
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

CONFIGURATION OF OPENWRT SYSTEM USING
NETCONF PROTOCOL
KONFIGURACE OPENWRT SYSTÉMU POMOCÍ PROTOKOLU NETCONF

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PETER NAGY
AUTOR PRÁCE

SUPERVISOR Ing. LUKÁŠ KEKELY
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
The aim of this thesis is OpenWrt platform configuration using the NETCONF protocol.
Existing tools such as libnetconf library and Netopeer toolset were used for the communi-
cation using the NETCONF protocol. Implementation part deals with the development of
modules for system and network interfaces configuration.

Abstrakt
Cílem práce je konfigurace platformy OpenWrt s využitím protokolu NETCONF. Na ko-
munikaci pomocí protokolu NETCONF byly použity stávající nástroje ve formě knihovny
libnetconf a sady nástrojů Netopeer. Implementační část se zabývá vývojem modulů na
konfiguraci systému a síťových rozhraní.

Keywords
OpenWrt, NETCONF, YANG, Netopeer, libnetconf, configuration

Klíčová slova
OpenWrt, NETCONF, YANG, Netopeer, libnetconf, konfigurace

Reference
NAGY, Peter. Configuration of OpenWRT System Using
NETCONF Protocol. Brno, 2016. Bachelor’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor Kekely Lukáš.

Configuration of OpenWRT System Using
NETCONF Protocol

Declaration
Hereby I declare that this thesis is my original authorial work, which I have worked out on
my own under the leadership of Ing. Lukáš Kekely. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited and listed in complete
reference to the due source.

. .
Peter Nagy

May 17, 2016

Acknowledgements
I would like to thank my supervisor Ing. Lukáš Kekely and RNDr. Radek Krejčí from
CESNET for lot of valuable advices and help.

c○ Peter Nagy, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 OpenWrt 4
2.1 History . 4
2.2 Build system . 4
2.3 Packages . 5
2.4 Image installation methods . 6
2.5 OpenWrt configuration . 7
2.6 First login . 8

3 NETCONF 10
3.1 Architecture . 10
3.2 RPC Messages . 10
3.3 Datastores . 11
3.4 YANG . 11
3.5 Extensions . 12
3.6 Implementations . 12

4 Design and implementation 14
4.1 Configuration files . 14
4.2 Data models . 16
4.3 System . 16
4.4 Interfaces management . 21
4.5 IP management . 23
4.6 DHCP . 25
4.7 Wireless . 26

5 Testing 27
5.1 Hardware . 27
5.2 NETCONF clients . 28
5.3 Test cases . 29

6 Conclusion 34
6.1 Future work . 35

Bibliography 36

Appendices 38
List of Appendices . 39

1

A CD Content 40

B Virtual test environment 41

C YANG data model for password encryption 42

D YANG data model for DHCP configuration 44

E YANG data model for Wireless configuration 50

2

Chapter 1

Introduction

Computer networks are nowadays complex and widely used. This raises the problem of the
increased number of network elements to be configured. Equipment can be from different
vendors, their configuration may vary. To configure such a network efficiently can be a
problem. On the other hand, configuration automation would bring the network operators’
benefits, especially it would save the money.

In order to streamline network configuration process, Internet Engineering Task Force
(IETF) standardized protocol called Simple Network Management Protocol (SNMP). It
became early apparent that SNMP is not used as intended. In most cases, SNMP was
not being used to configure network equipment, but for network monitoring. Network
equipment manufacturers created their own user-friendly configuration interfaces, usually
in the form of a command line interface (CLI). Most of them still support SNMP, but it
is not maintained as their own command line interface. The result is that some equipment
features cannot be configured through SNMP. It no longer scales as an effective way for
performing many network management functions in such a complex environment [1].

New network management protocols have been designed such as Network Configuration
Protocol (NETCONF) [8]. NETCONF could meet the future needs, as a scalable, efficient,
and effective method for performing configuration [1]. NETCONF provides mechanisms to
install, manipulate and delete the configuration of the devices. Communication takes place
via simple remote procedure calls (RPCs), encoded using an Extensible Markup Language
(XML). In order to help with the network configuration automation, configuration can be
applied for a range of devices and can be performed automatically, while keeping flexibility
and vendor independence. These features could make configuration efficient, in network
scenarios where thousands of devices need to be configured.

The goal of this thesis is to make possible OpenWrt devices configuration using NET-
CONF protocol. OpenWrt provides fully manageable operating system, not a strict firmware,
for Small office/home office (SOHO) routers [12]. In this thesis, modules for OpenWrt
configuration will be created, libnetconf [6] implementation of NETCONF protocol and
Netopeer [7] toolset will take care of using the NETCONF protocol as well as storing con-
figuration data. Device configuration is divided into two modules, system and network
configuration. These modules are based on standardized YANG data models for system
(RFC 7317 [2]), interface (RFC 7223 [4]) and IP (RFC 7277 [5]) management. My im-
plementation is based on previous implementation for other Linux platforms developed
by Czech Education and Scientific NETwork (CESNET), which can be found in Netopeer
repository [7].

3

Chapter 2

OpenWrt

OpenWrt is open source GNU/Linux distribution for embedded devices. It provides a
fully writable file system and package management tool. The main components are Linux
kernel, musl and BusyBox. It is dedicated mainly for the network embedded devices [23].
It provides many customisation options such as installing custom packages and completely
configuring the system by users needs. The main focus of OpenWrt developers is to support
a new platforms, improve stability and performance.

2.1 History
OpenWrt project started in January 2004. First stable version was for Linksys devices from
WRT54 series. From 2005 OpenWrt is using GNU/Linux kernel and only add patches for
the system and network interface drivers. From 2007 OpenWrt release names are inspired
by cocktails. After the system starts, the banner shows the preparation formula [22].

Nowadays OpenWrt has a large user’s base. Many other platforms like dd-wrt are based
on OpenWrt. OpenWrt supports most wireless chipsets and architectures like mips, arm,
powerpc and x86.

2.2 Build system
The equipment for which is OpenWrt designed has limited computing power. Compiling on
OpenWrt would be slow and lengthy. The package has to be compiled on the host (PC),
but for the embedded device. This mechanism is called cross compiling [21]. OpenWrt build
system is a collection of Makefiles and patches allowing user to generate root filesystem and
to cross compile packages for embedded devices. The compilation runs on Linux, BSD or
OS X operating systems [27]. First step is to download build system git repository:

$ git clone git://git.openwrt.org/openwrt.git

The actual trunk1 (May 17, 2016) version is called bleeding edge. The trunk is changing
frequently and contains some experimental patches, which do not have to be stable. The
second step is to download and install all available packages:

$./scripts/feeds update -a
$./scripts/feeds install -a
1The development branch.

4

To build system configuration run make menuconfig script, figure 2.1 shows menuconfig
configuration menu. It handles configuration of target platform, included packages, filesys-
tems, etc. Menuconfig is a simple, but powerful tool for creating OpenWrt system images.
To run compilation execute make command. First compilation takes about 1-2 hours.

The result of compilation is an image. Images can be in various formats, depending
on used filesystem. The most recent feature is the ability to compile images for virtual
machines. This helps developer with testing, without need of having actual OpenWrt device.
More information about virtual machines can be found in appendix B.

Figure 2.1: Menuconfig configuration menu

2.3 Packages
As mentioned in previous section, OpenWrt can be built as whole system and distributed as
image, which can be installed on device. However, packages for OpenWrt can be compiled
also separately. Example of compiling the Netopeer package:

$ make package/admin/netopeer/{clean,compile}

Every package in OpenWrt typically contains three types of components:

∙ Makefile

∙ package/patches

∙ package/files

5

Files and patches directories are optional. Patches directory contains bug fixes and optimi-
sations for reducing size of the package. Files directory contains default config or init files.
Makefile defines package dependencies and installation as well as removal of the package
[20].

Package makefile structure
Package makefile provides steps to download, compile and install the package.

Configure section defines how the package should be compiled.

define Build/Configure
$(call Build/Configure/Default,--with-linux-headers=$(LINUX_DIR))

endef

After cross compiling, the package should be copied to destination image.

define Package/helloworld/install
$(INSTALL_DIR) $(1)/usr/sbin
$(INSTALL_BIN) $(PKG_BUILD_DIR)/helloworld $(1)/usr/sbin/

endef

Package manager
OpenWrt uses opkg as a package management tool. The opkg is lightweight package mana-
gement tool used to download, install and remove packages from local package repositories
or ones located on the internet [26]. It can be understood as an alternative to apt(8) or
yum(8) widely used in Linux distributions.

Before starting the installation of packages from official repository, it is necessary to
download their list. The path to the repository is listed in /etc/opkg.conf. To update list
of available packages, use:

opkg update

To get all available packages, use:

opkg list

A list of installed packages, including dependencies and other details can be found in
/usr/lib/opkg/status. To install additional packages run:

opkg install package_name

2.4 Image installation methods
Before every installation, it is required to check which installation methods are supported
by currently used device. OpenWrt installation is device specific. In general there are four
installation methods [19]:

∙ via OEM firmware - WebUI of the OEM firmware is used for firmware upload,

∙ via Bootloader and an Ethernet port - The firmware is uploaded via TFTP or
FTP,

∙ via Bootloader and Serial port - The firmware is uploaded via Serial port,

∙ via JTAG - JTAG interface is used to upload firmware.

