, and regular operations for said languages, and later moves on to the topic of
Chomsky hierarchy as the most widely used testing ground for formal grammars. [7] It lists
and briefly describes the types of grammars according to the hierarchy, focusing mostly on
the unrestricted and context-sensitive grammars, as they are the focus of the thesis. The last
part of this chapter focuses on normal forms of formal grammars, and the relationship
between any grammar and a grammar in normal form.

2.1 Alphabets and Words
An alphabet is a finite nonempty set. An alphabet Σ consists of symbols or letter. A string
or a word over an alphabet Σ is a finite sequence of length of a zero or more symbols, where
any symbols can repeat more than once. A string of zero length is also called an empty
word, and is denoted by 𝜀. It is defined as follows: [4]

1. 𝜀 is a string over Σ,

2. if 𝑤 is a string over Σ and 𝑥 ∈ Σ, 𝑤𝑥 is a word over Σ.

The words ab, ba, abb, aabba are words over the alphabet Σ = {𝑎, 𝑏}. The set of all words
over an alphabet Σ is denoted by Σ*, which includes the empty word, 𝜀, the set of all
nonempty words is denoted by Σ+. It is formally defined as:

Σ+ = Σ* − {𝜀}. (2.1)

These sets are always infinite. [7] This thesis uses the symbol Σ to refer to alphabets.
The length of a word, 𝑤, is the number of symbols the word contains, and is denoted by
|𝑤|. Each instance of a symbol of Σ is counted once. The length of an empty word, 𝜀, is
zero. Formally defined as follows: [4]

1. if 𝑥 = 𝜀, |𝑥| = 0,

2. if 𝑥 = 𝑢1𝑢2 . . . 𝑢𝑛, for some 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ for 𝑖 = 1 . . . 𝑛, |𝑥| = 𝑛.

A word, 𝑢, is a subword of a word, 𝑤, if for some words, 𝑥1 and 𝑥2, the word 𝑤 consists of
the concatenation of these words; 𝑤 = 𝑥1𝑢𝑥2. Any of these words can be empty. If 𝑥1 is
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an empty word, 𝑢 is also called the prefix of the word 𝑤. In case 𝑥2 is a nonempty word, 𝑢
is a nontrivial prefix of 𝑤. If 𝑥2 is an empty word, 𝑢 is the suffix of the word 𝑤. In case
𝑥 − 1 is not empty, it is called the nontrivial suffix of 𝑤. This means that all subwords
except for the word itself and 𝜀 are nontrivial prefixes and suffixes. Formally defined as
follows:

1. prefix(𝑤) = {𝑥1 : 𝑥1 is a prefix of 𝑤},

2. suffix(𝑤) = {𝑥2 : 𝑥2 is a suffix of 𝑤},

3. subword(𝑤) = {𝑥 : 𝑥 is a subword of 𝑤}.

For every word, 𝑤, the following properties always hold: [4]

1. prefix(𝑤) ⊆ subword(𝑤),

2. suffix(𝑤) ⊆ subword(𝑤),

3. {𝜀, 𝑤} ⊆ prefix(𝑤) ∩ suffix(𝑤) ∩ subword(𝑤).

2.2 Languages
Any subset Σ* of an alphabet, Σ, is a formal language, 𝐿, over Σ; let 𝐿 ⊆ Σ*. [4] By this
definition, both ∅ and {𝜀} are languages over any alphabet. However, these languages are
not equal. Such languages can be finite or infinite. The simplest form of defining a finite
language is to list all of its words. However, infinite languages cannot be defined in such
way, and have to be specified in other ways, such as grammars and automata. They will
be discussed further in section 2.3.

There exist several operations over languages that allow for creation of new languages
from existing ones. If treating languages as sets, some operations can be inherited from
Boolean algebra: these are the operations of union, intersection and complementation.
The operations are defined as follows: [4]

𝐿1 ∪ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 or 𝑤 ∈ 𝐿2}, (2.2)
𝐿1 ∩ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 and 𝑤 ∈ 𝐿2}, (2.3)
𝐿1 − 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 and 𝑤 ̸∈ 𝐿2}. (2.4)

Several operations are extended to concern languages. The operation of concatenation is
defined as follows: [7]

𝐿1𝐿2 = {𝑤1𝑤2 | 𝑤1 ∈ 𝐿1, 𝑤2 ∈ 𝐿2}. (2.5)

Power of a language, 𝐿𝑖, is extended to include 𝐿0 = {𝜀}, and therefore it is defined as: [4]

1. 𝐿0 = {𝜀},

2. 𝐿𝑖 = 𝐿𝐿𝑖−1 for some 𝑖 ≥ 1.

The closure of a language, 𝐿*, is defined as: [4]

𝐿* =

∞∪
𝑖=0

𝐿𝑖 (2.6)
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Analogically, the positive closure is defined as:

𝐿+ =

∞∪
𝑖=1

𝐿𝑖. (2.7)

Based on these definitions, the following properties hold for every language 𝐿:

1. 𝐿* = 𝐿+ ∪ {𝜀},

2. 𝐿+ = 𝐿𝐿* = 𝐿*𝐿.

2.3 Chomsky Hierarchy
The following section uses the notion of a rewriting system. A rewriting system is a set of
production rules in the form of 𝑣 −→ 𝑤, where 𝑣 and 𝑊 are words of some language, 𝐿,
representing that an occurrence of 𝑣 can be replaced by the subword 𝑤. A rewriting system
can be used to transform words into other words, and thus to transform a language into
a different language. An extended version of a rewriting system can be used to define
languages [7]. Chomsky hierarchy is based on this principle – it introduces four types of
formal languages and grammars:

1. type 0 – unrestricted grammars,

2. type 1 – context-sensitive grammars,

3. type 2 – context-free grammars,

4. type 3 – regular grammars.

The type 0 languages and grammars are the most general of the four, and are equal to
computability [7]. The importance of this hierarchy lies in the fact that the generality of
a type decreases with the increasing type. Nowadays, Chomsky hierarchy is not the only
existing testing ground for language and grammar types, but it maintains its importance.

Each of the families of Chomsky hierarchy can be accepted by an automaton of power
at least equal to that of the listed type:

1. type 0 – Turing machine,

2. type 1 – linear-bounded automaton,

3. type 2 – pushdown automaton

4. type 3 – finite state automaton.

“Rewriting system is an ordered pair, 𝑀 = (Σ, 𝑅), where Σ is an alphabet and 𝑅 is
a finite relation on Σ*. Σ is called the total alphabet of 𝑀 or, simply, 𝑀 ’s alphabet.
A member of 𝑅 is called a rule of 𝑀 , so 𝑅 is referred to as 𝑀 ’s set of rules.” [5]

“A phrase-structure grammar or a type 0 Chomsky grammar is a construct
𝐺 = (𝑁,𝑇, 𝑆, 𝑃 ), 𝑁 and 𝑇 are disjoint alphabets, 𝑆 ∈ 𝑁 , and 𝑃 is a finite set of or-
dered pairs (𝑢, 𝑣), where 𝑢, 𝑣 ∈ (𝑁 ∪ 𝑇 )*.” [7]

“Elements in 𝑁 are referred to as nonterminals. 𝑇 is the terminal alphabet. 𝑆 is
the start symbol and 𝑃 is the set of productions or rewriting rules. Productions (𝑢, 𝑣) are
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written 𝑢 −→ 𝑣. The alphabet of 𝐺 is 𝑉 = 𝑁 ∪ 𝑇 . The direct derivation relation induced
by 𝐺 is a binary relation between words over 𝑉 , denoted =⇒𝐺, and defined as:

𝛼 =⇒𝐺 𝛽 if 𝛼 = 𝑥𝑢𝑦, 𝛽 = 𝑥𝑣𝑦 and (𝑢 −→ 𝑣) ∈ 𝑃, (2.8)

where 𝛼, 𝛽, 𝑥, 𝑦 ∈ 𝑉 *.” [7]
“The derivation relation induced by 𝐺, denoted =⇒*

𝐺, is the reflexive and transitive
closure of the relation =⇒𝐺.” [7]

“The language generated by 𝐺, denoted 𝐿(𝐺), is:

𝐿(𝐺) = {𝑤 | 𝑤 ∈ 𝑇 *, 𝑆 =⇒*
𝐺 𝑤}. (2.9)

Note that 𝐿(𝐺) is a language over 𝑇 , (𝐿(𝐺) ⊆ 𝑇 *).” [7]
Any string that is a member of (Σ ∪ 𝑁)* is a sentential form of 𝐺. If such sentential

form is a member of Σ*, it is called a sentence.

Figure 2.1: Chomsky hierarchy; this thesis uses it as its base of classification.

The closure properties of families of languages in Chomsky hierarchy are described by
table 2.1.

Table 2.1: Closure properties of types of grammars as defined by Chomsky hierarchy [7] (pg.
30). 𝑈𝑅 stands for unrestricted, 𝐶𝑆 for context-sensitive, 𝐶𝐹 for context-free and 𝑅𝐸 for
regular grammars.

UR CS CF RE
Union Yes Yes Yes Yes
Intersection Yes Yes No Yes
Complement No Yes No Yes
Kleene * Yes Yes Yes Yes

2.4 Unrestricted Grammars
Unrestricted grammars are the main type of the Chomsky hierarchy, as described at the be-
ginning of this chapter. This set properly contains the set of context-sensitive grammars,
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which properly contains the set of context-free and regular grammars as depicted in fig-
ure 2.1.

