
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

TRANSLATION GRAMMARS: PROPERTIES AND AP-PLICATIONS
PŘEKLADOVÉ GRAMATIKY: VLASTNOSTI A APLIKACE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR RADEK VÍT
AUTOR PRÁCE
SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
The goal of this thesis is to discuss translation grammars and their use in syntax-driven

translation. It provides an example of the use of translation grammars in predictive top-
down translation and provides formal devices for language accepting and translation output
generation. It examines the descriptional complexity of tranlation grammars as language
generating devices. An implementation of a translation framework using these devices is
described and a simple compiler is designed and implemented using this framework. This
compiler translates a new language REON designed in this paper to Python 3.

Abstrakt
Cílem této práce je prozkoumat překladové gramatiky a jejich použití v syntaxí řízeném

překladu. Práce ukazuje využití překladových gramatik v prediktivním syntaktickém
překladu a definuje formální prostředky pro přijímání jazyků a generování výstupu překladu.
Zkoumá sílu překladových gramatik při jejich použití jako prostředku pro generování jazyků.
Práce dále popisuje implementaci překladové knihovny používající tyto formální prostředky
a popisuje implementaci jednoduchého překladače pomocí této knihovny. Tento překladač
překládá nový jazyk REON navržený v této práci do Pythonu 3.

Keywords
translation grammars, syntax analysis, compilers

Klíčová slova
překladové gramatiky, syntaktická analýza, překladače

Reference
VÍT, Radek. Translation Grammars: Properties and Applications. Brno, 2017. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Meduna Alexander.

Translation Grammars: Properties and Applica-
tions

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of prof. RNDr. Alexander Meduna, CSc. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Radek Vít

May 11, 2017

Acknowledgements
I would like to thank my supervisor prof. RNDr. Alexander Meduna, CSc. for introducing
translation grammars to me and his tremendous help with researching this topic.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Sets and Relations . 4
2.2 Alphabets and Languages . 5
2.3 Grammars . 6
2.4 Automata . 8
2.5 More Definitions . 10

3 Translation Grammars 11
3.1 Syntax-directed translation using translation grammars 12

3.1.1 Two-stack Pushdown Automaton as a Translation Model for Top-down
Translation . 12

3.1.2 Predictive Top-Down Translation . 13
3.2 Descriptional Complexity of Translation Grammars 16

4 Designing a Translation 20
4.1 Python 3 and its Regular Expression Notation 20
4.2 The REON language . 25

4.2.1 REON Tokens . 25
4.2.2 REON Matching . 27

4.3 Translation from REON to Python 3 . 29
4.3.1 Translating Structured Expressions 29
4.3.2 Translation Grammar . 30

5 Implementation 31
5.1 Ctf . 31

5.1.1 Implementation details . 31
5.1.2 Attribute actions . 31
5.1.3 Class Model . 32
5.1.4 Translation Algorithms . 33
5.1.5 Testing . 35

5.2 Result Application . 35
5.2.1 Usage . 35
5.2.2 Input and Output . 35
5.2.3 Translation Components . 36
5.2.4 Testing . 36

1

6 Conclusion 37

Bibliography 39

Appendices 41

A Contents of the Included CD 42

B REON to Python 3 Translation Grammar 43

2

Chapter 1

Introduction

Translation is an important part of the computer science world, as all programming languages
have to be translated to either machine instructions or another interpreted language. Even
though formal devices have been seldom used to define translations in practice, the use
of translation grammars can offer several advantages. Translation grammars provide a human-
readable way to define equivalency between input and output constructs and they serve as
a formal device for translation definitions, which means that for any translation defined
by a translation grammar, its correctness can be formally proven.

This paper lays the groundwork for building translation tools using translation grammars.
Top-down predictive parsing is one of the widely used parsing methods; the algorithms
used for this method of parsing are adapted to work with translation grammars, creating
top-down predictive translation.

Chapter 2 reviews some basic ideas from logic, discrete mathematics, and language
theory. It contains the definitions and conventions used throughout this paper. It introduces
language generating devices in grammars, and language accepting devices in automata.

The core of this paper is in chapter 3. It introduces and defines translation grammars.
The methods and algorithms of predictive top-down parsing are adapted for translation
grammars and modified so that they not only accept languages, but generate their transla-
tions. This chapter also discusses the descriptional complexity of translation grammars and
examines the ways to generate languages with high complexity using translation grammars.

In chapter 4, we overview the devices in Python 3 for matching regular expressions.
Then, we propose and design the language REON (Regular Expression Object Notation),
which serves as a language for expressing regular expressions. Finally, we design a translation
grammar that generates translations from REON to Python 3.

Chapter 5 discusses the implementation of a translation framework based on the ideas
and algorithms introduced in chapter 3. An application is implemented using this framework
and its properties and usage are discussed. This application performs the translation from
REON to Python 3 as proposed in chapter 4.

Some basic understanding and knowledge of logic, discrete mathematics (see [7]), language
theory (see [1], [2], and [6]), basic algorithms, basic abstract data types, and the languages
C++ and Python (see [15]) are required to fully understand this paper.

3

Chapter 2

Preliminaries

This chapter reviews some basic concepts from set theory, discrete mathematics and formal
languages. This chapter also introduces the terminology used throughout this paper and
introduces some formal language systems.

2.1 Sets and Relations
This section reviews some basic ideas from set theory (see [9]).

Definition 2.1.1. A set, Σ, is a collection of elements taken from some prespecified universe.
If Σ contains a finite ammount of elements, it is a finite set. A finite set is customarily
specified by listing its members: Σ = {𝑒1, 𝑒2, ..., 𝑒𝑛}, where 𝑒1 through 𝑒𝑛 are all members
of Σ. If Σ contains an infinite ammount of elements, it is an infinite set. An infinite set
is usually specified by a predicate, 𝜋, so that it contains all elements which satisfy this
property; this is denoted by Σ = {𝑥 : 𝜋(𝑥)}. The set with zero elements is denoted by ∅
and is called an empty set. {} = ∅. |Σ| is the cardinality of the set Σ. It is the number
of elements in Σ. If Σ contains an element 𝑎, we denote this by 𝑎 ∈ Σ and refer to 𝑎 as
a member of Σ. If 𝑎 is not in Σ, it is denoted by 𝑎 ̸∈ Σ. Let 𝐴 and 𝐵 be two sets. 𝐴 is
a subset of 𝐵, symbolically written 𝐴 ⊆ 𝐵, when each member of 𝐴 also belongs to 𝐵. 𝐴 is
a proper subset, symbolically 𝐴 ⊂ 𝐵, when 𝐴 ⊆ 𝐵 and 𝐵 contains at least one element that
doesn’t belong to 𝐴.
The union of 𝐴 and 𝐵, denoted by 𝐴 ∪𝐵, is defined as

𝐴 ∪𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

The intersection of 𝐴 and 𝐵, denoted by 𝐴 ∩𝐵, is defined as

𝐴 ∩𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

The difference of 𝐴 and 𝐵, denoted by 𝐴−𝐵, is defined as

𝐴−𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∧ 𝑥 ̸∈ 𝐵}

If Σ is a set over a universe 𝑈 , then its complement, denoted by Σ′, is defined as

Σ′ = 𝑈 − Σ

Definition 2.1.2. For two objects, 𝑎 and 𝑏, (𝑎, 𝑏) denotes the ordered pair consisting of 𝑎
and 𝑏, in this order.

4

Definition 2.1.3. Let 𝐴 and 𝐵 be two sets. The Cartesian product of 𝐴 and 𝐵, 𝐴×𝐵, is
defined as

𝐴×𝐵 = {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

.

Definition 2.1.4. Let 𝐴 and 𝐵 be two sets. Any subset 𝜌 ⊆ 𝐴×𝐵 is a binary relation or,
briefly, relation. If 𝜌 represents a finite set, it is a finite relation. If 𝜌 represents an infinite
set, it is an infinite relation. To express that (𝑎, 𝑏) ∈ 𝜌, we usually write 𝑎𝜌𝑏. Let 𝐴 be a set,
𝑎, 𝑏 ∈ 𝐴, and the relation 𝜌 ⊆ 𝐴×𝐴. For 𝑘 ≥ 1, the k-fold product of 𝜌, 𝜌𝑘, is recursively
defined as

∙ 𝑎𝜌0𝑏 if 𝑎 = 𝑏

∙ 𝑎𝜌1𝑏 if 𝑎𝜌𝑏

∙ 𝑎𝜌𝑘𝑏 if there exists 𝑐 ∈ 𝐴 such that 𝑎𝜌𝑐 and 𝑐𝜌𝑘−1𝑏 for 𝑘 ≥ 2.

The transitive closure of 𝜌, 𝜌+, is defined as 𝑎𝜌+𝑐 only if 𝑎𝜌𝑘𝑏 for some 𝑘 ≥ 1. The reflexive
and transitive closure of 𝜌, 𝜌*, is defined as 𝑎𝜌*𝑏 only if 𝑎 = 𝑏 or 𝑎𝜌+𝑏.

2.2 Alphabets and Languages
This section reviews some basic ideas from language theory (see [9]).

Definition 2.2.1. An Alphabet Σ is a finite nonempty set, whose members are called
symbols.

Definition 2.2.2. A finite sequence of symbols from Σ is a string over Σ. 𝜀 denotes
an empty string; the string consisting of zero symbols. By Σ* we denote the set of all strings
over Σ. Σ+ = Σ* − {𝜀}. Let 𝑥, 𝑦 ∈ Σ*. |𝑥| denotes the length of 𝑥: how many symbols
in sequence there are in 𝑥. When 𝑥 = 𝑎𝑦𝑏, where 𝑥, 𝑎, 𝑏, 𝑦 ∈ Σ*, then 𝑦 is a substring of 𝑥.
𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑥, 𝑦) is true when 𝑦 is a substring of 𝑥. 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑛) denotes the nth leftmost
symbol of the string. 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 1) is the first symbol of the string; if 𝑥 = 𝜀, 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 1) = 𝜀.
𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, |𝑥|) is the last symbol in the string. Let 𝑥 ∈ Σ*, 𝑦 ∈ Σ. 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑥, 𝑦) is
the number of occurences of 𝑦 in 𝑥. It is the number of times the symbol 𝑦 is in the string 𝑥.

Definition 2.2.3. A language over Σ is any subset 𝐿 ⊆ Σ*. When 𝐿 represents a finite set
of strings, it is a finite language. When it represents an infinite set of strings, it is an infinite
language.

Definition 2.2.4. Let 𝑥, 𝑦 ∈ Σ* and 𝐿,𝐾 be two languages over Σ. The concatenation
of 𝑥 with 𝑦, denoted by 𝑥𝑦, is the string obtained by appending 𝑦 to 𝑥. For every 𝑥 ∈ Σ*,
𝑥 = 𝑥𝜀 = 𝜀𝑥. The concatenation of 𝐿 with 𝐾, denoted as 𝐿𝐾, is defined as

𝐿𝐾 = {𝑥𝑦 : 𝑥 ∈ 𝐿, 𝑦 ∈ 𝐾}

Definition 2.2.5. The reversal of 𝑥, denoted by 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥), is 𝑥 written in the reverse
order. The reversal of 𝐿, denoted by 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝐿), is defined as

𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝐿) = {𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥) : 𝑥 ∈ 𝐿}

.

5

Definition 2.2.6. Throughout this paper, 𝐷 denotes Dyck’s language defined as

𝐷 = {𝑣𝑤 : 𝑣 ∈ {0, 1}*, 𝑤 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑣)}

This paper doesn’t examine the properties of Dyck’s languages; this rudimentary definition
is sufficient for the purposes of this paper. For a more rigorous definition, see page 603 of [8].

2.3 Grammars
Finite languages can be defined by listing all their components. Infinite languages, however,
are impossible to define by enumeration. To define both finite and infinite languages, we
introduce grammars. Grammars are devices that generate languages and play a major role
in formal language theory. The following definitions are cited from [13].