6

2.5 OpenWrt configuration
Linux system configuration files are usually located in /etc/ directory. However, OpenWrt
decided to unify format of these configuration files, the reason is to make configuration
easier and more centralized. The process of unifying configuration has other benefits, for
example providing application programming interface (API) for the web interface. De-
scribed configuration interface is called Unified configuration interface (UCI). Every UCI
based configuration file is located in /etc/config/ directory. UCI is successor to NV-RAM
based configuration found in older OpenWrt versions. Most applications have been made
UCI compatible by writing original configuration file to corresponding UCI file [24]. Some
of them have even made UCI configuration files.

Basic OpenWrt configuration is split into several files. The basic configuration files are:

∙ system - system configuration like hostname, timezone,

∙ network - device network interface configuration,

∙ dhcp - dns and dhcp settings,

∙ wireless - wireless interfaces settings and wifi network definition.

Configuration files are divided into sections. Each section contains a config statement
line which divides file into sections. Items do not need to be quoted, quotation is required
if the value contains spaces or tabs. Single or double quotes can be used. Section config
defines start of the section with type “example” and name “test”. The option defines con-
figuration with data type and value. The list keyword is used for multiple values definition,
same name (collection in our example) will be used for every list item. The only difference
is the value [24].

Simple configuration file example:

config ’example’ ’test’
option ’string’ ’some value’
option ’boolean’ ’1’
list ’collection’ ’first item’
list ’collection’ "second item"

There are two main ways how OpenWrt configuration can be modified. Configuration
can be edited manually by editing files located in /etc/config/ directory. However, after
editing the file, corresponding service must be reloaded or restarted. Configuration can be
also changed via various APIs like Lua, C and Shell, provided by libuci. LuCI2 also makes
changes in configuration files via Lua API. UCI command line utility uses Shell API to edit
configuration.

LuCI
Project LuCI started in 2008 as a part of the OpenWrt Kamikaze release. The reason
to start this project was the absence of free, extensible and easily maintainable web in-
terface for embedded devices. LuCI uses the Lua programming language while other web
interfaces make heavy use of the shell-scripting languages. LuCI splits the interfaces into

7

Figure 2.2: LuCI web interface

models and views, uses object-oriented templates and libraries [17]. That ensures better
maintainability, higher performance and smaller size.

To be able to use LuCI, device must have UCI installed. LuCI uses UCI Lua API to
communicate with embedded device. Every new release tries to make the device easier to
configure and use. More web interfaces based on UCI API are available like project JUCI,
shown on figure 2.3, which is based on using HTML5, angular.js and fast Lua backend.

2.6 First login
After installing OpenWrt on device, the user can log in for the first time. The first login is
different, because user have to login through command line interface using telnet. Device
must be connected with the computer via UTP cable. Default IP address of the device is
192.168.1.1. To activate SSH access, a root password must be set using passwd(1) utility
[25]. Password setup will block the telnet deamon. Access via SSH and HTTPS, if LuCI is
installed, will be granted without restarting the device.

2OpenWrt default WebUI

8

Figure 2.3: JUCI web interface

9

Chapter 3

NETCONF

The Network configuration Protocol (NETCONF) is a protocol standardised as RFC 4741.
Later it was revised and published as RFC 6241 [8]. It is being adopted by major network
equipment providers as SNMP successor.

NETCONF provides mechanisms to install, change and delete device configuration.
Operations are realized on the top of the remote procedure call (RPC) layer. NETCONF
recognizes difference between configuration data which can be modified and state data
which is read only. The NETCONF protocol is using XML based data encoding for config-
uration data as well as protocol messages. Data is modeled using YANG, data modelling
language created for network configuration, described in section 3.4. NETCONF is designed
to replace proprietary configuration interfaces, in many ways it mimics the proprietary con-
figuration interface. However, it provides structured error information, which proprietary
interfaces usually cannot provide [14]. NETCONF has the concept of a logical datastores
such as running, startup and candidate.

Connection between a client and a server must be secured. Most used protocols to
establish secure connection are SSH and TLS. A transport layer protocol is responsible for
client server authentication. NETCONF peer assumes that connection was secured by an
underlying protocol.

3.1 Architecture
NETCONF is using client-server communication model. Each peer advertises its capabili-
ties during the initial capability exchange. Based on these capabilities, peers behavior can
be modified. This ensures that new functionality can be added to the protocol without any
problems. At the same time, the client knows which operations are supported by server
and not asking for the unsupported operations.

3.2 RPC Messages
Remote procedure call (RPC) is analogous to function call. Arguments are passed like
function argument to remote procedure and caller waits for a response to be received from
the remote procedure. RPC uses client server model [10]. The requesting program is
client and service provider is server. NETCONF is using RPC based communication. RPC
messages are encoded using XML. RPC messages and their attributes are defined in the
RFC 6241 [8]. There is a list of basic oprerations:

10

∙ copy-config - Copy one configuration datastore to another,

∙ delete-config - Delete a configuration datastore,

∙ edit-config - Change the contents of a configuration datastore,

∙ get-config - Retrieve the whole or a part of a configuration datastore,

∙ get - Retrieve the configuration and state data,

∙ lock - Prevent changes to a datastore from another session,

∙ unlock - Release a lock on a datastore.

Additional RPC operations can be defined and implemented. For example, operation
for reboot the device is described as RPC operation in one of the data model and will be
discussed later.

Communication via RPC messages is synchronous. NETCONF defines also an asyn-
chronous way of communication called notifications.

Example of RPC message for retrieving running device configuration:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

<source>
<running/>

</source>
</get-config>

</rpc>

3.3 Datastores
As it was mentioned before, data which can be retrieved from a running system is divided
into two categories, configuration and state data. Configuration data is a writable data
that can be set to the device. On the contrary, state data is read-only data such as
number of packets received on interface. There are two types of operations for getting the
configuration, get-config for retrieving configuration data only and get for configuration
and state data. NETCONF divides configuration data into three categories:

∙ running - data representing actual device configuration,

∙ startup - data representing device configuration which will be set after system start,

∙ candidate - data representing device configuration which is ready to use.

3.4 YANG
The conceptual configuration data found on device should be understood by an operators.
Since NETCONF needs to support special features, which are not found in other languages,
it needs its own data modeling language, like SNMP needs SMIv2 [15]. YANG is a data
modelling language created for a network configuration protocol. It was created by IETF
and standardised as RFC 6020 [3]. YANG is used to model configuration and state data

11

accessed by NETCONF. YANG can be translated into an alternative XML-based syntax
called YANG Independent Notation (YIN). Advantage of YANG is NETCONF-specific fea-
tures support, including notifications and RPC operations. Although YANG has a limited
scope of usage, being applied only to NETCONF.

YANG model specifies a document structure as well as allowed values. IETF defined a
few YANG models to support NETCONF. For example ietf-system model for device system
configuration, ietf-interfaces and ietf-ip for device network interfaces configuration.

One of the most important YANG features is a possibility to add augment without
modifying the original data model. An augment allows to insert additional nodes into data
model, for current or an external module. This feature is useful for vendors to add vendor-
specific information to data model. The next important feature is a deviation. In the real
world, devices are not able to implement the whole model as written. Deviations are not
part of the published standard, it describes how implementations vary from the standard.
Deviation should be used as last resort when device can not implement the model faithfully
[3].

3.5 Extensions
Call Home
Call Home is a mechanism when the peer acting as NETCONF server actively opens con-
nection to NETCONF client. After establishing the connection successfully, client takes
initiative. If the connection is dropped, server tries to reconnect depending on configura-
tion [13]. Call home was created to help the common network scenarios which would be
hard to implement. It can help in case when a NETCONF client does not know the address
of the server. This mechanism could be used for autoconfiguration in case of new device
installation to configure itself without any user interaction. Most common scenario appears
in a local networks when device is behind Network address translation (NAT) and client is
not able to access server. In a local networks, OpenWrt is often used on SOHO devices and
Call Home can be a useful feature.

Notifications
Notifications are defined as optional NETCONF capability defined in RFC 5277. As men-
tioned, it is a asynchronous way of communication. NETCONF server sends notification
when a certain event has been recognised by the server. Clients have to subscribe to receive
a notification from the server [8].

3.6 Implementations
In this section, some of the NETCONF implementations will be discussed.

libnetconf
The libnetconf is an open source NETCONF library developed in C, currently under de-
velopment of CESNET. It provides basic functions such as connecting client and server via
SSH, sending NETCONF messages and working with configuration data stored in datastore
[6]. Libnetconf implements NETCONF protocol according to RFC 6241, 6242, 6243, 5277,
etc.

Transaction API (TransAPI) is a libnetconf framework that helps developers to focus on

12

configuring and managing device without deep understanding of NETCONF protocol. It
allows to choose a part of the configuration by the developer that can be easily configured
as a block. It is based on “sensitive paths” generator which creates single function for
every sensitive path. Whenever something changes in a datastore, corresponding callback
function is called which reflects configuration file changes into a device behaviour.

TransAPI provides an opportunity to implement NETCONF RPC behaviour defined in
the data model. The callback is generated for each RPC definition. Whenever a server calls
RPC function with RPC message which contains RPC operation, libnetconf calls callback
function implemented in the module.

TransAPI has a mechanism for watching files for changes called file callbacks. Devel-
opers can create callback functions to watch for changes in several files. This mechanism
is helpful when device is configured by some other method. The configuration files can
be manually edited by the device administrator and these changes will be automatically
written into libnetconf configuration datastore.