An unrestricted grammar is an ordered quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆) (2.10)

where:

∙ 𝑁 is the alphabet of nonterminals,

∙ 𝑇 is the alphabet of terminals, where 𝑁 ∩ 𝑇 = ∅,

∙ 𝑃 ⊆ (𝑁 ∪ 𝑇 )+ × (𝑁 ∪ 𝑇 )*, which is a finite set of productions,

∙ 𝑆 is the start symbol or the axiom. [4]

The members of 𝑃 are referred to as productions, 𝑝, and are usually written as 𝑢 −→ 𝑣,
where 𝑢 is a nonempty word that represents the left-hand side of the production rule, 𝑙ℎ𝑠(𝑝),
and 𝑣 represents the right-hand side of the rule, 𝑟ℎ𝑠(𝑝). Other than the left-hand side of
a rule having to consist a nonempty word, the productions of grammars of this family are
not restricted in any way. [4]

2.4.1 Equivalence of Unrestricted Grammars and Turing Machines

According to Church’s Thesis [7], any unrestricted grammar, 𝐺, represents a procedure.
Any procedure can be accepted by a Turing machine, and therefore every unrestricted
grammar, 𝐺, is equal to some Turing machine, 𝑀 . This can be proven by demonstrating
conversion of both a grammar into a Turing machine, and a Turing machine into a grammar.
Therefore, the family of unrestricted grammars is:

𝑈𝑅 = {𝐿 | ∃𝑀,Turing machine, 𝐿 = 𝐿(𝑀)}. [7] (2.11)

A Turing machine, 𝑀 , is an ordered system:

“𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝐵, 𝐹 ) (2.12)

where 𝑄 is a finite set of states, Σ is the input alphabet, Γ is the tape alphabet, Γ∪𝑄 = ∅
and Σ ⊂ Γ, 𝑞0 ∈ 𝑄 is the initial state, 𝐵 ∈ Γ−Σ is the blank symbol, 𝐹 ⊆ 𝑄 is the set of
final states, 𝛿 is the transition function,

𝛿 : 𝑄× Σ −→ 𝒫(𝑄× Σ× {𝐿,𝑅}).′′[7] (2.13)

Let 𝑀 be a Turing machine, where 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝐵, 𝐹 ), and an input word, 𝑤Σ*.
Given these, one of the following states will occur:

1. 𝑀 halts after a finite number of moves in a state, 𝑞 ∈ 𝑄. If 𝑞 ∈ 𝐹 , the input word,
𝑤, is accepted.

2. 𝑀 does not halt – in this case, the input word, 𝑤, is rejected.

A Turing machine that halts for every input represents the notion of an algorithm – this
concept was introduced by the Church-Turing thesis. [7] However, given a Turing machine,
𝑀 , and an input string, 𝑊 , it is impossible to decide whether the machine 𝑀 will halt
when run with the input. [6]
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Figure 2.2: Power of a Turing machine is great enough to accept an unrestricted grammar.

Let 𝐺 be an unrestricted grammar. Consider a string, 𝑤, where 𝑤 ∈ 𝑇 *. Construct
a three-tape Turing machine, 𝑀 . First, 𝑀 writes 𝑤 on its first tape. Afterwards, it starts
the computation by writing all production rules in 𝑃 on the second tape. Then it writes
the start symbol, 𝑆 on the third tape. This tape records the sentential form of 𝐺 during
the current step of the computation. “From this point on, 𝑀 iterates the following four-step
computational cycle:

1. Nondeterministically select a position, 𝑖, in the current sentential form on the third
tape.

2. Nondeterministically select a production, 𝑝, on the second tape.

3. If 𝑙ℎ𝑠(𝑝) appears on the third tape at positions 𝑖 through 𝑖 + |𝑙ℎ𝑠(𝑝)| − 1, replace
𝑙ℎ𝑠(𝑝) with 𝑟ℎ𝑠(𝑝); otherwise, reject.

4. If the first tape and the third tape coincide, accept; otherwise go to step 1.” [4]

The algorithm of conversion of any Turing machine into an equal unrestricted gram-
mar is considerably more complex than its counterpart. Please refer to [7] (pg. 172)
and [4] (pg. 715 – 716) for its full description.

Based on these proofs, any language, 𝐿, is equal to a Turing machine, 𝑀 , if it is
generated by an unrestricted grammar. Formally,

𝐿 = 𝐿(𝑀) if 𝐿 = 𝐿(𝐺), 𝐺 ∈ 𝑈𝑅. (2.14)

2.5 Context-sensitive Grammars
This section focuses on the family of context-sensitive grammars as a subset of unrestricted
grammars. It discusses the differences between these sets, and the implied differences
between the automata equal to these grammars.

“A context-sensitive (type 1) grammar is a type 0 grammar 𝐺 = (𝑁,𝑇, 𝑆, 𝑃 ) such that
each production in 𝑃 is of the form 𝛼𝑋𝛽 −→ 𝛼𝑢𝛽, where 𝑋 ∈ 𝑁 , 𝛼, 𝛽, 𝑢 ∈ (𝑁 ∪𝑇 )*, 𝑢 ̸= 𝜀.
In addition, 𝑃 may contain the production 𝑆 −→ 𝜀 and in this case 𝑆 does not occur on
the right-hand side of any production of 𝑃 .” [7]
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A language generated by a context-sensitive grammar is defined in the same way as
a language generated by an unrestricted grammar:

𝐶𝑆 = {𝐿 | ∃𝐺 context-sensitive grammar such that 𝐿 = 𝐿(𝐺)}. [7] (2.15)

“A length-increasing (monotonous) grammar is a type 0 grammar 𝐺 = (𝑁,𝑇, 𝑆, 𝑃 ) such
that for each production (𝑢 −→ 𝑣) ∈ 𝑃 , |𝑢| ≤ |𝑣|· In addition, 𝑃 may contain the production
𝑆 −→ 𝜀, and in this case 𝑆 does not occur on the right side of any production from 𝑃 .” [7]

The generative power of the set of context-sensitive grammars is equal to that of the set
of monotonous grammars, thus they can be used interchangeably [7].

2.5.1 Equivalence of Context-sensitive Grammars and Linear-bounded
Automata

Linear-bounded automata are a special subtype of Turing machine, whose input tape con-
tains read-only markers that symbolize the beginning and the end of the tape. These
symbols are usually marked as # and $ respectively. This type of automata accepts exactly
the family of context-sensitive languages. [7]

Other than this, their behavior is identical to that of normal Turing machines as de-
scribed in section 2.4.1.

Figure 2.3: Linear-bound automaton is the special type of Turing machine that accepts
the family of monotonous grammars.
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2.6 Normal Forms
This section focuses on normal forms; they are crucial in proving the properties of grammars
and their applications. [7] [4] The section briefly mentions the Chomsky normal form of
context-free grammars, as it is the most commonly used form. This form serves as the base
for the Kuroda and Penttonen normal forms for unrestricted grammars, which will be
discussed further in the later parts of the section. Finally, an algorithm of conversion of
any unrestricted grammar into a grammar in a normal form is presented.

2.6.1 Chomsky Normal Form

Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. 𝐺 is in weak Chomsky normal form,
if each rule that contains terminals has a right-hand side that is a member of 𝑇 ∪ {𝜀},
and each rule that contains only nonterminals has a right-hand side that is a member of
(𝑁 ∪ 𝑇 )*. It is in Chomsky normal form, if each rule of the latter type has a right-hand
side whose length is equal to two. [7] Formally, a grammar, 𝐺, is in Chomsky normal form,
if the right-hand side of production rule, 𝑝 ∈ 𝑃 , satisfies 𝑟ℎ𝑠(𝑝) ∈ (𝑇 ∪ 𝑁2). [4] “By this
definition, a context-free grammar in Chomsky normal form has productions that satisfy
these two forms:

1. 𝐴 −→ 𝐵𝐶, where 𝐵,𝐶 ∈ 𝑁 ,

2. 𝐴 −→ 𝑎, where 𝑎 ∈ 𝑇 .” [4]

2.6.2 Normal Forms of Unrestricted Grammars

This section normalizes production rules of an unrestricted grammar into the Kuroda nor-
mal form or its special case, the Penttonen normal form. These normal forms are similar
to the Chomsky normal form presented in the previous section, and they can be used as its
direct extension for unrestricted grammars.

Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be an unrestricted grammar. 𝐺 is in Kuroda normal forms, if each
of its production rules satisfies one of the following forms:

1. 𝐴𝐵 −→ 𝐶𝐷, where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 ,

2. 𝐴 −→ 𝐵𝐶, where 𝐴,𝐵,𝐶 ∈ 𝑁 ,

3. 𝐴 −→ 𝑎, where 𝐴 ∈ 𝑁, 𝑎 ∈ 𝑇 ,

4. 𝐴 −→ 𝜀, where 𝐴 ∈ 𝑁 . [4]

If every production rule in the first form satisfies the condition 𝐴 = 𝐶, the grammar is in
the one-sided normal form, introduced by Penttonen. [4] [7]

The algorithm of conversion of an unrestricted grammar to conform to a normal form
is described in section 2.7.

2.6.3 Normal Forms of Context-sensitive Grammars

This section focuses on the Kuroda normal form and the Penttonen normal form of unre-
stricted grammars. It adapts them to the context-sensitive grammars – these are the gram-
mars that do not contain the epsilon rules.

A grammar, 𝐺, is in Kuroda normal form, if each of its production rules, 𝑝 ∈𝐺 𝑃 , is in
one of the following forms:
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1. 𝐴𝐵 −→ 𝐶𝐷, where 𝐴,𝐵,𝐶,𝐷 ∈ 𝐺𝑁 ,

2. 𝐴 −→ 𝐶𝐷, where 𝐴,𝐶,𝐷 ∈ 𝐺𝑁 ,

3. 𝐴 −→ 𝑎, where 𝐴 ∈ 𝐺𝑁 and 𝑎 ∈ 𝐺𝑇 . [7] [5]

For every grammar, 𝐺, there exists an equivalent grammar, 𝐺𝐾𝑁𝐹 , which is in Kuroda
normal form. The proof of this theorem is analogical to that described in section 2.7.

A grammar, 𝐺, is in Penttonen normal form, if each of its production rules is in one of
the following forms:

1. 𝐴𝐵 −→ 𝐴𝐶, where 𝐴,𝐵,𝐶 ∈ 𝐺𝑁 ,

2. 𝐴 −→ 𝐶𝐷, where 𝐴,𝐶,𝐷 ∈ 𝐺𝑁 ,

3. 𝐴 −→ 𝑎, where 𝐴 ∈ 𝐺𝑁 and 𝑎 ∈ 𝐺𝑇 . [7] [5]

Penttonen normal form is the special case of Kuroda normal form, and therefore for any
context-sensitive grammar, 𝐺, there exists an effectively equal grammar, 𝐺𝑃𝑁𝐹 , which is
in Penttonen normal form.

2.7 Construction of a Grammar in a Normal Form
This section focuses on the proof that for any unrestricted grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆),
there exists an equal grammar, 𝐺𝐾𝑁𝐹 = (𝑁𝐾𝑁𝐹 , 𝑇, 𝑃𝐾𝑁𝐹 , 𝑆), in Kuroda normal form. It
is proven by the algorithm of conversion presented in the following section. [4]

2.7.1 Proof of Equivalence

The algorithm begins by moving all nonterminals from 𝑁 to 𝑁𝐾𝑁𝐹 . Then it moves all
productions, 𝑝 ∈ 𝑃 , that satisfy the Kuroda normal form, to 𝑃𝐾𝑁𝐹 . Once these initial
steps have been taken, it continues as follows:

1. In every rule, that contains a terminal, 𝑎 ∈ 𝑇 , replace the terminal by a new nonter-
minal, 𝐴 ∈ 𝑁𝐾𝑁𝐹 , and add the production rule 𝐴 −→ 𝑎 to 𝑃𝐾𝑁𝐹 .