Definition 2.3.1. A phrase-structure grammar is a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

where

∙ 𝑁 is an alphabet of nonterminals

∙ 𝑇 is an alphabet of terminals such that 𝑁 ∩ 𝑇 = ∅

∙ 𝑃 is a finite relation from (𝑁 ∪ 𝑇)*𝑁(𝑁 ∪ 𝑇)* to (𝑁 ∪ 𝑇)*

∙ 𝑆 is the start symbol

Pairs (𝑢, 𝑣) ∈ 𝑃 are called rewriting rules or productions, and are written as 𝑢 → 𝑣.
The direct derivation relation over (𝑁 ∪ 𝑇)* is denoted by ⇒𝐺 and is defined as

𝑥 ⇒𝐺 𝑦

only if 𝑥 = 𝑥1𝑢𝑥2, 𝑦 = 𝑥1𝑣𝑥2, and 𝑢 → 𝑣 ∈ 𝑃 , where 𝑥1, 𝑥2 ∈ (𝑁 ∪ 𝑇)*. The relation ⇒𝐺

is often denoted by ⇒ where no ambiguity rises. Let 𝑆 ⇒* 𝑥, 𝑥 ∈ (𝑁 ∪ 𝑇)*. Then, 𝑥 is
a sentential form. If 𝑥 ∈ 𝑇 *, then 𝑥 is a sentence. If 𝑥 is is a sentence, then 𝑆 ⇒* 𝑥 is
a successful derivation.
The language of G, denoted by 𝐿(𝐺), is the set of all sentences defined as

𝐿(𝐺) = {𝑤 ∈ 𝑇 * : 𝑆 ⇒* 𝑤}

Definition 2.3.2. A recursively enumerable language is a language generated by a phrase-
structure grammar. The family of recursively enumerable languages is denoted by RE.

Definition 2.3.3. A context-sensitive grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every 𝑢 → 𝑣 ∈ 𝑃 is of the form 𝑢 = 𝑥1𝐴𝑥2, 𝑣 = 𝑥1𝑦𝑥2, where 𝑥1, 𝑥2 ∈ (𝑁 ∪ 𝑇)*,
𝐴 ∈ 𝑁 , and 𝑦 ∈ (𝑁 ∪ 𝑇)+.

Definition 2.3.4. A context-sensitive language is a language generated by a context-sensitive
grammar. The family of context-sensitive languages is denoted by CS.

6

Definition 2.3.5. A context-free grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every rule in 𝑃 is of the form 𝐴 → 𝑥, where 𝐴 ∈ 𝑁 and 𝑥 ∈ (𝑁 ∪ 𝑇)*.

Definition 2.3.6. A context-free language is a language generated by a context-free grammar.
The family of context-free languages is denoted by CF.

Definition 2.3.7. A linear grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every rule in 𝑃 is of the form 𝐴 → 𝑥 or 𝐴 → 𝑥𝐵𝑦, where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *.

Definition 2.3.8. A linear language is a language generated by a linear grammar. The family
of linear languages is denoted by LIN.

Definition 2.3.9. A regular grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every rule in 𝑃 is of the form 𝐴 → 𝑎𝐵 or 𝐴 → 𝐵, where 𝐴,𝐵 ∈ 𝑁 and 𝑎 ∈ 𝑇 .

Definition 2.3.10. A regular language is a language generated by a regular grammar.
The family of regular languages is denoted by REG.

Theorem 2.3.11 (Chomsky hierarchy, see [4]).

REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE

Definition 2.3.12 (page 20 of [12]). A queue grammar is a sextuple

𝑄 = (𝑉, 𝑇,𝑊,𝐹,𝑅, 𝑔)

where

∙ 𝑉 is an alphabet of nonterminals and terminals

∙ 𝑇 ⊂ 𝑉 is an alphabet of terminals

∙ 𝑊 is an alphabet of states. 𝑉 ∩𝑊 = ∅

∙ 𝐹 ⊂ 𝑊 is a set of final states

∙ 𝑅 ⊆ (𝑉 × (𝑊 − 𝐹)) × (𝑉 * ×𝑊) is a finite relation

∙ 𝑔 ∈ (𝑉 − 𝑇)(𝑊 − 𝐹) is the starting pair of symbols

If 𝑢 = 𝑎𝑟𝑏, 𝑣 = 𝑟𝑥𝑐, and ((𝑎, 𝑏), (𝑥, 𝑐)) ∈ 𝑅, where 𝑟, 𝑥 ∈ 𝑉 *, 𝑎 ∈ 𝑉 , and 𝑏, 𝑐 ∈ 𝑊 , then Q
makes a derivation step 𝑢 ⇒ 𝑣 according to ((𝑎, 𝑏), (𝑥, 𝑐)) — usually denoted as (𝑎, 𝑏, 𝑥, 𝑐)
for brevity.
The language generated by a queue grammar 𝑄, denoted by 𝐿(𝑄), is defined as

𝐿(𝑄) = {𝑥 : 𝑥 ∈ 𝑇 *, 𝑔 ⇒*
𝑄 𝑥𝑓, 𝑓 ∈ 𝐹}

Queue grammars characterize the family of RE.

7

2.4 Automata
In this section, we define automata. Automata are devices that recognise strings in a given
language. They are typically used to accept languages generated by grammars.

Definition 2.4.1 (see [13]). A finite state automaton is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹)

where

∙ 𝑄 is a finite set of states

∙ Σ is an input alphabet

∙ 𝑅 ⊆ (𝑄× (Σ ∪ {𝜀})) ×𝑄 is the set of rules or transitions

∙ 𝑠 ∈ 𝑄 is the start state

∙ 𝐹 ⊆ 𝑄 is the set of final states

Instead of ((𝑝, 𝑦), 𝑞) ∈ 𝑅, we write 𝑝𝑦 → 𝑞 ∈ 𝑅. If 𝑦 = 𝜀, we write 𝑝 → 𝑞 ∈ 𝑅. A configuration
of 𝑀 is any string from 𝑄Σ*. The relation of a move, symbolically denoted by ⊢𝑀 (or ⊢
where no ambiguity rises), is defined over 𝑄Σ* as follows:

𝑝𝑦𝑥 ⊢ 𝑞𝑥

only if 𝑦 ∈ (Σ ∪ {𝜀}), 𝑝𝑦𝑥, 𝑞𝑥 ∈ 𝑄Σ* and 𝑝𝑦 → 𝑞 ∈ 𝑅.
The language of 𝑀 is defined as

𝐿(𝑀) = {𝑤 ∈ Σ* : 𝑠𝑤 ⊢* 𝑓, 𝑓 ∈ 𝐹}

Finite state automata characterize the family of REG.

Definition 2.4.2 (see [13]). A pushdown automaton is a septuple

𝑀 = (𝑄,Σ, 𝜏, 𝑅, 𝑠, 𝑆, 𝐹)

where

∙ 𝑄, Σ, 𝑠 and 𝐹 are defined as in a finite automaton

∙ 𝜏 is a pushdown alphabet

∙ 𝑅 ⊆ (𝜏 ×𝑄× (Σ ∪ {𝜀})) × (𝜏* ×𝑄) is the set of rules of transitions

∙ 𝑆 is the initial pushdown symbol

𝑄 and (Σ ∪ 𝜏) are always assumed to be disjoint. Instead of ((𝑎, 𝑏, 𝑐), (𝑑, 𝑒)) ∈ 𝑅, we write
𝑎𝑏𝑐 → 𝑑𝑒. The configuration of 𝑀 is any string from 𝜏*𝑄Σ*. The relation of a move,
denoted by ⊢𝑀 or ⊢, is defined as

𝑥𝑣𝑝𝑎𝑦 ⊢ 𝑥𝑤𝑞𝑦

8

where 𝑥,𝑤 ∈ 𝜏*, 𝑣 ∈ 𝜏 , 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ (Σ ∪ {𝜀}), 𝑦 ∈ Σ* and 𝑣𝑝𝑎 → 𝑤𝑞 ∈ 𝑅.
The language accepted by 𝑀 empty pushdown is defined as

𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑆𝑠𝑥 ⊢* 𝑓, 𝑓 ∈ 𝑄}

The language accepted by 𝑀 final state is defined as

𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑆𝑠𝑥 ⊢* 𝑍𝑓,𝑍 ∈ 𝜏*, 𝑓 ∈ 𝐹}

The language accepted by 𝑀 empty pushdown and final state is defined as

𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑆𝑠𝑥 ⊢* 𝑓, 𝑓 ∈ 𝐹}

Pushdown automata define the family of CF.

Definition 2.4.3. A Two-stack pushdown automaton (or 2PDA) is a pushdown automaton
with two stacks. Two-stack pushdown automaton 𝑀 is an octuple

𝑀 = (𝑄,Σ, 𝜏, 𝑅, 𝑠, 𝑆𝐼 , 𝑆𝑂, 𝐹)

where

∙ 𝑄, Σ, 𝑠, 𝐹 and 𝜏 are defined as in a pushdown automaton

∙ 𝑅 ⊆ 𝜏 × 𝜏 ×𝑄× (Σ ∪ {𝜀}) × 𝜏* × 𝜏* ×𝑄 is the set of rules or transitions

∙ 𝑆𝐼 is the initial input pushdown symbol

∙ 𝑆𝑂 is the initial output pushdown symbol

Instead of ((𝑎𝑖, 𝑎𝑜, 𝑏, 𝑐), (𝑑𝑖, 𝑑𝑜, 𝑒)) ∈ 𝑅, we write

𝑎𝑖|𝑎𝑜𝑏𝑐 → 𝑑𝑖|𝑑𝑜𝑒 ∈ 𝑅

where | ̸∈ (𝑄 ∪ Σ ∪ 𝜏) is a special symbol denoting the border between the two stacks.
The configuration of 𝑀 is any string from 𝜏*|𝜏*𝑄Σ*. The relation of a move, denoted by
⊢𝑀 or ⊢, is defined as

𝑠𝑖𝑖|𝑠𝑜𝑜𝑝𝑎𝑦 ⊢ 𝑠𝑖𝐼|𝑠𝑖𝑂𝑞𝑦

where 𝑖, 𝑜 ∈ 𝜏 , 𝑠𝑖, 𝑠𝑜, 𝐼, 𝑂 ∈ 𝜏*, 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ (Σ ∪ {𝜀}), 𝑦 ∈ Σ* and 𝑖|𝑜𝑝𝑎 → 𝐼|𝑂𝑞 ∈ 𝑅.
The language accepted by 𝑀 final state is defined as

{𝑥 ∈ Σ* : 𝑆𝐼 |𝑆𝑂𝑠𝑥 ⊢* 𝑠𝑖|𝑠𝑜𝑓, 𝑠𝑖, 𝑠𝑜 ∈ 𝜏*, 𝑓 ∈ 𝐹}

The language accepted by 𝑀 empty input pushdown is defined as

{𝑥 ∈ Σ* : 𝑆𝐼 |𝑆𝑂𝑠𝑥 ⊢* |𝑠𝑜𝑓, 𝑠𝑜 ∈ 𝜏*, 𝑓 ∈ 𝑄}

The language accepted by 𝑀 empty input pushdown and final state is defined as

{𝑥 ∈ Σ* : 𝑆𝐼 |𝑆𝑂𝑠𝑥 ⊢* |𝑠𝑜𝑓, 𝑠𝑜 ∈ 𝜏*, 𝑓 ∈ 𝐹}

9

2.5 More Definitions
Grammars and automata may not always be convenient in written text to express some
ideas. This section describes some convenient ways to define languages instead of grammars
or automata.

Definition 2.5.1. Regular expressions define the family of REG. Quoting verbatim from [9],
they are recursively defined as follows:

1. ∅ is a regular expression denoting the empty set.

2. 𝜀 is a regular expression denoting {𝜀}.

3. 𝑎, where 𝑎 ∈ Σ, is a regular expression denoting {𝑎}.

4. If 𝑟 and 𝑠 are regular expressions denoting the languages 𝑅 and 𝑆, respectively, then

(a) (𝑟𝑠) is the regular expression denoting 𝑅𝑆.
(b) (𝑟 + 𝑠) is the regular expression denoting 𝑅 ∪ 𝑆.
(c) (𝑟*) is the regular expression denoting 𝑅*.

Parentheses are ommited when no ambiguity arises.