Netopeer
Netopeer is an open source set of utilities and tools built for remote network configuration
implemented and maintained by CESNET. It is based on libnetconf library providing SSH
and TLS transport [7]. The netopeer-cli(8) is a NETCONF client which allows user
to connect to NETCONF enabled device and manipulate with configuration data. Server
capabilities are implemented in netopeer-server(8). The netopeer-server(8) runs as
service deamon integrating SSH/TLS server.

YumaPro
YumaPro1 is a proprietary NETCONF toolset forked from open source Yuma project. Af-
ter Yuma went proprietary, OpenYuma2 project was created, which continues to develop
and maintain the original open source Yuma project. YumaPro added many new features
including notification support, performance and stability improvements. It provides a com-
plete professional solution for a network configuration automation. YumaPro claims to be
over 900 times faster then OpenYuma, this result was measured in the case of loading large
amount of entries at the boot-time [16].

freenetconf
The freenetconf project is implementing a NETCONF server called freenetconfd3, focusing
on low memory usage to be run on any platform and architecture. It is developed in C and
optimized for OpenWrt [18]. Plugins can be used to extend functionality. Nowadays, the
freenetconfd is not maintained and not providing support for new OpenWrt versions.

1https://www.yumaworks.com/yumapro-sdk/
2https://github.com/OpenClovis/OpenYuma
3https://github.com/freenetconf/freenetconfd

13

Chapter 4

Design and implementation

The goal of this thesis is the ability to configure the basic OpenWrt device settings using
NETCONF protocol. It is necessary to cover the basic configuration of all the system
components. The configuration can be divided into a system and a network interfaces
configuration. The basic data models have been created by NETCONF Data Modeling
Language (NETMOD) group to describe this configuration. The data model for network
interfaces configuration does not support dynamic host configuration protocol (DHCP) and
wireless configuration. These parts are important, their configuration will be necessary to
design. Data models will be added to the original model as augments. Not all received
configuration data can be applied to the device, some data nodes have no corresponding
items in the device configuration. Implementation part will provide more information about
these problems.

The application is built on the libnetconf library in version 0.10.0. Netopeer toolkit
was also used, actual version is 0.8.0. To work with the configuration files in XML, libxml2
library was used. As the standard C language library glibc was chosen, which is standard
in GNU-Linux systems. However, during the development, the library was changed to
musl. Its main advantage is the compactness, focus on embedded systems as OpenWrt
and not least the speed. The OpenWrt system was used with additional dependencies
such as useradd(8) to add users, usermod(8) to modify existing users and ip(8) utility
to work with network interfaces. Developed transAPI modules are part of the Netopeer
server implementation, figure 4.1 shows the application architecture. The application can
be distributed and installed from the package “netopeer.ipk” by opkg, standard package
management system on OpenWrt, or compiled into system. How to compile and install the
package to the OpenWrt system was described in chapter 2. This project is developed for
CESNET, source codes can be found in Netopeer repository in branch openwrt [7].

4.1 Configuration files
As mentioned in section 2.5, OpenWrt contains UCI configuration files. These files have
predefined syntax. The syntax of these files is also defined above. The format of the con-
figuration files was created by UCI, due to simplify and standardize the configuration of
OpenWrt system. Models implemented by author keep the system in a consistent state.
Consistent state means that the same configuration data are included in the running data-
store, the currently configured system, and other configuration files. In case of calling
callback, transAPI module in any of these modules will set the current system configura-

14

Figure 4.1: Application architecture

tion and also modify the configuration file.
The libuci library was originally planned to use for parsing and modifying configuration

files. It implements the parser of the UCI configuration files. After unsuccessful attempts
to use this library, due to the lack of API documentation, the decision to implement own
simplified configuration parser was made. It contains functions for modifying, deleting, and
obtaining configuration.

The change of the configuration files does not have to be caused by Netopeer, due to
a datastore change. Users can manually modify configuration files or another configura-
tion management system can be used (LuCI), that communicates via UCI configuration
interface. In these cases, the problem of inconsistency of configuration files to a Netopeer
transAPI data storage occurs. The solution is to monitor configuration files. Libnetconf
ability to monitor external configuration files was used for this purpose. The callback can
be defined to the configuration file. It will take care of the modifying datastores in case of
a file change.

Not all configuration files are located in the /etc/config directory. For DNS configu-
ration, it is necessary to modify /etc/resolv.conf configuration file, which is an alias to
/tmp/resolv.conf. This file contains IP addresses of the DNS servers, which client queries,
and a list of default domains used to complete the fully qualified domain name. There is a
example of resolv.conf configuration file:

search fit.vutbr.cz
nameserver 8.8.8.8
nameserver 8.8.4.4

Exact syntax of this file can be found in Linux resolv.conf(5) manual page.

15

4.2 Data models
As mentioned in section 3.4, data models are in YANG format. In this thesis, data models
are presented in a tree structure, converted using pyang1. The pyang tool can convert
between various YANG language formats. For example, transfer between YIN and YANG
format is possible.

Tree schema definition
For demonstration purposes YANG data models are presented as tree structure, which is a
simple understandable notation. Prefix “rw” before data node names stands for configura-
tion data. Nodes with this prefix can be configured and are presented in the configuration
datastore. Prefix “ro” stands for read only state data. Symbols after data node names “?”
means an optional node. Character “!” means a presence container. Character “*” denotes
list or leaf-list. The brackets “[” and “]” enclose list keys.

4.3 System
As it was discussed previously, system configuration model is defined in YANG Data Model
for System Management, RFC 7317 [2]. It can be divided into few sections which will be
discussed later. Data model contains system identification for basic system information,
clock, domain name and authentication information. OpenWrt uses /etc/config/system file
for system configuration. Radius configuration also covered by the model was not imple-
mented.

System identification
This part of model provides basic system information. The node contact defines the admin-
istrator contact information, this information is useful when a problem with device occurs.
System location can be defined with location node. The hostname provides basic device
identification on the network. System-state group identifies the platform and operating
system.

+--rw system
| +--rw contact? string
| +--rw hostname? inet:domain-name
| +--rw location? string
+--ro system-state

+--ro platform
+--ro os-name? string
+--ro os-release? string
+--ro os-version? string
+--ro machine? string

Contact as well as location were not implemented. There are no equivalents for these
items in OpenWrt. The contact and location have only informational purpose for system ad-
ministrator. Although data of these nodes are still available in ietf-system transAPI module
configuration datastore, user or developer can further use these pieces of information.

1https://github.com/mbj4668/pyang

16

To configure hostname, it is written to /proc/sys/kernel/hostname file. Within ev-
ery reboot, this file is overwritten by hostname configuration from system configuration
file. Because of this behavior, netopeer-server(8) have to update as well as the system
configuration file.

To get platform information, IEEE Std 1003.1-2008 standard defines to use functions
from sys/utsname.h defined in POSIX C library. Data structure utsname is filled using
uname() function, which provides needed information.

Clock
There are two ways how to define timezone, only one of them can be defined at time.
Timezone-name defines name of the timezone according to IANA Timezone Database
YANG Module. The second way defines timezone-utc-offset. It is a minute offset which is
added to UTC time to identify system time zone.

+--rw system
+--rw clock

+--rw (timezone)?
+--:(timezone-name)
| +--rw timezone-name? timezone-name
+--:(timezone-utc-offset)

+--rw timezone-utc-offset? int16

Received timezone must be converted into internal OpenWrt notation called “TZ string”.
This notation is used in all OpenWrt configuration files to setup timezone. After converting
the timezone, it is written to /etc/TZ file. Timezone in system configuration file is also
changed.

Timezone-name could be directly written to the UCI configuration file. However, this
method requires to have zoneinfo packages installed. These additional dependencies have
about 2.3 MB. This implementation is focused on minimizing the number of dependen-
cies, so the described method is not supported and timezone-name is always converted into
OpenWrt internal notation.

NTP
Network time protocol (NTP) is time synchronization protocol [11]. This model can pro-
vide functionality for NTP client. Node enabled activates synchronization. Read only
system-state clock obtains information about current datetime and boot datetime.

+--rw system
| +--rw ntp!
| +--rw enabled? boolean
| +--rw server* [name]
| +--rw name string
| +--rw (transport)
| | +--:(udp)
| | +--rw udp
| | +--rw address inet:host
| | +--rw port? inet:port-number
| +--rw association-type? enumeration
| +--rw iburst? boolean

17

| +--rw prefer? boolean
+--ro system-state

+--ro clock
+--ro current-datetime? yang:date-and-time
+--ro boot-datetime? yang:date-and-time

The default NTP OpenWrt implementation is used as NTP client, which is a part
of busybox called ntpd. The iburst and prefer options were not implemented, there is
no option for setting these features in OpenWrt system configuration file. However, ntpd
supports these option, they cannot be set through UCI configuration file. After updating
the configuration file, NTP service has to load the new configuration with command:

./etc/init.d/sysntpd reload

For getting current datetime, time(NULL) function is used. Boot datetime is saved
after boot within transAPI module initialization, transapi_init() function. However
these timestamps have to be converted into YANG date-and-time format. For this purpose
nc_time2datetime() function is used. Example of getting time in YANG date-and-time
format:

<clock>
<current-datetime>2016-04-07T18:55:27Z</current-datetime>
<boot-datetime>2016-04-07T18:54:55Z</boot-datetime>

</clock>

DNS Resolver
Domain name system (DNS) resolver, also known as DNS client. Resolver is responsible
for full domain resolution, resolving domain names to IP addresses. This subtree includes
list of servers IP addresses used to query during the resolution as well as domains, which
should be searched when resolving a hostname.