2. Replace every production rule, 𝑝 ∈ 𝑃 , that is in form 𝐴1 . . . 𝐴𝑛 −→ 𝐵1 . . . 𝐵𝑚, where
0 ≤ 𝑛 < 𝑚, and therefore the left-hand side is at least as long as the right-hand
side, with 𝐴1 . . . 𝐴𝑛 −→ 𝐵1 . . . 𝐵𝑚𝐶𝑚+1 . . . 𝐶𝑛. Nonterminals 𝐶𝑚+1 . . . 𝐶𝑛 represent
occurrences of a new nonterminal, 𝐶, which finally derives into 𝜀; 𝐶 −→ 𝜀.
After this move, every rule, 𝑝 ∈ 𝑃 has the right-hand side at least as long as the left-
hand side; move every rule in 𝑃 that satisfies the Kuroda normal form into 𝑃𝐾𝑁𝐹 .

3. Replace any rule, 𝑝 ∈ 𝑃 , in form of 𝐴 −→ 𝐵 by 𝐴 −→ 𝐵𝐶 in 𝑃𝐾𝑁𝐹 , where 𝐶 is
a new nonterminal in 𝑁𝐾𝑁𝐹 , and add the rule 𝐶 −→ 𝜀 to 𝑃𝐾𝑁𝐹 .

4. For every context-free rule in the form 𝐴 −→ 𝐵1𝐵2 . . . 𝐵𝑛, where 𝑛 ≥ 3, add the fol-
lowing rules to 𝑃𝐾𝑁𝐹 :

𝐴 −→ 𝐵1⟨𝐵2 . . . 𝐵𝑛⟩
⟨𝐵2 . . . 𝐵𝑛⟩ −→ 𝐵2⟨𝐵3 . . . 𝐵𝑛⟩

...
⟨𝐵𝑛−1 . . . 𝐵𝑛⟩ −→ 𝐵𝑛−1𝐵𝑛.

(2.16)
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Add the nonterminals 𝐵1⟨𝐵2 . . . 𝐵𝑛⟩ to ⟨𝐵𝑛−1 . . . 𝐵𝑛⟩ to 𝑁𝐾𝑁𝐹 . Remove the original
rule, 𝐴 −→ 𝐵1⟨𝐵2 . . . 𝐵𝑛⟩ from 𝑃 ; thanks to this, every rule 𝑝 ∈ 𝑃 satisfies 𝑙ℎ𝑠(𝑝) ∈
𝑁 ∪𝑁2 and 𝑟ℎ𝑠(𝑝) ∈ 𝑁 ∪𝑁2 ∪𝑁3.

5. For every context-sensitive rule 𝐴1𝐴2 . . . 𝐴𝑛 −→ 𝐵1𝐵2 . . . 𝐵𝑛, where 2 ≤ 𝑛 < 𝑚,
add a new rule, 𝐴1𝐴2 −→ 𝐵1𝐶 to 𝑃𝐾𝑁𝐹 and add the nonterminal 𝐶 to 𝑁𝐾𝑁𝐹 . If
|𝐵2 . . . 𝐵𝑛| ≤ 2, add the rule 𝐴3𝐶 −→ 𝐵2 . . . 𝐵𝑛 to 𝑃𝐾𝑁𝐹 . Otherwise, place the rule
to 𝑃 and repeat this step until 𝑃 = ∅.

The transformed grammar satisfies the Kuroda normal form. Also, 𝐿(𝐺) = 𝐿(𝐺𝐾𝑁𝐹 ),
and therefore the theorem holds. [4]

This algorithm can be applied to context-sensitive grammars in an analogical way.
However, a change must be made in step 3, as the context-sensitive grammars exclude
epsilon rules in most cases. In such a case, instead of adding 𝐶 −→ 𝜀 to 𝑃𝐾𝑁𝐹 , replace
𝐴 −→ 𝐵 with 𝐴 −→ 𝐵𝐶, where 𝐶 is every nonterminal that can follow 𝐵 in a production
rule, and add this rule to 𝑃𝐾𝑁𝐹 .

2.7.2 Transformation Example

Let 𝐺 be an unrestricted grammar, where 𝐺 = ({𝑆,𝐴,𝐵,𝐶,𝐸}, {𝑎, 𝑒}, {𝑆 −→ 𝐴𝐴𝑎𝐵𝐶,
𝐴𝑎 −→ 𝑒𝐶𝐴,𝐴𝐵𝐶 −→ 𝐶𝐸,𝐸 −→ 𝑒𝑎, 𝐶𝐶 −→ 𝑎,𝐴𝑒 −→ 𝑒}, 𝑆). This sec-
tion describes the construction of a grammar, 𝐺𝐾𝑁𝐹 , in Kuroda normal form, where
𝐺𝐾𝑁𝐹 = (𝑁𝐾𝑁𝐹 , 𝑇, 𝑃𝐾𝑁𝐹 , 𝑆), such that 𝐿(𝐺) = 𝐿(𝐺𝐾𝑁𝐹 ).

Initialize the new grammar, 𝐺𝐾𝑁𝐹 to 𝐺 = ({𝑆,𝐴,𝐵,𝐶,𝐸}, {𝑎, 𝑒},∅, 𝑆}. Because no
rules of the original grammar satisfy Kuroda normal form, the set 𝑃𝐾𝑁𝐹 is empty.

First, replace occurrences of all terminals, 𝑎 ∈ 𝑇 with corresponding nonterminals,
and add the rules describing these transformations to the set 𝑃𝐾𝑁𝐹 . After this step,
the sets 𝑃𝐾𝑁𝐹 and 𝑁𝐾𝑁𝐹 are defined as follows:

𝑁𝐾𝑁𝐹 = {𝑎′
, 𝑒

′
, 𝐸},

𝑃𝐾𝑁𝐹 = {𝑎′ −→ 𝑎, 𝑒
′ −→ 𝑒, 𝐸 −→ 𝑒

′
𝑎
′}.

(2.17)

Subsequently, in each rule, 𝑝 ∈ 𝑃 , where the left-hand side is longer than the right-hand
side, extend the right-hand side by |𝑙ℎ𝑠(𝑝)| − |𝑟ℎ𝑠(𝑝)| instances of a new nonterminal, 𝑋.
Add the nonterminal to 𝑁𝐾𝑁𝐹 , as well as the rule 𝑋 −→ 𝜀 to 𝑃𝐾𝑁𝐹 .

𝑃 = {𝑆 −→ 𝐴𝐴𝑎𝐵𝐶,𝐴𝑎
′ −→ 𝑒

′
𝐶𝐴,𝐴𝐵𝐶 −→ 𝐶𝐸𝑋},

𝑁𝐾𝑁𝐹 = {𝑆, 𝑎′
, 𝑒

′
, 𝐸,𝑋,𝐶,𝐴,𝐵},

𝑃𝐾𝑁𝐹 = {𝑎′ −→ 𝑎, 𝑒
′ −→ 𝑒, 𝐸 −→ 𝑒

′
𝑎
′
, 𝑋 −→ 𝜀, 𝐶𝐶 −→ 𝑎

′
𝑋,𝐴𝑒

′ −→ 𝑒
′
𝑋}.

(2.18)

In this step, transform all context-free rules, 𝑝 ∈ 𝑃 , whose right-hand side is longer
than two. Keep replacing substrings of the right-hand side by auxiliary nonterminals until
the set of production rules satisfies the Kuroda normal form.

𝑆 −→ 𝐴⟨𝐴𝑎′
𝐵𝐶⟩

⟨𝐴𝑎′
𝐵𝐶⟩ −→ 𝐴⟨𝑎′𝐵𝐶⟩

⟨𝑎′
𝐵𝐶⟩ −→ 𝑎

′⟨𝐵𝐶⟩
⟨𝐵𝐶⟩ −→ 𝐵𝐶

(2.19)
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After this step, the examined sets are defined as follows:

𝑃 ={𝐴𝐵𝐶 −→ 𝐶𝐸𝑋},

𝑁𝐾𝑁𝐹 ={𝑆, 𝑎′
, 𝑒

′
, 𝐸,𝑋,𝐶,𝐴,𝐵, ⟨𝐴𝑎′

𝐵𝐶⟩, ⟨𝑎′
𝐵𝐶⟩, ⟨𝐵𝐶⟩},

𝑃𝐾𝑁𝐹 ={𝑎′ −→ 𝑎, 𝑒
′ −→ 𝑒, 𝐸 −→ 𝑒

′
𝑎
′
, 𝑋 −→ 𝜀, 𝐶𝐶 −→ 𝑎

′
𝑋,𝐴𝑒

′ −→ 𝑒
′
𝑋,

𝑆 −→ 𝐴⟨𝐴𝑎′
𝐵𝐶⟩, ⟨𝐴𝑎

′
𝐵𝐶⟩ −→ 𝐴⟨𝑎′𝐵𝐶⟩, ⟨𝑎′

𝐵𝐶⟩ −→ 𝑎
′⟨𝐵𝐶⟩,

⟨𝐵𝐶⟩ −→ 𝐵𝐶}

(2.20)

In the final step, introduce pairs of nonterminals from the beginnings of left-hand sides
of context-sensitive rules, such that they derive into auxiliary nonterminals that emulate
the original rules. The right-hand side of both examined production rules is of the length
three, and therefore a rule preventing a loss of the left-hand side nonterminal is constructed.

𝐴𝑎
′ −→ 𝑒

′
𝑌

𝑌 −→ 𝐶𝐴

𝐴𝐵 −→ 𝐶𝑍

𝑍𝐶 −→ 𝐸𝑋

(2.21)

Assuming rules satisfying the Kuroda normal form have been moved to 𝑃𝐾𝑁𝐹 after
each step, the sets are defined as follows:

𝑃 =∅,

𝑁𝐾𝑁𝐹 ={𝑆, 𝑎′
, 𝑒

′
, 𝐸,𝑋,𝐶,𝐴,𝐵, ⟨𝐴𝑎′

𝐵𝐶⟩, ⟨𝑎′
𝐵𝐶⟩, ⟨𝐵𝐶⟩, 𝑌, 𝑍},

𝑃𝐾𝑁𝐹 ={𝑎′ −→ 𝑎, 𝑒
′ −→ 𝑒, 𝐸 −→ 𝑒

′
𝑎
′
, 𝑋 −→ 𝜀, 𝐶𝐶 −→ 𝑎

′
𝑋,𝐴𝑒

′ −→ 𝑒
′
𝑋,

𝑆 −→ 𝐴⟨𝐴𝑎′
𝐵𝐶⟩, ⟨𝐴𝑎′

𝐵𝐶⟩ −→ 𝐴⟨𝑎′𝐵𝐶⟩, ⟨𝑎′
𝐵𝐶⟩ −→ 𝑎

′⟨𝐵𝐶⟩,

⟨𝐵𝐶⟩ −→ 𝐵𝐶,𝐴𝑎
′ −→ 𝑒

′
𝑌, 𝑌 −→ 𝐶𝐴,𝐴𝐵 −→ 𝐶𝑍,𝑍𝐶 −→ 𝐸𝑋}.