10

Chapter 3

Translation Grammars

Definition 3.0.1. A translation grammar is a quintuple

𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆)

where
∙ 𝑁 is an alphabet of nonterminals

∙ 𝑇𝐼 is an input alphabet of input terminals such that 𝑇𝐼 ∩𝑁 = ∅

∙ 𝑇𝑂 is an input alphabet of output terminals such that 𝑇𝑂 ∩𝑁 = ∅

∙ 𝑃 is a finite set of productions in the form

(𝐴,𝐴) → (𝑢0𝐵1𝑢1 . . . 𝐵𝑛𝑢𝑛, 𝑣0𝐵1𝑣1 . . . 𝐵𝑛𝑣𝑛)

for 𝑗 = 1, . . . , 𝑛, 𝐵𝑗 ∈ 𝑁 , for 𝑖 = 0, . . . , 𝑛, 𝑢𝑖 ∈ 𝑇 *
𝐼 and 𝑣𝑖 ∈ 𝑇 *

𝑂 (𝑛 = 0 implies
(𝐴,𝐴) → (𝑢0, 𝑣0))

∙ 𝑆 is the start symbol
Let (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 , where 𝑖 ∈ (𝑁 ∪ 𝑇𝐼)* and 𝑜 ∈ (𝑁 ∪ 𝑇𝑂)*. Then, 𝐴 → 𝑖 is the input
production, 𝐴 → 𝑜 is the output production, 𝐴 is the left-hand side of the production, 𝑖 is
the input right-hand side of the production, and 𝑜 is the output right-hand side of the pro-
duction.
The direct derivation relation, denoted by ⇒) and defined from 𝑁×𝑁 to (𝑁∪𝑇𝐼)*×(𝑁∪𝑇𝑂)*,
is defined as (𝑞, 𝑟) ⇒ (𝑥, 𝑦) only when 𝑞, 𝑥 ∈ (𝑁 ∪𝑇𝐼)*, 𝑟, 𝑦 ∈ (𝑁 ∪𝑇𝑂)*, (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 ,
𝑞 = 𝑥0𝐴𝑥1, 𝑟 = 𝑦0𝐴𝑦1, 𝑥 = 𝑥0𝑖𝑥1, 𝑦 = 𝑦0𝑜𝑦1, 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑥0, 𝑛) = 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑦0, 𝑛)
and 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑥1, 𝑛) = 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑦1, 𝑛) for all 𝑛 ∈ 𝑁 .
The set of all input sentential forms of 𝐺 if defined as

𝐹𝐼(𝐺) = {𝑖 : 𝑖 ∈ (𝑁 ∪ 𝑇𝐼)*, 𝑜 ∈ (𝑁 ∪ 𝑇𝑂)*, (𝑆, 𝑆) ⇒* (𝑖, 𝑜)}

The translation defined by 𝐺 is denoted by 𝑇 (𝐺) and defined as

𝑇 (𝐺) = {(𝑖, 𝑜) : 𝑖 ∈ 𝑇 *
𝐼 , 𝑜 ∈ 𝑇 *

𝑂, (𝑆, 𝑆) →*
𝐺 (𝑖, 𝑜)}

The input language is defined as

𝐿𝐼(𝐺) = {𝑖 : (𝑖, 𝑜) ∈ 𝑇 (𝐺)}

The output language is defined as

𝐿𝑂(𝐺) = {𝑜 : (𝑖, 𝑜) ∈ 𝑇 (𝐺)}

11

Definition 3.0.2. A linear translation grammar is a translation grammar as described
in definition 3.0.1 with productions in P in the forms

(𝐴,𝐴) → (𝑢, 𝑥)

and
(𝐴,𝐴) → (𝑢𝐵𝑣, 𝑥𝐵𝑦)

where 𝐴,𝐵 ∈ 𝑁 , 𝑢, 𝑣 ∈ 𝑇 *
𝐼 and 𝑥, 𝑦 ∈ 𝑇 *

𝑂

Translation grammars are essentially two context-free grammars with a common set
of nonterminals and linked sets of productions. Whereas grammars generate languages,
translation grammars generate binary relations called translations. Each production starts
from a single nonterminal and generates two strings. The input and output right-hand sides
of each production must contain the same nonterminals in the same order. Translation
grammars define translations 𝑇 (𝐺), and two languages 𝐿𝐼(𝐺) and 𝐿𝑂(𝐺). They can also
be used as language generating systems, as discussed in section 3.2.

The complexity of the input and output languages of translation grammars and linear
translation grammars is the same as that of context-free and linear grammars, respectively.
This can be easily proven by comparing the definitions of translation grammars and context-
free grammars, or linear translation grammars and linear grammars. This implies that
on their own, input and output languages generated by translation grammars define the family
of context-free languages CF, and that input and output languages generated by linear
translation grammars define the family of linear languages LIN.

3.1 Syntax-directed translation using translation grammars
To demonstrate the use of translation grammars in syntax-directed translation, this section
describes the use of translation grammars by modifying top-down predictive parsing. Top-
down predictive parsing is a well-documented method for accepting context-free languages
defined by LL grammars and the devices needed for predictive parsing are described
in multiple sources (see [9], [11]). This paper modifies these devices to work with LL
translation grammars and to generate output, creating predictive top-down translation.

3.1.1 Two-stack Pushdown Automaton as a Translation Model for Top-
down Translation

Using a two-stack pushdown automaton to simulate translation grammar top-down trans-
lation is similar to using a pushdown automaton to simulate top-down parsing of context-
free grammars. The following method for constructing two-stack pushdown automation
from translation grammars creates a two-stack pushdown automation that accepts a language
by empty input pushdown and final state. Algorithm 3.1 describes the construction of such
two-stack pushdown automata.
Basic idea. There are two groups of rules in 𝑅. If an input terminal symbol is on the top
of the input stack, one of the comparing rules in the form 𝑥|𝑦𝑠𝑥 → |𝑦𝑠 ∈ 𝑅, where
𝑥 ∈ 𝑇𝐼 , 𝑦 ∈ 𝑁 ∪ 𝑇𝑂, 𝑠 ∈ 𝑄 is applied. These rules compare the input symbol to the top
of the input nonterminal.

The other group of rules simulates the translation grammar’s productions. This group
of rules simulates the expantion of nonterminals on both input and output stacks. First,

12

Algorithm 3.1 Two-stack pushdown automation simulating a translation grammar (based
on the algorithm on page 47 of [10])
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆)
Require: # ̸∈ (𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂)
Output: two-stack pushdown automaton 𝑀 = (𝑄,Σ, 𝜏, 𝑅, 𝑠, 𝑆𝐼 , 𝑆𝑂, 𝐹)
𝑆𝐼 := 𝑆
𝑆𝑂 := 𝑆
𝑄 := {𝑠,−}
Σ := 𝑇𝐼

𝜏 := 𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂 ∪ {#}
𝐹 := {𝑠}
for all 𝑥 ∈ 𝑇𝐼 , 𝑦 ∈ 𝑁 ∪ 𝑇𝑂 do

Add 𝑥|𝑦𝑠𝑥 → |𝑦𝑠 to 𝑅

for all 𝑓, 𝑥 ∈ 𝑁 ∪ 𝑇𝑂 do
Add 𝑥|𝑓− → |𝑓𝑥− to 𝑅
Add #|𝑓− → |𝑓𝑠 to 𝑅

for all 𝑍 : (𝐴,𝐴) → (𝑏, 𝑐) ∈ 𝑃 , where 𝑍 is a unique rule label do
Add +𝑍 to 𝑄
for all 𝑑 ∈ 𝑁 ∪ 𝑇𝑂 do

Add 𝐴|𝑑𝑠 → 𝑒#|𝑑+𝑍 to 𝑅, where 𝑒 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑏)

for all 𝑥 ∈ 𝑁 ∪ 𝑇𝑂 ∪ {#} do
for all 𝐵 ∈ 𝑁 ∪ 𝑇𝑂, where 𝐵 ̸= 𝐴 do

Add 𝑥|𝐵+𝑍 → 𝑥𝐵|+𝑍 to 𝑅

Add 𝑥|𝐴+𝑍 → 𝑥|𝑒− to 𝑅, where 𝑒 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑐)

the input of the production is reversed and pushed to the input stack, followed by a special
symbol #. Second, the correct nonterminal symbol is moved to the top of the output
stack by moving the top terminals and nonterminals from the top of the output stack
to the top of the input stack. When the correct nonterminal is on top of the output stack,
the output right-hand side of the production is reversed and pushed to the output stack.
Finally, the symbols moved to the input stack from the output stack are moved back
to the output stack until the special symbol # is encountered and removed from the input
stack. This group of rules ensures that the correct nonterminal is expanded in the output
stack. Note that this set of rules for each production in translation grammar 𝐺 does not
rely on the absolute position of the expanded nonterminal in the output stack.

After the successful derivation of 𝑀 , the output produced by the simulated translation
grammar is on the output stack. The first terminal of the generated sentence is on the top
of the output stack.

3.1.2 Predictive Top-Down Translation

This section introduces the formal devices and algorithms used for predictive top-down
translation using translation grammars. The algorithms and procedures introduced here are
modifications of algorithms used for top-down parsing LL grammars (see page 145 in [9]).
LL grammars are a proper subset of context-free grammars, which means that the descibed
algorithms will only work for a proper subset of translation grammars. However, predictive

13

parsing is a sufficient demonstration of transforming language accepting devices to language
translating devices and the other parsing methods can be transformed using similar methods.

In predictive parsing, a special symbol $ ̸∈ 𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂 is introduced. It is, without any
loss of generality, appended to the end of the generated strings and denotes the end of these
strings. In two-stack pushdown automation, it denotes the end of input and output. This
allows for deterministic behavior of the simulating two-stack pushdown automaton when
reaching the end of the input string.
Basic idea. For any translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆) where $ ̸∈ 𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂, add
a new nonterminal 𝑆′, new input and output terminal $, a production (𝑆′, 𝑆′) → (𝑆$, 𝑆$)
and make the new nonterminal 𝑆′ the new starting symbol. The resulting translation
grammar

𝐺′ = (𝑁 ∪ {𝑆′}, 𝑇𝐼 ∪ {$}, 𝑇𝑂 ∪ {$}, 𝑃 ∪ {(𝑆′, 𝑆′) → (𝑆$, 𝑆$)}, 𝑆′)

generates the same translations, but with the symbol $ appended to both input and output
of each translation.

Definition 3.1.1. Let 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆) be a translation grammar. For every string
𝑥 ∈ (𝑁 ∪ 𝑇𝐼)*,

𝑓𝑖𝑟𝑠𝑡(𝑥) = {𝑎 : 𝑥 ⇒* 𝑤,𝑤 ∈ 𝑇 *
𝐼 , 𝑎 = 𝑠𝑦𝑚𝑏𝑜𝑙(𝑤, 1)}

If 𝑥 ⇒* 𝜀, where 𝑥 ∈ (𝑁 ∪ 𝑇𝐼)*, then 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑥); as a special case, for 𝑥 = 𝜀,
𝑓𝑖𝑟𝑠𝑡(𝑥) = {𝜀}.

The set 𝑓𝑖𝑟𝑠𝑡(𝑥) is the predictive set of input terminals or 𝜀 that can be the first
symbol in a sentential form derived from 𝑥. This predictive set will be used later for the
construction of other predictive sets. Algorithm 3.2 creates 𝑓𝑖𝑟𝑠𝑡(𝑥) for every 𝑥 ∈ 𝑁∪𝑇𝐼∪{𝜀}.
Algorithm 3.3 creates 𝑓𝑖𝑟𝑠𝑡(𝑥) for any string 𝑥 ∈ (𝑁 ∪ 𝑇𝐼)* when 𝑓𝑖𝑟𝑠𝑡(𝑦) is known for all
𝑦 ∈ 𝑁 ∪ 𝑇𝐼 ∪ {𝜀}.

Algorithm 3.2 first (based on [11] and [9])
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆)
Output: Set 𝑓𝑖𝑟𝑠𝑡(𝑥) for each 𝑥 ∈ 𝑁 ∪ 𝑇𝐼 ∪ {𝜀}

for all 𝑥 ∈ 𝑁 do
𝑓𝑖𝑟𝑠𝑡(𝑥) := ∅

for all 𝑥 ∈ 𝑇𝐼 do
𝑓𝑖𝑟𝑠𝑡(𝑥) := {𝑥}

𝑓𝑖𝑟𝑠𝑡(𝜀) := {𝜀}
repeat

for all (𝐴,𝐴) ⇒ (𝑖, 𝑜) ∈ 𝑃 do
Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 1)) to 𝑓𝑖𝑟𝑠𝑡(𝐴)
if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 𝑛)) for 𝑛 = 1, . . . , 𝑘 − 1 where 𝑘 ≤ |𝑖| then

Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 𝑛)) to 𝑓𝑖𝑟𝑠𝑡(𝐴)

until no change

Definition 3.1.2. For every nonterminal 𝑋, we define the set 𝑓𝑜𝑙𝑙𝑜𝑤:

𝑓𝑜𝑙𝑙𝑜𝑤(𝑋) = {𝑥 ∈ 𝑇𝐼 ∪ {$} : 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝐹𝐼(𝐺), 𝑋𝑥)}

14

Algorithm 3.3 string first (based on [11])
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), string 𝑥 ∈ (𝑁 ∪𝑇𝐼)*, 𝑓𝑖𝑟𝑠𝑡(𝑋) for every
𝑋 ∈ 𝑁 ∪ 𝑇𝐼 ∪ {𝜀}

Output: set 𝑓𝑖𝑟𝑠𝑡(𝑥)
𝑓𝑖𝑟𝑠𝑡(𝑥) := 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 1))
repeat

if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑛) for 𝑛 = 1, . . . , 𝑘 − 1 where 𝑘 ≤ |𝑥| then
Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑘)) to 𝑓𝑖𝑟𝑠𝑡(𝑥)

until no change

For every nonterminal, the predictive set follow contains all terminals (or $) that may follow
the nonterminal in a sentential form. Algorithm 3.4 creates follow for every nonterminal
in the translation grammar 𝐺.