+--rw system
+--rw dns-resolver

+--rw search* inet:domain-name
+--rw server* [name]
| +--rw name string
| +--rw (transport)
| +--:(udp-and-tcp)
| +--udp-and-tcp
| +--rw address inet:ip-address
| +--rw port? inet:port-number
+--rw options

+--rw timeout? uint8
+--rw attempts? uint8

In OpenWrt, DNS and DHCP configuration are based on the same deamon called
dnsmasq(8), with /etc/config/dhcp configuration file. However, list of servers used to res-
olution as well as the search domains are located in /etc/resolv.conf as mentioned earlier.
Definition of port is not supported, default port 53 is used. There are additional options
for timeout and attempts, which are also implemented.

18

The author’s implementation directly edits the resolv.conf file. DNS configuration de-
fines another resolv file used by DHCP DNS autoconfiguration, usually set to /tmp/re-
solv.conf.auto. When these two files are defined, dnsmasq(8) queries servers from each file
and uses the first response.

User management
This subtree is responsible for a user management. The user passwords and SSH public
keys can be used to connect to the system. Every OpenWrt device has a default root user.

+--rw system
+--rw authentication

+--rw user-authentication-order* identityref
+--rw user* [name]

+--rw name string
+--rw password? ianach:crypt-hash
+--rw authorized-key* [name]

+--rw name string
+--rw algorithm string
+--rw key-data binary

Node user-authentication-order defines a user defined sequence of authentication into
the system. It is not implemented, my implementation supports only only local password
authentication method which also includes authentication using SSH keys.

Users are being added to system by calling useradd(8) tool with the parameter name
taken from the /system/authentication/user/name node. There is an example of adding a
new user to the system:

useradd -m [name] -s [default_shell] -p [encrypted_password]

If the password in clear text format is given, program creates a hash of the password by
using crypt() function from the musl library. The received passwords in encrypted form
are directly stored in a data store as well as /etc/shadow. Passwords are stored in datastore
only in ecrypted form. For identification of the type of encryption, every encryption has its
own id.

To increase password security, random characters can be added and used as additional
input to a hashing function, it is called salt. It makes more time-consuming to crack a
password using typical brute force or dictionary attacks.

Different types of encryption are defined in data model as features. That means its
implementation is optional. OpenWrt supports MD5 authentication, but clear text pass-
words are enctypted to DES, which is a default password encryption method. However, the
ietf-system data model does not support DES encryption algoritm. This type of encryption
was added using the cesnet-system-authentication model, where “des” keyword is used as
encryption id. Definition of described data model can be found in appendix C in YANG
format. Identification of different encryption types follows:

∙ <id> = des - DES

∙ <id> = 1 - MD5

∙ <id> = 5 - SHA-256

19

∙ <id> = 6 - SHA-512

The default password encryption method can be changed in the /etc/login.defs file after
the keyword ENCRYPT_METHOD. SHA encryption methods like SHA-256 and SHA-512
are not supported by default. However, busybox parameter
CONFIG_BUSYBOX_DEFAULT_USE_BB_CRYPT_SHA can be configured to true,
before the system compilation, to support SHA encryption methods.

Possible password formats defined by data model:

∙ 0<clear text password>

∙ $<id>$<salt>$<password hash>

∙ $<id>$<parameter>$<salt>$<password hash>

The password is set in the /etc/shadow file. At first author used a set of functions for
working with the shadow file, lckpwdf(), getspent(), etc. When library changed to musl,
the functions related to working with shadow file were no longer working. The functions are
not implemented, only empty function bodies are present. Because of this, author needed
to change the way how to work with the shadow file. Currently the passwords are adjusted
using useradd(8) or usermod(8) tools as mentioned above. The only drawback is that the
encrypted password will be visible to users listing active processes.

SSH keys ensure secured connection to the system. It is based on asymmetric cryp-
tography, pair of keys - public and private key. Every user has its own file to store keys.
Keys are usually stored in ∼/.ssh/authorized_keys file. However this configuration can be
changed in /etc/ssh/sshd_config after AuthorizedKeysFile keyword. The root has a special
place to store keys. If default SSH server dropbear(8) is used, public key for root must be
stored in /etc/dropbear/authorized_keys file.

System RPC operations
Model defines a few RPC operations to set the current time, restart and shutdown the
system:

+---x set-current-datetime
| +---w input
| +---w current-datetime yang:date-and-time
+---x system-restart
+---x system-shutdown

The time that is taken from RPC messages need to be converted. It is stored in the data
model format yang:date-and-time. After receiving the RPC messages, time is converted
using nc_datetime2time() function, which takes time as his first parameter. The time
zone is set to the same as described in section clock.

Further, the system can be restarted or shut down. In both operations, the delay is set
to one second. Example of RPC message setting the system time:

<set-current-datetime xmlns="urn:ietf:params:xml:ns:yang:ietf-system">
<current-datetime>2015-12-19T16:39:57-08:00</current-datetime>

</set-current-datetime>

20

4.4 Interfaces management
To work with network interfaces, IETF defines YANG data model ietf-interfaces, RFC 7223
[4]. This model is a sort of basic model to work with the network interfaces. It is expected,
that developers will add an augment to a specific type of interface. As it will be shown,
ietf-ip data model will be added.

The model contains several configurable items such as interface name, type and inter-
face status. However, most of the data are read only statistics data. From the model,
users can get information about physical address, interface speed, etc. Subtree statistics
provides statistics from the interface. This is particularly the amount of transferred data,
the number of errors on the interface, etc. Statistics are recorded in both directions.

Interface
This subtree represents basic configurable data on interface.

+--rw interfaces
+--rw interface* [name]

+--rw name string
+--rw description? string
+--rw type identityref
+--rw enabled? boolean
+--rw link-up-down-trap-enable? enumeration

The callback for working with interface name is implemented, but interface name cannot
be modified, because it is a data model key. Also the interface names in OpenWrt are defined
and cannot be changed.

The description has only informational character for the system administrator. It has
no equivalent in OpenWrt system, but it can be found in ietf-interfaces datastore.

Interface type is defined as iana-if-type, which is specified as IANA Interface Type
YANG Module. Large number of interface types are defined, but most of them are not
used. OpenWrt as well as other Unix based systems define interface type as number in
kernel path /sys/class/net/[if_name]/type, where if_name refers to interface name. This
number must be converted to iana-if-type. The kernel header file include/linux/if_arp.h
defines meaning of interface type numbers and function iface_get_type() gets the type
number from the kernel and converts it to iana-if-type. The most used interface types are:

∙ softwareLoopback - loopback interface

∙ ethernetCsmacd - Ethernet type interface

∙ ieee80211 - wireless interface

The purpose of the enabled node is to setup an interface state. The interface can be
in enabled or disabled state. Changing state is done by ip(8) utility. The configuration
is also changed when interface is in disabled state, configuration will take effect after the
interface is enabled. The following example shows enabling one of the interfaces:

ip link set dev eth0 up

21

Node for generating SNMP notifications about interface state change, link-up-down-
trap-enable was not implemented. OpenWrt has no SNMP installed by default.

State information
Most of the state information is collected by parsing files in the /sys/class/net/[if_name]
directory. The only exception is last-change node. It refers to the time when operational
status was changed for the last time. For this purpose, stat() function on the /sys/-
class/net/[if_name]/operstate file is used to get the time of last change.

+--ro interfaces-state
+--ro interface* [name]

+--ro name string
+--ro type identityref
+--ro admin-status enumeration {if-mib}?
+--ro oper-status enumeration
+--ro last-change? yang:date-and-time
+--ro if-index int32 {if-mib}?
+--ro phys-address? yang:phys-address
+--ro higher-layer-if* interface-state-ref
+--ro lower-layer-if* interface-state-ref
+--ro speed? yang:gauge64

Interface statistics
Each interface stores all statistical data into /proc/net/dev file. This approach allows
to efficiently parse only one file to get all needed data. Even though discontinuity-time
is an exception, it refers to the most recent time when one or more counters suffered a
discontinuity.

+--ro interfaces-state
+--ro interface* [name]

+--ro statistics
+--ro discontinuity-time yang:date-and-time
+--ro in-octets? yang:counter64
+--ro in-unicast-pkts? yang:counter64
+--ro in-broadcast-pkts? yang:counter64
+--ro in-multicast-pkts? yang:counter64
+--ro in-discards? yang:counter32
+--ro in-errors? yang:counter32
+--ro in-unknown-protos? yang:counter32
+--ro out-octets? yang:counter64
+--ro out-unicast-pkts? yang:counter64
+--ro out-broadcast-pkts? yang:counter64
+--ro out-multicast-pkts? yang:counter64
+--ro out-discards? yang:counter32
+--ro out-errors? yang:counter32

22

4.5 IP management
IP configuration is based on ietf-ip data model. This model is described in RFC 7277 [5].
The purpose of this model is to extend the interface configuration by IP protocol. Model
contains two subtrees, one for IPv4 and IPv6 protocol. This approach allows to enable or
disable each protocol as needed.

Model contains maximum transmission unit (MTU), packet forwarding and IP address
configuration. Network prefix in IPv4 address can be defined using prefix length or netmask.
However, in IPv6 protocol, prefix length must be defined. Model also defines address
resolution protocol (ARP) cache. IPv6 have a subtree for autoconfiguration parameters.