(2.22)

The grammar constructed by this algorithm satisfies the Kuroda normal form, and it is
equal to the original grammar; 𝐿(𝐺) = 𝐿(𝐺𝐾𝑁𝐹 ).

14



Chapter 3

Syntax Analysis

Syntax analysis, or often called parsing, is one of the most important phases of the code
compilation. It takes input data often in the form of tokens previously generated by the lex-
ical analyzer, also called the scanner, and generates an output in the form of a syntax tree.

A lexer is a finite state automaton that processes an input string, breaks it down into
lexemes, and outputs corresponding tokens based on a predefined set of transition rules. In
many cases, the term of a ‘token’ is interchangeable with ‘terminal’. [1]

Syntax analysis determines the syntactic structure of the input data structure based on
grammar rules, and detects possible grammar errors. These rules can be defined in several
ways, such as natural speech, mathematical formula, or a grammar, usually in some normal
form, as described in section 2.3. [4] The output of this phase is a syntactic structure,
often a syntax tree or other structure capable of holding hierarchical data; this structure is
constructed by selection of suitable grammar rules and their application.

This phase is usually followed by semantic analysis. It takes an input in the form of
the data structure previously constructed during syntax analysis, and checks if it satis-
fies the semantic conventions of the examined language, such as data type compatibility
and variable initialization. This phase is important especially when parsing context-free
languages, as these are unable to maintain any context-related data. However, context-
sensitive languages are suited to join these two phases because of their ability to process
context-sensitive rules, as described in section 2.4. [1]

There exist three main types of syntax analysis methods – these are the top-down
parsers, the bottom-up parsers, and the universal parsers. “Universal parsing methods such
as the Cocke-Younger-Kasami algorithm and Earley’s algorithm can parse any grammar”
[1]; section 3.4.1 describes the former in a more detailed way. Common methods used
in compilers can be generally classified as either top-down or bottom-up. All methods
described in the following sections use context-free grammars.

3.1 Derivations and Syntax Tree
A syntax tree, also called a parse tree, can be constructed by treating the production of
a grammar as rewriting rules. It begins by rewriting the start symbol by the right-hand
side of one of its derivations. This thesis uses the notion of derivations and sentential forms
as presented in section 2.3.
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Figure 3.1: Syntax tree of the expression ‘−(𝑣𝑎𝑟 + 𝑣𝑎𝑟)’ based on the grammar
𝐸 −→ 𝐸 + 𝐸 | − 𝐸 | (𝐸) | 𝑣𝑎𝑟.

A sentential form can consist of a non-negative number of terminals and nonterminals.
Parsers generally choose a nonterminal to derive in the next step of parse tree construction
in one of the following ways:

1. “In leftmost derivations, the leftmost nonterminal in each sentential is always chosen.
If 𝛼 =⇒ 𝛽 is a step in which the leftmost nonterminal in 𝛼 is replaced, we write
𝛼 =⇒

𝑙𝑚
𝛽.

2. In rightmost derivations, the rightmost nonterminal is always chosen; we write 𝛼 =⇒
𝑟𝑚

𝛽

in this case” [1]

The parse tree is a tree, whose each node represents the application of a rewriting
rule. The node itself is called after the name of the nonterminal on the left-hand side of
the applied rule. It ignores the order in which the derivations were applied, and therefore
there can exist many derivations that produce the same syntax tree. The leaves of this tree
consist of terminals and nonterminals that form a sentential form. [1]

3.1.1 Grammar Ambiguity

A grammar that produces more than a single parse tree is called ambiguous. Most parsers
require an unambiguous grammar to be able to deterministically determine which produc-
tion is supposed to be applied next.

Parsers that are able to use these rules use a set of disambiguating rules that eliminate
unsuitable trees.

3.2 Top-Down Analysis
A top-down parser verifies the syntactical correctness of an input string by building its parse
tree. It starts from the root, which carries the start symbol, and applies suitable productions
depth-first. Equivalently, it works by creating the left-most derivation of the input string.

At each step of such a derivation, the parser needs to select the rule to be applied for
the currently deepest nonterminal, 𝐸. Once the production is selected, the parser tries to
find the path that leads to the input string. This is often achieved by using recursive-descent
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parsers that use backtracking to choose the production that properly matches the stream
of tokens produced by the scanner. [1]

Recursive-descent parsers often use LL grammar-based parsers. These parsers use a pre-
dictive set of tokens to deterministically choose a production in every step of the deriva-
tion. [5]

3.2.1 First and Follow Functions

Construction of both top-down and bottom-up parsers is aided by the First and Follow
functions defined for any grammar, 𝐺. These sets help to determine which production to
choose based on the next token.

First(𝑤), where 𝑤 is a word consisting of any number of syntactical symbols, is the set
of all terminals that can be at the beginning of words derived from 𝑤. If 𝑤 =⇒* 𝜀, 𝜀 is
also a member of First(𝑤). The set is used to choose between possible productions, as
a symbol, 𝑎 can be in at most of these sets.

Follow(𝐴), where 𝐴 is a nonterminal, is a set of terminals that can appear immediately
after 𝐴 in a sentential form of 𝐺. Moreover, in case 𝐴 can be the last nonterminal of some
sentential form, the appointed end-marker, $ is also a member of Follow(𝐴).

𝐿𝐿(𝑘) parsers are a family of predictive parsers that do not need backtracking. These
parsers scan the input string from left to right and always derive the leftmost nonterminal;
𝑘 is the number of lookahead symbols used to determine the rule at every step of the parsing
process. This class covers most programming languages, however, a grammar must not be
ambiguous or left-recursive to be usable by a 𝐿𝐿(𝑘) parser. [1]

3.3 Bottom-Up Analysis
A bottom-up parse represents the construction of a parse tree beginning from its leaves,
the input string, and working up towards the root, which represents the start symbol. In
terms of derivation, bottom-up parsing is equal to the rightmost derivation, as described
in section 3.1. Alternatively, bottom-up parsing can be viewed as a process of reducing
the input string into the start symbol. At each step of this process – a reduction–a substring
matching the right hand side of a reduction is reduced into the left-hand side of the said
production. [1]

Each step of a bottom-up parsing process represents either a shift, or a reduction.
These operations are used in a general parsing method called shift-reduce parsing – it is
used mainly by LR parsers; these, however, will not be described into further detail, as
they are difficult to construct without the aid of parser generators.

3.3.1 Handle Pruning

“Bottom-up parsing during a left-to-right scan of the input constructs a right- most deriva-
tion in reverse.” [1] A handle is a substring of some sentential form that matches the right-
hand side of a production, and can be reduced to construct a step of rightmost derivation in
reverse. In case the parsed grammar is ambiguous, there might exist more than one handle.
In the opposite case, every right-sentential form has a single handle. [1]
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3.3.2 Shift-Reduce Parsing

“Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar
symbols and an input buffer holds the rest of the string to be parsed.” [1] The handle is
always on the top of the stack before being recognized as a handle.

During a left-to-right scan of the input string, the parser shifts zero of more symbols
onto its stack. When it is ready to reduce a string of symbols on the stack, it reduces
the string into the left-hand side of the corresponding production. This is repeated until
either an error is detected, or the input string is empty and the stack contains the start
symbol – in such case, the parser accepts the string. [1]

“While the primary operations are shift and reduce, there are actually four possible
actions a shift-reduce parser can make: (1) shift, (2) reduce, (3) accept, and (4) error.

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of the stack.
Locate the left end of the string within the stack and decide with what nonterminal
to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.” [1]

There exist grammars even in the family of context-free grammars that cannot be parsed
by a shift-reduce parser. In case a parser of such grammar knows the entire stack and 𝑘
characters of the input string, and it is unable to determine whether to shift or reduce –
a shift/reduce conflict, or what reduction to make – reduce/reduce conflict. None of these
grammars are in the LR grammar class, which is often implemented using this kind of
parser.

Another possible source of conflicts is the situation when a handle has been recognized
on the stack, but the contents of both the stack and the input string are not sufficient to
decide which production to apply; this could be solved by letting the lexer access semantic
data.

3.4 Parsing Methods Based on Normal Forms
Parsing methods described in the previous sections are applicable only for certain subsets of
context-free grammars. There exist universal parsing algorithms that work any grammar,
such as Earley algorithm [1] and Cocke-Younger-Kasami algorithm. An example of this
type of parsing algorithms is the class of parsing methods that work with grammars in
normal forms. [5] Any grammar can be converted into an equal grammar in a normal form,
[4] and therefore parsing methods based on them are universal. [5]

3.4.1 Cocke-Younger-Kasami Algorithm

Let 𝐺 be a context-free grammar in Chomsky normal form, as defined in section 2.6.1,
and an input string, 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛, where 𝑎𝑖 ∈ 𝑇 , and 1 ≤ 𝑖 ≤ 𝑛. The Cocke-Younger-
Kasami algorithm is used to determine whether 𝑤 is a sentence of grammar 𝐺 in a bottom-up
way.

The algorithm works by constructing sets of nonterminals, 𝐶𝑌𝐾[𝑖, 𝑗], where 1 ≤ 𝑖 ≤
𝑗 ≤ 𝑛, where a nonterminal, 𝐴, can be a member of 𝐶𝑌𝐾[𝑖, 𝑗] only if 𝐴 =⇒* 𝑎𝑖 . . . 𝑎𝑗 , or
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in other words, if it is possible to reduce 𝑎𝑖 . . . 𝑎𝑗 into 𝐴. As a special case, 𝑤 is a sentence
of 𝐺, if the start symbol, 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛].