Algorithm 3.4 follow (based on [11] and [9])
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆) and 𝑓𝑖𝑟𝑠𝑡(𝑥) for each 𝑥 ∈ 𝑁 ∪ 𝑇𝐼 ∪ {𝜀}.
Output: 𝑓𝑜𝑙𝑙𝑜𝑤(𝑥) for each 𝑥 ∈ 𝑁
Require: $ ̸∈ 𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂

𝑓𝑜𝑙𝑙𝑜𝑤(𝑆) := {$}
repeat

for all 𝑎𝐵𝑦, where (𝐴,𝐴) → (𝑎𝐵𝑦, 𝑜) ∈ 𝑃 , 𝑎, 𝑦 ∈ (𝑁 ∪ 𝑇𝐼)*, 𝐵 ∈ 𝑁 do
if 𝑦 ̸= 𝜀 then

Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑦) − {𝜀} to 𝑓𝑜𝑙𝑙𝑜𝑤(𝐵)

if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑦) then
Add all symbols from 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴) to 𝑓𝑜𝑙𝑙𝑜𝑤(𝐵)

until no change

Definition 3.1.3. The predict set is defined for every 𝑎 = (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 as

1. If 𝜀 ̸∈ 𝑓𝑖𝑟𝑠𝑡(𝑖), then 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑎) = 𝑓𝑖𝑟𝑠𝑡(𝑖)

2. If 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑖), then 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑎) = (𝑓𝑖𝑟𝑠𝑡(𝑖) − {𝜀}) ∪ 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴)

The predictive set predict is the set of all terminals that may be the leftmost gener-
ated symbol if we apply the production 𝑎 to the leftmost nonterminal. That is, for all
(𝑥𝐴𝑞, 𝑦𝐴𝑟) ⇒* (𝑥𝐵, 𝑦𝐶) where 𝑥,𝐵 ∈ 𝑇 *

𝐼 , 𝑦, 𝐶 ∈ 𝑇 *
𝑂, 𝐴 ∈ 𝑁 , 𝑞 ∈ (𝑁 ∪ 𝑇𝐼)*, 𝑟 ∈ (𝑁 ∪ 𝑇𝑂)*,

and 𝑎 = (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 is the first production used in the derivation, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑎) is
the set of all terminals 𝑡 such that 𝑡 = 𝑠𝑦𝑚𝑏𝑜𝑙(𝐵, 1).

Definition 3.1.4. A translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆) is an LL translation gram-
mar if for each 𝐴 ∈ 𝑁 , any two different productions 𝑝 = (𝐴,𝐴) → (𝑥, 𝑦), 𝑞 = (𝐴,𝐴) → (𝑖, 𝑜),
satisfy 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑝) ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑞) = ∅.

In LL grammars (and LL translation grammars), the first L stands for a left-to-right
scan of symbols and the other L stands for leftmost derivation.

Next, we introduce a predictive table. This table determines a production for each pair
of nonterminal and terminal. In predictive top-down translation, this table determines

15

Algorithm 3.5 Constructing a predictive table
Input: LL translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) for each 𝑥 ∈ 𝑃
Output: predictive table 𝛼

for all 𝑡 ∈ 𝑇𝐼 ∪ {$}, 𝑛 ∈ 𝑁 do
𝛼(𝑛, 𝑡) := 𝑛𝑢𝑙𝑙

for all 𝑦 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) for each 𝑥 = (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 do
𝛼(𝐴, 𝑦) := 𝑥

the production that is used for nonterminal expantion. Algorithm 3.5 shows the construction
of this table.

Algorithm 3.6 describes the predictive top-down translation method. This method is
based on the two-stack automaton described in section 3.1.1 and algorithm 7.17 from [9].
The contents of stacks 𝑖𝑝𝑑 and 𝑜𝑝𝑑 are written head-first; the first symbol is the symbol
on top of the stack. In addition to regular stack functionality (POP, removing the top element
from the stack and PUSH), both stacks support the operation REPLACE. The operation
REPLACE(𝑛, 𝑥), where 𝑛 ∈ 𝑁 , 𝑥 ∈ (𝑁 ∪𝑇𝐼 ∪𝑇𝑂)* replaces the symbol 𝑛 closest to the top
of the stack with the string 𝑥. The first symbol in 𝑥 will be closest to the top of the stack.
This behavior can be achieved with two stacks with only PUSH and POP (as described
in 3.1.1, but we introduce the operation REPLACE for brevity.

3.2 Descriptional Complexity of Translation Grammars
This section demonstrates that translation grammars can be used to define any recursively
enumerable language (RE) by simulating queue grammars.

Lemma 3.2.1. Recall Lemma 2.38. in [12]. Let 𝑄′ be a queue grammar. Then, there exists
a queue grammar

𝑄 = (𝑉, 𝑇,𝑊 ′ ∪ {$, 𝑓}, {𝑓}, 𝑅, 𝑔)

such that 𝐿(𝑄′) = 𝐿(𝑄), where 𝑊 ′ ∩ {$, 𝑓} = ∅, each (𝑎, 𝑏, 𝑥, 𝑐) ∈ 𝑅 satisfies 𝑎 ∈ 𝑉 − 𝑇
and

∙ either 𝑏 ∈ 𝑊 ′, 𝑥 ∈ (𝑉 − 𝑇)*, 𝑐 ∈ 𝑊 ′ ∪ {$, 𝑓}
∙ or 𝑏 = $, 𝑥 ∈ 𝑇 and 𝑐 ∈ {$, 𝑓}

The symbol $ ̸∈ 𝑊 ′ denotes the state where only terminals are generated and the symbol
𝑓 ̸∈ 𝑊 ′ is the new and only final state.

Lemma 3.2.2. For every queue grammar 𝑄, there exists a linear translation grammar 𝐺
such that

𝐿(𝑄) = {𝑥 : (𝑥, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷}

Proof. Without any loss of generality, assume that the queue grammar 𝑄 satisfies the con-
ditions described in Lemma 3.2.1.

𝑄 = (𝑉, 𝑇,𝑊 ′ ∪ {$, 𝑓}, {𝑓}, 𝑅, 𝑔)

Then we construct a linear translation grammar 𝐺 in the following way:

𝐺 = (𝑊 ′ ∪ {$, 𝑓, 𝑆}, 𝑇, {0, 1}, 𝑃, 𝑆)

16

Algorithm 3.6 Predictive top-down translation
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), its predictive table 𝛼𝐺 and the input

string 𝑥, where 𝑥 ∈ 𝑇 *
𝐼 .

Output: output string 𝑟 ∈ 𝑇 *
𝑂{$} if 𝑥 ∈ 𝐿𝐼(𝐺), ERROR otherwise

𝑖𝑝𝑑 := 𝑆$, 𝑜𝑝𝑑 := 𝑆$
𝑟 := 𝜀
𝑛 := 1
repeat

let 𝑋 denote the current 𝑖𝑝𝑑 top symbol
let 𝑡 := 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥$, 𝑛)
switch X:

case 𝑋 = $:
if 𝑡 = $ then SUCCESS, else ERROR

case 𝑋 ∈ 𝑇𝐼 :
if 𝑡 = 𝑋 then increment 𝑛 and POP 𝑖𝑝𝑑, else ERROR

case 𝑋 ∈ 𝑁 :
if 𝛼(𝑋, 𝑡) = 𝑛𝑢𝑙𝑙 then

ERROR
else

𝛼(𝑋, 𝑡) = (𝑋,𝑋) → (𝑖, 𝑜)
REPLACE(𝑋, 𝑖) in 𝑖𝑝𝑑
REPLACE(𝑋, 𝑜) in 𝑜𝑝𝑑

until SUCCESS or ERROR
if SUCCESS then

repeat
let 𝑠 denote the current 𝑜𝑝𝑑 top symbol
𝑟 := 𝑟𝑠
POP 𝑜𝑝𝑑

until 𝑜𝑝𝑑 is empty

where 𝑆 ∪𝑊 ′ = ∅. Set 𝑛 = |𝑉 |.
Introduce the bijective homomorphism 𝛼 from 𝑉 to {0, 1}𝑛 ∩ 0+10*1. Expand its domain
to 𝑉 * so that 𝛼(𝑎𝑏) = 𝛼(𝑎)𝛼(𝑏), for any 𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 * and 𝛼(𝜀) = 𝜀. Let 𝜔 be the bijective
homomorphism defined as 𝜔(𝑥) = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝛼(𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥))), where 𝑥 ∈ 𝑉 *.
𝑃 is constructed as follows:

1. For 𝑔 = 𝑘𝑙, 𝑘 ∈ 𝑉 , 𝑙 ∈ 𝑊 ′, add (𝑆, 𝑆) ⇒ (𝑙, 𝛼(𝑘)𝑙) to 𝑃 .

2. For each (𝑎, 𝑏, 𝑥, 𝑐) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇 , 𝑏 ∈ 𝑊 ′ ∪ {$}, 𝑥 ∈ (𝑉 − 𝑇)* ∪ 𝑇 and
𝑐 ∈ 𝑊 ∪ {𝑓}, add (𝑏, 𝑏) ⇒ (𝑐, 𝛼(𝑥)𝑐𝜔(𝑎)) to 𝑃 .

3. For each 𝑡 ∈ 𝑇 , add (𝑓, 𝑓) ⇒ (𝑡𝑓, 𝑓𝜔(𝑡)) to 𝑃 .

4. Finally, add (𝑓, 𝑓) ⇒ (𝜀, 𝜀) to 𝑃 .

Basic idea. The constructed translation grammar 𝐺 simulates the queue grammar 𝑄 that
satisfies the properties described in Lemma 3.2.1. The production from 1, applied only once,
initialises the derivation. The production 4 terminates the derivation. The productions

17

from 2 simulate the rules applied by 𝑄. Finally, productions from 3 generate the simulated
terminals to the input string in the order generated by 𝑄.
Claim A. G can generate every (𝑥, 𝑦) ∈ 𝑇 (𝐺) where 𝑦 ∈ 𝐷 in this way:

(𝑆, 𝑆)

⇒ (𝑙, 𝛼(𝑘)𝑙)

⇒* ($, 𝛼(𝑎0..𝑎𝑘..𝑎𝑘+𝑚)$ 𝜔(𝑎𝑘..𝑎0))

⇒* (𝑓, 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚)𝑓 𝜔(𝑎𝑘+𝑚..𝑎0))

⇒* (𝑥𝑓, 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚)𝑓 𝜔(𝑥𝑚..𝑥1𝑎𝑘+𝑚..𝑎0))

⇒ (𝑥, 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚) 𝜔(𝑥𝑚..𝑥1𝑎𝑘+𝑚..𝑎0))

Where 𝑘,𝑚 ≥ 1, 𝑎𝑖 ∈ 𝑉 − 𝑇 for 𝑖 = 0, . . . , 𝑘 + 𝑚; 𝑔 = 𝑘𝑙 : 𝑘 ∈ 𝑉 − 𝑇, 𝑙 ∈ 𝑊 ′; 𝑎0 = 𝑘;
𝑥 = 𝑥1..𝑥𝑚, 𝑥𝑖 ∈ 𝑇 * for 𝑖 = 1, . . . ,𝑚;

𝑦 = 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚)𝜔(𝑥𝑚..𝑥1𝑎𝑘+𝑚..𝑎0)

𝑦 = 𝑣𝑤,𝑤 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑣)

Proof of claim A. Examine the construction of G. Observe that every successful derivation
begins with application of production 1, followed by applying productions from 2, followed
by applying productions from 3. Every successful derivation ends with a single application
of production 4.

Observe that during application of rules in 2 and 3, the output side is as follows: 𝑤𝑖 ∈ 𝑉
for 𝑖 = 0, . . . , 𝑘 + 𝑚; 𝑘,𝑚 ≥ 1; 𝑁 ∈ 𝑊 ′ ∪ {$, 𝑓}

𝛼(𝑤0..𝑤𝑘..𝑤𝑘+𝑚)𝑁𝜔(𝑤𝑙..𝑤0)

To satisfy 𝑦 ∈ 𝐷, only productions that put 𝜔(𝑤𝑘+1) to the right of the nonterminal are
applicable.
Claim B. Q generates every ℎ ∈ 𝐿(𝑄) in this way: 𝑔 = 𝑎0𝑞0

𝑎0𝑞0

⇒𝑎1𝑦1𝑞1 (𝑎0, 𝑞0, 𝑧0, 𝑞1)

⇒𝑎2𝑦2𝑞2 (𝑎1, 𝑞1, 𝑧1, 𝑞2)

. . .

⇒𝑎𝑘+1𝑦𝑘+1𝑞𝑘+1 (𝑎𝑘, 𝑞𝑘, 𝑧𝑘, 𝑞𝑘+1)

⇒𝑎𝑘+2𝑦𝑘+2𝑥1$ (𝑎𝑘+1, 𝑞𝑘+1, 𝑥1, $)

. . .

