
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A TOOL FOR DEVELOPMENT OF OVAL
DEFINITIONS WITHIN OPENSCAP PROJECT
NÁSTROJ PRO TVORBU DEFINIC OVAL V PROJEKTU OPENSCAP

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAN ČERNÝ
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
This thesis deals with the SCAP standard, used in area of computer security, and describes
its open source implementation OpenSCAP. The analysis focuses on OVAL, a language for
determining vulnerabilities and configuration issues on computer systems. Typical prob-
lems of OVAL are discussed. Based on obtained findings, an extension of the OpenSCAP
project for reporting and diagnostics of OVAL interpretation has been designed. The thesis
describes implementation, integration and testing of proposed extension.

Abstrakt
Tato práce se zabývá standardem SCAP používaným v oblasti počítačové bezpečnosti
a popisuje jeho svobodnou implementaci OpenSCAP. V textu je analyzován jazyk OVAL
sloužící pro popis zraniteností a bezpečné konfigurace systémů. Důraz je kladen na typické
problémy tohoto jazyka. Na základě získaných poznatků je navrženo rozšíření projektu
OpenSCAP o možnost reportování a diagnostiky průběhu interpretace jazyka OVAL. Práce
následně popisuje implementaci, integraci a testování tohoto rozšíření.

Keywords
SCAP, OpenSCAP, OVAL, security audit, security standards, security policy, software
analysis

Klíčová slova
SCAP, OpenSCAP, OVAL, bezpečnostní audit, bezpečnostní standardy, bezpečnostní poli-
tika, analýza softwaru

Reference
ČERNÝ, Jan. A Tool for Development of OVAL Definitions within OpenSCAP Project.
Brno, 2016. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Smrčka Aleš.

A Tool for Development of OVAL
Definitions within OpenSCAP Project

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Aleš Smrčka, Ph.D. and Mgr. Šimon Lukašík. All the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included in the list of references.

. .
Jan Černý

May 18, 2016

Acknowledgements
I would like to thank my advisor Ing. Aleš Smrčka, Ph.D. and my consultant Mgr. Šimon
Lukašík from Red Hat Czech for their professional help, valuable feedback and extraordinary
support.

c© Jan Černý, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Methods of Security Audit 4
2.1 Security Compliance . 4
2.2 Vulnerability Assessment . 5
2.3 Security Guidances . 6
2.4 Security Content Automation Protocol . 6

2.4.1 Open Vulnerability and Assessment Language 7
2.4.2 Extensible Configuration Checklist Description Format 8
2.4.3 Script Check Engine . 8

2.5 OpenSCAP Project . 9
2.5.1 OpenSCAP Library . 9
2.5.2 OpenSCAP Command Line Tool . 10
2.5.3 SCAP Security Guide . 10
2.5.4 SCAP Workbench . 11
2.5.5 OpenSCAP Daemon . 12
2.5.6 OSCAP Anaconda Add-on . 12

2.6 Competitive Security Audit Tools . 12
2.7 Future of Security Audit . 13

3 Development of OVAL Definitions 14
3.1 OVAL Documents . 14
3.2 Creating OVAL Definitions . 15

3.2.1 OVAL Definition . 15
3.2.2 OVAL Test . 16
3.2.3 OVAL Object . 16
3.2.4 OVAL State . 17
3.2.5 OVAL Variable . 18

3.3 Usage of OVAL . 18
3.4 Problems of OVAL . 19

4 Refining OVAL Development 22
4.1 Requirements for OpenSCAP Modification 22
4.2 Possible Approaches to Refining OVAL Development 23
4.3 Reporting OVAL Evaluation . 24

4.3.1 Message Categories and Format . 25
4.4 Changes in OpenSCAP User Interface . 25
4.5 Implementation Details . 26

1

4.6 Problems Faced during Implementation . 27

5 Evaluation of Extension 29
5.1 Demonstration of Usage . 29
5.2 User Testing . 30
5.3 Feedback and Evaluation . 31
5.4 Ideas for Further Improvements . 32

6 Conclusion 33

Bibliography 34

2

Chapter 1

Introduction

Nowadays, nearly every organization uses information technology in its business. Com-
puters control essential systems and store confidential information or personal data. With
enormous progress of information technology, a risk of misuse rises significantly, so computer
security becomes more and more important topic.

Systems need to be protected against attacks, intrusion, and data violence because
those incidents may often lead to big damages or financial loss. Many techniques, like
encryption, firewalls and others, were developed in order to prevent and mitigate those
risks. One of often used technologies is the method of automated security audit. This
approach is used to detect vulnerabilities and check compliance with a given security policy
for computer systems. For automation of the security audit, the Security Compliance
Automation Protocol (SCAP) has been standardized. Automation reduces necessary time
and lowers risks of human factor.

The SCAP standard is widely used in industry and has several implementations. Cur-
rently popular is open source project OpenSCAP, that is available in various Linux distri-
butions.

SCAP standard provides various languages to represent security policies, prepare auto-
mated checklists or store results of system assessment. One of them is The Open Vulnera-
bility and Assessment Language (OVAL) that is mostly used to write definitions describing
configuration state of some system.

However, OVAL is a difficult language with many drawbacks. Its specification is vast and
ambiguous and the definitions in OVAL are hard to develop and debug. Also, the process
of OVAL interpretation in OpenSCAP is not transparent. For a long time, community
around OpenSCAP struggled with difficulties of OVAL and desired to improve capabilities
of OpenSCAP to fasten their work.

In this thesis, we will study SCAP and OpenSCAP in depth. Then we will focus
on analysing OVAL and we will describe drawbacks of OVAL. We will propose a tool
supporting development of OVAL definitions and integrate it into the OpenSCAP project.
This change should bring better developer experience, and as a result, faster development of
OVAL definitions within OpenSCAP. Finally, we will verify the new OpenSCAP extension
on example use cases and we will discuss possibilities of further improvements.

3

Chapter 2

Methods of Security Audit

Security audit is a process of testing, ensuring and verifying that a computer system com-
plies with specifications for computer security. From theoretical point of view, there are two
basic approaches to security audit. The first is called security compliance. It is a proactive
approach striving to minimize security threats by applying certain rules by a security policy.
The second approach, known as vulnerability assessment, aims at detecting and classifying
known vulnerabilities on a system. The process of securing a computer system is always
a combination of those two approaches.

Traditionally, security audit was very long and expensive manual process. Current
trend is to perform security audit in an automated way. It is possible by implementing
standardized specifications as The Security Content Automation protocol (SCAP). Many
companies offer software tools that can perform automated security audit of a computer
or whole IT infrastructure. Thanks to these tools the average time of security audit of
a computer has shortened significantly.

In this chapter, we will briefly explain the key concepts of security audit and describe
technologies and common practices that are being used in this area. First, we will discuss
principles of security compliance and vulnerability assessment. Then we will outline con-
cepts of security guidances and describe components of SCAP. Finally, we will describe the
OpenSCAP project and also other implementations of SCAP.

2.1 Security Compliance
Security compliance is a state where computer systems are in line with a specific security
policy [11]. It is a proactive approach to information security. Its purpose is to prevent
security issues and reduce impact of security flaws. This goal is achieved by applying
available system protection mechanisms and enforcing their configuration.

Computer system configuration is very important with regard to security protection.
Correct configuration can protect the system against most of the attacks. By contrast,
wrong system configuration can leave the doors opened. The default configuration often
does not provide a high level of security. We will demonstrate some practices often required
by security policies.

For example, some old network protocols as telnet or FTP transport data in an unen-
crypted form. They are not considered secure, because plain text communication can be
easily eavesdropped. A security policy may require to forbid those protocols in order to
prevent possible attacks. Modern secure protocols as SSH should be used instead.

4

Another example could be passwords used to access the system. The techniques used by
attackers to guess the password are more successful on short or dictionary based passwords.
A security policy may require criteria for passwords used on the system such as minimum
length or character variety of a password in order to avoid the possibility of breaking the
password.

Many other techniques and tools are known to improve the security of a operating sys-
tem, for example running SELinux in enforcing mode, restricting root logins, configuring the
firewall, using verified software and updating software regularly or running only necessary
system services. Together these settings can greatly improve the overall system protection.

Security compliance is rather a continuous process than a single action because the area
of computer security is quickly changing. Another reason is that it is not likely to have
the configuration intact for whole period of system lifetime. Each setup of new software
or the simplest change of configuration can change the system state from compliant to
uncompliant. Therefore security audit should be performed periodically.

2.2 Vulnerability Assessment
Second basic area of security audit is vulnerability assessment. It is a process that indentifies
and classifies vulnerabilities on a computer system. Similar to security compliance, the
process is continuous, because the amount of vulnerabilities affecting every system is quickly
growing over time.

Security specialists around the world concentrate their efforts on discovering security
flaws in various products. Each weakness is then classified and identified by a CVE number.
CVE stands for Common Vulnerabilities and Exposures and its specification is part of SCAP
standard. Information about publicly known flaws is collected in the National Vulnerability
Database, maintained by US National Institute of Standards and Technology (NIST).

Some of the serious vulnerabilities are also given a name to popularize them in public.
For example, an OpenSSL vulnerability with CVE 2014-0160 is called Heartbleed, because
it is a flaw in TLS heartbeat mechanism [1]. Or the vulnerability with CVE 2015-0235
found in GNU C library is famous as Ghost, because it is a flaw in gethostbyname*()
functions [14].