The algorithm initializes these sets by adding a nonterminal, 𝐴, to set 𝐶𝑌𝐾[𝑖, 𝑖] if
there exists a production in the form of 𝐴 −→ 𝑎𝑖, where 1 ≤ 𝑖 ≤ 𝑛. Then, anytime there
exist nonterminals 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘] such that there exists a production
𝐴 −→ 𝐵𝐶, the nonterminal 𝐴 is added to the set 𝐶𝑌𝐾[𝑖, 𝑘]. This is because 𝐵 =⇒* 𝑎𝑖 . . . 𝑎𝑗
and 𝐶 =⇒* 𝑎𝑗+1 . . . 𝑎𝑘, which implies that 𝐴 =⇒* 𝐵𝐶, because

𝐴 =⇒ 𝐵𝐶

=⇒ 𝑎𝑖 . . . 𝑎𝑗𝐶

=⇒ 𝑎𝑖 . . . 𝑎𝑗𝑎𝑗+1 . . . 𝑎𝑘.[5]
(3.1)

Once no set can be extended in this way, the algorithm checks whether 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛]
to verify that 𝑆 =⇒* 𝑎1 . . . 𝑎𝑛, and therefore 𝑤 is a sentence of the grammar 𝐺. If so,
the string is accepted; otherwise, the string is not a sentence, and the algorithm announces
its rejection. In the worst case scenario, the time complexity reaches 𝑂(𝑛3|𝐺|), where 𝑛 is
the length of the input string, and |𝐺| is the size of the grammar. [3]

The following algorithm presents the pseudo-code of the Cocke-Younger-Kasami parsing
method; taken from [5] (pg. 120 – 121).

Algorithm 1 Cocke-Younger-Kasami Parsing Algorithm
Input: a grammar, G = (𝑁,𝑇, 𝑃, 𝑆), in the Chomsky normal form;

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 with 𝑎𝑖 ∈ 𝑇 , 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1.
Output: ACCEPT if 𝑤 ∈ 𝐿(𝐺);

REJECT if 𝑤 /∈ 𝐿(𝐺).
1: introduce sets 𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛;
2: for 𝑖 = 1 to 𝑛 do
3: if 𝐴 −→ 𝑎𝑖 ∈ 𝑃 then
4: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑖];
5: repeat
6: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘], 𝐴 −→ 𝐵𝐶 ∈ 𝑃 for some 𝐴,𝐵,𝐶 ∈ 𝑁 then
7: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑘];
8: until no change;
9: if 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] then

10: ACCEPT
11: else REJECT;
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Chapter 4

Algorithm Design

The aim of this chapter is to design an algorithm capable of parsing context-sensitive
grammars. Most parsing methods do not deal with context, and if so, they merely highlight
places where context might be important. [2]

The algorithm presented in this chapter is based on the Cocke-Younger-Kasami pars-
ing algorithm for context-free grammars, which was described in section 3.4.1. However,
the original algorithm works with grammars in Chomsky normal form, which exists only
for context-free grammars. As its extension, the presented algorithm works with Penttonen
normal form, which allows context-sensitive rules in the form 𝐴𝐵 −→ 𝐴𝐶, as well as all
forms of rules presented by Chomsky normal form.

4.1 Extending the Cocke-Younger-Kasami Algorithm
The Cocke-Younger-Kasami algorithm works by constructing sets of nonterminals that
could appear in different nodes of the syntax tree. This can possibly cause context conflict;
in the presented version of the algorithm, applying a context-sensitive rule means replacing
a nonterminal by a different nonterminal at the same position.

In a production 𝐴𝐵 −→ 𝐴𝐶, the nonterminal 𝐶 would be added to the set at coordinates
of the nonterminal 𝐵. If the nonterminal 𝐶 was used to reduce a production with its
closest right neighbour, the syntax tree would become inconsistent, which could lead to
the acceptance of a sentential form that was not a sentence. However, if the algorithm
ignored all nonterminals reduced from context-sensitive rules, its power would decrease to
that of the original Cocke-Younger-Kasami algorithm, which would lead to rejecting of all
sentential forms whose reduction lead to at least one context-sensitive nonterminal in their
syntax tree. The extended version of the algorithm uses several additional sets and variables
to handle these collisions. These will be described in the following sections.

4.2 Supplementary Sets and Variables
This section describes the additional sets and variables needed to handle context as an ex-
tension of the Cocke-Younger-Kasami algorithm. It explains the purpose of every such
variable, and describes the way its value is acquired.
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4.2.1 Blacklist Queue

The presented algorithm works with an upper diagonal matrix, which represents its syntax
tree. A set of nonterminals is located at each of its non-null entries. The algorithm iterates
through these sets in a deterministic way, and therefore can appoint each entry’s closest
right neighbour.

Every time a context-sensitive production has been reduced for a specific pair of sets,
the algorithm checks if the modified set knows its right neighbour. If not, its coordinates
are added to the Blacklist Queue. This set holds coordinates of all sets that might cause
a context conflict, because they contain nonterminals reduced from context-sensitive pro-
ductions.

4.2.2 Ignored Coordinates and Predecessor Set

Next time the set is in the role of the first nonterminal of the examined pair, its coordi-
nates are removed from the Blacklist Queue, and its ignored coordinates are set to those of
the other set of the pair. When examining a pair of sets where the second is ignored by
the first, the context-sensitive nonterminals of the former set are excluded from the com-
parison; in case a rule is to be reduced, the syntax tree splits into two versions – one that
respects the context-sensitive rules of the former set, but ignores any rules reduced in this
step, and the latter, that does the opposite. This ensures that all versions of the syntax
tree are investigated and the syntax tree remains consistent during the parsing.

When splitting the syntax tree into two, the second version removes all context-sensitive
nonterminals from the set at the coordinates of the former examined set. For each nonter-
minal that is deleted, it deletes all its related nonterminals. To be able to do this, each
nonterminal has its own Predecessor set, which contains references to all its predecessors –
since the algorithm works in a bottom-up way, these are the nonterminals that have been
reduced from the original nonterminal.

4.2.3 Version Set and Current Version

The Version Set is a global set used during the entire run of the algorithm. It contains
all versions of the parse matrix the algorithm has generated so far, of which are mutually
exclusive. At any time there is a Current Version, which is the version of the parse matrix
the algorithm is currently analyzing and modifying.

At the beginning of the algorithm, there exists only a single matrix initialized using
𝐴 −→ 𝑎 productions. Every time a context conflict is detected, a new version is initialized;
at the end of the Current Version analysis, the new version containing resolving all found
conflicts is added to the Blacklist Queue.

Once no set of the Current Version can be extended, success of the version is examined
in a way identical to the Cocke-Younger-Kasami algorithm. If the version fails, it is removed
from the Version Set and a new Current Version is appointed. If there are no more versions
to appoint, the algorithm rejects the input string.

4.3 Informal Description
Given a grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), in Penttonen normal form, and a string 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛
where 𝑎𝑖 ∈ 𝑇 , and 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1, this algorithm decides, whether 𝑤 is
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a sentence of 𝐿(𝐺) in a bottom-up way. For its work, it uses an upper triangular matrix of
sets, 𝐶𝑉 – CurrentVersion, where 𝐶𝑉 [𝑖, 𝑗], 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

Every member of 𝐶𝑉 [𝑖, 𝑗] has its own 𝐵𝐿𝑄 set – every BlacklistQueue contains coordi-
nates of all entries of the corresponding matrix that contain context-sensitive nonterminals,
but whose ignored coordinates have not been set yet. As mentioned above, every entry
of the 𝐶𝑉 matrix contains a set of nonterminals that are likely to occur in this node of
the parse tree. For every such nonterminal 𝐴, there exists a Predecessor set, 𝑃𝐴, con-
taining references to all of its preceding nonterminals. Any nonterminal can be marked as
context-sensitive, which indicates that it originated from a context-sensitive production.

The algorithm starts the parsing process by scanning the input string, adding non-
terminal 𝐴 to 𝐶𝑉 [𝑖, 𝑖], if 𝐴 −→ 𝑎𝑖 ∈ 𝐺𝑅. For every such nonterminal, an empty set
of its predecessors is constructed. Afterwards, the algorithm iterates through the matrix
constructing the sets 𝐶𝑉 [𝑖, 𝑗]. For every pair 𝐶𝑉 [𝑖, 𝑗] and 𝐶𝑉 [𝑗 + 1, 𝑘], it checks whether
𝐶𝑉 [𝑖, 𝑗] is a member of 𝐵𝐿𝑄, which indicates that the set contains context-sensitive nonter-
minals, but its ignored coordinates have not been appointed yet. These are the coordinates
of the first right neighbour of 𝐶𝑉 [𝑖, 𝑗], whose nonterminals must not be used in combi-
nation with the context-sensitive nonterminals of the examined set – this is to ensure the
consistency of the parse tree. If the ignored coordinates have not been set yet, those of
𝐶𝑉 [𝑗 + 1, 𝑘] are used, and 𝐶𝑉 [𝑖, 𝑗] is removed from 𝐵𝐿𝑄.

The behaviour of the following step is dependent on whether the ignored coordinates
of 𝐶𝑉 [𝑖, 𝑗] are equal to 𝐶𝑉 [𝑗 + 1, 𝑘]. If not, the algorithm proceeds as follows. Any
nonterminal 𝐵 that satisfies 𝐴 ∈ 𝐶𝑉 [𝑖, 𝑗], 𝐶 ∈ 𝐶𝑉 [𝑗 + 1, 𝑘], 𝐴𝐵 −→ 𝐴𝐶 ∈ 𝑃 , is added
to 𝐶𝑉 [𝑗 + 1, 𝑘]. This implies that C =⇒* 𝑎𝑗+1 . . . 𝑎𝑘, and therefore B =⇒* 𝑎𝑗+1 . . . 𝑎𝑘, as
shown in section 3.4.1. An empty set 𝑃𝐵, used to refer to the nonterminal’s predecessors,
is constructed. A reference to this nonterminal is then added to sets 𝑃𝐴 and 𝑃𝐶 , in case
either of the original nonterminals will be deleted in the event of version splitting. This
process is repeated until 𝐶𝑉 [𝑗+1, 𝑘] cannot be extended anymore. If any context-sensitive
nonterminals were added and the set’s ignored coordinates have not been set yet, a reference
to this set is added to 𝐵𝐿𝑄 at the end of the step.

Any nonterminal 𝐴 is then added to the set 𝐶𝑉 [𝑖, 𝑘], if it satisfies 𝐵 ∈ 𝐶𝑉 [𝑖, 𝑗], 𝐶 ∈
𝐶𝑉 [𝑗 + 1, 𝑘], 𝐴 −→ 𝐵𝐶 ∈ 𝑃 , because 𝐵 =⇒* 𝑎𝑖 . . . 𝑎𝑗 , 𝐶 =⇒* 𝑎𝑗+1 . . . 𝑎𝑘, and therefore
𝐴 =⇒* 𝑎𝑖 . . . 𝑎𝑘. An empty set of predecessors, 𝑃𝐴, is created for each added nonterminal.
A reference to the nonterminal is added to sets 𝑃𝐵 and 𝑃𝐶 .