⇒𝑎𝑘+𝑚𝑥1 . . . 𝑥𝑚−1$ (𝑎𝑘+𝑚−1, $, 𝑥𝑚−1, $)

⇒𝑥1 . . . 𝑥𝑚𝑓 (𝑎𝑘+𝑚, $, 𝑥𝑚, 𝑓)

where 𝑘,𝑚 ≥ 1; 𝑎𝑖 ∈ 𝑉 − 𝑇 for 𝑖 = 0, . . . , 𝑘 + 𝑚; 𝑦𝑖 ∈ (𝑉 − 𝑇)* for 𝑖 = 1, . . . , 𝑘 + 𝑚 − 1;
𝑥𝑗 ∈ 𝑇 * for 𝑗 = 1, . . . ,𝑚; 𝑧0 = 𝑎1𝑦1; 𝑦𝑖𝑧𝑖 = 𝑎𝑖+1𝑦𝑖+1 for 𝑖 = 1, . . . , 𝑘; 𝑔 = 𝑎0𝑞0; 𝑞𝑖 ∈ 𝑊 ′ for
𝑖 = 0, . . . , 𝑘;

18

Proof of claim B. Recall that Q satisfies the properties given in Lemma 3.2.1. These
properties imply that Claim B holds.
Claim C. Let G generate (ℎ, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷 in the way described in Claim A; then,
ℎ ∈ 𝐿(𝑄).
Proof of claim C. Let (ℎ, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷. Consider the generation of ℎ as described
in Claim A. Examine the construction of 𝑃 to see that at this point 𝑅 contains (𝑎0, 𝑞0, 𝑧0, 𝑞1),
. . . , (𝑎𝑘, 𝑞𝑘, 𝑧𝑘, 𝑞𝑘+1), (𝑎𝑘+1, 𝑞𝑘+1, 𝑥1, $), . . . , (𝑎𝑘+𝑚, $, 𝑥𝑚, 𝑓), where 𝑧0, . . . , 𝑧𝑘 ∈ (𝑉 − 𝑇)*,
and 𝑥1, . . . , 𝑥𝑚 ∈ 𝑇 *. Then, 𝑄 makes the generation of ℎ in the way described in Claim B.
Claim D. Let Q generate ℎ ∈ 𝐿(𝑄) in the way described in Claim B; then, (ℎ, 𝑦) ∈ 𝑇 (𝐺),
𝑦 ∈ 𝐷.
Proof of claim D. Let ℎ ∈ 𝐿(𝑄). Consider the generation of ℎ as described in Claim B.
Examine the construction of 𝑃 to see that at this point 𝑃 contains

(𝑆, 𝑆) ⇒ (𝑞0, 𝛼(𝑎0)𝑞0),

(𝑞0, 𝑞0) ⇒ (𝑞1, 𝛼(𝑧0)𝑞1𝜔(𝑎0)),

. . . ,

(𝑞𝑘, 𝑞𝑘) ⇒ (𝑞𝑘+1, 𝛼(𝑧𝑘)𝑞𝑘+1𝜔(𝑎𝑘)),

(𝑞𝑘+1, 𝑞𝑘+1) ⇒ ($, 𝛼(𝑥1)$𝜔(𝑎𝑘 + 1)),

. . . ,

($, $) ⇒ (𝑓, 𝛼(𝑥𝑚)𝑓𝜔(𝑎𝑘+𝑚)),

(𝑓, 𝑓) ⇒ (𝑥1𝑓, 𝑓𝜔(𝑥1)),

. . . ,

(𝑓, 𝑓) ⇒ (𝑥𝑚𝑓, 𝑓𝜔(𝑥𝑚))

where 𝑧0, . . . , 𝑧𝑘 ∈ (𝑉 − 𝑇)*, and 𝑥1, . . . , 𝑥𝑚 ∈ 𝑇 *. Then, 𝐺 makes the generation of (ℎ, 𝑦)
in the way described in Claim A.

Claims A through D imply that 𝐿(𝑄) = {𝑥 : (𝑥, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷}, so this lemma
holds.

Lemma 3.2.2 implies that any queue grammar can be simulated by a linear translation
grammar. Since linear queue grammars define the family of recursively enumerable languages
RE, linear translation grammars can be used to define any recursively enumerable language.
Because of this descriptional complexity, any grammar or rewriting system defining any
subset of recursively enumerable languages can be simulated by a linear queue grammar.

19

Chapter 4

Designing a Translation

In this chapter, we design the translation from REON to Python 3.5. The first section
describes the subset of Python 3.5, and its module re. For brevity, in the rest of this
paper, Python 3.5 will be referred to as Python 3 or simply Python. The second section
defines the language REON. It is a simple JSON-based language defining regular expressions.
The third and final section describes the translation between the two languages.

4.1 Python 3 and its Regular Expression Notation
In Python 3, regular expressions are strings that describe the regular expression pattern.
The re module uses these patterns for its string matching operations. This section does not
provide a comprehensive description of the language and neither does it describe the entirety
of the re package. Instead, it focuses on the understanding of the basics of Python’s regular
expression notation. The description of the regular expression constructs in this section is
quoted essentially verbatim from [14].

Regular expression patterns are stored in variables as strings. The recommended way
to store RE patterns is using raw strings, denoted by r"...". These strings treat backslashes
as literal characters and do not process any escaped characters.

Python identifiers are an alphabetic character followed by any number of alphanumeric
characters or underscores. Defining a variable in python is done the following way:
var = expr
This one-line expression assigns the result of the expression expr to variable var.

A regular expression (or RE) specifies a set of strings that matches it. The functions
in re let you check if a particular string matches a given regular expression (or if a given
regular expression matches a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B
are both regular expressions, then AB is also a regular expression. In general, if a string
p matches A and another string q matches B, the string pq will match AB. This holds
unless A or B contain low precedence operations; boundary conditions between A and B;
or have numbered group references. Thus, complex expressions can easily be constructed
from simpler primitive expressions like the ones described here.

Regular expressions can contain both special and ordinary characters. Most ordinary
characters, like ’A’, ’a’, or ’0’, are the simplest regular expressions; they simply match
themselves. You can concatenate ordinary characters, so last matches the string ’last’.

20

Some characters, like ’|’ or ’(’, are special. Special characters either stand for classes
of ordinary characters or affect how the regular expressions around them are interpreted.
Regular expression pattern strings may not contain null bytes but can specify the null byte
using a \number notation such as ’\x00’.

Repetition qualifiers (*, +, ?, {m, n}, etc.) cannot be directly nested. This avoids
ambiguity with the non-greedy modifier suffix ?, and with other modifiers in other imple-
mentations. To apply a second repetition to an inner repetition, parentheses may be used.
For example, the expression (?:a{6})* matches any multiple of six ’a’ characters.

The special characters are:
∙ ’.’

This matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

∙ ’^’
Matches the start of the string, and in MULTILINE mode also matches immediately
after each newline.

∙ ’$’
Matches the end of the string or just before the newline at the end of the string,
and in MULTILINE mode also matches before a newline. foo matches both ’foo’
and ’foobar’, while the regular expression foo$ matches only ’foo’. More interest-
ingly, searching for foo.$ in ’foo1\nfoo2\n’ matches ’foo2’ normally, but ’foo1’
only in MULTILINE mode; searching for a single $ in ’foo\n’ will find two (empty)
matches: one just before the newline, and one at the end of the string.

∙ ’*’
Causes the resulting RE to match 0 or more repetitions of the preceding RE.

∙ ’+’
Causes the resulting RE to match 1 or more repetitions of the preceding RE.

∙ ’?’
Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.

∙ *?, +?, ??
The ’*’, ’+’, and ’?’ qualifiers are all greedy; they match as much text as possible.
Adding ? after the qualifier makes it perform the match in non-greedy or minimal
fashion; as few characters as possible will be matched.

∙ {m}
Specifies that exactly m copies of the previous RE should be matched; fewer matches
cause the entire RE not to match.

∙ {m,n}
Causes the resulting RE to match from m to n repetitions of the preceding RE,
attempting to match as many repetitions as possible. Omitting m specifies a lower
bound of zero, and omitting n specifies an infinite upper bound.

∙ {m,n}?
Causes the resulting RE to match from m to n repetitions of the preceding RE,
attempting to match as few repetitions as possible. This is the non-greedy version
of the previous qualifier.

21

∙ ’\’
Either escapes special characters (permitting you to match characters like ’*’, ’.’,
and so forth), or signals a special sequence; special sequences are discussed below.

∙ []
Used to indicate a set of characters. in a set:

– Characters can be listed individually, e.g. [amk] will match ’a’, ’m’, or ’k’.
– Ranges of characters can be indicated by giving two characters and separating

them by a ’-’. If - is escaped or if it’s placed as the first or last character, it
will match a literal ’-’.

– Special characters lose their special meaning inside sets.
– Character classes such as \w or \S (defined below) are also accepted inside a set,

although the characters they match depends on whether ASCII or LOCALE
mode is in force.

– Characters that are not within a range can be matched by complementing the set.
If the first character of the set is ’^’, all the characters that are not in the set
will be matched. ^ has no special meaning if it’s not the first character in the set.

– to match a literal ’]’ inside a set, precede it with a backslash, or place it at
the beginning of the set.

∙ ’|’
A|B, where A and B can be arbitrary REs, creates a regular expression that will match
either A or B. An arbitrary number of REs can be separated by the ’|’ in this way.
This can be used inside groups (see below) as well. As the target string is scanned, REs
separated by ’|’ are tried from left to right. When one pattern completely matches,
that branch is accepted. This means that once A matches, B will not be tested further,
even if it would produce a longer overall match. To match a literal ’|’, use \|, or
enclose it inside a character class, as in [|].

∙ (...)
Matches whatever expression is inside the parentheses and indicates the start and end
of a group; the contents of a group can be retrieved after a match has been performed,
and can be matched later in the string with the \number special sequence, described
below. To match the literals ’(’ or ’)’, use \(or \), or enclose them inside a character
class: [(] [)]. If the group is repeated (for example, with the operator +), only
the last iteration is captured.

∙ (?...)
This is an extension notation (a ’?’ following a ’(’ is not meaningful otherwise).
The first character after the ’?’ determines what the meaning and further syntax
of the construct is. Extensions usually do not create a new group; (?P<name>...) is
the only exception to this rule. Following are the currently supported extensions.

∙ (?aiLmsux)
(One or more letters from the set ’a’, ’i’, ’L’, ’m’, ’s’, ’u’, ’x’.) The group
matches the empty string; the letters set the corresponding flags: re.A (ASCII-only
matching), re.I (ignore case), re.L (locale dependent), re.M (multi-line), re.S (dot
matches all), and re.X (verbose), for the entire regular expression. (The flags are

22

described in Module Contents.) This is useful if you wish to include the flags as
part of the regular expression, instead of passing a flag argument to the re.compile()
function.

∙ (?:...)
A non-capturing version of regular parentheses. Matches whatever regular expression
is inside the parentheses, but the substring matched by the group cannot be retrieved
after performing a match or referenced later in the pattern.

∙ (?P<name>...)
Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic
group is also a numbered group, just as if the group were not named.

∙ (?P=name)
A backreference to a named group; it matches whatever text was matched by the earlier
group named name.

∙ (?#...)
A comment; the contents of the parentheses are simply ignored.

∙ (?=...)
Matches if ... matches next, but doesn’t consume any of the string. This is called
a lookahead assertion.

∙ (?!...)
Matches if ... doesn’t match next. This is a negative lookahead assertion.

∙ (?<=...)
Matches if the current position in the string is preceded by a match for ... that ends
at the current position. This is called a positive lookbehind assertion. The contained
pattern must only match strings of some fixed length, meaning that abc or a|b are
allowed, but a* and a{3,4} are not.

∙ (?<!...)
Matches if the current position in the string is not preceded by a match for This
is called a negative lookbehind assertion. Similar to positive lookbehind assertions,
the contained pattern must only match strings of some fixed length.

∙ (?(id/name)yes-patternno-pattern)|
Will try to match with yes-pattern if the group with given id or name exists, and with
no-pattern if it doesn’t. no-pattern is optional and can be omitted.

The special sequences consist of ’\’ and a character from the list below. If the ordinary
character is not an ASCII digit or an ASCII letter, then the resulting RE will match
the second character. For example, \$ matches the character ’$’.

∙ ’\number’
Matches the contents of the group of the same number. Groups are numbered starting
from 1. This special sequence can only be used to match one of the first 99 groups. If
the first digit of number is 0, or number is 3 octal digits long, it will not be interpreted

23

as a group match, but as the character with octal value number. Inside the ’[’ and ’]’
of a character class, all numeric escapes are treated as characters.