From the system administrator point of view, a vulnerability can be usually fixed by
installing updated version of package in question. Information about versions impacted by
vulnerabilities is needed to decide which software is necessary to update. Moreover, it is
necessary to know the exact version number of fixed version. Some vendors provide their
customers information about vulnerabilities affecting their products. This is usually done
either in a form of RSS feeds or better in a form of SCAP documents, which can be easily
used in automated vulnerability assessment. For example, Red Hat provides descriptions
of all vulnerabilities on their enterprise systems as a part of Red Hat Security Advisories.
A SCAP document containing information about all the vulnerabilities affecting all the Red
Hat systems can be downloaded from their web.

Knowledge about vulnerabilities is beneficial also for software developers who want to
avoid writing vulnerable code and produce more secure applications. The best practices in
writing secure applications are shared within The Open Web Application Security Project
(OWASP) [12].

5

2.3 Security Guidances
Security guidance is a document describing requirements to be met to secure a computer
system. Various security guidances have been published by different authorities. They
are usually industry standards or may be enforced by government regulations. Choice
of a security guidance depends on the type of an organization. Size of the organization,
business strategy, partners exchanging the data, law requirements and other demands have
to be considered.

Moreover, each security guidance aims at a specific target. For systems processing pay-
ment card information the Payment Card Industry Data Security Standard (PCI DSS)
must be followed. In the United States, government computers must comply to the Secu-
rity Technical Implementation Guides (STIG) which was prepared by The United States
Department of Defense. Another example of a security guidance is the Health Insurance
Portability and Accountability Act (HIPAA), which specifies requirements for security of
medical records and personal information. Many organizations have also their internal
security guidances which reflect the company policy.

Security guidances are written in natural language. They are not suitable for computer
processing. To express the requirements in a machine readable form, languages and pro-
tocols have been standardized. One of those standards is SCAP which is discussed in the
following section.

2.4 Security Content Automation Protocol
The Security Content Automation Protocol (SCAP) is a suite of specifications for describing
software flaws and secure configuration of your systems. The SCAP is an U.S. standard.

The specification is managed by the National Institute of Standards and Technology
(NIST). The specification is written in NIST’s special publication 800-126, revision 2 [15].
NIST is responsible for developing and maintaining the SCAP specification. Current version
(in 2016) is SCAP 1.2. This version was published in September 2011. The new version
1.3 is currently being prepared.

The SCAP standard consists of multiple components. It contains XML based languages,
reporting formats, enumerations, measurement and scoring systems and integrity.

The first part of the SCAP standard are SCAP languages. They are used basically to
write a security policy or describe the desired configuration of software systems. Each of
these three languages has a different purpose, but they cooperate together. The following
languages are defined in the standard:

1. Extensible Configuration Checklist Description Format (XCCDF) is a language for
creating security checklists or benchmarks and is used to organize and manage security
policies and to aggregate them into one complex unit.

2. Open Vulnerability and Assessment Language (OVAL) is a language representing
system configuration information and reporting assessment results.

3. Open Checklist Interactive Language (OCIL) is a language used to collect information
from people.

Each language specification supplies also a XML schema for given language. XML
schema is a document which describes syntax of all constructions allowed in the language.

6

The documents can be validated against that XML schema to check whether the document
follows the specification and does not contain not allowed constructions.

More SCAP documents written in different languages can be merged in a single file
called Data Stream. The Data Stream may for example contain a XCCDF checklist and
OVAL definitions together. The main advantage of Data Streams is that it is easier to ship
online a single file than more files.

Second important part of the SCAP standard are the reporting formats. The standard
contains two reporting formats.

1. Asset Reporting Format (ARF) is a format that expresses the transport format of
information about assets, and the relationships between assets and reports. It is also
often called Result DataStream because it is complementary to Source DataStream.

2. Asset Identification 1.1, a format for uniquely identifying assets based on known
identifiers and/or known information about the assets.

Third part of the SCAP standard are various enumerations which are both nomencla-
tures and dictionaries of enumerated objects.

1. Common Platform Enumeration (CPE) describes hardware, operating systems, and
applications.

2. Common Configuration Enumeration (CCE) describes software security configura-
tions.

3. Common Vulnerabilities and Exposures (CVE) describes security-related software
flaws.

Additionally, the standard specifies the Common Vulnerability Scoring System (CVSS)
and Common Configuration Scoring System (CCSS). They both allows to measure severity
of issues.

In following subsections we will study specific SCAP components more deeply. Espe-
cially we will discuss the most widely used SCAP components.

2.4.1 Open Vulnerability and Assessment Language

The Open Vulnerability and Assessment Language (OVAL) is the most essential part of the
SCAP standard. According to its web page [5], OVAL is a community-developed language
for determining vulnerability and configuration issues on computer systems.

OVAL serves mainly for describing configuration of computer systems. Documents
written in OVAL language are comprised from one or more declarative definitions, that
describe objects in the system and express their required state.

Declarative character of OVAL means that OVAL definitions cannot be executed di-
rectly. A special interpreter, usually called scanner, is needed to evaluate the definitions. If
a certified or trusted scanner is used, this approach practically minimizes the risk of damage
of a system by badly written scripts. It also fulfills the requirement to run the scan with
root privileges without compromising the security policy itself.

OVAL is also used to express the actual system state. Once the system has been
analyzed to evaluate given OVAL definitions, the results are reported also in a form of
OVAL document. The OVAL results can be processed automatically or reused in future.

7

One of main ideas of OVAL is interoperability among different security products, which
means that the security policies written in OVAL are independent on used auditing software.
OVAL definitions are consumed by tools from variety of vendors on numerous operating
systems. Therefore the language is designed in an expandable and robust way. The common
core of the language defines its overall structure allowed constructions and element types.
On the top of common part there are many platform-specific extensions, which define objects
and states applicable for respective platforms. These extensions are strongly dependent on
the platform specifics and implementation details. Currently more than 10 platforms are
supported, including Linux, Windows, Android, iOS and Mac OS X.

The current version of the OVAL Language is 5.11.1. In past OVAL and its specifi-
cation were developed and maintained by the MITRE corporation. In 2015, the OVAL
maintainership was transformed to the Center for Internet Security (CIS). XML schema is
available on GitHub and everyone can contribute. In the time of writing this thesis there
are no information available about the next upcoming version of the language.

2.4.2 Extensible Configuration Checklist Description Format

The eXtensible Configuration Checklist Description Format (XCCDF) is used to create
security benchmarks. Unlike OVAL, it cannot be used to describe a configuration or state
of any system. The main purpose of this language is to create a platform independent
checklist. As the name ”checklist“ suggests, an XCCDF document is basically a set of rules
to be fulfilled. But technical implementation of these rules is not present in the document.

The root element of an XCCDF document is called Benchmark. Benchmark can contain
more groups which can be optionally nested. A benchmark or a group contain multiple
rules. A rule is basic element of the XCCDF checklist. It usually has a short description,
references to guidances and a link to external (most often OVAL) check.

A single XCCDF document may describe more than one security policy using profiles.
A profile is a set of rules that should be evaluated. A rule can be member of multiple
profiles. Profiles are useful when different security policies for one software product contain
same rules so they can be shared between the security policies. For example, the SCAP
Security Guide for Red Hat Enterprise Linux 7 has only one XCCDF file, common for all
security policies. A specific security policy (eg. PCI DSS or USGCB) is then chosen by
selecting a specific profile.

For case that a particular rule has not been satisfied, the rule may supply a remediation
script. It is a code that should be run to fix the system in order to satisfy the previously
failing rule. Using XCCDF benchmark with allowed remediation scripts offer the highest
level of automation. However, it is recommended to consider all impacts of applying those
scripts because they are run with root privileges and therefore may harm the system.

2.4.3 Script Check Engine

OVAL definitions are not the only possible source of rule implementation. OpenSCAP
offers a special extension called The Script Check Engine (SCE) as another option. SCE
allows to write checks in any scripting language (eg. Bash or Python) and link those scripts
from an XCCDF document. The SCE extension facilitates transition from script based
solution to using SCAP. SCE is not a part of SCAP standard, however other projects like
Joval implement it as well.

8

2.5 OpenSCAP Project
The OpenSCAP project is an ecosystem of open-source tools implementing the SCAP
standard.

The development of the OpenSCAP project was started in November 2008 within Red
Hat, Inc. OpenSCAP is developed as an open source software from the very beginning.
Nowadays software engineers from other companies like Oracle Corporation or SUSE Linux
GmbH are contributing to the project, but Red Hat still has the leader position. Also
security specialists and auditors are involved in the community. Currently OpenSCAP is
widely used by many businesses and government organisations.

The fact that OpenSCAP is an open source project brings many benefits. Sharing
knowledge and ideas across the community enables the progress. Open source brings ev-
eryone the opportunity to learn from existing code and allows others to contribute and use
the software freely. Publicly accessible source code also means that users do not have to
trust manufacturers proclamations, but they may verify the software independently [16].

OpenSCAP supports SCAP standard version 1.2 and is backward compatible with
SCAP 1.1 and 1.0. It supports the OVAL language in current version 5.11.1 and the
XCCDF in current version 1.2.

The OpenSCAP project consists of many security auditing tools and SCAP content.
These are used in both vulnerability assessment and security compliance areas.

Most important part of the ecosystem is the OpenSCAP shared library. On the top of
the library is built the OpenSCAP scanner. It is a command line tool with plenty of features.
Graphical user interface for OpenSCAP is called SCAP Workbench. The security policies
are developed under the name of SCAP Security Guide. Other parts of the OpenSCAP
ecosystem are a plugin to Red Hat Enterprise Linux installer called OSCAP Anaconda Add-
on, storage server SCAPTimony, OpenSCAP daemon, and small utilities to scan virtual
machines, containers and remote servers.