If the ignored coordinates are equal to 𝐶𝑉 [𝑗 + 1, 𝑘], a copy of the matrix is created
before the first satisfied rule is applied. All context-sensitive nonterminals of 𝐶𝑉 [𝑖, 𝑗],
including their predecessors, are deleted from the copy using predecessor sets, 𝑃𝐴 for each
nonterminal 𝐴, to recursively detect all nonterminal’s predecessors. All of the subsequently
added nonterminals are then saved to the copy instead of 𝐶𝑉 . Once the scan is completed,
this copy is added to 𝑉 .

Once no set can be extended, it is examined whether the starting symbol, 𝑆 ∈ 𝐶𝑉 [1, 𝑛],
so 𝑆 ⇒* 𝑎1 . . . 𝑎𝑛. If the check is passed, the algorithm announces ACCEPT. Otherwise,
𝐶𝑉 is removed from 𝑉 , a different member is appointed as the new 𝐶𝑉 , and the parsing
is continued for this version of the matrix. If 𝑉 is empty, and therefore no new 𝐶𝑉
can be appointed, there are no alternative syntax trees to be constructed. In such case,
the algorithm announces REJECT.
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4.4 Proof of Correctness
Sets 𝑁 , 𝑇 and 𝑃 of the examined grammar, 𝐺, are final. There can exist at most |𝑃 |+ 1
versions. For each entry of every version of the parse matrix, at most |𝑃 | productions can
be reduced. Therefore, the algorithm terminates for any input.

As this algorithm is based on the Cocke-Younger-Kasami algorithm, its correctness can
be assumed. [5] The presented algorithm does not change any of its key parts, only extends
them. These changes do not affect the rule application, with the exception of the matrix
splitting, which does not limit the parsing in any way, only splits it into independent phases.

4.5 Algorithm Complexity
Complexity of the presented algorithm is greater than that of the Cocke-Younger-Kasami
algorithm. This is a result of its ability to apply context-sensitive rules, which causes greater
time and space requirements for the algorithm.

4.5.1 Time Complexity

In the worst case scenario, the algorithm produces |𝑃 | + 1 versions of the parse matrix
– the initial version, and |𝑃 | additional versions created because of the context conflict
detection. If only one of these versions is created during each loop of the main repeat
until cycle, the loop is repeated |𝑃 | + 1 times – the initial loop and |𝑃 | repetitions.
During each of them, the algorithm has to repeat the three for cycles that iterate through
the triangle matrix in the appropriate order. For each of the entries, |𝑃 | production have
to be tested. Therefore, the time complexity is as follows:

𝑡 = (|𝑃 |+ 1)2
𝑛−1∑︁
𝑖=1

𝑛−𝑖∑︁
𝑗=1

𝑖−1∑︁
𝑘=0

|𝑃 | (4.1)

𝑡 =
𝑛(𝑛2 − 1) |𝑃 |(|𝑃 |+ 1)2

6
(4.2)

𝑂(𝑡) = 𝑂(𝑛3 · |𝑃 |3) (4.3)

4.5.2 Space Complexity

In the case described in the previous section, the algorithm generates a total of |𝑃 | + 1
matrices – an initial matrix and a copy of the matrix for each of the generated versions.
Each entry of these matrices can hold a total of |𝑃 | derived nonterminals. The space
complexity reaches:

𝑠 = (|𝐺|+ 1)
𝑛∑︁

𝑖=1

|𝐺|𝑖 (4.4)

𝑠 =
(|𝐺|+ 1)(𝑛− |𝐺|+ 1)(|𝐺|+ 𝑛)

2
(4.5)

𝑂(𝑠) = 𝑂(𝑛2 · |𝐺|3) (4.6)
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Figure 4.1: Time complexity of the presented algorithm is estimated at 𝑂(𝑛3 · |𝐺|3).

Figure 4.2: Space complexity of algorithm reaches 𝑂(𝑛2 · |𝐺|3) in the worst case scenario.
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4.6 Pseudocode Representation
The following section formalizes the presented algorithm in the form of pseudocode. The sets
used, and their roles, are further described in the section 4.2. Algorithm 2 describes the main
loops that are responsible for the parse matrix traversal, and the final verification of pres-
ence of the start symbol.

Algorithm 3 focuses on the production matching and application. It describes the cir-
cumstances under which new versions are created, and how their values are set.

Algorithm 2 Cocke-Younger-Kasami Algorithm Adapted to the Penttonen Normal Form
Input: a grammar, G = (𝑁,𝑇, 𝑃, 𝑆), in Penttonen normal form;

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 with 𝑎𝑖 ∈ 𝑇 , 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1.
Output: ACCEPT if 𝑤 ∈ 𝐿(𝐺);

REJECT if 𝑤 /∈ 𝐿(𝐺).
1: introduce set 𝑉 = ∅;
2: introduce matrix of sets 𝐶𝑉 , where 𝐶𝑉 [𝑖, 𝑗] = ∅ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, and add 𝐶𝑉 to 𝑉 ;
3: introduce set 𝐵𝐿𝑄 = ∅ belonging to 𝐶𝑉 ;
4: for 𝑖 = 1 to 𝑛 do
5: if 𝐴 −→ 𝑎𝑖 ∈ 𝑃 then
6: add A to 𝐶𝑉 [𝑖, 𝑖];
7: introduce set 𝑃𝐴 = ∅ holding references to 𝐴’s predecessors;
8: parse_loop:
9: repeat

10: for 𝑙𝑒𝑣𝑒𝑙 = 1 to 𝑛− 1 do
11: for 𝑖 = 1 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do
12: set 𝑘 to 𝑖+ 𝑙𝑒𝑣𝑒𝑙;
13: for offset = 0 to 𝑙𝑒𝑣𝑒𝑙 − 1 do
14: set 𝑗 to 𝑖 + offset;
15: ApplyRules(𝑖, 𝑗, 𝑘);
16: until no change;
17: if S ∈ 𝐶𝑉 [1, 𝑛] then
18: ACCEPT
19: else
20: remove 𝐶𝑉 from 𝑉 ;
21: if 𝑉 ̸= ∅ then
22: pick an element of 𝑉 and set as 𝐶𝑉 ;
23: else REJECT;
24: goto parse_loop;

The indices acquired in algorithm 2 are used to locate sets representing the neighbouring
substrings of the input string, and to subsequently appoint coordinates of the destination
set of nonterminals for this reduction. The process is further described in algorithm 3.
The variables 𝑖, 𝑗, 𝑘 are listed as the procedure parameters, because their value affects
which sets are tested. The algorithms consider all listed sets to be global.
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Algorithm 3 Rule Application
1: procedure ApplyRules(i,j,k)
2: if 𝐶𝑉 [𝑖, 𝑗] ∈ 𝐵𝐿𝑄 then
3: set its ignored coordinates to [𝑗 + 1, 𝑘];
4: remove 𝐶𝑉 [𝑖, 𝑗] from 𝐵𝐿𝑄;
5: if 𝐴 ∈ 𝐶𝑉 [𝑖, 𝑗], 𝐶 ∈ 𝐶𝑉 [𝑗 + 1, 𝑘], 𝑟ℎ𝑠(p) = 𝐴𝐶 for some 𝐴,𝐶 ∈ 𝑁 , p ∈ 𝑃 then
6: if coordinates ignored by 𝐶𝑉 [𝑖, 𝑗] are not equal to [𝑗 + 1, 𝑘] then
7: if 𝐴𝐵 −→ 𝐴𝐶 ∈ 𝑃 for some 𝐵 ∈ 𝑁 then
8: add 𝐵 to 𝐶𝑉 [𝑗 + 1, 𝑘] and mark it as context-sensitive;
9: if ignored coordinates of 𝐶𝑉 [𝑗 + 1, 𝑘] are not set then

10: add 𝐶𝑉 [𝑗 + 1, 𝑘] to 𝐵𝐿𝑄;
11: if 𝐵 −→ 𝐴𝐶 ∈ 𝑃 for some 𝐵 ∈ 𝑁 then
12: add 𝐵 to 𝐶𝑉 [𝑖, 𝑘];
13: introduce set 𝑃𝐵 = ∅ holding references to 𝐵’s predecessors;
14: add a reference to the nonterminal 𝐵 to sets 𝑃𝐴 and 𝑃𝐶 ;
15: else
16: if this instance of 𝐴 is context-sensitive then
17: skip this nonterminal;
18: create a copy of 𝐶𝑉 , its 𝐵𝐿𝑄, and all sets of predecessors;
19: remove all predecessors of context-sensitive nonterminals in 𝑐𝑜𝑝𝑦[𝑖, 𝑗];
20: remove all context-sensitive nonterminals from 𝑐𝑜𝑝𝑦[𝑖, 𝑗];
21: if 𝐴𝐵 −→ 𝐴𝐶 ∈ 𝑃 for some 𝐵 ∈ 𝑁 then
22: add 𝐵 to 𝑐𝑜𝑝𝑦[𝑗 + 1, 𝑘] and mark it as context-sensitive;
23: if ignored coordinates of 𝑐𝑜𝑝𝑦[𝑗 + 1, 𝑘] are not set then
24: add 𝑐𝑜𝑝𝑦[𝑗 + 1, 𝑘] to the 𝑐𝑜𝑝𝑦’s 𝐵𝐿𝑄;
25: if 𝐵 −→ 𝐴𝐶 ∈ 𝑃 for some 𝐵 ∈ 𝑁 then
26: add 𝐵 to 𝑐𝑜𝑝𝑦[𝑖, 𝑘];
27: introduce set 𝑃𝐵 = ∅ holding references to 𝐵’s predecessors;
28: add a reference to the nonterminal 𝐵 to sets 𝑃𝐴 and 𝑃𝐶 ;
29: add the copy to 𝑉 ;

4.7 Example
The following example aims to demonstrate the work of the algorithm presented in this
chapter. It describes the parsing process of the input string, 𝑤 =words are fun, according to
the grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), where 𝑁 = {𝑆,𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹}, 𝑇 = {𝑓𝑢𝑛, 𝑎𝑟𝑒, 𝑤𝑜𝑟𝑑𝑠},
and 𝑃 = {𝐶 −→ 𝑎𝑟𝑒,𝐷 −→ 𝑓𝑢𝑛,𝐴 −→ 𝑤𝑜𝑟𝑑𝑠, 𝑆 −→ 𝐴𝐹,𝐴𝐵 −→ 𝐴𝐶,𝐸 −→ 𝐶𝐷,
𝐹 −→ 𝐶𝐷}. In this example, diagonals of the parse matrix are treated as tiers, and context-
sensitive nonterminals are marked with an apostrophe.