∙ \A
Matches only at the start of the string.

∙ \b
Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of Unicode alphanumeric or underscore characters, so the end of a word
is indicated by whitespace or a non-alphanumeric, non-underscore Unicode character.
By default Unicode alphanumerics are the ones used, but this can be changed by using
the ASCII flag. Inside a character range, \b represents the backspace character, for
compatibility with Python’s string literals.

∙ \B
Matches the empty string, but only when it is not at the beginning or end of a word.

∙ \d
Matches any Unicode decimal digit (that is, any character in Unicode character category
[Nd]). This includes [0-9], and also many other digit characters. If the ASCII flag is
used only [0-9] is matched.

∙ \D
Matches any character which is not a Unicode decimal digit. This is the opposite
of \d. If the ASCII flag is used this becomes the equivalent of [^0-9].

∙ \f
Matches the form feed character.

∙ \n
Matches the line feed character.

∙ \r
Matches the carriage return character.

∙ \s
Matches Unicode whitespace characters. If the ASCII flag is used, only [\t\n\r\f\v]
is matched.

∙ \S
Matches any character which is not a Unicode whitespace character. This is the opposite
of \s.

∙ \t
Matches the tab character.

∙ \v
Matches the vertical tab character.

∙ \w
Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCII flag
is used, only [a-zA-Z0-9_] is matched.

24

∙ \W
Matches any character which is not a Unicode word character. This is the opposite
of \w.

∙ \Z
Matches only at the end of the string.

4.2 The REON language
This section describes the language REON (Regular Expression Object Notation). It is based
on the JSON markup language. REON, however, is not a subset of the JSON language. It
supports escaped characters not supported in JSON and it allows trailing commas at the end
arrays. This description is derived from the JSON language description (see [3]). Although
REON does not conform to the JSON specification, its syntax was heavily inspired by it.

Its purpose is to describe regular expressions within an object notation. This form
of regular expression notation clearly defines the order of operations and thus doesn’t require
its user to remember the operations’ precedence and associativity. Note that this language
describes regular expressions with potentially higher complexity than regular expressions
defined in 2.5.1.

4.2.1 REON Tokens

A REON text is a sequence of tokens. The set of tokens contains three literal names, six
structural characters, strings, numbers and special identifiers. Whitespace characters are
ignored when parsing REON. The structural characters are {, }, [,], : and ,. The three
literal names are null, true and false. They must be lowercase.

Numbers are respresented in base 10 using decimal digits. It contains an integer
component that may be prefixed with an optional minus sign and may be followed by
a fraction and/or an exponent part. Leading zeros are not allowed. An exponent part begins
with the letter E in upper or lower case, which may be followed by a plus or minus sign.
The E and optional sign are followed by one or more digits. The representation of numbers
is visualised in figure 4.1.

Figure 4.1: The representation of a number in both JSON and REON, from [5].

The representation of strings is similar to conventions used in the C family of programming
languages. A string begins and ends with quotation marks. All characters may be placed

25

within the quotation marks, with the following exceptions: quotation mark (") and reverse
solidus (\) must be escaped, and the control characters (0x00 through 0x1F) are forbidden.

Some strings may be interpreted as keywords instead. A string is a keyword only if
followed by a comma and is one of the following:

∙ "repeat rep"
The repeat keyword followed by a repetition parameter rep. rep is one of the following:

– *
Any number of repetitions.

– +
One or more repetitions.

– ?
Zero or one repetition.

– n
Exactly n repetitions.

– n-m
A range of repetitions. Either n, or m can be omitted for a zero lower bound
and an infinite upper bound, respectively.

∙ "non-greedy repeat rep"
rep is the number of repetitions, same as above.

∙ "set"

∙ "!set"

∙ "alternatives"

∙ "group name"
The optional name defines the group identifier. name must be a sequence of alphanu-
meric or underscore characters starting with an alphabetic character.

∙ "match group"

∙ "comment"

∙ "lookahead"

∙ "!lookahead"

∙ "lookbehind"

∙ "!lookbehind"

∙ "if"

∙ "then"

∙ "else"

26

4.2.2 REON Matching

This section describes the structure of REON and the semantics of its constructs.
A REON expression defines a regular expression (RE). A RE is any value. Values are

one of the following: Object, array, string, number, null, true or false.
The literal true matches the empty string, the literals null and false never match.
Arrays are represented as square brackets surrounding zero or more values. Values

are separated by commas. There is no requirement for the values to be of the same type.
The last value of an array may have a trailing comma. Arrays represent either a series of REs
that are appended (denoted by any free array), or a series of alternatives (see the alternatives
object, described below)

Some characters can be escaped in strings, which causes them to match a character,
class of characters or empty strings at specific places in a string. The following list contains
characters that can be escaped along with the semantics of these escaped sequences.

∙ \.
Matches any character.

∙ \"
Matches the double quote character.

∙ \\
Matches the reverse solidus character.

∙ \A, \^
Matches the start of the string.

∙ \b
Matches the empty string at the beggining or end of a word. A word is a sequence
of alphanumeric or underscore characters.

∙ \B
Matches the empty string only where \b does not match.

∙ \d
Matches any decimal digit.

∙ \D
Matches any character that is not a decimal digit.

∙ \f
Matches the form feed character.

∙ \n
Matches the line feed character.

∙ \r
Matches the carriage return character.

∙ \s
Matches any whitespace character.

∙ \S
Matches any character that is not whitespace.

27

∙ \t
Matches the tab character.

∙ \v
Matches the vertical tab character.

∙ \w
Matches an alphanumeric character or an underscore.

∙ \W
Matches any character that is not alphanumeric or an underscore.

∙ \Z, \$
Matches the end of the string.

In JSON, objects are unordered sets of name–value pairs. in REON, they may only
contain predetermined sets of name–value pairs in a specified order to express specific
regular expression operations. All objects start with the structural character { and end
with }. Tokens are represented as <token>. The contents within the parentheses may be
one of the following:

∙ <repeat> : RE
The RE inside this object is matched the number of times specified by the repeat
token. This is a greedy operation, as many repetitions as possible will be matched.

∙ <non-greedy repeat>: RE
The RE inside this object is matched the number of times specified by the repeat
token. This is not a greedy operation, as few repetitions as possible will be matched.

∙ <set> : <string>
The string specifies a set of characters. This expression matches any the characters
from the set. Character ranges can be specified by a-z. To match the character -
inside a set, put \- in the string or as the first or last character in the string. Some
escaped characters retain their meaning inside sets, but sequences \^ and \$ only
match the characters ^ and $.

∙ <!set> : <string>
Same as above, but this expression matches any characters that are not in the set.

∙ <alternatives> : [RE, ...]
Matches one of the REs in the list. The first expression in the list has the highest
matching priority; even if a subsequent expression could result in a longer match,
the first expression that can be matched will be the result match.

∙ <group name> : RE
Matches the expression defined by RE and stores the last match. It can later be
retreived by its number or its optional identifier.

∙ <match group> : ref
Retreives the last match of the group specified by ref — a number or string identifying
an existing group.

28

∙ <comment> : <string>
The contents of the string are ignored.

∙ <lookahead> : RE
Matches an empty string when followed by the expression defined by RE.

∙ <!lookahead> : RE
Matches an empty string when not followed by RE.

∙ <lookbehind> : RE
Matches an empty string when it is preceded by RE. The RE must be a fixed length
expression.

∙ <!lookbehind> : RE
Matches an empty string when it is not preceded by RE. The RE must be a fixed
length expression.

∙ <if> : ref , <then> : RE , <else> : RE2
The conditional expression. If a group specified by ref was matched, the expression
RE will be matched. If it was not matched, it will match RE2. The else name–value
pair of this object is optional.

4.3 Translation from REON to Python 3
This section describes the design of the translation from REON to Python 3. The language
REON was designed to be mostly compatible with the Python way of expressing regular
expressions. In this section, the REON objects will be referred to by their first token names
(e.g. set, !lookbehind, . . .). The use of translation grammars allows us to define the equivalent
string representations of REON expressions; each production in the resulting translation
grammar will reflect these equivalencies in its input and output terminals.

4.3.1 Translating Structured Expressions

This section discusses the translation of structured REON expressions to Python.
REON append lists concatenate the expressions in the list. Appending expressions

in Python is achieved by putting them in sequence. Translating this requires no special
treatment.

The expression defined by a string result in an output terminal re. When generating this
terminal, all REON escaped characters retain their meaning as defined above. The REON
literals \^ and \$ do not semantically match ^ and $ in Python, but the Python literals \A
and \Z match the semantic meaning of REON’s \^ and \$. All other escaped literals are
compatible. Characters that have a special meaning in Python must be escaped in the result
Python pattern to match the literal characters. To ensure that the Python literal . matches
all characters, the control sequence (?s) is inserted to the very beginning of the pattern,
applying the DOTALL flag to the result pattern.

The repeat and non-greedy repeat objects can be transformed to Python by enclosing
them into a non-capturing group and stating the correct repetition operator. Enclosing
them in a non-capturing group is necessary; it guarantees that the repetition operator only
applied to the expression within the object.

29

The set and !set objects contain only a string literal. The string contents — if properly
escaped, as discussed before — must only be enclosed in [...] or [^...] to be valid Python
sets. Characters that would end or otherwise manipulate the Python set — such as] or ^ —
must be escaped in the translation output. To indicate this, the output terminal for the set
contents is named set.

The alternatives object denotes a series of alternative expressions. This is denoted as A|B
in Python. The output expression is enclosed in a non-capturing group to ensure the correct
order of operations. Then, the first expression in the list is output as usual. Every next
expression is divided from the previous by the | operator.

The group object can be defined with an optional identifier. Since Python denotes
groups with and without identifiers in different ways, the named and anonymous group
objects must be differentiated in the translation grammar. Group objects without identifiers
can simply be enclosed in (...). A special symbol is output to indicate the definition
of a group. The named group objects will be enclosed in (?P<name>...) to specify the name
of the object.

Match group objects reference previously declared groups. Number and identifier refer-
ences are denoted differently in Python, so the translation of matching groups must be split
into number references and identifier references. The number references will be translated
to \number and identifier references will be translated to (?P=name).

Comment objects have the direct equivalent in (?#...). In comment strings, only
the output) characters must be additionally escaped. To indicate this, the output terminal
is named comment.

The lookahead and !lookahead objects can be expressed as (?=...) and (?!...), re-
spectively. Lookbehind and !lookbehind objects are expressed as (?<=...) and (?<!...).
In lookbehind expressions, the regular expression within must be of fixed length. To satisfy
this, a special symbol must output before and after the closing parentheses to check the length
of the expression within. When outputting other expressions, alternatives and variable
length repeat operators are forbidden.

Finally, the if object is output as (?(id/name)yes|no). The id or name reference is
output differently than when matching groups; references in if objects must have a separate
set of productions in the resulting translation grammar. If the optional , "else": no is
omitted, the |no portion of the output is omitted.

4.3.2 Translation Grammar

The resulting translation grammar is not described here; in the following chapter, another
component — attribute actions — will be added to its productions. To avoid duplicity,
the full translation grammar as designed in this section is omitted. The translation grammar
as implemented in chapter 5 is in appendix B. This translation grammar is based on the design
in this chapter; only attribute actions were added.

30

Chapter 5

Implementation

This chapter’s purpose is twofold. First, it describes the architecture and implementation
of the translation framework ctf based on the predictive translation design in section 3.1.
This framework aims to provide a simple automated interface for translation based on
translation grammars. Second, it describes the implementation of the proposed translation
designed in 4.3 from the language REON to Python 3 using the framework ctf.

5.1 Ctf
Ctf (ctf ain’t a Translation Framework) is a C++ header-only translation framework. Its
goal is to provide a quick way to define translations with automated creation of predictive
tables and automatic translation directing.

The translation is divided into three parts: lexical analysis, syntax analysis and output
generation. Lexical analysis supplies syntax analysis with tokens. Syntax analysis translates
the input string of tokens to the output string of tokens according to a given translation
grammar. Output generation generates text or binary output. Semantic analysis is done
both during syntax analysis (see 5.1.2) and output generation.

5.1.1 Implementation details

Ctf is implemented in C++ under the standard C++14. C++ was chosen as the implementation
language because of its efficiency, its vast array of procedural, functional, and object-oriented
features, the good usability of its standard library and, in part, due to personal preference.

The library is implemented as header-only due to its small size and locality of use in larger
projects. Even after potential future implementation other translation methods, its size
should not become such that it would significantly affect compilation times. Implementing
the library as header-only has the benefit of easy library integration and addresses the issue
of ABI changes between different C++ compilers and their different versions.

For the full overview of implementation details, see the generated program documentation
in the included CD (see appendix A).