OpenSCAP ecosystem is integrated with systems management applications Spacewalk
(Red Hat Satellite 5) and Foreman (Red Hat Satellite 6). Currently, integration with other
products such as Ansible and ManageIQ is developed.

All the complex information about OpenSCAP ecosystem and its usage for the security
compliance and vulnerability assessment can be found in detail on OpenSCAP portal [3].
In following subsections we will introduce briefly each part of the OpenSCAP ecosystem.

2.5.1 OpenSCAP Library

The OpenSCAP library is the basic stone of the whole project. It provides functionality
in publicly accessible Application Programming Interface (API). The library implements
parsing and validating SCAP documents, scanning the system, evaluating OVAL definitions
and XCCDF rules, exporting the results, creating reports and other related capabilities.
The library is written in C and uses the most advanced techniques of this programming
language. It is a shared library loaded as libopenscap.so.

The system scanning is performed by separate binaries called probes. Each probe imple-
ments one of the OVAL tests according to the OVAL specification. Probes are executed on
request by the library. The probes communicate via AF_UNIX socket using serial expressions
(SEXP).

OpenSCAP API can be used in any external program. An application may use Open-
SCAP library by including respective header files, eg. #include <openscap/oscap.h>.

9

To make the implementation easier, all the data types and API functions behavior are
documented online in a detailed way. The documentation is automatically generated from
annotations in the library source code.

To use the OpenSCAP capabilities in a program written in other programming language
than C, conversion interfaces called bindings are provided. OpenSCAP offers bindings for
Perl, Python 2, Python 3 and Ruby. The bindings are also used within the OpenSCAP
project, for example in SCAP database and storage server SCAPTimony.

2.5.2 OpenSCAP Command Line Tool

OpenSCAP project offers a command line tool called oscap. Its main goal is to perform
configuration and vulnerability scans of a local system. The tool is targeting mostly expe-
rienced users who want to use the advanced features.

The tool can evaluate both XCCDF checklists and OVAL definitions and generate results
either in a form of machine readable SCAP documents or in a form of nice human readable
HTML reports. Also it works with DataStreams and other SCAP components.

The SCAP capabilities are categorized to sub commands called modules. The modules
are named after SCAP component that they implement. It has OVAL, XCCDF, DS, CVSS,
CPE, CVE modules and also a special info module. The modules contain submodules which
are identified by operation they perform, for example evaluate, analyze, validate, etc. Each
module has its own set of options and switches and also its own help.

More information about all the modules or the oscap tool in general are described in
detail in the manual page or can be found the user manual.

The tool is implemented in C programming language. It is built upon the OpenSCAP
library mentioned in previous section and provides a user front-end to that library. The
tool itself has rather short code, all the functionality is provided by the library.

2.5.3 SCAP Security Guide

Having a SCAP scanner (like oscap) is not enough to perform security audit. A security
policy in a form of SCAP files must be provided to scanner. As mentioned, SCAP docu-
ments, particularly OVAL definitions, are platform dependent. Originally, there was lack
of full-fledged open source security policies for Red Hat Enterprise Linux. SCAP security
guide project was started to create some benchmarks that can be consumed by tools within
OpenSCAP project.

The aim of SCAP Security Guide is to offer open source implementation of popular
security guidances as PCI DSS, DISA STIG or USGCB. Security policies from SCAP Secu-
rity Guide are applicable to various operating systems, namely Red Hat Enterprise Linux,
Fedora and Debian GNU/Linux, and also to asses software like Mozilla Firefox, Chromium
or Java Runtime Environment.

Besides the OVAL checks and XCCDF rules, SCAP Security Guide contains detailed
description and rationale in each rule. A well aranged HTML document, which explains
policy requirements in a human readable way, can be generated for each profile.

SCAP Security Guide is available on many Linux distributions. After installing re-
spective package, DataStreams, XCCDF and OVAL files and human readable HTML
guides will be available on the system. For example, on Fedora, these are installed in
/usr/share/xml/scap/ssg/content directory.

10

2.5.4 SCAP Workbench

SCAP Workbench is a graphical user interface (GUI) of the OpenSCAP project. It provides
an easy way to perform common tasks. The tool is preferred by beginners, because the basic
scanning can be performed in 3 clicks. It can be used to scan either local systems or remote
systems using the SSH protocol.

Figure 2.1: SCAP Workbench performing a scan of Fedora 23.

When started, SCAP Workbench automatically offers available security policies from
SCAP Security Guide. The user selects desired profile and clicks the Scan button. The tool
asks for root user privileges and performs the scan of this machine. After the scan result is
displayed colourfully. Moreover, a detailed report can be generated and displayed in a web
browser. Also the automatic remediation of the scanned system can be performed during
the scan.

SCAP Workbench is implemented on the top of the OpenSCAP library using the Qt
toolkit and the C++ programming language. The remote scanning feature requires SSH
access to the remote machine and openscap-scanner package installed on it.

SCAP Workbench can be also used to customize the security policies. This process is
also sometimes called XCCDF tailoring. The customized policy is saved to the so-called
tailoring file. This file describes only changes from the original security policy, so when
a security policy updates, users do not need to perform the customization again, because
they can easily apply the tailoring file against the new version of the policy. Moreover, the

11

file is very small and can be easily distributed.
SCAP Workbench is available in various Linux distributions. Versions for Microsoft

Windows and Mac OS X are also available to download. However, on the non-Linux
systems it can be used only for remote scanning and security policies customization. That
is because underlying OpenSCAP library does not implement probes for those systems,
only Linux probes are implemented. Nevertheless SCAP Workbench is useful on non-Linux
systems, because many users want to audit remote Linux servers from their laptops without
a need to install Linux on their laptops.

2.5.5 OpenSCAP Daemon

OpenSCAP daemon is a system service which allows scheduling and performing secu-
rity scans on a regular basis according to a given schedule. It comprises of two compo-
nents - a oscapd daemon running permanently in background, and a command-line client
oscapd-cli. These two parts communicate with each other using dbus interface. Both of
them are implemented in Python.

The client provides an interactive mode to plan scanning and display results. Usage of
the client is much easier than interface of the oscap tool, because the client offers options
only for the most common tasks. The OpenSCAP daemon can scan local, remote and
virtual machines leveraging the OpenSCAP library. It is also used in project Atomic to
implement offline scanning of Linux container images.

2.5.6 OSCAP Anaconda Add-on

OSCAP Anaconda Add-on is a plug-in for Anaconda, the Red Hat Enterprise Linux in-
staller. The plug-in applies a security policy while the operating system is being installed
[13]. Before the installation, user is notified if his installation configuration that he selected
is not compliant with selected security policy. This is especially important when a security
policy requires settings that cannot be changed after the installation is finished. Example of
such configuration might be an attempt to install system on an unencrypted disk partition.

All the settings required by selected policy are adjusted during the installation. An ini-
tial period when system is not configured is avoided, which means that the operating system
is compliant from the very first boot. This feature saves the time of system administrators
and is particularly useful for large environments or for deploying virtual machines.

OSCAP Anaconda Add-on was introduced to Red Hat Enterprise Linux in version
7.2. It supports both graphical and text mode of installation. Unattended installation of
compliant system is also possible with a Kickstart file.

2.6 Competitive Security Audit Tools
OpenSCAP is not the only project implementing the SCAP standard. Other tools, either
open source or commercial, are available. In this section we will point out main differences
between them and OpenSCAP.

Joval Continuous Monitoring is a multi-platform implementation of SCAP writ-
ten in Java. The project was started in 2011 and is led by only two developers. It can
scan Windows, Linux, Solaris, and many other systems, because it implements all the tests
specified in OVAL language. It fully implements the SCAP standard and also SCE exten-
sion. Core part of source code is developed open source. Unlike OpenSCAP, to perform

12

remote scanning Joval does not require to have an agent installed on a remote system. Joval
also offers wider range of output formats than OpenSCAP—HTML report, CSV files, SQL
commands, JSON, diagnostics reports. On the other hand, Joval requires JVM to run, but
system requirements of OpenSCAP are minimal. Another drawback from customer point
of view is that Joval is not certified by NIST.

McAfee Policy Auditor is a security auditing software fully implementing the SCAP.
It is developed by McAfee which is now part of Intel Security. Unlike OpenSCAP it is not
an open source project. On the other hand it can scan multiple operating systems, namely
Windows and also various Linux distributions. It ships benchmark templates for PCI DSS,
HIPAA, FISMA and other security guidances. To allow infrastructure management and
deployment, it is integrated with McAfee ePolicy Orchestrator. It has received SCAP 1.2
certification from NIST.

OVAL Interpreter (OVALdi) is a reference implementation of OVAL language. The
program is open source and is licensed under a BSD license. It serves to demonstrate
abilities of the OVAL language, it is not an enterprise scanning tool.

2.7 Future of Security Audit
Current effort is to offer tools than can perform security audit of virtual machines and also
containers.

Containers are now the easiest and the most scalable way for deploying software ap-
plications. But to use them in production, their security aspects must be also considered.
Each container contains its own bundle of software packages and libraries. This fact implies
that each container can be affected with various different vulnerabilities.

A typical computing node can host thousands of running containers based on different
operating systems. It is not desirable to install security audit software inside each container,
because that would considerably decrease performance, cost a lot of time, storage and
network capacity. Instead, a scanner can be installed on the host or even better, deployed
in a super privileged container (SPC) and scan the containers from outside.

For example, the OpenSCAP project started to integrated with Atomic, a tool for
managing containers. Also a OpenSCAP SPC that can scan containers for vulnerabilities
is available to pull from Docker hub [17].

Also configuration scan of containers, which means enforcing compliance of containers
with some policy, is very desirable. However, security policies and the best practices for
containers are still a subject of research.