First, the input string is scanned, and nonterminal sets reflecting it are constructed.
After this step, 𝐵𝐿𝑄 = ∅.
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Then, the first two sets of nonterminals are evaluated. The rule 𝐴𝐵 −→ 𝐴𝐶 is applied,
nonterminal 𝐵 is added and marked as context-sensitive. Because coordinates ignored by
𝐶𝑉 [2, 2] have not been set yet, the set is added to 𝐵𝐿𝑄. After this step, 𝐵𝐿𝑄 = {[2, 2]}.

Since 𝐶𝑉 [2, 2] is used as the left operand in this pair and it is a member of 𝐵𝐿𝑄,
the coordinates [3, 3] are set as ignored by the set. This pair is then evaluated – before
the rules 𝐸 −→ 𝐶𝐷 and 𝐹 −→ 𝐶𝐷 can be applied, a copy of 𝐶𝑉 is created, and 𝐵 is
deleted from this copy. Subsequently, the rules are applied. Finally, the copy is added to 𝑉 .
For 𝐶𝑉 , 𝐵𝐿𝑄 = ∅, Ignored coordinates: 𝐶𝑉 [2, 2] → [3, 3]. For 𝑐𝑜𝑝𝑦, 𝐵𝐿𝑄 = ∅, Ignored
coordinates: 𝑐𝑜𝑝𝑦[2, 2] → 𝑐𝑜𝑝𝑦[3, 3].

Sets in the second tier are evaluated, and since there are no more changes to be made,
it is tested whether 𝑆 ∈ 𝐶𝑉 [1, 3]. As this check fails, 𝐶𝑉 is abandoned. It is removed
from 𝑉 , and the previously created copy is appointed as the new 𝐶𝑉 . 𝐵𝐿𝑄 = ∅, Ignored
coordinates: 𝐶𝑉 [2, 2] → 𝐶𝑉 [3, 3].

This matrix is evaluated in an identical manner as before. The rule 𝑆 −→ 𝐴𝐹 is applied
for nonterminals 𝐴 ∈ 𝐶𝑉 [1, 1] and 𝐹 ∈ 𝐶𝑉 [2, 3]. Once no new members can be added to
any of the sets, it is confirmed that 𝑆 ∈ 𝐶𝑉 [1, 3], and the algorithm announces ACCEPT.
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Chapter 5

Prototype Implementation

This chapter focuses on the working prototype which implements the algorithm presented
in the previous chapter. The prototype was implemented in C++ using the C++11 stan-
dard. The language was chosen because of the variety of standard containers and pointer
operations it offers.

The final program is a console application; it is platform-independent, as it only uses
data structures and methods that are available as a part of the Standard Template Library.
The examined grammar and input string are both user-specifiable.

The application expects input data in the form of two configuration files – first, the file
holding rules of the grammar that will be used to parse the string, and second, the file
containing the sentential form whose grammatical correctness will be verified.

If the program has successfully completed the parsing, it prints a single line to console
indicating the input string’s correspondence to the chosen grammar.

5.1 Data Model
The program is composed of several modules. Each of these modules has a distinct role
during the application run, such as an input string and grammar processing, version ad-
ministration and grammar rule applications.

Figure 5.1 reflects the application composition; a single instance of the Parser class
owns instances of the three main modules and coordinates their communication. These
modules will be described in detail in the following sections.

5.2 Grammar Adapter
The GrammarAdapter class is responsible for processing and usage of the grammar specified
by user at launch. It parses the file set by a command line argument, and constructs
an object containing an equivalent grammar. This grammar is later used during the analysis
of the parse matrix.

After confirming that the file exists and is readable, the adapter reads it line by line.
It analyses every line, and extracts the symbols it recognizes according to rules specified
in section 5.2.1. Based on the number of the present symbols on each side of the rule, it
checks whether all symbols are of the correct type – e.g. the left-hand side of the examined
rule does not contain Terminals.
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Figure 5.1: Diagrams of classes as implemented in the working prototype. The two main
classes are GrammarAdapter and VersionSet; these are encapsulated by a single object that
oversees the entire program run.

The symbols can be of two types: Terminals, whose only member variable is their
name, and the derived class, Nonterminals, that contain data on own context-sensitivity
and activity. Each Nonterminal contains a vector<Predecessor> that saves the position
of all instances derived from it. All symbols are active by default.

Once all symbols have been extracted and verified, an instance of ProductionRule
is created, and the extracted nonterminals are assigned to it. Based on the number of
extracted symbols, the type of the rule is set; a rule can be of one of the following types:

1. context-sensitive rule – rules used at the beginning of examination of every pair of
nonterminal sets.

2. context-free rule – rules used at the end of examination of set pairs.

3. terminal rule – rules used during the initialization of the first version of ParseMatrix.

This system of rule classification will be further described in section 5.5.
The complete rule is then added to the corresponding rule vector in the adapter’s

instance of Grammar to prevent additional type checks every time a pair is compared, as
these would cause delays in the parse matrix examination.

5.2.1 Grammar Format

The adapter uses the general rule of at most one production on every line. The left-hand
side and the right-hand side of every rule are divided by a colon; the form of the rules
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themselves reflect the Penttonen normal form, which was described in section 2.6.3. A rule
can be in one of the following forms:

1. <A><B>: <A><C> – the context-sensitive rules

2. <A>: <B><C> – the context-free rules

3. <A>: a – the terminal rules

The name of every nonterminal has to be surrounded by angle brackets. In case a sym-
bol is not surrounded, the adapter treats it as a terminal. There can be any number of
whitespace excluding the end of line in nonterminal names and between symbols; end of
terminals is marked by the first occurrence of any whitespace character. In case the user
wants to use any of the control symbols, i.e. colon or an angle bracket, they can be escaped
by a backslash.

5.3 Input String Adapter
The InputStringAdapter class implements the same virtual base class as the Grammar-
Adapter class. It scans the input string specified by the user and creates a vector of
tokens.

After verifying the access to the input file specified as a command line arguments,
the adapter reads the input file word by word, splitting at a whitespace. This is achieved
using the standard input file stream class, ifstream.

The extracted words are then pushed to the adapter’s token vector<string>. The vec-
tor is then used during the initial ParseMatrix construction to provide data about the length
of the input string, and therefore about the dimension of the matrix, and to offer the po-
tential right-hand side of the terminal productions.

5.4 Version Control
This module is responsible for managing the different versions of the parse matrix.

The main class in this module is the VersionSet class. It is responsible for keeping
data about the currently examined version, storing possible versions that have not been
analyzed yet, and finally, accepting or rejecting the input string.

5.4.1 Version Configuration

The various versions managed by the VersionSet are stored in a vector of the Version-
Configuration class instances.

The VersionConfiguration class consists of an instance of ParseMatrix and a vector-
<Coordinates> – the _blacklist_queue; it contains positions of all matrix entries whose
ignored coordinates have not been set yet. The vector contains Coordinates instead of
pointers for the sake of references staying up-to-date in case of version splitting.

Throughout its run, the program uses a single instance of the VersionSet. This instance
represents a reference to the currently analyzed instance of VersionConfiguration; this
instance serves the purpose of being the CurrentVersion, as described in algorithm 2. As
a contrast to the original algorithm, the instance is removed from the VersionSet before
being analyzed to allow for a simpler input string rejection test.
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When a context conflict is detected during the analysis of the CurrentVersion as de-
scribed in section 5.5, the object is copied, the copy is modified and at the end of the analysis,
the modified copy is pushed to the version vector.

5.5 Parsing Core
The parse matrix, which is modified during the analysis of an instance of VersionConfiguration,
is represented by an instance of the ParseMatrix class.

The class consists of a map of MatrixCells, ordered by Coordinates. A Matrix-
Cell contains a vector<Nonterminal>, which represents the nonterminal set that is used
during the rule application, as described in algorithm 3. The prototype uses vectors
instead of C++’s standard set container, as its usage would mean complications when
using the Nonterminalss’ vector<Predecessor>, as described in section 5.6. Instead,
it implements a namespace of function templates that allow treating vectors in a way
equivalent to sets and offering extra functionality.

Each instance is aware of its location on the map, and keeps track of Coordinates of
the next cell on the matrix diagonal, as this cell could cause a context conflict.

The ParseMatrix class is responsible for the comparison of the MatrixCells in an order
that ensures the cells’ _ignoredCoordinates consistency, and application of Production-
Rules of the Grammar generated at the beginning of the program run. This class is also
responsible for triggering the version splitting in case of a context conflict detection, as
described in section 5.6.

5.5.1 ParseMatrix Initialization and Traversal

Once the Adapters have constructed all objects based on the user data, the Grammar::construct-
InitialSets method is called. This method iterates through the main diagonal of the ini-
tial ParseMatrix instance, and applies terminal rules. It does so by comparing each of
the tokens with the right-hand side of all such rules, and adding a Nonterminal representing
the left-hand side of the matching ProductionRule to the MatrixCell as the corresponding
Coordinates, as described in algorithm 2.

The ParseMatrix::traverseMatrix method is responsible for iterating through the map
in the order required by parse_loop of algorithm 2. It starts by processing sets on the main
diagonal, advancing further right. On each diagonal, it processes MatrixCells starting
from the topmost cell, working its way down. The i, j and k variables represent indices
used to appoint the cells to be examined are acquired as follows, where the length variable
represents the number of tokens extracted by the InputStringAdapter at the beginning of
the program run:

f o r ( depth = 1 ; depth < length ; depth++) {
f o r ( i n t i = 0 ; i < length − depth ; i++) {

i n t k = i + depth ;
f o r ( i n t o f f s e t = 0 ; o f f s e t < depth ; o f f s e t ++) {

i n t j = i + o f f s e t ;
// r u l e a p p l i c a t i o n

}
}

}
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This cycle keeps repeating as long as any of the MatrixCells has changed, because addition
of context-sensitive Nonterminals does not have to be linear.

5.6 Rule Application
For every pair of MatrixCells appointed by the traversal cycle shown in section 5.5.1,
all rules containing only Nonterminals are checked, and in case of right-hand side match,
applied.

Once there are no rules to be applied for this ParseMatrix, the success of this Version-
Configuration is tested.

5.6.1 Context-sensitive Rule Application

As the first step of the pair examination, the context-sensitive rules are applied. They are
applied first, because a match of the right-hand side of such a rule may lead to creation of
Nonterminals that could be used to reduce context-free rules, and therefore the program
applies them immediately instead of having to wait for the following iteration of the main
cycle described in section 5.5.1, which might lead to decreased run time.

