VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

Fakulta informacnich technologii

Faculty of Information Technology

BAKALARSKA PRACE

BACHELOR'S THESIS

Brno, 2016 Rafael Ortiz Caceres

TTTJ[TTTTT] VYSOKE UCENI TECHNICKE V BRNE

15+ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGI
USTAV POCITACOVYCH SYSTEMU

Z
FACULTY OF INFORMATION TECHNOLOGY

Y
BI DEPARTMENT OF COMPUTER SYSTEMS

%

(7

DETEKCE DNS TUNELOVANEHO PROVOZU

DETECTING DNS TUNNELING

BAKALARSKA PRACE

BACHELOR'S THESIS

AUTOR PRACE Rafael Ortiz Caceres
AUTHOR

VEDOUCI PRACE Ondrej Rysavy

SUPERVISOR

BRNO 2016
Abstrakt

Tato prace se zabyva problematikou detekce tunelovaného provozu. V praci je pospan princip
tunelovani provozu a uveden zpUsob tunelovani provozu pomoci protokolu DNS. Dale je uvedena
metoda pro detekci takového provozu a tato metoda je testovana na nekolika ptikladech.

Abstract

This BSc Thesis was performed during a study stay at the Faculty of Information Technology of the
Brno University of Technology. This report discuss the technique of tunnels on the Internet, starting
with description of virtual private networks, tunnels over internet with different protocols, focusing
the DNS protocol and tunnels through the DNS protocol, The methods to detect the DNS tunnels is
presented and demonstrated on several examples and tests.

Kli¢ova slova

Tunelovany provoz, bezpecnost, filtrovani provozu, DNS.

Keywords

Tunneling, network security, traffic filtering, DNS.

Citace

Rafael Ortiz Caceres: DETECTING DNS TUNNELING, bakalaiska prace, Brno, FIT VUT v Brng,
2016.

DETECTING DNS TUNNELING

Statement

This BSc Thesis was performed during a study stay at the Faculty of Information Technology of the
Brno University of Technology. I declare that I have worked out this thesis independently under the
guidance of my supervisor. I provided a complete list of all references that I cited within my report.

Rafael Ortiz Caceres
17th May, 2016

© Rafael Ortiz Caceres, 2016

Tato prdce vznikla jako skolni dilo na Vysokem uceni technickém v Brne, Fakulté informacnich
technologii. Prdce je chranéna autorskym zakonem a jeji uziti bez udeleni oprdavnéni autorem je
nezakonné, s vyjimkou zakonem definovanych pripadii..

Index

LR 0313 (016 10115 o) W PRSP 3
1.1 Coverts channels and covert iNfOrmMationcocceeeerierieieriinieiere e 3
1.2 WRhat 1S tUNNEIINE? ...ccuviiviieiieciie ettt ettt er et e e te e steesteeeabeeabeesbeesbaesssessseesseesseensens 4
1.3 Others kinds of tunneling, HTTP tunneling.............c.ccvevvevienieiieeieeieeeeecieeeee e 6
1.4 HTTP VPN TUNNEIS ..ottt ettt e s teeseesesaeensenseeneenes 9
1.5 SeCUIE SOCKET LAYET ...ccuviiiiiieiieeiiieeiie ettt ettt e et e et eestveeeveeesaseessbeeeseseessseeessaeessasansseenes 9
1.6 SECUIE SREIL ...ttt ettt ettt et e be et eeae et e e e eneennas 10
1.7 DINS tUNNCINGooviiiiieiecieeieeste st ete ettt et e e e s eeseaessseesseessaessaessaessnesssesssennseesseesseenns 12
1.8 Encoding and TEChNIQUES.........cccueririieeiiieiieieeritete ettt ere e e sieeseeeseaesnsessseesseenseessnesnns 12