On the field of standardization, the SCAP version 1.3 is currently prepared [2]. This
new version is expected to include OVAL 5.11.1 and other updated specifications.

We can expect that security audit will be integrated in more system management and
administrator tools since the importance of computer security will be continuously growing.

13

Chapter 3

Development of OVAL Definitions

The definitions written using The Open Vulnerability and Assessment Language (OVAL)
are used for automation of both areas of security audit—security compliance and vulnera-
bility assessment.

In this chapter we will describe concepts and features of the OVAL. We will learn
how OVAL definitions are developed and demonstrate their usage. Finally, we will discuss
several weak points or disadvantages of the language and identify main problems of OVAL.

3.1 OVAL Documents
As mentioned in the previous chapter, OVAL is core part of the SCAP standard. OVAL
is domain specific language designed exclusively for purpose of security auditing, so its
abilities are limited. It covers three major domains of system assessment [5]:

1. Describing desired configuration of a system.

2. Analyzing the system for the presence of the specified machine state.

3. Reporting the results of assessment performed on a system.

The OVAL specification [6] describes syntax and semantics which are used for all these
three areas. The specification defines more document formats with different purpose.

• OVAL Definitions document describe desired configuration of a system and is an
input for a scanner (eg. OpenSCAP).

• OVAL Variables document supplies external variables for OVAL Definitions.

• OVAL System Characteristics document contains information collected on assessed
system during evaluation of given OVAL definitions and is generated as output of
a scanner.

• OVAL Results document contains detailed results of the system evaluation computed
from comparison of OVAL Definitions and OVAL System Characteristics and is gen-
erated as output of a scanner.

• OVAL Directives document amends information aggregated in OVAL Results by spec-
ifying its level of detail. This format is rarely used.

All the document formats have similar structure. To understand the OVAL Results and
OVAL System Characteristics, full understanding of respective OVAL definitions is needed.

14

3.2 Creating OVAL Definitions
To write a definition in OVAL it is necessary to know the format of OVAL Definitions
XML document. The root element (oval_definition) contains children elements that
represent major parts of the document: generator, definitions, tests, objects, states, and
variables. A generator contains only metadata about origin of the file. Definitions are the
most high-level elements. Tests represent criteria that have to be fulfilled. Objects describe
entities under examination. States specify requirements on those entities. Variables serve
to parametrize objects and states. We will discuss the most interesting of these elements
in following subsections.

3.2.1 OVAL Definition

Definition is the most high level logical unit of the OVAL language. Single file can contain
multiple definitions.

A definition consists of one or more criteria that needs to be fulfilled to satisfy the
definition. The criteria create a logical expression using operators AND, ONE, OR and
XOR and can be nested. Each criterion points to a test which shall be performed to get
the resulting value of the criterion.

Instead of a using a criterion, another definition which must be evaluated at first, can
be referenced.

Each definition also must contain an unique identifier (ID), a title and short textual de-
scription. The ID can be also used to reference given definition from an XCCDF Checklist.
Further, a definition may contain information about which platforms are affected by a def-
inition and it may also provide references to external sources (eg. CVE identifier). These
metadata have only informational character and do not affect the results of evaluation.

Example of an OVAL definition that checks whether the network time synchronization
is enabled can be seen in Listing 3.1.

Listing 3.1: Example of OVAL definition.
<definition class =" compliance " id=" oval:x:def :1" version ="1" >

<metadata >
<title > Service chronyd enabled </ title >
<description >

The chronyd service should be enabled if possible .
</ description >

</metadata >
<criteria comment =" package chrony installed and service chronyd is

configured to start" operator =" AND">
<criterion comment =" multi -user. target wants chronyd "

test_ref =" oval:x:tst :1"/ >
<extend_definition comment =" chrony installed "

definition_ref =" oval:x:def :2"/ >
</criteria >

</ definition >

As can be seen from the example, the definition does not actually say what should be
assessed on the system to get the result. To understand which actions need to be performed
it is necessary to look at the referenced test or tests.

In the step of writing definition element, a developer has to realise what is purpose
of the definition from a high-level point of view and express the description.

15

3.2.2 OVAL Test

In OVAL terms, a test is implementation of definition criteria. In simple words, the test
binds together object and states and their relation. A developer of OVAL file must start
thinking here what actually needs to be examined and what exact type of object will be
examined.

For the purpose of configuration checking, OVAL specifies many kinds of tests for various
operating system objects. For every test the language specifies also a corresponding OVAL
object and OVAL state. An example of OVAL test can be seen in Listing 3.2.

Listing 3.2: Example of OVAL test.
<linux: rpminfo_test check =" all" check_existence =" all_exist "

id=" oval:com. example :tst :1" version ="1"
comment =" package chrony is installed ">

<linux: object object_ref =" oval:com. example :obj :1"/ >
<linux:state object_ref =" oval:com. example :ste :1"/ >

</ linux: rpminfo_test >

Some of the tests are platform independent, for example textfilecontent54_test,
which can examine data in text files. On the other hand, tests applicable only to one
specific platform also exist. For example, systemdunitproperty_test can be applied on
certain Linux distributions that use systemd as init system, but it cannot be applied on
Microsoft Windows systems at all.

To evaluate the test, it is needed to collect from the system all the items specified by
given object element and compare the resulting set with given state element. The test
has check attribute, which specifies how many objects must satisfy the state, and optional
check_existence attribute, which specifies how many objects must exist on the system.

3.2.3 OVAL Object

OVAL object is an element describing particular object that exists on a system—a file,
a process, an environment variable, an RPM package, a SELinux boolean, a systemd unit,
a kernel parameter, a value in a configuration file, an entry in SQL database, an entry in
LDAP directory and many others. Each type of object has a name (eg. rpminfo_object
or file_object) and specific set of child elements and attributes. They are different
depending on the object purpose.

For example, a textfilecontent54_object serves to describe a text string in a file.
Its declaration can be seen in Listing 3.3.

Listing 3.3: Example of OVAL object.
<ind: textfilecontent54_object id=" obj_password_pam_pwquality_minlen "

version ="1" >
<ind:filepath >/ etc/ security / pwquality .conf </ ind:filepath >
<ind: pattern operation =" pattern match ">^ minlen [\s]*=[\s]*(-?\d+)

(?:[\s]|$) </ind:pattern >
<ind: instance datatype =" int" operation =" greater than or equal">
1</ ind:instance >

</ind: textfilecontent54_object >

In area of security compliance of Linux systems, the objects representing values from
configuration files are the most popular, as can be seen in Table 3.1.

16

OVAL object Count
textfilecontent54_object 119
systemdunitdependency_object 56
file_object 32
rpminfo_object 32
variable_object 12
partition_object 11
sysctl_object 2
selinuxsecuritycontext_object 2
rpmverifyfile_object 2
password_object 1
symlink_object 1

Table 3.1: Objects used in SCAP Security Guide for Red Hat Enterprise Linux 7.

Basically, to write a correct object definition, it is necessary to read carefully the speci-
fication and well understand the meaning of all elements and attributes of the object. It is
also important that the object declaration covers all possible situations. For example, some
applications may have configuration files stored in multiple locations (users and system-wide
configuration files).

To evaluate the object, the scanner has to find every item on the system that corresponds
to the object declaration. More than one item can be collected. The collected items are
stored into OVAL system characteristics model. Some items can be filtered out by optional
filter child element of object and therefore they will not be contained in the resulting
set. After collecting will finish, collected items will be compared with corresponding OVAL
state.

3.2.4 OVAL State

OVAL state specifies features of an object that the object has to conform to fulfill the
requirements of respective test. States are optional elements. In OVAL documents can be
found a lot of tests that do not contain any state, they only check whether particular object
exists or does not exist.

After all the objects are collected from a system they are compared with the state and
based on the comparison result, the test result is determined. Same as with the OVAL
objects, the OVAL states corresponding to each OVAL test are defined in specification.
States usually have more child elements than objects, but usually they are all optional.

The example in Listing 3.4 is a declaration of an OVAL state corresponding to example
of OVAL object in Listing 3.3 in previous subsection.

Listing 3.4: Example of OVAL state.
<ind: textfilecontent54_state

id=" state_password_pam_pwquality_minlen " version ="1" >
<ind: instance datatype =" int ">1</ ind:instance >
<ind: subexpression datatype =" int"

operation =" greater than or equal ">8</ ind: subexpression >
</ind: textfilecontent54_state >

17

3.2.5 OVAL Variable

Instead of hard-coding the values to objects and states directly, they can be parametrized by
variables. Variables may be constant, but usually their values are provided by referencing
and evaluating other OVAL objects. It basically means that before using them, their value
must be determined by evaluating another objects and collecting additional items from the
system.

This is used often when we need to use information from more sources in one test. For
example when we want to write a test that verifies whether some file are is not owned by not
existing user group, we have to first get list of user groups on the system from /etc/groups,
store them in a variable and then use the variable in OVAL file_state.

Another important feature related to OVAL variables are functions that are used to
process values of variables. Apart from simple functions like concatenation of strings or
counting numbers, there exist also quite advanced functions in the specification.

One of them is the glob_to_regex function that converts shell glob to a regular expres-
sion. It is used for example to check correct configuration of the rsyslog log processing
system. The /etc/rsyslog.conf can contain directive $IncludeConfig, where a shell glob
is used to specify path to other configuration files to include [9]. But in OVAL file paths
must be described by a regular expression. Then the glob_to_regex function comes handy
to get pattern for all the configuration files, because we need to browse all of them to check
whether particular setting is present or not.

An example of using the glob_to_regex function inside an OVAL variable, taken from
the SCAP Security Guide project, can be seen in Listing 3.5.