Configuration is modified in the interface kernel configuration files located in /proc/sys/net
and /sys/class/net paths, or using ip(8) utility.

augment /if:interfaces/if:interface:
+--rw ipv4!
| +--rw enabled? boolean
| +--rw forwarding? boolean
| +--rw mtu? uint16
| +--rw address* [ip]
| | +--rw ip inet:ipv4-address-no-zone
| | +--rw (subnet)
| | +--:(prefix-length)
| | | +--rw prefix-length? uint8
| | +--:(netmask)
| | +--rw netmask? yang:dotted-quad
| +--rw neighbor* [ip]
| +--rw ip inet:ipv4-address-no-zone
| +--rw link-layer-address yang:phys-address
+--rw ipv6!

+--rw enabled? boolean
+--rw forwarding? boolean
+--rw mtu? uint32
+--rw address* [ip]
| +--rw ip inet:ipv6-address-no-zone
| +--rw prefix-length uint8
+--rw neighbor* [ip]
| +--rw ip inet:ipv6-address-no-zone
| +--rw link-layer-address yang:phys-address
+--rw dup-addr-detect-transmits? uint32
+--rw autoconf

+--rw create-global-addresses? boolean
+--rw create-temporary-addresses? boolean
+--rw temporary-valid-lifetime? uint32
+--rw temporary-preferred-lifetime? uint32

IP Address setup
To set the IP address, ip(8) utility is used. When node /ipv4/enabled is set to false, IP
address is ignored, it will not be added to the interface. Whether subnet mask or prefix
is set, created transAPI modules will always convert to have data in both formats. Prefix

23

length is required for ip(8), which is used to set the IP address, and subnet mask is needed
for modifying UCI configuration file /etc/config/network.

Editing UCI configuration files may cause problems. As mentioned above, each confi-
guration element is part of section. There is an example of interface configuration file for
demonstration purposes:

config interface ’192_168_1_1’
option ifname ’eth0’
option proto ’static’
option ipaddr ’192.168.1.1’
option netmask ’255.255.255.0’

The section configuration name is set to 192_168_1_1, it may seem unnecessary to
use such an identifier. An IP address had to be chosen, because of its uniqueness. The IP
address is defined in a model as a key which means that it cannot appear more than once.
In the name of the section, it is not permitted to use the character “.”, it is replaced by “_”.
The name of the section could be generated automatically, but it is not possible because
additional configuration can be bind to the section. Settings from other configuration files
do not bind to the actual network interface, but to the specific section. It also provides
the opportunity to configure multiple IP addresses on a single interface using configuration
files. The same rules are applied for IPv6 protocol.

An example of the interface configuration:

<?xml version="1.0" encoding="utf-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
<interface>

<name>eth0</name>
<type>ianaift:ethernetCsmacd</type>
<enabled>true</enabled>
<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

<enabled>true</enabled>
<address>

<ip>192.168.1.1</ip>
<netmask>255.255.255.0</netmask>

</address>
</ipv4>

</interface>
</interfaces>

An example of consequent configuration change using ip(8) utility:

ip addr add [ip_address]/[subnet_mask] dev [interface]

ARP Cache
A subtree neighbor manually adds records to convert IP addresses to physical (MAC)
address. These records are also known as ARP cache. To work with the ARP entries ip(8)
tool is used. An example of adding the ARP record:

ip neigh add [ip_address] lladdr [mac_address] dev [interface]

24

In the case of interface restart, previously added neighbors are lost. Although the con-
figuration has not changed and has already been set once, the application must re-add the
neighbors according to the configuration contained in the datastore.

IPv6 Autoconfiguration
Although OpenWrt supports IPv6, in UCI configuration files autoconfiguration cannot be
set as IP address obtaining the method. When global addresses are enabled (option create-
global-addresses) in the kernel file /proc/sys/net/[if_name]/autoconfiguration on a given
interface (if_name) is set to “1”. Other options in this subtree are set similarly. Based on
these settings, the interface will automatically add the IPv6 address.

4.6 DHCP
Refering to the presented models, the interface cannot be set to gain IP address from a
DHCP server. The most used equipment by OpenWrt (SOHO routers) usually needs to
provide DHCP server service to connected clients. Due to these arguments, author decided
to design a model to augment the ietf-ip model. It will be used to configure the DHCP
client and server.

module: cesnet-dhcp
augment /if:interfaces/if:interface/ip:ipv4:

+--rw origin? identityref
+--rw dhcp-server

+--rw start? inet:ipv4-address-no-zone
+--rw stop? inet:ipv4-address-no-zone
+--rw leasetime? string
+--rw default-gateway? inet:ipv4-address-no-zone

augment /if:interfaces-state/if:interface/ip:ipv4:
+--ro dhcp-config

+--ro ip-address? inet:ipv4-address-no-zone
+--ro prefix-length? uint8
+--ro default-gateway? inet:ipv4-address-no-zone
+--ro dns-server* inet:ipv4-address-no-zone
+--ro dns-search* inet:host

The model defines an item called the origin, which may take the value manual or dhcp.
If dhcp is selected, DHCP client will be switched on. Further the IP addresses may be
manually set on the interface. On the contrary, if manual is selected, the IP adress has
to be defined manually. The IP addresses between the start and stop node are leased to
clients. Options for setting the lease time as well as the default gateway are also present.

Default dnsmasq(8) deamon is used as DHCP server. Configuration items are set in
/etc/dnsmasq.conf file. However, UCI configuration file /etc/config/dhcp can be also used.

augment /if:interfaces/if:interface/ip:ipv6:
+--rw origin? identityref
+--rw dhcp-server

+--rw enabled? boolean
+--rw router-advertisements? enumeration

25

+--rw ndp? boolean
augment /if:interfaces-state/if:interface/ip:ipv6:

+--ro dhcp-config
+--ro ip-address? inet:ipv6-address-no-zone
+--ro prefix-length? uint8
+--ro default-gateway? inet:ipv6-address-no-zone
+--ro dns-server* inet:ipv6-address-no-zone
+--ro dns-search* inet:host

Configuration options are available for IPv4 as well as for IPv6 protocol. The IPv6 config-
uration is almost the same as IPv4, except the DHCP server. DHCPv6 server can work in
server or relay mode. Router advertisement as well as network discovery protocol can be
also configured to server, relay, or disabled mode. These option are set in /etc/config/dhcp
file. Whole model definition in YANG format can be found in appendix D.

4.7 Wireless
As it was mentioned, wireless SOHO devices are the most used OpenWrt equipment. Au-
thor decided to create cesnet-wireless model to be able to configure wireless interfaces on
the device. This model provides only basic wireless configuration.

module: cesnet-wireless
augment /if:interfaces/if:interface:

+--rw wireless!
+--rw enabled? boolean
+--rw device? string
+--rw ssid? string
+--rw mode? wireless-mode
+--rw hidden? boolean
+--rw encryption-method

+--rw algoritm? identityref
+--rw password? string

Model defines the basic operation with the wireless interface. It is possible to en-
able/disable, set ssid and wireless mode. Supported modes depend on used hardware, the
most common usage is in access point (AP) mode. The configuration can be modified in
/etc/config/wireless file. After modifying the configuration, a network service needs to be
reloaded. The Model definition can be found in appendix E.

The wireless network also supports encryption. OpenWrt supports a number of different
encryption modes. The commonly used encryption modes are defined in the data model.
There is a list of supported encryption modes, more encryption methods can be added
without changing the current data model:

∙ wep - Simple WEP encryption with one key (not recommended to use)

∙ psk - WPA Personal encryption

∙ psk2 - WPA2 Personal encryption (recommended to use)

26

Chapter 5

Testing

Elementary testing was always done after some new features were implemented just to
verify the basic functionality. Once the modules were considered as finished, more complex
tests and test cases were designed. This process is called iterative development. Some of
these test cases are demonstrated in the section 5.3.

The valgrind(1) utility was used to verify the memory usage. Because of OpenWrt
issue, valgrind(1) cannot be used on OpenWrt platform. It was used on x86 host PC to
verify some parts of the code to detect any invalid memory access and unfreed dynamically
allocated memory. When an issue was found, the gdb(1) utility was used to debug.

The test cases were divided into two categories, basic system configuration and inter-
faces configuration. The basic system configuration was tested according to the ietf-system
model. Whenever the configuration changes, the UCI configuration files should be also
updated. The same task was done on the interface configuration module based on ietf-
interfaces and ietf-ip model. The test cases were tried on two different environments, real
hardware device and virtual environment.

The virtual environment was used for fast verifying the application functionality. It
is easier and faster to start a virtual machine than to install the image on real hardware
device. On the other hand, real hardware was also used for testing purposes. For example,
wireless configuration cannot be tested in the virtual environment. More information about
the virtual machine can be found in the appendix B.

The feedback received from the testing was valuable and several issues were discovered
mainly in the interfaces configuration. Also a few memory leaks were discovered. This
chapter will provide more information about used hardware, NETCONF clients used for
testing and test cases.

5.1 Hardware
Tests on real hardware device was one of the test scenarios. OpenWrt supports many
platforms and devices from different vendors. A few aspects must be considered when
choosing a proper hardware. The OpenWrt support is one of them, which can be checked
in OpenWrt hardware database1.

The second aspect is a performance of the device. Enough RAM memory when running
multiple applications can be crucial. Some devices can use additional memory as SWAP

1https://wiki.openwrt.org/toh/start

27

from flash memory. It is ecommended to have about 128 MB for running multiple applica-
tions. Devices for home use usually have from 4 to 16 MB flash memory. Nowadays 8 MB
is standard, it makes about 5 MB space for user installed packages. However, it depends
on OpenWrt version. Technical parameters [9] of OpenWrt hardware can be found in table
5.1.