Base32 ENCOGINGcccvveiiiiiiiiiieiteieeeeste sttt ettt et e st e sttessbessbeesba e seesssesssesnseansaensaesseessnenssenns 13
Base04 ENCOUINGcc.eevieiiiiiieiieieeteste sttt ettt et et eseteesvessbeesba e seesssesssesnseensaensaesseessnenssenns 13
Binary (8 bit) ENCOAING........cccvviiiieriieiierieiie ettt stesreseteete et eteeseessaessseenseessaessaessnesnnesssenns 13
NEtBIOS ENCOAINGvviiiiiiiiiiieiierieeste sttt ettt te e e estaesseessaesasessseessaesseesssesssessseenses 13
HEX ENCOAING......coiiiiieiieiiieit ettt ettt ettt e st esetessteesbeestaeseesssesssesnseansaensaesseessnenssenns 14
1.9 Uses Of DNS tUNNEINGeeiviiiiiiieiie ettt eteestaeseeestaesssessreesseesseesseenns 14
1.10 Known DNS tunneling appliCationscccecvvereerierreriersieesieenieeseeseesnessesseeseessessseennns 16
DIEINISE ...ttt ettt b e s bt e sa e et e e bt e bt e bt e e bt e eat e e et ente e beenheesaeesateeas 16
I DN 1] o USRS 16
DN S DY .ttt ettt ettt ettt e ettt e et e e bt eestt e e e bee e sbeaessaeessbaeanbeeetae e sbaeanbaeeatbeeantaeessaennraaan 16
DINSCAt (DNSCAL-P) ..evieiiieeieeceeee ettt ettt e st e et e e s be e e tbe e sbeesstaeessseesssesensseensseean 16
DINSCat (DNSCAL-B)....iiiiiiieiiieeieeee ettt e e te et e et e e tb e e sbeeetaeessbaesssaeessseesssesensseessseenn 16
HEYOKA ..ottt et e et e e te e e tbesabeeabeeabe e be e taestbeerbeeabeerbeetaeeteesaneerbeen 16
TOAINE ...ttt e b e at e ettt et e e bt e s bt e sht e eate et e e b e nbeenbeenaes 17
D S 00 GO TP 17
OZYMANDINS ...ttt et e et e e st eesteeeebeessbeeessaeessseeesssaesssaeesseeasseeesseesssennn 17
o a1 TSR SRURRPRRR 17
SQUEEZA ..ottt ettt ettt ettt ettt e ettt e sttt e s teeesateesabee e sbeesaseesasteesnbeeensaeennseesnseeessseesnseeeansaesseeenns 17
TCP-0VET- DINS ... ettt ettt et e st e st e e s bt e e ab e e s et e snteesabeessaeesnseesnteesnseesn 17
TTUIIS ettt et sttt et e b e bt s bt e a et e ettt et e eh e she e sat e st be e b enee 17
MalWware USING DINS......c.oiiiiiiiei ettt e st e s e e bt e e et e ssaessseenseessaesaesseesanesssenns 18

2. SCCUIILY TMEASUIES ..euveeveerereeereereateesteesseesstessseaseaseessaesseesssssssesssessseessessssesssesssessseensesssesssessssessseans 19
2.1 Length Of MESSAES....cueevieiieiiecierie et et et et e st e steestesreesbeesbeeseesseesssessseessaesaessaesssesssenns 22
2.2 In-depth analysis Of DNS MESSAZES.......cccveriieriierierieeieeieeieesteeseesreseeeseeseesseessaessnessneans 23

2.3 Analyze netWork traffiCc.ocoiiiiiiiiiie e e e e 25

B B 4 1S 01 111S) 117 PSR 28
3.1 Requirements to create a DNS tunnel with Iodine...........ccecevvveriiniienienienieee e 29
3.2 How to install IOQINEcc.eeiiiiiiiiiiiieiii ettt 29

. Detecting DINS tUNNCING.........cccviiiiiiieiieree ettt taesteessnessaesssessseessaesseennns 42
4.1 Size and quantity of DNS packets and network traffic analysis........c..ccccevcereieiininiencnene. 43
4.2 Analyze in depth DINS PaCKELScevviiiiiiieiieiieree ettt ettt ssreeseessaessaesraesnneans 52

. Discussion and CONCIUSIONSc..eeouiiirieririeierte ettt ettt ettt bt et e b e eeesaeenees 56
5.1 TP cONLIOl @Nd POTLS....ccciiiiieiieiieriiesiiesiesee et et et e e e steesteessressaessseesseesseessaesssesssesnsesnseenses 56
5.2 Controlling access as admin OF TOOT.........cccvereverrieerieeriereerteeiessreesteesseesseesseesseesssesseesseesses 57
5.3 Recursion control the DNS SEIVET.ccceeieiiirieiieiiiieie ettt eneens 58
54 CONCIUSIONS. ...ttt ettt et e s bt e eae e st e e b e e bt e bt e bt e s beeeaeeemeeeneeensean 59

1. Introduction

1.1 Coverts channels and covert information

There are many methods and ways to create covert communication channels between 2 or more
computers, in which the main purpose is to transmit hidden or encrypted information.

This document will explain some of them, but mainly focus on explaining the technique called
specifically communication tunnels and explains in detail the type DNS tunnel.

In a network where communication is based on the IP protocol, you can use IP packet fields that are
not normally used for communication, but they exist because at times they must be used.

For example Kundur suggests using unused bits header of an IP packet, or do not fragment bit (DF),

the bits used to fragment packets in the communication, to create a covert channel.

The DF bit can be set to arbitrary values if the sender knows the Maximum Transfer Unit (MTU) size
of the path to the receiver and only sends packets of less than MTU size.