Listing 3.5: Example of function within OVAL variable.
<!-- First obtain rsyslogs IncludeConfig directive value -->
<ind: textfilecontent54_object id=" oval:ssg:obj :1" comment =" rsyslogs

IncludeConfig directive value" version ="1" >
<ind:filepath >/ etc/ rsyslog .conf </ ind:filepath >
<ind: pattern operation =" pattern match">

^\ $IncludeConfig [\s]+([^\ s;]+) </ind:pattern >
<ind: instance datatype =" int ">1</ ind:instance >

</ind: textfilecontent54_object >

<!-- Turn that glob value into Perls regex so it can be used as
filepath pattern below -->

<local_variable id=" oval:ssg:var :1" datatype =" string " version ="1"
comment =" IncludeConfig value converted to regex">

<glob_to_regex >
<object_component item_field =" subexpression "

object_ref =" oval:ssg:obj :1"/ >
</ glob_to_regex >

</ local_variable >

3.3 Usage of OVAL
OVAL definitions are a part of security policies. The OVAL files are either implementing
checks for security policies or containing a list of vulnerabilities. They are usually refer-
enced from a XCCDF checklist or are part of SCAP source datastream. They can be used
separately, too.

18

To evaluate OVAL definitions using OpenSCAP, a command like this can be run from
a command line:

oscap oval eval --results results.xml --report report.html oval_file.xml

Two output files will be generated—human readable HTML report and an OVAL Results
XML document suitable for machine processing. On standard output it will print only the
results of all the definitions. Possible errors will be reported on standard error output.

3.4 Problems of OVAL
When a developer wants to create a simple OVAL definition, he must specify an OVAL
object and a corresponding state, then connect them in OVAL test, and use it as a criterion
of the definition. This task is complicated per se. But to write a security policy that
reflects security requirements for real systems, he needs to use advanced OVAL constructs
and more sophisticated definitions.

While analysing OVAL definitions used in practical security audit, we can identify
several problems in the language and in the interpreter. Those obstacles often complicate
development and debugging of definitions. We will describe some of the most significant of
those problems:

Problem 1: Nested OVAL definitions are not transparent. Definitions usually
consist of one or more criteria. But instead of a criterion, the definition can be extended
by referencing another definition. The referenced definition must be evaluated at first,
because its result must be known to compute result of current definition. Nested definitions
bring more complexity to the evaluation process and lower its transparency, because during
evaluation of single definition, more other definitions may be evaluated. Moreover, OVAL
allows to create whole chains of references.

The nested definitions are a great way to avoid repeating code. On the other hand, they
must be used carefully. When a developer oversights or makes a mistake in ID, it may lead
to very complicated definition dependencies. Unfortunately, such mistake does not have to
be identified from output results. It is hard to reveal what was processed and evaluated to
get results of given definition.

Problem 2: Computation of results involves solving complex logical expressions.
To get final result of definition, all its criteria must be evaluated [6]. Then a logical oper-
ator is applied on the criteria result to compute the final result. However, OVAL logical
operators are not same as mathematical operators, because OVAL does not use Boolean
logic. The result can be not only true or false, but also unknown, error, not evaluated and
not applicable.

Operands of results computing operation can be afterwards found in OVAL results
document, but they are poorly arranged for purpose of debugging.

The operation is also similar for OVAL tests that create the definition. Again, evaluating
the test is not only a simple comparison of objects and state that would result in a boolean
value. Possible results of a test are: true, false, unknown, error, not evaluated and not
applicable. When developing an OVAL definition, it would be useful to have explained why
those values were returned.

19

Moreover, the test includes check attribute, which specifies how many of collected
objects must satisfy the state requirements. Also, the optional check_existence attribute
might specify how many objects must exist on the system. Less experienced developers
often confuse these values. A test is evaluated to true when requirements of both check
and check_existence attributes are satisfied. The result is computed according to truth
tables from OVAL specification. Unfortunately OpenSCAP scanner does not inform user
which table has it used and why, whether values of check and check_existence were used
and it also does not explain meaning of used values. Although these values are defined
in specification, it is often hard to figure out which of them applies in concrete situation,
because the wording is very generic.

Problem 3: Excessively large amounts of objects can be collected from the
system. If an OVAL object is declared in a wrong way, even thousands of items can be
collected. But often to determine results of the definition only a small amount of this set
is necessary to collect.

For example a declaration of file_object where a regular expression is used to specify
the path could match thousands of files. A filepath described by regular expression ’^.*$’
means that to evaluate the object a scanner needs to browse also filesystem mounted in
/proc directory. Most likely it was not intention of the author to search this filesystem,
because it does not contain files useful for security compliance. But the scanner will collect
all of the files there and may run out of memory before it collects the object that was in
author’s mind and it may finally give a false negative result. Another fact is that comparing
a very large amount of collected objects with a OVAL state will slow down the evaluation
significantly.

A developer should keep in mind that wrongly written regular expression not only leads
to incorrect results but can also affect the performance of scan. A slight amendment of
the object declaration can avoid this situation and the scanner will collect only object
interesting for the security rule in question.

Problem 4: Filters affects results in a nontransparent way. Resulting set of col-
lected items does not necessary correspond to OVAL object declaration, because filtering
can be involved.

The OVAL specification allows that OVAL objects may contain optional filter ele-
ment. Filter element references some OVAL state and excludes or includes items matching
that OVAL state from resulting set of collected objects.

The drawback of filters is that items filtered out will not be used for object/state com-
parison and mainly they are not displayed in OVAL Results document. The document
contains only final item set after filtering. Therefore it is difficult to debug objects that
contain filters, because we do not know which items were added or removed by the filter.

Problem 5: OVAL specification sometimes does not follow conventions. In some
cases, behavior of tests in OVAL specification differs from usual behavior of standard system
tools and therefore this behavior is not expected by the developer.

For example, the rpmverifyfile_object can collect all files installed by RPM pack-
aging system and verify them against the RPM database. But the set of collected items
will contain more RPM packages than output of the standard rpm system tool, because rpm
tool skips ghost files, whereas OVAL object does not skip them unless special behaviors
element is added.

20

Problem 6: The evaluation is not a straightforward process. OVAL objects or
states can reference OVAL variables. Variable values can be set dynamically by evaluating
another OVAL objects referenced from the variable. It means that there is not always single
object for single test. Theoretically, during evaluation of a test, unlimited amount of OVAL
objects can be queried.

These relationships mean that the scanner often does not follow a simple evaluation
tree, but more likely the interpretation goes trough a very branched complicated graph.
Sometimes, there are very sophisticated relationships between definitions, objects, states
and other elements. Definition can be created from more tests and extended definitions,
then a test can have object that combines using variables, variable functions, multiple filters,
values from other objects, and so on. It is hard for a developer to visualise such graph in
his mind and imagine how his definition will be evaluated.

Using variables and possibility of chain references makes it even hard to understand. It
is important to realize that a single definition can contain everything from OVAL features.
We see that OVAL definitions can be very complicated.

Problem 7: Parameters and return values of variable functions are not presented
to the user. As mentioned in subsection 3.2.5, OVAL contains built-in function that are
able to process values of variables. Although functions change values of the variables, their
usage is not reported in output of scanner.

Also, variables have to specify their data type, but it may lead to false negative results
when trying to compare integers with strings. Moreover, OVAL specifies so-called external
variables that are used to parametrize definitions. It is a way of passing arguments from
external sources, most often from a XCCDF benchmark. Again, external variables can be
processed by functions.

Problem 8: OVAL allows constructs that may lead to no operation or to infinite
loop. It is possible to write an OVAL definition with no effect although the definition is
fully valid and in line with the specification. An easy example could be a file_object where
absolute file path is defined by regular expression that forbids containing ’/’ character.

The OVAL even allows to write definitions that are meaningless or even harmful. For
example, there can be created a definition that recursively references itself. This construct
is allowed by language schema, but does not produce any sensible results. OpenSCAP does
not have implemented limit for depth of references, so this kind of definition may lead to
crash of the application.

All of aforementioned problems are difficult to identify when they happen. User may not
notice that they occured, the worse if user wants to debug.

It may be objected that the results of evaluation are presented as an HTML report or
in OVAL results document. However, how were the input processed, what was done on the
system and how were the results computed is not presented to the user.

Moreover, the specification is very long and sometimes ambiguous. It requires a long
time of studying to be able to write useful and correct definitions. Also there is lack of
resources from which people can learn.

Apparently, the development of OVAL definitions is a time consuming and difficult
process. A tool that would help to simplify it and make the developer’s life easier would
be beneficial.

21

Chapter 4

Refining OVAL Development

In this chapter, we will propose a solution that provides support for OVAL development
within the OpenSCAP project.

We will firstly analyse requirements of users and developers. Then, we will discuss
options considered during the design phase and their advantages and disadvantages. We
will propose and justify a solution that fits the requirements. Finally, we will describe
implementation of the solution and discuss problems faced during the implementation.

4.1 Requirements for OpenSCAP Modification
Requirements for OpenSCAP modification were based on discussions with OpenSCAP team
and security policy developers. Some of them were also expressed in project ticketing
systems [8] [4]. We will mention the most interesting of the requirements.

The ability to debug steps performed by the scanner was mentioned frequently. Main
reason is that OVAL results document contains only final results of evaluation, but no
information about the evaluation process. Developers of security policies would like to
know intermediate steps—partial results, values of variables or also parameters and return
values of functions. For simpler definitions, the steps of the process can be guessed from
the OVAL results document. But in typical cases, it is almost impossible because those
files often have thousands of lines.