5.1.2 Attribute actions

During syntax analysis, there is need for some semantic actions when applying productions.
In ctf, this is achieved by adding attribute actions to each rule in translation grammars.
Attribute actions define the relationship between input and output terminals and their

31

attributes. Each input token’s attribute may be distributed to any number of output
terminals, and an output terminal may receive any number of attributes from the input
terminals. The user defines these relationships to propagate the attributes obtained during
lexical analysis to semantic analysis.

The following example demonstrates the use of attribute actions. Consider the following
translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), where

∙ 𝑁 = {𝐸,𝐸′, 𝑇, 𝑇 ′, 𝐹}

∙ 𝑇𝐼 = {𝑖,+, *, (,)}

∙ 𝑇𝑂 = 𝑇𝐼

∙ 𝑃 = {

(𝐸,𝐸) → (𝑇𝐸′, 𝑇𝐸′),

(𝐸′, 𝐸′) → (𝜀, 𝜀),

(𝐸′, 𝐸′) → (+𝑇𝐸′, 𝑇 + 𝐸′),

(𝑇, 𝑇) → (𝐹𝑇 ′, 𝐹𝑇 ′),

(𝑇 ′, 𝑇 ′) → (𝜀, 𝜀),

(𝑇 ′, 𝑇 ′) → (*𝐹𝑇 ′, 𝐹 * 𝑇 ′),

(𝐹, 𝐹) → ((𝐸), 𝐸),

(𝐹, 𝐹) → (𝑖, 𝑖)

}

∙ 𝑆 = 𝐸

This translation grammar translates very simple infix expressions to postfix expressions.
The terminal 𝑖 represents a variable. If the lexical analyzer provides each of the 𝑖 tokens
attributes representing the variable name, then the corresponding output tokens should
receive these attributes.

In ctf, to achieve this we construct ctf::TranslationGrammar::Rule with attribute
actions to guarantee the attribute transfer during syntax analysis. Rule is then constructed
as follows: ctf::TranslationGrammar::Rule r{"F"_nt, {"i"_t}, {"i"_t}, {{0}}}.
The last element is a vector of sets of attribute actions. Attribute actions are only defined
for input terminals and the targets may only be terminals or special symbols.

5.1.3 Class Model

This section describes some important classes in ctf. All symbols in ctf are in namespace ctf.
For brevity, this namespace classification will be ommited when discussing the following
classes.

For the purposes of translation, a new container was created. It is an extention of a stack
with added functionality, including replacing a symbol in the stack with a string of symbols.
This is implemented in the template class tstack, which is implemented using a double-linked
list from the C++ standard library.

The various errors during the translation process throw exceptions. All ctf exceptions
are subclasses of class TranslationError. Class LexicalError indicates an error in lexical

32

analysis, class SyntaxError indicates a translation error and SemanticError indicates
a semantic error.

Symbols are represented by class Symbol. It represents nonterminal symbols, terminal
symbols, the end of file symbol, and special symbols. The class can be constructed with
an unknown type. Each Symbol object has a type, a name and an attribute. Both name
and attribute are strings representing the symbol’s name and attribute. Type determines
which kind of symbol the object represents. The symbols with the type SPECIAL serve as
special semantic markers. When generating output, terminal symbols could be used for this
purpose instead, but the special symbol distinction provides a clear indicator of the difference
in semantics.

The class TranslationGrammar::Rule represents individual translation grammar pro-
ductions. The first component is the left-hand side nonterminal of the production. The second
component is a vector of Symbols representing the input right-hand side of the production.
The third, optional component is a vector of Symbols representing the output right-hand
side of the production. If this component is missing when constructing the Rule object,
the output right-hand side is identical to the input right-hand side. The last, optional com-
ponent are attribute actions. It is a vector of sets of indices to the output vector of symbols.
Attribute actions are defined for all terminals in the input and can be targeted to output
terminals or special symbols. If the third component is not specified when the constructer
is called, implicit attribute actions are created to transfer attributes to all corresponding
terminals from input to output.

The class TranslationGrammar represents a translation grammar. It is defined by its
(input) terminals, its nonterminals, a vector containing all its productions, and its starting
symbol. The preffered way to construct this class is to only list the productions and
the starting symbol. In this case, the sets of terminals and nonterminals are automatically
deduced from the production contents.

Pure abstract class TranslationControl serves as the central translation controller
for class Translation. Its subclass LLTranslationControl implements predictive top-down
translation. Its output is a tstack filled with output symbols.

The class Translation is the main point of interaction for the framework’s users.
The user constructs the class with a lexical analyzer, translation grammar, translation
control and output generator. The lexical analyzer and output generator are specified
with C++ callables (std::function) and any function pointer or reference, lambda or
callable object can be assigned as the lexical analyzer or output generator if conforming
to their respective function signature requirements. The user chooses the translation method
from the methods implemented in ctf (currently only predictive top-down translation with
the name "ll") or creates a custom TranslationControl subclass.

5.1.4 Translation Algorithms

To implement predictive top-down translation, algorithms described in section 3.1.2 were
used. Slight modifications were made to the algorithms for the sake of efficiency and due
to the object design of symbols. Algorithm 3.6 was modified to implement attribute actions.
Its modification with attribute actions is described in algorithm 5.1.
Basic idea. When an expantion rule is used, attribute actions are created for each terminal
in the input right-hand side of the production and are pushed in reverse order to the attribute
action pushdown. When a comparing rule is used, the input symbol’s attribute is distributed
to the selected output terminals generated by the associated expantion rule.

33

Algorithm 5.1 Predictive top-down translation with attribute actions
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), its predictive table 𝛼𝐺, the input string
𝑥$, where 𝑥 ∈ 𝑇 *

𝐼 and each symbol 𝑡 in 𝑥 has an associated attribute and a vector of sets
of attribute actions for each production in 𝑎 ∈ 𝑃 .

Output: output string 𝑟 ∈ 𝑇 *
𝑂{$} with associated attributes for each symbol 𝑠 in 𝑟 if

𝑥 ∈ 𝐿𝐼(𝐺), ERROR otherwise
𝑖𝑝𝑑 := 𝑆$, 𝑜𝑝𝑑 := 𝑆$
𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑝𝑑 := 𝜀
𝑟𝑒𝑠𝑢𝑙𝑡 := 𝜀
𝑛 := 1
repeat

let 𝑋 denote the current 𝑖𝑝𝑑 top symbol
let 𝑡 := 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥$, 𝑛)
switch X:

case 𝑋 = $:
if 𝑡 = $ then SUCCESS, else ERROR

case 𝑋 ∈ 𝑇𝐼 :
if 𝑡 = 𝑋 then

increment 𝑛 and POP 𝑖𝑝𝑑
let 𝑎𝑡 denote the current 𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑑 top symbol
add the attribute of 𝑡 to all terminals in 𝑜𝑝𝑑 specified by 𝑎𝑡
POP 𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑑

else
ERROR

case 𝑋 ∈ 𝑁 :
if 𝛼(𝑋, 𝑡) = 𝑛𝑢𝑙𝑙 then

ERROR
else

𝛼(𝑋, 𝑡) = (𝑋,𝑋) → (𝑖, 𝑜)
REPLACE(𝑋, 𝑖) in 𝑖𝑝𝑑
REPLACE(𝑋, 𝑜) in 𝑜𝑝𝑑
for all 𝑠 = 𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 𝑛) for 𝑛 = |𝑖|, . . . , 1, where 𝑠 ∈ 𝑇𝐼 do

let 𝑡 denote the attribute actions in 𝑜 for the 𝑛th symbol in 𝑖
𝑡 points to the terminals from 𝑜 in 𝑜𝑝𝑑 where last placed
PUSH 𝑡 to 𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑑

until SUCCESS or ERROR
if SUCCESS then

repeat
let 𝑠 denote the current 𝑜𝑝𝑑 top symbol
𝑟 := 𝑟𝑠
POP 𝑜𝑝𝑑

until 𝑜𝑝𝑑 is empty

34

5.1.5 Testing

Ctf was tested using a combination of unit testing and integration testing. The tests were
written using the testing framework Catch. Because of its header-only nature, the objects
that were not tested could not be replaced with mockups. Performance testing was not
performed, as the framework is a prototype and its main goal was to prove the translation
grammar related concepts introduced throughout this paper.

Unit testing was performed for low-level classes and containers included in ctf. A test
suite for each translation unit was created to satisfy prime path coverage of roughly 80%.
Integration testing was performed for the framework’s high-abstraction classes and they cover
most of ctf’s implemented functionality. The classes with integration tests are Translation
and LLTranslationControl.

5.2 Result Application
The translation from REON to Python 3 was implemented using the framework ctf. The re-
sulting application is named reon (the language REON is written in capital letters for dis-
tinction). This section describes the result application and its components.

The application reon translates reon input to Python 3. The translation is implemented
using the framework ctf. The lexical analyzer converts the input strings to tokens as
described in section 4.2.1, the translation grammar is constructed according to the design
in section 4.3 and the output generator is implemented so that the output is conforming
to the Python re module requirements, as discussed in section 4.3. The output generator
keeps track of the groups defined during output and reports invalid group references.

5.2.1 Usage

After compilation, an executable file reon is created. The application reon has the following
optional arguments:

∙ -h
prints help

∙ -i file
sets the input to the specified file. The default input is stdin.

∙ -o file
sets the output to the specified file. The default output is stdout.

∙ -v variable
sets the Python variable name in the output to the specified name. The name must
be a sequence of lowercase alphabetic characters. The default name is re.

5.2.2 Input and Output

The application reads characters from a file. If the string read is a member of the REON
language (as described in section 4.2.2), the application performs a translation to Python 3.
If any lexical, syntax or semantic error is encountered, the application outputs an empty
string and the appropriate error code is returned.

35

The output is a valid Python 3.5 program, which defines a single variable with a string
representing the regular expression defined by the input REON string. This variable may
be used in other Python programs by importing the file containing it and using its contents
in the matching and searching operations of the module re.

5.2.3 Translation Components

The lexical analyzer is implemented as a recursive descent lexical analyzer. It puts all
characters from the input to a string buffer before transforming them to a string of input
terminals. The lexical analyzer is largely based on the JSON language description. However,
modifications were made to the specification to allow REON escapes only and to recognise
REON keywords and REON keywords with parameters. When appropriate, the state
representing methods of the class ReonLexicalAnalyzer iterate within themselves to avoid
unneccesary overhead. Character lookahead is used when recognising keywords (such as
"group", etc.) in order to only recognise them as keywords when followed by a : character.
Thus, strings matching a keyword but not followed by a : are regular strings. This
distinction allows for a slight simplification of the translation grammar when a string object
is expected. The lexical analyzer provides all tokens with attributes. The tokens with
attributes distributed to the output string are string, number, repeat, non-greedy repeat,
named group and comment.

The translation grammar is based on the design in section 4.3. Attribute actions
were added to productions containing terminals with attributes to reflect those arguments
in the output. Special symbols were added to the output strings to perform semantic
checks or output application defined strings. The full ctf::TranslationGrammar as used
in the resulting application is in appendix B.

The output generator generates Python 3 text output from the tokens obtained from
the finished translation. It keeps track of all defined groups throughout the output process
and checks whether a referenced group has been defined. When outputting a lookbehind
or a negative lookbehind expression, the Python specification demands that the expres-
sion must have fixed length. This is achieved by checking the expression and throwing
ctf::SemanticError when encountering any variable repetition or alternation.

5.2.4 Testing

Acceptance testing was performed, where the application specification is to translate REON
input to Python 3. The tests were written as a shell script using standard Linux utilities.
The individual tests were written as groups of files containing test input, expected output
and additional reon arguments. The application was tested by translating a set of example
input files covering all REON language features. Basic tests are in place to check whether
the translation fails if it should.

36

Chapter 6

Conclusion

Translation grammars define translations between context-free languages. Defining formal
devices for the use of translation grammars in syntax-directed parsing and translation
allows for building translation tools based on formal devices and represents a clearly defined
approach to translation.

Translation grammars are currently not widely used for translation. There exist trans-
lation frameworks (such as cdec) using transducers as formal translation defining devices.
These frameworks, in most cases, require the developers to define the input and output
languages with context-free grammars. This is only a step away from translation grammars
and offers no advantage over defining translation grammars directly.

The advantages of using a formal definition of a translation over parsing the input and
synthesising the output in an improvised way are clear; using translation grammars provides
a provable platform with transparent equivalency between the input and output terminals
in each production. For translating some languages there may be issues where the syntactic
structures of the translated languages may be out of order, but addressing these issues with
advanced output generation techniques using output hints and semantic markers can be
used to circumvent these issues.

The potential generative power of translation grammar was proven to be the same
as queue grammars, implying that translation grammars can be used to generate recursively
enumerable languages. This property of translation grammars has not been proven and this
paper is the first to suggest this property of translation grammars.