Device TP-Link WR841 TP-Link WDR3600 Turris Omnia
CPU 400 MHz 560 MHz 2x 1,6 GHz
RAM 32 MB 128 MB 1 GB
Flash 4 MB 8 MB 4 GB
USB no 2x 2.0 2x 3.0
LAN 4x 100 Mbps 4x 1000 Mbps 5x 1000 Mbps
WAN 100 Mbps 1000 Mbps 1000 Mbps
Price2 ≈ 20 e ≈ 60 e ≈ 250 e

Table 5.1: Table of devices

The netopeer-server(8) depends on a few other libraries and utilities. A table of
dependencies with the size of each dependency and netopeer-server(8) itself can be
found in table 5.2.

Application Size
libxml2 1.0 MB

libnetconf 0.7 MB
libssh 0.38 MB
ip-full 0.28 MB

shadow-utils 0.17 MB
netopeer-server 0.05 MB

Total 2.58 MB

Table 5.2: Dependencies

The netopeer-server(8) with all dependecies, including libnetconf, requires about
2.5 MB of space on the flash. Running application requires about 8-11 MB of RAM
memory. Device with 32 MB of RAM and 8 MB of flash should be enough to run
netopeer-server(8) with developed modules on OpenWrt. Based on these requirements,
ordinary mid range device should meet all requirements. For testing purposes in this thesis,
TP-Link TL-WDR3600 was chosen. It is affordable, meets all requirements, fully supported
and recommended by OpenWrt community.

5.2 NETCONF clients
Based on application architecture shown in figure 4.1, NETCONF clients were used for
testing purposes. One command line interface (CLI) and one graphical user interface

2Average prices in May 17, 2016

28

(GUI) application was chosen. As it was explained in section 3.6, Netopeer implements
netopeer-cli(8) as CLI client and NetopeerGUI as web GUI for configuration. These
tools were chosen, because they are open source and a part of the Netopeer project. Later
in this section, these NETCONF clients will be presented.

netopeer-cli
This application is a NETCONF client, which is a part of Netopeer toolset. It is a powerful
command line interface, which supports all operations described in section 3.2. Additional
custom rpc operations can be sent using user-rpc command. The netopeer-cli(8) was
developed as a part of the Netopeer project and primary used for testing purposes. How-
ever, it is a fully featured NETCONF client. Commands used to connect and edit device
configuration:

connect --login root 192.168.1.1

edit-config [--config <file>] running|startup|candidate

NetopeerGUI
The NetopeerGUI3 is a web user interface for the network devices configuration, which uses
mod_netconf apache module as back-end. NetopeerGUI can communicate with any device
which supports NETCONF protocol. It is implemented in PHP as Symfony2 application
using technologies such as jQuery and SQLite. Following figure 5.1 shows NetopeerGUI
user interface.

NetopeerGUI is installed on server and can connect remotely to any device capable of
NETCONF protocol. This method has an advantage in connecting to more than one device
and managing devices from one location. However, to use NetopeerGUI as a default user
interface for configuration in OpenWrt, it must be installed locally and additional depen-
dencies such as PHP and apache must be added. Testing locally installed NetopeerGUI as
default user interface for configuration was successful only in virtual environment. Memory
requirements are too high, NetopeerGUI requires about 200 MB on flash and 30 MB of
RAM. Only few devices, such as Turris Omnia4 have hardware to run such an application.
However, it can be resolved using USB flash drive. Most of the devices have at least one
USB port. USB flash drive can be used to extend memory on the device. Flash drive speed
is a disadvantage, but this mechanism can be used to run NetopeerGUI locally.

5.3 Test cases
In order to demonstrate the application functionality, a few basic configuration test cases
are described in this section. The netopeer-cli(8) is used as NETCONF client. Complete
test kit can be found on attached removable media described in the appendix A. Each test
case has a description, configuration data, netopeer-cli(8) commands used to send the
configuration to the device, and verification part. Before each test, netopeer-cli(8) was
used to connect to netopeer-server(8) running on OpenWrt device:

> connect --login root 192.168.1.1
3https://github.com/CESNET/Netopeer-GUI
4https://omnia.turris.cz

29

Figure 5.1: NetopeerGUI web interface

It is not possible to describe all the test cases, due to the extent of this work. Some of them
are presented in this section.

Basic system configuration
This test case provides a basic system configuration. Usually, this type of configuration,
such as configuration of the hostname and timezone, is done after the first system start.
Following configuration data is sent to the device:

<?xml version="1.0" encoding="utf-8"?>
<system xmlns="urn:ietf:params:xml:ns:yang:ietf-system">

<hostname>testingDevice</hostname>
<clock>

<timezone-utc-offset>-240</timezone-utc-offset>
</clock>

</system>

The configuration is applied using netopeer-cli(8) with edit-config operation and
shown configuration data affect running datastore. Merge is used as default operation,
the configuration will be merged with target datastore. In case of error, server will stop
processing edit-config operation and will restore the configuration to its state before this
operation. Here is a netopeer-cli(8) command to edit device configuration:

> edit-config --defop merge --error rollback --config conf.xml running

30

When the configuration is applied to the device, verification is needed. Device hostname
can be easily verified by connecting remotely to the device using SSH. The hostname is
shown on command line after the user logged in:

1. Before: root@OpenWrt:/#

2. After: root@testingDevice:/#

For verifying the time configuration date(1) utility can be used. The next output demon-
strates the date before and after the configuration was modified.

1. Before: Mon May 2 20:47:52 UTC 2016

2. After: Mon May 2 16:51:15 AST 2016

User configuration
OpenWrt has no password set for root user by default, so it is recommended to set a
password.

<?xml version="1.0" encoding="utf-8"?>
<system xmlns="urn:ietf:params:xml:ns:yang:ietf-system">

<authentication>
<user>

<name>root</name>
<password>0password1</password>

</user>
</authentication>

</system>

The configuration is saved to startup datastore. It will be applied within the next start of
netopeer-server(8). Apply configuration using netopeer-cli(8):

> edit-config --config conf.xml startup

To verify the configuration, the output from /etc/shadow is demonstrated before and after
the configuration change.

1. Before: root::0:0:99999:7:::

2. After: root:93.yRQP.MGcwg:16923:0:99999:7:::

Content of the startup datastore is also verified by using get-config operation. The pass-
word is saved in encrypted form as it is demonstrated in following output of the get-config
operation:

<authentication>
<user>

<name>root</name>
<password>desN6n9JU.wmMGUk</password>

</user>
</authentication>

31

Reboot the device
SOHO devices running on OpenWrt may require rebooting the device sometimes. It can be
helpful in case of slow network or when any other issue occurs. There are the configuration
data used for rebooting the device:

<system-restart xmlns="urn:ietf:params:xml:ns:yang:ietf-system">
</system-restart>

To reboot the device, user defined rpc has to be sent instead of edit-config. The
user-rpc command provides sending custom user’s defined rpc operation, this behaviour
is netopeer-cli(8) specific.

> user-rpc --file reboot.xml

Device should be rebooted one second after rpc operation is received.

IP address configuration
Some parts of the configuration need to be removed from the device. In the following
configuration data, remove operation is used to remove the IP address from the interface.

<?xml version="1.0" encoding="utf-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
xmlns:op="urn:ietf:params:xml:ns:netconf:base:1.0">

<interface>
<name>eth1</name>
<ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

<address op:operation="remove">
<ip>192.168.3.1</ip>

</address>
</ipv4>

</interface>
</interfaces>

The configuration data are sent using netopeer-cli(8) utility to the candidate configu-
ration datastore. From the candidate datastore the configuration is copied to the running
datastore and applied to the device. There are commands providing the described process:

> edit-config --config conf.xml candidate

> copy-config --source candidate running

The configuration can be verified using ip(8) utility. There is an output of the ip(8)
utility showing IP addresses assigned to the interface:

1. Before:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP>
link/ether 08:00:27:52:2d:c5 brd ff:ff:ff:ff:ff:ff
inet 10.0.3.15/24 brd 10.0.3.255 scope global eth1

valid_lft forever preferred_lft forever
inet 192.168.3.1/24 scope global eth1

valid_lft forever preferred_lft forever

32

2. After:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP>
link/ether 08:00:27:52:2d:c5 brd ff:ff:ff:ff:ff:ff
inet 10.0.3.15/24 brd 10.0.3.255 scope global eth1

valid_lft forever preferred_lft forever

Wireless configuration
Wireless configuration is defined as a part of the interface configuration. The create
operation is used for creating a new access point on the defined interface.

<?xml version="1.0" encoding="utf-8"?>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"

xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
xmlns:op="urn:ietf:params:xml:ns:netconf:base:1.0">

<interface>
<name>eth0</name>
<type>ianaift:ethernetCsmacd</type>
<enabled>true</enabled>
<wireless op:operation="create"

xmlns="urn:cesnet:params:xml:ns:yang:cesnet-wireless">
<device>radio0</device>
<enabled>true</enabled>
<ssid>OpenWrt</ssid>
<mode>ap</mode>

</wireless>
</interface>

</interfaces>

Applying configuration to a running datastore using netopeer-cli(8):

> edit-config --config conf.xml running

After updating the running configuration, wireless network is visible to nearby wireless
clients. There is an output of wifi utility used for verifying wireless configuration:

"interfaces":
[

{
"section": "@wifi-iface[0]",
"config": {

"mode": "ap",
"ssid": "OpenWrt",
"encryption": "none",
"network": [

"lan"
],
"mode": "ap"

}
}

]

33

Chapter 6

Conclusion

This thesis provides an overview of the NETCONF protocol, its implementation in Netopeer
and OpenWrt system. Studying this topic was followed by a configuration modules design,
and their implementation. The main requirement was to provide a reliable basic system
and network interfaces configuration of OpenWrt system. Due to the hardware limitations
based on the real equipment, low memory demand was an important aspect.