On the other hand, a special editor or Integrated Development Environment (IDE) for
OVAL was also requested. For users with weak knowledge of OVAL it is not comfortable to
study the specification and write definitions from scratch in their text editor. They would
welcome some templates and a context help.

Users also often report they expected OVAL definition being evaluated somehow, but
OpenSCAP gave them different results than expected. Their issue needs to be precisely
located at first. Basically, following sources of the problem are possible:

• Invalid OVAL definition file (syntax error).

• Logical mistakes in OVAL definitions or using wrong constructions in OVAL (semantic
error).

• A bug in OpenSCAP implementation.

• A problem in other libraries that OpenSCAP is linked with.

22

• A problem in underlying operating system.

All of those possibilities have to be considered to resolve a bug. To identify problems
related to OVAL it requires a very deep knowledge of implementation of OVAL in Open-
SCAP to discover them using The GNU Debugger (GDB), and therefore this option is not
aimed for users.

From the point of view of OVAL definitions, OpenSCAP internal implementation de-
tails are not interesting. We rather would like to know objects that were assessed, or more
importantly, find the reasons why some objects were not found (e.g. due to denied per-
missions or stopped services). Basically, the most important requirement is to cope with
problems mentioned in Section 3.4 and help with identifying them.

The developers who implement and maintain OpenSCAP mostly complaint that the bug
fixing and maintenance is difficult and expensive. They would welcome a tool that helps
with identifying and fixing bugs in OVAL. Easily adding debugging for newly developed
features is a must. They also need to know whether the base library communicates with
probes correctly and be informed when a probe accidentally dies.

4.2 Possible Approaches to Refining OVAL Development
A proposal to create an interactive debugger for OVAL was considered. The idea was that
a tool similar to The GNU Debugger (GDB) would be created. Since the OVAL is rather
complex standard it would be very difficult to implement an interactive debugger that covers
all the requirements. Such work is beyond scope of bachelor’s thesis. Finally it means to
develop a lot of code similar to already existing code. The debugger would have to mimic
the behavior of OpenSCAP and implement OVAL parsing and validation. Furthermore,
OVAL is a declarative language, so a typical approach of debuggers of imperative languages
is not applicable for OVAL.

Other possibility is to create a tool for static analysis of OVAL definitions, so-called lint.
The lint could identify possible problems in OVAL definitions based on defined rules and
suggest ways of improving definitions or fixing these problems. Although a static analysis
tool would be surely beneficial, this method does not cover the requirement for reporting
evaluation process.

Another considered option was to create a developer tool with graphical user interface
(GUI). The application would allow to create OVAL definitions by clicking or selecting
items from menu. The proposal of GUI application was rejected for various reasons.

Firstly, same as in case of lint this solution cannot report evaluation process and also
does not involve debugging. Secondly, graphical applications for SCAP content authoring
(both OVAL and XCCDF) already exist. We should mention for example Enhanced SCAP
Editor (eSCAPe), Benchmark Editor, or Recommendation Tracker. These applications are
poorly designed from perspective of user experience and difficult to use [10]. They are not
developed or used actively. Lesson learned is that creating a GUI for OVAL authoring is
extremely difficult and would require rich expertise in both security audit and user expe-
rience areas. A risk of similar fail convinces not to create graphical application of such
a kind.

For security policies contributors, it is usually more comfortable to derive their OVAL
definition from some existing definition. To edit them they would prefer using their favourite
text editor. OVAL development in text editors could be made more pleasant by improving
syntax highlighting and code completing in text editors.

23

To satisfy the most of the requirements we need a tool that would either work with or
be integrated with OpenSCAP and could operate on run time. This way, we are able to
identify run time problems. In other words, it will mean a diagnostics of OVAL evaluation.
Both of those goals can be achieved by adding reporting capabilities and diagnostics abilities
into existing code of OpenSCAP.

This seems to be the most effective solution for the following reasons:

• Integrated solution could maximally leverage existing features and code of Open-
SCAP.

• Behavior of the helper tool will not differ from a behavior of production software and
also that it will not differ in the future when OpenSCAP will be updated.

• The solution will be a part of already existing project, which brings several benefits—
better visibility, mentioning in documentation, website, and tutorials and firmer user
trust.

• When the solution will be integrated directly into library that is already packaged in
Linux distributions, after a new upstream release, the work will be easily propagated
into distributions. Proposing a new package to distributions is a long, difficult and
also a bit bureaucratic process.

4.3 Reporting OVAL Evaluation
From its early versions OpenSCAP contained some debugging messages and offered possi-
bility to generate a log. But the logs were not much useful for multiple reasons. Firstly, they
were not available for normal user, but only for developers who compiled the program with
a special option. Moreover, the messages contained in the log did not cover the process
of security policy evaluation and scanning, they were focused mostly on implementation
details. The log contained hexadecimal values of pointers, long dumps of data in internal
communication protocol or short fragmentary messages. The OVAL interpretation could
not be recognized at all. OpenSCAP is multi process program and so a separate log was
created for each process. It was very difficult to find a relationship between the logs and un-
derstand them. Due to these reasons, the logs were very rarely used. Even the OpenSCAP
developers did not use them much often.

Naturally, an idea to remove the disadvantages and leverage existing logging features
was considered at first. Many design decisions had to be made before starting the imple-
mentation.

The first question is a way of reporting. Linux systems contain mechanisms of logging
known as syslog or journal. Using these are typical for system services and daemons, but
OpenSCAP (oscap command) is a common user application. The syslog offers proven and
standardized solution. On the other hand, logging each step into syslog will slow down
the evaluation, cannot be turned on only on user’s demand and will pollute the system
log significantly. Therefore it was decided to create own method that suits needs of the
OpenSCAP project.

Regarding the format of the log, basically two possibilities were considered. The first of
them is a HTML report. This choice will provide nice user experience, emphasise important
parts with colors or implement sorting and searching in JavaScript. Second possibility is
a plain text report that lacks those user-friendly features. However, OpenSCAP is often

24

used on virtual machines or servers, where is no web browser installed and users control the
machine via SSH connection. In these cases user will have to download or copy the report
to its workstation and then display it, which is slower, less practical and more complicated.
Since OpenSCAP is more often used in a text terminal, it was decided to implement the
report in a plain text form.

Another problem that had to be solved during design phase is architecture of reporting
system. One of the possible solutions is to create a complex system with a defined protocol,
hooks, readers, writers and postprocessing routines. However, less complicated solution
that tries to solve all necessary tasks in place can also fit the requirements.

4.3.1 Message Categories and Format

The report will consist of individual messages. We will classify these messages into 4 cate-
gories according to their meaning.

1. Error messages inform about serious failures which OpenSCAP cannot recover from,
for example a probe killed by a signal or invalid XML input.

2. Warning messages inform that something went wrong during interpretation, but
OpenSCAP does not have to terminate, it can continue by evaluating next defini-
tion, eg. denied permissions, invalid regular expression, etc.

3. Info messages inform user about process of evaluating, which test is processed, what
objects are queried, what are values of variables, how will the result affected etc. This
category is the most interesting from the point of view of OVAL.

4. Developer messages show implementation details, mostly of internal character. Ma-
jority of original messages fits into this category.

Users choose verbosity level by selecting one of those categories. More verbose levels
include all messages from less detailed levels. Each message is on a new line. The line starts
with category of message and name of the process that created the message. Then a text
of message follows.

If developer level is activated, the message continues with additional information inside
brackets—PID and name of the process, thread ID and name of the thread that produced
the message, source file, line and name of the function which emitted the message. In other
levels these data are not included because it is a lot of distracting information that reduces
readability and orientation in the log.

The format and classification designed in this thesis makes the log readable and reflects
different needs of users.

4.4 Changes in OpenSCAP User Interface
To enable the functionality introduced by this thesis it was required to change command
line interface of the oscap tool. The command line interface consists of more modules, each
of them has a specific set of options. First question that needs to be answered is in what
modules the functionality needs to be added.

Since this thesis is focused primarily on OVAL, the functionality was introduced firstly
into oval eval submodule which is used for OVAL evaluation. In other submodules,
oval collect and oval analyse, the reporting was also made available.

25

The functionality was also added for XCCDF evaluation module, because OVAL defini-
tions are often referenced from XCCDF checklists. This extension of requirements involved
studying XCCDF evaluation and covering XCCDF evaluation by log messages.

In each changed submodule, two new command line options were added.
First option, --verbose, turns on the verbose mode and requires an argument specifying

the verbosity level. The verbosity level can be one of ERROR, WARNING, INFO and DEVEL.
Those values correspond to message categories outlined before.

Second option, --verbose-log-file, specifies name of the file that the log will be
written into. This option is optional. When the option is omitted, the logging messages
will be written on standard error output.

Originally, the --verbose-log-file was obligatory and user always had to specify
file name. This restriction was implemented because before clean up of legacy debugging
messages the output was too long, so user would redirect it to a file anyway. However, after
numerous improvements of the verbose mode, a feedback was provided that standard error
output should be used if this option is not specified, because typing another option takes
some time and using the option within the test environment was more difficult.

4.5 Implementation Details
The implemented functionality is not a standalone application. It is a set of changes
integrated as an extension of the OpenSCAP project.

The work was based on OpenSCAP 1.2 branch, which is current feature branch. The
goal of this thesis was achieved by continuous contribution to the project. Those changes
were proposed, reviewed and merged in numerous pull requests against upstream repository.
The source code of the changes merged into the OpenSCAP project is saved on attached
CD in a form of individual patches exported from Git version control system. The whole
set of changes consists of 109 patches. Authenticity of those patches can be verified on
public GitHub repository [7].