Concerning the much more practical uses of translation grammars, the formal devices used
for predictive top-down parsing of context-free grammars were succesfully modified to work
with translation grammars and to produce the output language output. The approach
for modifying parsing methods to create translation methods used in this paper can be
applied to most context-free grammar parsing methods to create other translation methods.
Top-down predictive translation is suitable for a vast array of translation applications and is
an important step for a more widespread use of translation grammars.

The language REON is an alternative look at defining regular expressions; most other
notations define regular expressions in a way where their structure is very difficult to decipher
for any programmer. REON defines clearly structured regular expressions and has most
of the features of other modern extended regular expression notations.

The framework ctf designed in this paper has great potential for creating formal system-
based translation tools. Manual creation of translation controlling tables is error-prone
and tedious; ctf creates all translation controlling tables automatically at runtime with
minimal machine time cost. The biggest strength of ctf is the short time it takes to define

37

a translation with it. The initial implementation of reon took only around three days
to complete and the core of the translation — syntax analysis — only took around two to
three hours to define.

The application reon may fill a niche in the computing world. It is, however, unlikely that
the language REON will become popular or widely used for regular expression definition.
The tool is primarily a working example of both translation definition with translation
grammars and the usage of the framework ctf. When used by a shell a script, for example, it
can produce a Python source file containing many automatically translated regular expression
pattern variables, which may be used in a larger project requiring many regular expression
matching patterns.

Since the generational power of translation grammars is the same as Turing machines,
there must exist a way to simulate any formal system generating recursively enumarable
languages by translation grammars. Future research can lead to discovering those methods,
translation grammars’ similarity with two-stack pushdown automata could potentially lead
to viable solutions of those problems.

Other context-free grammar parsing methods still need to be modified to create trans-
lation methods. Bottom-up translation methods are useful for defining translations of ex-
pressions with large sets of operators with operator precedences and varying associativities,
where top-down parsing is clearly not the best solution.

The framework ctf is already a functioning tool for defining and prototyping translations.
However, a number of components need improvements. Some form of syntax error recovery
must be put in place to allow analyzing the whole input string; reporting only the first error
in the input string is an unacceptable way for the user to learn about the errors in his input;
no state of the art tools behave this way. A rigid system for defining syntax error messages
during syntax analysis needs to be put in place to allow developers to give the user proper
information about the errors in the input. Bottom-up parsing methods such as LR and
operator precedence need to be implemented based on the future modifications of these
parsing methods to allow better definitions of expressions. A system for switching between
top-down and bottom-up parsing must be put in place to allow a convenient way to translate
programming languages. Finally, a lexical analyzer system using finite or symbolic automata
can be considered for ctf to provide a unified and less error-prone lexical analysis interface
than requiring a programmer-supplied function or callable object to perform the analysis.

38

Bibliography

[1] Aho, A. V.; Lam, M. S.; Ullman, J. D.; et al.: Compilers: Principles, Techniques, and
Tools. Pearson. 2011. ISBN 0321486811.

[2] Aho, A. V.; Ullman, J. D.: The Theory of Parsing, Translation, and Compiling
(Volume I: Parsing). Prentice Hall. 1972. ISBN 0139145567.

[3] Bray, T.: RFC7149. IETF RFC 7149. March 2014. [Online; accessed 2017-04-11].
Retrieved from: https://tools.ietf.org/html/rfc7159.html

[4] Chomsky, N.: On certain formal properties of grammars. Information and Control.
vol. 2, no. 2. 1959: pp. 137 – 167. ISSN 0019-9958.
doi:http://dx.doi.org/10.1016/S0019-9958(59)90362-6.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S0019995859903626

[5] json.org: JSON number representation. 2017. [Online; accessed 2017-04-30].
Retrieved from: http://json.org/number.gif

[6] Martin, J.: Introduction to Languages and the Theory of Computation. McGraw-Hill
Education. 2010. ISBN 0073191469.

[7] Matousek, J.; Nesetril, J.: An Invitation to Discrete Mathematics. Oxford University
Press. 2008. ISBN 0198570422.

[8] Meduna, A.: Automata and Languages: Theory and Applications. Springer. 2005. ISBN
81-8128-333-3.

[9] Meduna, A.: Formal Languages and Computation: Models and Their Applications.
Auerbach Publications. 2014. ISBN 978-1-4665-1345-7.

[10] Meduna, A.: IFJ - Kapitola VI. Modely pro bezkontextové jazyky. Fakulta
informačních technologií. Vysoké učení v Brně. 2015.

[11] Meduna, A.: IFJ - Kapitola VII. Syntaktická analýza shora dolů. Fakulta informačních
technologií. Vysoké učení v Brně. 2015.

[12] Meduna, A.; Techet, J.: Scattered context grammars and their applications. WIT. 2010.
ISBN 978-1-84564-426-0.

[13] Meduna, A.; Zemek, P.: Regulated Grammars and Automata. Springer. 2014. ISBN
978-1-4939-0368-9.

39

https://tools.ietf.org/html/rfc7159.html
http://www.sciencedirect.com/science/article/pii/S0019995859903626
http://json.org/number.gif

[14] Python Software Foundation: 6.2. re — Regular expression operations. 2017. [Online;
accessed 2017-03-29].
Retrieved from: https://docs.python.org/3.5/library/re.html

[15] Python Software Foundation: Python 3.5.3 documentation. 2017. [Online; accessed
2017-05-01].
Retrieved from: https://docs.python.org/3.5/

40

https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/

Appendices

41

Appendix A

Contents of the Included CD

This appendix describes the contents of the included CD.

∙ ctf - This folder contains the framework ctf.

∙ reon - This folder contains the application reon.

∙ README.txt - This file describes ctf and reon dependencies and the steps needed
to test ctf and to compile, test and run reon.

42

Appendix B

REON to Python 3 Translation
Grammar

This is the translation grammar from REON to Python 3 as used in the utility reon. The
literals ""_nt denote nonterminal symbols, the literals ""_t denote terminal symbols and
literals ""_s denote special symbols defined by the application (in the case of "variable"_s),
or symbols only used for semantic analysis.

The individual rules are defined in the following way: The first argument of the construc-
tor is the left-hand side nonterminal of the production. The second argument of the construc-
tor is the input right-hand side of the production. The optional third argument is the output
right-hand side of the production. Finally, the last optional argument of the constructor is
the vector of attribute actions for this rule, as discussed in 5.1.2.

const TranslationGrammar reonGrammar{
// rules
{

// first derivation
{"E"_nt, {"RE"_nt}, {"variable"_s, " = r\"(?s)"_t, "RE"_nt, "\"\n"_t}},
// empty regular expression
{"RE"_nt, {}},
// regular expression with some reon content
{"RE"_nt, {"REFULL"_nt}},
// match empty string
{"REFULL"_nt, {"true"_t}, {"re"_t}},
// don’t match ever
{"REFULL"_nt, {"false"_t}, {"(?!)"_t}},
// don’t match ever
{"REFULL"_nt, {"null"_t}, {"(?!)"_t}},
// string only RE
{"REFULL"_nt, {"string"_t}, {"re"_t}, {{0}}},
// append list
{"REFULL"_nt, {"["_t, "RE-listE"_nt, "]"_t}, {"RE-listE"_nt}},
// object
{"REFULL"_nt, {"{"_t, "OBJ"_nt, "}"_t}, {"OBJ"_nt}},
{"OBJ"_nt,
{"repeat"_t, ":"_t, "RE"_nt},

43

{"(?:"_t, "RE"_nt, ")"_t, "repeat"_t},
{{3}, {}}},

{"OBJ"_nt,
{"non-greedy repeat"_t, ":"_t, "RE"_nt},
{"(?:"_t, "RE"_nt, ")"_t, "repeat"_t, "?"_t},
{{3}, {}}},

{"OBJ"_nt,
{"set"_t, ":"_t, "string"_t},
{"["_t, "set"_t, "]"_t},
{{}, {}, {1}}},

{"OBJ"_nt,
{"!set"_t, ":"_t, "string"_t},
{"[^"_t, "set"_t, "]"_t},
{{}, {}, {1}}},

{"OBJ"_nt,
{"alternatives"_t, ":"_t, "["_t, "RE-AlistE"_nt, "]"_t},
{"RE-AlistE"_nt}},

{"OBJ"_nt,
{"group"_t, ":"_t, "RE"_nt},
{"("_t, "group"_s, "RE"_nt, ")"_t}},

{"OBJ"_nt,
{"named group"_t, ":"_t, "RE"_nt},
{"(?P<"_t, "named group"_t, ">"_t, "RE"_nt, ")"_t},
{{1}, {}}},

{"OBJ"_nt, {"match group"_t, ":"_t, "Ref"_nt}, {"Ref"_nt}},
{"OBJ"_nt,
{"comment"_t, ":"_t, "string"_t},
{"(?#"_t, "comment"_t, ")"_t},
{{}, {}, {1}}},

{"OBJ"_nt, {"lookahead"_t, ":"_t, "RE"_nt}, {"(?="_t, "RE"_nt, ")"_t}},
// negative lookahead
{"OBJ"_nt, {"!lookahead"_t, ":"_t, "RE"_nt},
{"(?!"_t, "RE"_nt, ")"_t}},

{"OBJ"_nt,
{"lookbehind"_t, ":"_t, "RE"_nt},
{"(?<="_t, "fixed_length_check"_s, "RE"_nt, "end_check"_s, ")"_t}},

{"OBJ"_nt,
{"!lookbehind"_t, ":"_t, "RE"_nt},
{"(?<!"_t, "fixed_length_check"_s, "RE"_nt, "end_check"_s, ")"_t}},

// if-then[-else]
{"OBJ"_nt,
{"if"_t, ":"_t, "IfRef"_nt, ","_t, "then"_t, ":"_t, "RE"_nt,
"Else"_nt},

{"(?("_t, "IfRef"_nt, ")"_t, "RE"_nt, "Else"_nt, ")"_t}},
// number reference
{"Ref"_nt, {"number"_t}, {"\\"_t, "nref"_t}, {{1}}},
// identifier reference
{"Ref"_nt, {"string"_t}, {"(?P="_t, "ref"_t, ")"_t}, {{1}}},

44

// number reference in if-then[-else]
{"IfRef"_nt, {"number"_t}, {"nref"_t}, {{0}}},
// identifier reference in if-then[-else]
{"IfRef"_nt, {"string"_t}, {"ref"_t}, {{0}}},
// no else
{"Else"_nt, {}},
// optional else
{"Else"_nt, {","_t, "else"_t, ":"_t, "RE"_nt}, {"|"_t, "RE"_nt}},
// empty append list
{"RE-listE"_nt, {}},
// first element in append list
{"RE-listE"_nt, {"REFULL"_nt, "RE-list"_nt}},
// no more elements in append list
{"RE-list"_nt, {}},
// elements in append list
{"RE-list"_nt, {","_t, "RE-list-comma"_nt}, {"RE-list-comma"_nt}},
// no element after trailing comma in append list
{"RE-list-comma"_nt, {}},
// element after last comma in append list
{"RE-list-comma"_nt, {"REFULL"_nt, "RE-list"_nt}},
// empty alternation list
{"RE-AlistE"_nt, {}},
// first element in alternation list
{"RE-AlistE"_nt,
{"REFULL"_nt, "RE-Alist"_nt},
{"(?:"_t, "REFULL"_nt, "RE-Alist"_nt, ")"_t}},

// no more elements in alternation list
{"RE-Alist"_nt, {}},
// elements in alternation list
{"RE-Alist"_nt, {","_t, "RE-Alist-comma"_nt}, {"RE-Alist-comma"_nt}},
// no element after trailing comma in alternation list
{"RE-Alist-comma"_nt, {}},
// element after comma in alternation list
{"RE-Alist-comma"_nt,
{"REFULL"_nt, "RE-Alist"_nt},
{"|"_t, "REFULL"_nt, "RE-Alist"_nt}},

},
// starting nonterminal
"E"_nt};

45

	Introduction
	Preliminaries
	Sets and Relations
	Alphabets and Languages
	Grammars
	Automata
	More Definitions

	Translation Grammars
	Syntax-directed translation using translation grammars
	Two-stack Pushdown Automaton as a Translation Model for Top-down Translation
	Predictive Top-Down Translation

	Descriptional Complexity of Translation Grammars

	Designing a Translation
	Python 3 and its Regular Expression Notation
	The REON language
	REON Tokens
	REON Matching

	Translation from REON to Python 3
	Translating Structured Expressions
	Translation Grammar

	Implementation
	Ctf
	Implementation details
	Attribute actions
	Class Model
	Translation Algorithms
	Testing

	Result Application
	Usage
	Input and Output
	Translation Components
	Testing

	Conclusion
	Bibliography
	Appendices
	Contents of the Included CD
	REON to Python 3 Translation Grammar