The rules are checked by examining every possible combination of Nonterminals in
the examined vectors and comparing it to the right-hand side of all rules of the correspond-
ing phase – in this case, the context-sensitive rules. When a match is found, the Grammar
acquires the changing left-hand side Nonterminal of the corresponding ProductionRule,
and rule is marked as applied for the modified MatrixCell to prevent infinite production
rule loops. Since this algorithm uses the Penttonen normal form, only one Nonterminal
changes regardless of the type of the rule.

If the second MatrixCell of the pair is ignored by the first one, the new Nonterminal
is added to the copy instead, and an inactive version of it is added to the CurrentVersion;
in this case, the ProductionRule is marked as applied in both instances of VersionCon-
figuration to prevent matrix inconsistencies.

In case a Nonterminal is to be added to the copy of the CurrentVersio, but the copy has
not been initialized, the Grammar::initializeNewVersion is evoked. This method creates
a copy of the CurrentVersion and sets all context-sensitive Nonterminals of the currently
examined MatrixCell to inactive, as well as all Nonterminals of its _predecessors. This is
equal to deleting the nonterminals described in algorithm 3; since the C++ vector dynam-
ically reallocates itself, the prototype uses the index of the Predecessor in its designated
MatrixCell instead of pointers to prevent inconsistent memory reference. Because of this,
the Nonterminals must not be deleted and are set inactive instead. Inactive Nonterminals
are ignored during the pair examinations.

5.6.2 Context-free Rule Application

As the second step of the pair examination, the context-free rules are applied.
The process is analogical to that described in section 5.6.1. The combinations of

Nonterminals are examined and compared to the right-hand side of context-free Production-
Rules.

When a match is detected, the corresponding left-hand side Nonterminal is added to
the set at Coordinates{i, k}. If the second MatrixCell is ignored, the symbol is added to
the copy instead, and an inactive version is added to CurrentVersion. The Production-
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Rule is marked as used in both versions to prevent duplicate application of the same rule,
and therefore to prevent possible creation of new VersionCongurations that are identical
to already existing versions.

5.7 Testing
The program was tested using a total of forty-two pairs of grammars and corresponding
input strings. The tests were run for existing files, with a mixture of both accepted and re-
jected input strings with a total success rate of ∼ 40.5 %.

These results confirm the assumptions about time and space complexity of the algo-
rithm presented in section 4.5, as the values show a steady growth when increasing one of
the parameters, and an exponential growth when values of both are high.

The table 5.1 shows the number of instructions executed based on the length of the in-
put string and number of production rules a grammar contains. The table 5.2 shows
the memory consumption for these combinations. The experimental data was acquired
using the Valgrind utilities Callgrind and Memcheck. The visualization of this data com-
pared to the analytical values is available in figures 5.2a and 5.2b respectively.

Table 5.1: Experimental values acquired from the time complexity testing. The values
shown in the last four columns represented number of instructions executed; 𝑛 represents
the number of tokens, and |𝐺| represents number of ProductionRules the grammar con-
tains.

𝑛 |𝐺| Average Set 1 Set 2 Set 3
0 0 2270000 2270000 2270000 2270000
0 25 43700000 43700000 43700000 43700000
0 50 220800000 220800000 220800000 220800000
0 75 553566666.7 617000000 617000000 426700000
0 100 1218000000 1328000000 1328000000 998000000
25 0 2780000 2780000 2780000 2780000
25 25 165566666.7 232500000 122500000 141700000
50 0 3226666.67 3200000 3280000 3200000
50 50 3532333333 7774000000 1248000000 1575000000
75 0 3750000 3780000 3830000 3640000
75 75 21086666667 51374000000 4911000000 6975000000
100 0 4210000 4250000 4380000 4000000
100 100 60819000000 149120000000 13310000000 20027000000
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Table 5.2: Experimental values acquired from the space complexity testing. The values
shown in the last four columns represented memory consumption in bytes. 𝑛 represents
the number of tokens, and |𝐺| represents number of ProductionRules the grammar con-
tains.

𝑛 |𝐺| Average Set 1 Set 2 Set 3
0 0 85100 91300 72700 91300
0 25 693350 693400 693300
0 50 2500000 2500000 2500000
0 75 4850000 5500000 4200000
0 100 9066666.67 9700000 9700000 7800000
25 0 99933.33 100000 100800 99000
25 25 1900000 3100000 1200000 1400000
50 0 109000 109000 110000 108000
50 50 45866666.67 116000000 8900000 12700000
75 0 119066.67 121000 120200 116000
75 75 294900000 790000000 43700000 51000000
100 0 128266.67 128000 133000 123800
100 100 847666666.7 2259000000 140000000 144000000

(a) Experimental time complexity (b) Experimental space complexity

Figure 5.2: Visual representation of experimental space complexity data from tables 5.1
and 5.2 respectively. The purple grid represents the analytical values assumed in section 4.5,
red points represent the actual data.
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Chapter 6

Conclusion

This thesis examines general properties of formal grammars, and languages generated by
them. Using the Chomsky hierarchy as the base for its research, it examines the unrestricted
grammars, their equivalence to Turing machines, and focuses on context-sensitive grammars
as their proper subset.

It inspects normal forms as systems for the formalization of grammar productions into
the designated form, which facilitate the grammar application. The Kuroda normal form
of unrestricted grammars, which extends the Chomsky normal form, and its special case,
the Penttonen normal form, are introduced. These are modified to satisfy the context-
sensitive grammars, and an algorithm of construction of a grammar in normal form is
presented.

The purpose of syntax analysis, and its existing types, are explored. The thesis mentions
both the widely used context-free analyses, as well as the context-sensitive alternative
that integrates semantic checks. The three main types of parsing – top-down, bottom-up
and universal – are described.

Based on this research, an algorithm capable of parsing context-sensitive grammars is
designed. This algorithm extends the functionality of the Cocke-Younger-Kasami parsing
method, and adapts it to accept ambiguous context-sensitive grammars in the Penttonen
normal form. It successfully introduces a number of support systems that prevent syntax
tree inconsistencies and handle possible context conflicts while ensuring all possible versions
of parse tree are examined.

A prototype implementing this algorithm was created in C++. It uses a system of file
adapters that allow for any user-specified grammar and input string as long as the grammar
conforms to the Penttonen normal form. The testing confirmed that the complexity of
the program is similar to its analytical values – almost linear in case either of the key
parameter values is low, increasing almost cubically in case both of the parameter values
are high.

This thesis focuses on a topic that has not been thoroughly researched yet, therefore it
aims to serve mainly as a base for further research. In the future, I would like to expand
the algorithm to accept grammars in additional normal forms. This could allow for a more
extensive application, as the process of construction of a grammar in the Penttonen normal
form causes an exponential growth in the grammar size.
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Appendix A

Prototype Information

This appendix contains information about the source code and usage details.

A.1 Parameters and Return Codes
The program is a console application; it accepts input in the form of command line param-
eters at the time of launch. These parameters are used to specify the grammar and input
string files the program is going to use. The program accepts following arguments:

1. --help or -h – prints the help message and terminates the program,

2. --grammar or -g – sets the relative path to the grammar file,

3. --input or -i – sets the relative path to the grammar file.

If neither of the parameters is used, the program parses an example string and gram-
mar shown in appendix B. However, if either is used, both parameters need to be specified;
a missing parameter results in the program terminating with the error code ARGUMENT_ERROR (2).

An example of a correct program launch would be:

∙ pnf_parser

∙ pnf_parser --help

∙ pnf_parser --grammar=ex_grammar_01 -i=ex_input_string_01

If either adapters detect a problem while accessing the input files, the program termi-
nates with the error code PARSE_ERROR (1).

In case all of the previous actions have been executed successfully, the program returns 0
regardless of string acceptance result.

A.2 Code Metrics
Lines of code: 1922
Number of files: 25
Total size of source code: 69.3 kB
Executable file size: 299.8 kB
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Appendix B

Input Files Example

This appendix presents the grammar and the input string used in section 4.7 written in
the form acceptable by the working prototype. Corresponding files can be found on the at-
tached media as ex_grammar_01 and ex_input_string_01. This grammar is meant to
demonstrate both the context conflict detection and the possible ambiguity of accepter
grammar.

Grammar (ex_grammar_01)
<S>: <A><F>
<A><B>: <A><C>
<E>: <C><D>
<F>: <C><D>
<C>: are
<D>: fun
<A>: words

Input String (ex_input_string_01)
words are fun
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Appendix C

Contents of the Attached Medium

The attached medium contains the following directories and files:

∙ bin/ – the directory containing the pnf_parser executable and example files,

∙ doc/ – the directory containing LATEX sources codes, and files needed to generate
the documentation,

∙ pdf/ – the directory containing both versions of the pdf documentation,

∙ src/ – the directory containing the *.h and *.cpp source codes,

∙ README – the text file containing instructions for compilation and execution of the pro-
gram.
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Appendix D

Poster

An article about the presented algorithm was published as a part of Excel@FIT 2017.
The following poster was used to represent it during the public exhibition of participant
works.
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#41
Why? And how?

How many resources does it take?

How exactly?

he                      likes              rainbows

CV[1,2] = {}             CV[2,3]

copy[1,2] = {}    copy[2,3] = {E, F}

CV[1,3] = {S}

· in case of a context-sensitive rule reduction,
   it adds the reduced nonterminal to the same
   set as the original symbol
· the set remembers the first right neighbour it
   is compared with to detect context collisions
   in time

· time complexity is similar to that of the origi-
   nal CYK algorithm, multiplied by the number
   of possible versions  

· space complexity is affected mainly by the si-
   ze of the grammar, as it affects both the num-
   ber of possible versions as well as number of
   symbols in a set

· as of now, no parser capable of processing
   context-sensitive grammars exists
· algorithm based on the CYK algorithm for 
   context-free grammars in Chomsky normal 
   form
· integrates context-sensitive rules in the form
   of   of AB → AC introduced by Penttonen normal 
   form
· uses a versioning system to manage alterna-
   te parsing matrices created as the result of 
   context conflict
· makes an unambiguous decision of whether 
   the input string is a sentence of user-defined
   grammar   grammar

· if a context collision is detected, the version is 
   split into two
· the original version keeps the context-sensi
   tive symbols, and the new version gets all     
   subsequently reduces symbols

· in case of failure of currently used matrix, the
   version is abandoned, and a copy is chosen
   in its place

· if any such version succeeds, the string is 
   accepted, otherwise it is rejected.

CYK Algorithm Adapted 
to the Penttonen Normal Form

Dominika Klobučníková

O(n |G| )3        3 

O(n |G| )2        3 
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