In OpenSCAP, same as in many other open-source projects nowadays, pull requests are
typical development workflow. Firstly, a developer creates a new branch in his own local
fork of the git repository. Then he develops a new feature by changing that branch. After,
he creates small commits, each with a detailed description explaining changes proposed by
the commit. When finished, he pushes the changes to his repository fork on GitHub. He
creates a pull requests containing the new commits, and attaches message explaining the
purpose of the new changes. The commits are reviewed by other developers involved in the
project. Usually, the author has to reflect their comments and improve his code. After the
commits are accepted by the reviewer, they are merged into a public branch. This workflow
was also used by author during implementation phase.

Changing already existing and well established project is very hard. Every single change
involves not only detailed understanding of the code but also a good knowledge of all use
cases that are implemented by the code. Moreover, in OpenSCAP project, all the SCAP
standards are strictly followed, so we must be very careful to not broke compliance with
those standards. Also, the OpenSCAP project is a shared library. Other applications rely
on its stable API. The API cannot be broken by changing already existing symbols. The fact
that symbols will be part of API for many years must considered in depth when creating new
functions. The commits must have detailed commit messages and pull requests must be well
documented and justified. All patches must follow the coding style and other conventions
followed in the project. If some of aforementioned requirements are not met, the patches

26

are rejected. All these facts made the implementation phase much more complicated and
time-consuming than when the project is written from scratch.

Due to aforementioned difficulties, the implementation was decomposed into smaller
steps. Every step made a small improvement of the current state that aimed to lead to the
goal of this thesis. The work started by leveraging existing features of OpenSCAP.

The implementation itself begun by enabling the logging messages in the build system.
Firstly, the current debugging messages were made available for the normal user. New
options, described in previous chapter, were added. Then all the messages were redirected
into a single file. This required to synchronize threads and processes by a file lock to avoid
inconsistencies in the output. For our purposes, is not necessary to implement a central
collector.

In next phase, work focused on adding new messages into the source code. Based on
problems of OVAL mentioned in previous chapter, sample OVAL definitions that contain-
ing particular tricky constructions were created. These definitions were used for analysis of
OVAL interpretation of OVAL within OpenSCAP project. The oscap process was traced
and the source code were to find the states that were reached and possibilities that can
happen. This work involved in depth study of source code in C language and full under-
standing of whole architecture. After identifying important paths in the code, reporting of
each important step was added in a form of a human readable log message.

The debug messages from previous OpenSCAP versions are still present in the log.
However, most of them were put into the Developer category. The new messages were
added with focus on usefulness for OVAL developers. Main purpose of the messages is to
help identify problems described in Section 3.4.

It was necessary to convert some entities to human readable form before inclusion in
verbose log. For example, values of OVAL variables were serialized. A string buffer and
other helper datatypes were implemented for this purpose. They can be reused in other
code.

4.6 Problems Faced during Implementation
During the implementation phase, many difficulties raised. Fixing some of them involved
changes in other parts of the OpenSCAP library.

First problem that appeared was to synchronize the threads and processes writing to
output correctly. It was found that some messages are missing in the output file on random
occasions. To fix the output it was necessary to declare file descriptor of output file as
external global variable and open the file always in append mode. Synchronization and
right order of messages in output was guaranteed by using a file lock and mutexes.

Although the synchronization was correct, from the moment when all main steps of
OVAL evaluation were covered by logging messages, it was apparent that sometimes the
messages are not in expectable logical order. For example, if a definition consisted of
multiple criteria, then log firstly showed that evaluation of all tests have started, and after
querying for all objects was performed, results of all tests were reported, but in a different
order. This gave an impression that the test evaluation was proceeded in parallel, which is
not true. This confusion was caused by an issue in design of OpenSCAP. Firstly it collected
all the items for all the tests in a definition. Results of tests and consequently the result
of the definition were computed in second pass. In other words, all tests were examined
twice—once to collect data for them system and once to get definition result.

27

To solve the problem of confusing output these two steps of evaluation were merged
into a single one. The changes included a very detailed analysis of the source code, major
refactoring and testing. Although it was a large change, it was successfully implemented.
This change allows to remove a lot of duplicate code in next major version of OpenSCAP.
Also, implementation of shortcut evaluation of logical expression became possible.

28

Chapter 5

Evaluation of Extension

The extension of OpenSCAP project that provides reporting and diagnostic of OVAL eval-
uation and partially also XCCDF evaluation was successfully designed and implemented.

In this chapter, we will demonstrate usage of the implemented feature and verify the
functionality on some typical problematic OVAL definitions. Next, we will discuss possi-
bilities of user testing. Then we will focus on feedback and suggestions for improvements.
Finally, we will outline possible future extensions of this work.

5.1 Demonstration of Usage
In Section 3.4, we dealt with several problems of OVAL definitions. The evaluation should
prove whether those problems are covered and can be identified using features introduced
into OpenSCAP during work on this thesis. To verify this, some OVAL definitions docu-
ments were created. Then all of those definitions were evaluated by OpenSCAP 1.2.9 with
verbose mode turned on, both in developer and info verbosity level.

To generate the log, the following command can be used:

oscap oval eval --verbose INFO --verbose-log-file log.txt definition.xml

Listing 5.1 shows a snippet of output generated by the oscap tool for sample definition
service_chronyd_enabled. This definition is extended by another definition, which can
be easily noticed from the output.

Listing 5.1: Output generated by OpenSCAP in verbose mode.
....................
I: oscap: Identified document type: oval_definitions
I: oscap: Created a new OVAL session from input file ’service_chronyd_enabled.xml

’.
I: oscap: No external OVAL variables provided.
I: oscap: Started new OVAL agent.
I: oscap: Querying system information.
I: oscap: Starting probe on URI ’pipe:///home/jcerny/openscap/src/OVAL/probes/

probe_system_info’.
I: oscap: OVAL agent started to evaluate OVAL definitions on your system.
I: oscap: Evaluating definition ’oval:x:def:2’: Service chronyd enabled.
I: oscap: Evaluating systemdunitdependency test ’oval:x:tst:1’: systemd test.
I: oscap: Querying systemdunitdependency object ’oval:x:obj:1’, flags: 0.
I: oscap: Creating new syschar for systemdunitdependency_object ’oval:x:obj:1’.

29

I: oscap: Starting probe on URI ’pipe:///home/jcerny/openscap/src/OVAL/probes/
probe_systemdunitdependency’.

I: oscap: Test ’oval:x:tst:1’ requires that zero or more objects defined by ’
oval:x:obj:1’ exist on the system.

I: oscap: 1 objects defined by ’oval:x:obj:1’ exist on the system.
I: oscap: All items matching object ’oval:x:obj:1’ were collected. (flag=

complete)
I: oscap: In test ’oval:x:tst:1’ all of the collected items must satisfy these

states: ’oval:x:ste:1’.
I: oscap: Entity ’dependency’=’chronyd.service’ of item ’1312211’ matches

corresponding entity in state ’oval:x:ste:1’.
I: oscap: Item ’1312211’ compared to state ’oval:x:ste:1’ with result true.
I: oscap: Test ’oval:x:tst:1’ evaluated as true.
I: oscap: Criteria are extended by definition ’oval:x:def:1’.
I: oscap: Evaluating definition ’oval:x:def:1’: Package chrony Installed.
I: oscap: Evaluating rpminfo test ’oval:x:tst:2’: package chrony is installed.
I: oscap: Querying rpminfo object ’oval:x:obj:2’, flags: 0.
I: oscap: Creating new syschar for rpminfo_object ’oval:x:obj:2’.
I: oscap: Starting probe on URI ’pipe:///home/jcerny/openscap/src/OVAL/probes

/probe_rpminfo’.
I: oscap: Test ’oval:x:tst:2’ requires that every object defined by ’oval:x:

obj:2’ exists on the system.
I: oscap: 1 objects defined by ’oval:x:obj:2’ exist on the system.
I: oscap: Test ’oval:x:tst:2’ does not contain any state to compare object

with.
I: oscap: All items matching object ’oval:x:obj:2’ were collected. (flag=

complete)
I: oscap: Test ’oval:x:tst:2’ evaluated as true.
I: oscap: Definition ’oval:x:def:1’ evaluated as true.
I: oscap: Definition ’oval:x:def:2’ evaluated as true.
I: oscap: Evaluating definition ’oval:x:def:1’: Package chrony Installed.
I: oscap: Definition ’oval:x:def:1’ evaluated as true.
I: oscap: OVAL agent finished evaluation.
I: oscap: OVAL evaluation successfully finished.
....................

Results produced by the tool were compared with aforementioned problems with focus
on how the tool helps to identify or solve them. In order to demonstrate the extension
more, the attached data medium contains sample OVAL definitions and also corresponding
output generated by OpenSCAP 1.2.9.

5.2 User Testing
User testing should be a final part of every software project and therefore it will be done
also in this thesis.

However, the topic of this thesis requires specific approach to user testing. For example,
we cannot use frequently used method of Hallway testing. This method is a quick method
of testing in which randomly selected people are asked to try using the product. But
OpenSCAP is sophisticated product. Average user would need at least training before
starting using OpenSCAP and much more longer to create his own OVAL definitions.
Therefore, testing on randomly picked people would not verify whether the solution fulfils
the requirements.

30

The target audience of the tool are creators of security policies. There are not many
of them and they are spread around the world. Organizing a usability testing session that
will give useful evidence would be very complicated. However, it would be easy to address
a few questions to contributors of OpenSCAP and mainly SCAP Security Guide projects,
who initiated the idea of refining OVAL development within OpenSCAP project.

Finally, it was decided to ask the security policy developers directly and ask them for
their feedback in a form of a questionnaire.