The first step was to get acquainted with the Netopeer toolset and libnetconf library. It
is particularly important to know the principle, how the transAPI modules operate. In the
first part of this work there are some general principles, a description of OpenWrt and its
configuration using UCI interface and the description of a web extension LuCI. Although
I had a previous user experience with OpenWrt, I needed to learn how to develop for this
platform. I also learned the principle of NTP, DNS, and SSH keys in OpenWrt system.
Furthermore, to work with the network interfaces, I got to know how to work with the
ip(8) utility and how to configure network interfaces in Linux systems.

After studying, it was time to design. I came to the need of implementing my own UCI
configuration files parser. My proposal of developed transAPI modules is based on stan-
dardized data models with custom augments, which focus on DHCP and wireless network
interface configuration.

The next phase was the implementation of the proposed solution. The whole work is
implemented in C. I used the libnetconf library to work with the NETCONF protocol. The
configuration data are transmitted using XML for creating and parsing the documents.
The implementation is divided into two parts. The first part are transAPI modules, which
actually has the capability of the basic system and network interfaces configuration, as well
as other augmented data models such as DHCP and wireless configuration. The second
part is the configuration parser, which was used in both modules.

The last part of the work is devoted to the results of the testing and the checking of
functionality in individual parts of the configuration. Tests indicate that the developed
transAPI modules can be used for basic OpenWrt configuration on real hardware device.
However, DHCP and wireless configuration is still in development and can contain bugs.
Compared to the UCI interface, it provides better remote configuration opportunities as
well as it is more capable of network configuration automation. Drawback is the absence of
some important configuration features that UCI provides, for example firewall and routing
configuration.

34

6.1 Future work
The configuration modules for OpenWrt can be improved in a lot of ways. The improve-
ments can be done in each module. I see the most crucial development for the future use in
the replacement of my configuration parser for the parser from libuci library. Most of the
tools, which work with UCI configuration files use libuci via its C API. The problem with
lack of the documentation should be resolved with help from the OpenWrt community.

A new versions of libnetconf1 library and Netopeer2 are currently under the develop-
ment. The configuration modules should be ported after stable versions are released.

The system module could be improved by adding support to upgrade the device oper-
ating system. This feature is important for security reasons, because devices should have
up to date software. Operating system upgrade should be implemented as RPC operation
and added to ietf-system module as augment. A new firmware could be provided as url,
downloaded using wget(1) and installed to the device.

The wireless module could provide more statistic information about registred users and
signal strength. Although these features require only minor changes, their implementation
is not part of this thesis.

There are some new data models that could be implemented. For example the model
providing routing management information is available as a draft. Next, there is a model
for Quality of Service (QoS) management also available as a draft. These modules are
still changing frequently, they should be standardized in the near future. Nowadays, net-
work equipment security is a significant aspect of modern computer networks. Module for
controlling firewall could be designed and implemented.

Currently, there is an initiative for using these Netopeer modules on OpenWrt devices
for testing in a small internet service provider (ISP) company in Southern Slovakia. The
devices should be placed in the clients homes as an ordinary home wireless router. These
devices are often placed behind the NAT, the main objective is to provide basic device
configuration without unnecessary visiting the clients home, which can cost a lot of money.

1https://github.com/CESNET/libnetconf2
2https://github.com/CESNET/Netopeer2

35

Bibliography

[1] B. Hedstrom, A. W.; Sakthidharan, S.: Protocol Efficiencies of NETCONF versus
SNMP for Configuration Management Functions [online]. May 2011.
Available at: http://morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf

[2] Bierman, A.; Bjorklund, M.: A YANG Data Model for System Management. RFC
7317, RFC Editor, August 2014.
Available at: https://tools.ietf.org/html/rfc7317

[3] Bjorklund, M.: YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF). RFC 6020, RFC Editor, October 2010.
Available at: https://tools.ietf.org/html/rfc6020

[4] Bjorklund, M.: A YANG Data Model for Interface Management. RFC 7223, RFC
Editor, May 2014.
Available at: https://tools.ietf.org/html/rfc7223

[5] Bjorklund, M.: A YANG Data Model for IP Management. RFC 7277, RFC Editor,
June 2014.
Available at: https://tools.ietf.org/html/rfc7277

[6] Cesnet z.s.p.o.: libnetconf. 2015 [cit. 2016-05-02].
Available at: https://github.com/CESNET/libnetconf

[7] Cesnet z.s.p.o.: Netopeer. 2015 [cit. 2016-05-02].
Available at: https://github.com/CESNET/netopeer

[8] Enns, R.; Bjorklund, M.; Schoenwaelder, J.; aj.: Network Configuration Protocol
(NETCONF). RFC 6241, RFC Editor, June 2011.
Available at: https://tools.ietf.org/html/rfc6241

[9] Krejčí, R.; Hájek, J.: Overview of the Local Network Monitoring Projects and Tools
[online]. 2015.
Available at:
https://www.cesnet.cz/wp-content/uploads/2015/03/sohomonitoring.pdf

[10] Marshall, D.: Remote Procedure Calls [online]. 1999 [cit. 2016-04-15].
Available at: https://www.cs.cf.ac.uk/Dave/C/node33.html

[11] Mills, D. L.: Network Time Protocol (NTP). RFC 958, RFC Editor, September 1985.
Available at: https://tools.ietf.org/html/rfc958

[12] Tavares, D. M.; aj.: Access Point Reconfiguration Using OpenWrt [online]. 2014.
Available at: http://worldcomp-proceedings.com/proc/p2014/ICW7101.pdf

36

http://morse.colorado.edu/~tlen5710/11s/11NETCONFvsSNMP.pdf
https://tools.ietf.org/html/rfc7317
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7223
https://tools.ietf.org/html/rfc7277
https://github.com/CESNET/libnetconf
https://github.com/CESNET/netopeer
https://tools.ietf.org/html/rfc6241
https://www.cesnet.cz/wp-content/uploads/2015/03/sohomonitoring.pdf
https://www.cs.cf.ac.uk/Dave/C/node33.html
https://tools.ietf.org/html/rfc958
http://worldcomp-proceedings.com/proc/p2014/ICW7101.pdf

[13] Vaško, M.: Integrace SSH/TLS do Netopeer Netconf serveru [online]. Master’s thesis,
Masaryk university, Faculty of Informatics, Brno, 2015 [cit. 2016-05-04].
Available at: http://theses.cz/id/gx7cgj

[14] Wallin, S.; Wikström, C.: Automating Network and Service Configuration Using
NETCONF and YANG. In Proceedings of the 25th International Conference on Large
Installation System Administration, LISA’11, Berkeley, CA, USA: USENIX
Association, 2011, p. 22–22.
Available at: http://dl.acm.org/citation.cfm?id=2208488.2208510

[15] Xu, H.; Xiao, D.: Challenges for Next Generation Network Operations and Service
Management: 11th Asia-Pacific Network Operations and Management Symposium,
APNOMS 2008, Beijing, China, October 22-24, 2008. Proceedings, chapter
Considerations on NETCONF-Based Data Modeling. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, ISBN 978-3-540-88623-5, p. 167–176.

[16] YumaWorks: Transaction Performance [online]. 2016 [cit. 2016-04-06].
Available at:
https://www.yumaworks.com/netconfd-pro/transaction-performance

[17] LuCI – Technical Reference [online]. 2015 [cit. 2016-04-06].
Available at: https://wiki.openwrt.org/doc/techref/luci

[18] Freenetconf [online]. 2015 [cit. 2016-04-18].
Available at: http://www.freenetconf.org/

[19] Installing OpenWrt [online]. 2016 [cit. 2016-04-06].
Available at: https://wiki.openwrt.org/doc/howto/generic.flashing

[20] Creating packages [online]. 2016 [cit. 2016-04-15].
Available at: https://wiki.openwrt.org/doc/devel/packages

[21] Cross Compile [online]. February 2016 [cit. 2016-04-15].
Available at: https://wiki.openwrt.org/doc/devel/crosscompile

[22] OpenWrt Version History [online]. 2016 [cit. 2016-04-15].
Available at: https://wiki.openwrt.org/about/history

[23] OpenWrt Wireless freedom [online]. 2016 [cit. 2016-04-15].
Available at: https://openwrt.org

[24] The UCI System [online]. 2016 [cit. 2016-04-15].
Available at: https://wiki.openwrt.org/doc/uci

[25] OpenWrt – First Login [online]. 2016 [cit. 2016-04-18].
Available at: https://wiki.openwrt.org/doc/howto/firstlogin

[26] OPKG Package Manager [online]. 2016 [cit. 2016-04-18].
Available at: https://wiki.openwrt.org/doc/techref/opkg

[27] OpenWrt’s build system – About [online]. 2016 [cit. 2016-04-23].
Available at: https://wiki.openwrt.org/about/toolchain

37

http://theses.cz/id/gx7cgj
http://dl.acm.org/citation.cfm?id=2208488.2208510
https://www.yumaworks.com/netconfd-pro/transaction-performance
https://wiki.openwrt.org/doc/techref/luci
http://www.freenetconf.org/
https://wiki.openwrt.org/doc/howto/generic.flashing
https://wiki.openwrt.org/doc/devel/packages
https://wiki.openwrt.org/doc/devel/crosscompile
https://wiki.openwrt.org/about/history
https://openwrt.org
https://wiki.openwrt.org/doc/uci
https://wiki.openwrt.org/doc/howto/firstlogin
https://wiki.openwrt.org/doc/techref/opkg
https://wiki.openwrt.org/about/toolchain

Appendices

38

List of Appendices

A CD Content 40

B Virtual test environment 41

C YANG data model for password encryption 42

D YANG data model for DHCP configuration 44

E YANG data model for Wireless configuration 50

39

Appendix A

CD Content

∙ src/ - Application source codes,

∙ test-cases/ - Test cases used to test the application,

∙ virtual/ - OpenWrt image for VirtualBox with installed configuration modules,

∙ thesis.pdf - Thesis in pdf format,

∙ src-latex/ - Source files of the thesis in latex.