5.3 Feedback and Evaluation
User testing in a form of survey was done after OpenSCAP 1.2.9 was released in April
2016. This version was the first version that contained usable OVAL evaluation reporting.
In the survey, 5 regular contributors of OpenSCAP and SCAP Security Guide projects were
briefed about the new feature of reporting OVAL evaluation and were requested to try this
feature out on an arbitrary content. Then they were were asked the following questions:

1. Which of information presented by the verbose mode do you consider useful?

2. Are there some messages that are redundant or are not meaningful?

3. What do you miss in the output?

4. How should I improve readability and orientation?

5. Should also other standards than OVAL be covered?

6. Have you encountered any bugs or crashes?

7. Would you appreciate if I continue improving it?

The feedback was mostly positive, but also critical. From received answers we will point
out the most interesting facts now.

1. Overall, most of messages presented in the verbose mode were considered really use-
ful. For example the fact that values of variables can be seen in the log was highly
appreciated.

2. On the other hand, one contributor reported that for his OVAL definition which
served to verify if all suid and sgid binaries are audited, the output of the verbose
mode was thousands of lines long. The output mostly consisted of warning messages
reporting that OpenSCAP failed to get extended access control list (ACL) for each
file. It was suggested to remove this warning message or at least change its category
to Developer.

3. Any specific information has not been missed, but they would welcome to go more
into depth in some cases.

4. Although the messages in verbose log are indented, it was often required to use colors
in output to emphasize the most important information, and insert some empty lines
between each test evaluation.

31

5. Most of the people would welcome covering other standards, but it should be done
after focusing on OVAL more in depth.

6. Nobody encountered any bugs or crashes. However, this does not mean that there
are not any.

7. Everybody wanted that work on the extension introduced in this thesis continued in
the future.

5.4 Ideas for Further Improvements
This work can be extended easily, because a possibility of future expansion has been kept
in mind from the very beginning. For example, every OpenSCAP developer or maintainer
can add new messages for the reporting log in any place of the code base by using simple
macros now.

In this section, we will outline some of possibilities that can be done after submitting this
thesis. The feedback aggregated in the previous section confirms that future improvements
are highly desirable.

Firstly, due to a limited time, only the most painful parts of OVAL evaluation were
examined, analysed and covered. Further improvements should begin by covering other
parts of OVAL evaluation and identifying more corner cases.

Secondly, OpenSCAP also supports other SCAP standards, but they are not covered
now by the verbose mode. Therefore similar work could be done also for other standards
than OVAL. For example, we currently do not report evaluation of SCAP Data Streams.
It would be also beneficial to alert user if SCE content is being evaluated, because it means
that OpenSCAP will invoke arbitrary script or binary program. To cover other standards
the same approach that was used in this thesis can be reused.

Furthermore, the format of output could be improved. To create a more user friendly
reports, eg. in PDF or HTML formats would be possible, although it would very likely
require adding another layer on top of the current OpenSCAP architecture. We started
just with a text format because it brings a benefit quickly without an overhead. More likely,
the text output should be improved by using colors.

In addition, the reporting and diagnostics can be reused in SCAP Workbench because
currently any information regarding the process are missed. SCAP Workbench only shows
progress bar and final results. A most simple solution would be a button in the Scan Results
window, that would open a window containing the same content as produced by the oscap
verbose mode. More advanced solutions will be also possible because Qt toolkit used in
Workbench provides various capabilities for building advanced user interfaces.

Since the majority of changes was done in OpenSCAP library which is a basic stone of
the whole OpenSCAP ecosystem, other projects under OpenSCAP umbrella will be able to
leverage them.

32

Chapter 6

Conclusion

The goal of this thesis was to get familiar with contemporary security audit technologies
and project OpenSCAP, and design and implement a solution supporting development of
security policies.

The core part of the work lies in the analysis of the OpenSCAP project, inspects and
considers its internal implementation.

The thesis starts with explaining key concepts of security audit. Second chapter de-
scribes the main technology used for automation of security audit—the SCAP standard
and its open source implementation OpenSCAP. Third chapter discusses the development
of security policies using OVAL and identifies problems and difficulties of this language.
The author drew from his more than year experience from working on the OpenSCAP
project.

In fourth chapter, the author builds on discovered facts to design a diagnostic tool
for reporting process of OVAL evaluation. Fifth chapter describes its implementation and
problems faced during the implementation.

Author successfully introduced a new verbose mode to the OpenSCAP command line
tool. This mode reports performed actions and serves to diagnose possible bugs in OVAL
definitions or in OpenSCAP implementation. The solution was extended to also cover
XCCDF evaluation. The patches changed the original source code significantly.

The test cases described in last chapter have shown that the solution is able to help with
debugging OVAL definitions and that the tool reports the process of OVAL interpretation
in a detailed but easily understandable way. All defined problems of OVAL and OpenSCAP
have been successfully faced.

The author himself used the tool in his daily work on the OpenSCAP project, and so
did other community members.

The work has been continuously accepted by OpenSCAP upstream and was released
in OpenSCAP 1.2.9 in April 2016 and therefore will become available in major Linux
distibutions soon.

33

Bibliography

[1] The heartbleed bug. [online], 2014. http://heartbleed.com/.

[2] NIST solicits comments on the security content automation protocol (SCAP).
[online], 2015. http://csrc.nist.gov/publications/drafts/800-126/
sp800-126r3_call-for-comments.html.

[3] The OpenSCAP portal. [online], 2015. https://www.open-scap.org.

[4] OpenSCAP tickets. [online], 2015. https://fedorahosted.org/openscap/.

[5] OVAL - the open vulnerability and assessment language. [online], 2015.
https://oval.mitre.org/index.html.

[6] OVAL specification. [online], 2015. https://oval.mitre.org/language.

[7] OpenSCAP GitHub source code repository. [online], 2016.
https://github.com/OpenSCAP/openscap.

[8] OpenSCAP issues. [online], 2016.
https://github.com/OpenSCAP/openscap/issues.

[9] Rsyslog documentation. [online], 2016.
http://www.rsyslog.com/doc/master/index.html.

[10] Petr Beňas. Design better content development process for SCAP standards.
Diploma thesis, Brno University of Technology, Faculty of Information Technology,
2013. http://www.fit.vutbr.cz/study/DP/DP.php.cs?id=15619&file=t.

[11] Rich Murphy. The practical guide to security compliance. [online], 2014.
http://www.blackstratus.com/practical-guide-security-compliance/.

[12] The Open Web Application Security Project OWASP. The Ten Most Critical Web
Application Security Risks. [online], 2013.
https://www.owasp.org/index.php/Top_10_2013-Main.

[13] Vratislav Podzimek. SCAP policy compliance configuration in Linux installations
[online]. Diploma thesis, Masaryk University, Faculty of Informatics, Brno, 2013.
http://is.muni.cz/th/324874/fi_m/.

[14] Amol Sarwate. The GHOST vulnerability. [online], 2014.
https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/
the-ghost-vulnerability.

34

http://heartbleed.com/
http://csrc.nist.gov/publications/drafts/800-126/sp800-126r3_call-for-comments.html
http://csrc.nist.gov/publications/drafts/800-126/sp800-126r3_call-for-comments.html
https://www.open-scap.org
https://fedorahosted.org/openscap/
https://oval.mitre.org/index.html
https://oval.mitre.org/language
https://github.com/OpenSCAP/openscap
https://github.com/OpenSCAP/openscap/issues
http://www.rsyslog.com/doc/master/index.html
http://www.fit.vutbr.cz/study/DP/DP.php.cs?id=15619&file=t
http://www.blackstratus.com/practical-guide-security-compliance/
https://www.owasp.org/index.php/Top_10_2013-Main
http://is.muni.cz/th/324874/fi_m/
https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability
https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability

[15] David Waltermire, Stephen Quinn, Karen Scarfone, and Adam Halbardier. The
Technical Specification for the Security Content Automation Protocol (SCAP): SCAP
Version 1.2. National Institute of Standards and Technology, Gaithersburg,
Maryland, 2011.

[16] Jim Whitehurst. The open organization: igniting passion and performance. Harvard
Business Review Press, Boston, Massachusetts, 2015.

[17] Jan Černý. Scanning containers for vulnerabilities. [online], 2016. http:
//www.jan-cerny.cz/2016/02/18/scanning-containers-for-vulnerabilities/.

35

http://www.jan-cerny.cz/2016/02/18/scanning-containers-for-vulnerabilities/
http://www.jan-cerny.cz/2016/02/18/scanning-containers-for-vulnerabilities/

	Introduction
	Methods of Security Audit
	Security Compliance
	Vulnerability Assessment
	Security Guidances
	Security Content Automation Protocol
	Open Vulnerability and Assessment Language
	Extensible Configuration Checklist Description Format
	Script Check Engine

	OpenSCAP Project
	OpenSCAP Library
	OpenSCAP Command Line Tool
	SCAP Security Guide
	SCAP Workbench
	OpenSCAP Daemon
	OSCAP Anaconda Add-on

	Competitive Security Audit Tools
	Future of Security Audit

	Development of OVAL Definitions
	OVAL Documents
	Creating OVAL Definitions
	OVAL Definition
	OVAL Test
	OVAL Object
	OVAL State
	OVAL Variable

	Usage of OVAL
	Problems of OVAL

	Refining OVAL Development
	Requirements for OpenSCAP Modification
	Possible Approaches to Refining OVAL Development
	Reporting OVAL Evaluation
	Message Categories and Format

	Changes in OpenSCAP User Interface
	Implementation Details
	Problems Faced during Implementation

	Evaluation of Extension
	Demonstration of Usage
	User Testing
	Feedback and Evaluation
	Ideas for Further Improvements

	Conclusion
	Bibliography