40

Appendix B

Virtual test environment

OpenWrt can be compiled for x86 platform. The build root has an option to create Vir-
tualBox or VMware image, it can be helpful for rapid application development. In this
thesis, VirtualBox is used for testing the application on x86 virtual environment. Images
created by build root are using GRUB as bootloader. Figure B.1 shows running OpenWrt
in VirtualBox.

Figure B.1: OpenWrt in VirtualBox

VirtualBox image is included on attached media described in appendix A.

41

Appendix C

YANG data model for password
encryption

module cesnet-system-authentication {

namespace "urn:cesnet:yang:system-authentication";
prefix sys-auth;

import iana-crypt-hash {
prefix ianach;

}

import ietf-system {
prefix sys;

}

contact
"Peter Nagy <xnagyp01@stud.fit.vutbr.cz>";

description
"Add support for des encryption used in OpenWrt

Copyright (C) 2016 CESNET, z.s.p.o."
;

revision 2016-06-11 {
description
"Initial revision.";

}

deviation "/sys:system/sys:authentication/sys:user/sys:password" {
deviate replace {

type union {
type ianach:crypt-hash;
type string {

42

pattern
’des[a-zA-Z0-9./]*’;

}
}

}
}

}

43

Appendix D

YANG data model for DHCP
configuration

module cesnet-dhcp {

namespace "urn:cesnet:yang:dhcp";
prefix dhcp;

import ietf-interfaces {
prefix if;

}
import ietf-ip {

prefix ip;
}
import ietf-inet-types {

prefix inet;
}

contact
"Peter Nagy <xnagyp01@stud.fit.vutbr.cz>";

description
"This module contains a data model for
the configuration of dhcp configuration.

Copyright (C) 2016 CESNET, z.s.p.o.

TODO: License
";

revision 2016-02-02 {
description
"Added feature to configure dhcp server";

}

44

revision 2013-07-02 {
description
"Initial revision.";

}

/*
* Identities
*/

identity origin {
description
"Base identity for address origin";

}

identity manual {
base origin;
description
"Manual IP address origin";

}

identity dhcp {
base origin;
description
"DHCP IP address origin";

}

identity linklayer {
base origin;
description
"Linklayer IP address address origin";

}

/* Data nodes */

grouping dhcp-status-ipv4 {
description
"DHCP state info for interface with enabled DHCP,
IPv4 protocol.";

leaf ip-address {
config false;
type inet:ipv4-address-no-zone;
description
"The IP address on the interface.";

}
leaf prefix-length {

45

config false;
type uint8 {

range "0..128";
}
description
"The length of the subnet prefix.";

}
leaf default-gateway {

config false;
type inet:ipv4-address-no-zone;
description
"The default gateway of an interface.";

}
leaf-list dns-server {

config false;
type inet:ipv4-address-no-zone;
description
"The DNS server addresses obtained by DHCP.";

}
leaf-list dns-search {

config false;
type inet:host;
ordered-by user;
description
"List of domains obtained by DHCP to search
when resolving a hostname .";

}
}

grouping dhcp-status-ipv6 {
description
"DHCP state info for interface with enabled DHCP,
IPv6 protocol.";

leaf ip-address {
config false;
type inet:ipv6-address-no-zone;
description
"The IP address on the interface.";

}
leaf prefix-length {

config false;
type uint8 {

range "0..128";
}
description
"The length of the subnet prefix.";

}

46

leaf default-gateway {
config false;
type inet:ipv6-address-no-zone;
description
"The default gateway of an interface.";

}
leaf-list dns-server {

config false;
type inet:ipv6-address-no-zone;
description
"The DNS server addresses obtained by DHCP.";

}
leaf-list dns-search {

config false;
type inet:host;
ordered-by user;
description
"List of domains obtained by DHCP to search
when resolving a hostname .";

}
}

grouping dhcp-server-ipv4 {
description
"DHCP server on interface configuration.";

leaf start {
type inet:ipv4-address-no-zone;
description
"Specifies the start network address, the minimum
address that may be leased to clients";

}
leaf stop {

type inet:ipv4-address-no-zone;
description
"Specifies the last network address, the maximum address
that may be leased to clients";

}
leaf leasetime {

type string;
description
"Specifies the lease time of addresses handed out to clients,
for example 12h or 30m";

}
leaf default-gateway {

type inet:ipv4-address-no-zone;
description
"Specifies alternative default gateway";

47

}
}

grouping dhcp-server-ipv6 {
description
"DHCP server on interface configuration.";

leaf enabled {
type boolean;
description
"Specifies if dhcpv6 server is enabled";

}
leaf router-advertisements {

type enumeration {
enum server {

description
"Specifies router advertisement to server mode";

}
enum relay {

description
"Specifies router advertisement to relay mode";

}
enum disabled {

description
"Specifies the router advertisement to be disabled";

}
}
description
"Specifies the router advertisement type";

}
leaf ndp {

type boolean;
description
"Specifies Neighbor Discovery Protocol";

}
}

augment "/if:interfaces/if:interface/ip:ipv4" {
leaf origin {

type identityref {
base origin;

}
}
container dhcp-server {

when "../origin = ’manual’";
uses dhcp-server-ipv4;

}
}

48

augment "/if:interfaces-state/if:interface/ip:ipv4" {
container dhcp-config {

config false;
when "/if:interfaces/if:interface/ip:ipv4/origin = ’dhcp’";
uses dhcp-status-ipv4;

}
}

augment "/if:interfaces/if:interface/ip:ipv6" {
leaf origin {

type identityref {
base origin;

}
}
container dhcp-server {

when "../origin = ’manual’";
uses dhcp-server-ipv6;

}
}

augment "/if:interfaces-state/if:interface/ip:ipv6" {
container dhcp-config {

config false;
when "/if:interfaces/if:interface/ip:ipv6/origin = ’dhcp’";
uses dhcp-status-ipv6;

}
}

}

49

Appendix E

YANG data model for Wireless
configuration

module cesnet-wireless {

namespace "urn:cesnet:yang:wireless";
prefix wifi;

import ietf-interfaces {
prefix if;

}

contact
"Peter Nagy <xnagyp01@stud.fit.vutbr.cz>";

description
"This module contains a data model for
the configuration of wireless network.

Copyright (C) 2016 CESNET, z.s.p.o.
";

revision 2016-02-02 {
description
"Initial revision.";

}

typedef wireless-mode {
type enumeration {

enum ap {
description "Access point mode";

}
enum sta {

description "STA for managed - client mode";
}

50

enum adhoc {
description "Wireless Ad-Hoc mode";

}
enum wds {

description "Static WDS mode";
}
enum monitor {

description "Monitoring mode";
}
enum mesh {

description "Mesh mode";
}

}
description "Wireless interface mode";

}

identity wireless-encryption-algoritm {
description
"Base identity for wireless encryption algoritm";

}

identity wep {
base wireless-encryption-algoritm;
description
"WEP encryption";

}

identity psk {
base wireless-encryption-algoritm;
description
"WPA-PSK encryption";

}

identity psk2 {
base wireless-encryption-algoritm;
description
"WPA2-PSK encryption";

}

/* Configuration data nodes */
augment "/if:interfaces/if:interface" {

list wireless {
key "device";
description
"Wireless parameters";

leaf enabled {
type boolean;

51

default true;
description
"Controls whether wireless is enabled of disabled
on this interface.";

}
leaf device {

type string;
description
"Controls wireless hardware device";

}
leaf ssid {

type string;
default "OpenWrt";
description
"Wireless SSID set on this interface";

}
leaf mode {

type wireless-mode;
description
"Interface wireless mode";

}
leaf hidden {

type boolean;
default false;
description
"Controls wireless SSID broadcasting";

}

container encryption-method {
description
"Wireless encryption mode";

leaf algoritm {
type identityref {

base wireless-encryption-algoritm;
}
description
"Wireless encryption algoritm";

}
leaf password {

type string;
description
"Wireless encryption password";

}
}

}
}

}

52

	Introduction
	OpenWrt
	History
	Build system
	Packages
	Image installation methods
	OpenWrt configuration
	First login

	NETCONF
	Architecture
	RPC Messages
	Datastores
	YANG
	Extensions
	Implementations

	Design and implementation
	Configuration files
	Data models
	System
	Interfaces management
	IP management
	DHCP
	Wireless

	Testing
	Hardware
	NETCONF clients
	Test cases

	Conclusion
	Future work

	Bibliography
	Appendices
	List of Appendices

	CD Content
	Virtual test environment
	YANG data model for password encryption
	YANG data model for DHCP configuration
	YANG data model for Wireless configuration