Hintz suggests using bits of TCP Urgent Pointer (used to Indicate high priority data), that is unused if
the URG bit is not set, to transmit hidden data.

Also header extensions and padding can be used for transmit covert information. Many protocols
support extension of the standard header. Usually there are some pre-defined header extensions that
allow transporting non-mandatory information on demand, but many protocols also allow header
extensions to carry data not foreseen in the original specification, extending the capabilities of the
protocol. Then covert information can be encoded in frame or packet padding. For example, Ethernet
frames must be padded to a minimum length of 60 bytes. If the protocol standard does not enforce
specific values for the padding bytes, any data can be used. Padding of the IP and TCP header to 4-
byte boundaries (in case header options are present) and padding in IPv6 can also be used to transmit

covert data.

IP Header

Source Poet Destnanon Port
,%_ Sequence Number
Adcnowiagment Number
. Rlc|S|SIV|S windon
GIK|H|TININ
Checksum Urgant Poantar

TCP Opaons l Paddng

P B
- 3 TCP Data %A

Figure 1.1: Format TCP/IP packet

http://www.cisco.com/c/dam/en_us/about/ac123/ac147/downloads/customer/internetprotocoljournal/ipj 3-

2/images/figure01.gif

1.2 What is tunneling?

The tunneling technique involves encapsulating a network protocol over another (network protocol

encapsulator) creating a tunnel within a computer network (internet).

Figure 1.2: Tunnel over internet

https://toic.org/media/filer public/1b/b4/1bb407b5-0ace-4081-8511-d2d66eb75abb/solutionl-2.png

To establish a tunnel includes a PDU within a PDU, in its payload field, so that makes a
communication between the two ends of the tunnel, without requiring that any intermediary interpret
the PDU encapsulated within the other.

In essence, it is the transfer of a packet of information within another package that makes "wrapper".
A packet is encapsulated with another protocol, so that this is just data and is checked only by the

sender and the receiver.

Application

PDUs Presentation
Segment 5::::‘ Mg::”" Data l Session
... | TCP header | Upper layer data l Transport
Packet Source P Dutl:;aﬂon Protocol Segmont IP header Data Network
... | uCheader | Data | fcs | | Dataink
Frame Desxn:cﬁon 5;"";' Ether-Feld [Packet FCS | Ao | PR | FCS I Physical

B 1011011100011110000 010111010100100001010
Data Encapsulation

Figure 1.3: PDU and Layer addressing Figure 1.4: Data encapsulation model OSI

http://www.learn44.com/wp-content/uploads/2013/06/Protocol-Data-Unit-PDU-and-Layer-Addressing-in-Data-

Encapsulation-Cisco-Inter-networking.ipg

Thus the intermediate nodes in the communication cannot clearly see the contents of the packet,
payload, which is routed through them.
The tunnel is defined by the endpoints and the communication protocol used, among others, may be

SSH.

Onigngd Frare

» or
Voader Segment

- - = . - = PP Y o

£ dermat " oy | Evemat i uop 21| Emerat i () -
MHeater Vaer Neaoe Hesrder Meacer (% } Sogrent .

| Heode |

| | : 5

New haadens bor PSec el New headers for L2TP wurred Original Frame row Tusnel pinload

Figure 1.5 Frame encapsulate in tunnel.

https://infrastructureadventures.files.wordpress.com/2010/12/12tp-in-ipsecl.png

For what is used tunneling?

The tunneling technique is often used to convey a particular protocol through a network that under
normal conditions would not be accepted. Another use of tunneling protocols is the creation of
various types of virtual private networks. The tunneling technique can also be used to avoid or
circumvent a firewall. To do this, the protocol blocked at the firewall, is encapsulated within a
permitted protocol, usually HTTP.

Tunneling is a technique also used for IPv6 sites to communicate through an existing IPv4 network.
Overlay tunneling encapsulates IPv6 packets in IPv4 packets for delivery across an IPv4
infrastructure. This is similar to how you create a generic routing encapsulation (GRE) tunnel to
transport Internetwork Packet Exchange (IPX) traffic through an IP network. At the tunnel head end,
an IPv6 packet is encapsulated into IPv4 packet and sent to the remote tunnel destination. This is
where the IPv4 packet header is stripped, and the original IPv6 packet is forwarded further into an
IPv6 cloud.

IPvé hcﬂel IPvé data IPvé hexicr.va_G data
A\ \
| — | —
; % IPvd %
—— A —=14
f -
1Pvs IPve Dudl-stack Dual-stack IPvE IPv6
% networ k router / router neteor k
ho:' /' "(l:t

Tunnel: IPv6 in IPv4 packet
IPv4 header | IPv6 header |IPvé data)

s

Figure 1.6: Tunnel IPv6 over IPv4
http://www.cisco.com/c/dam/en/us/td/i/000001-100000/50001-55000/52501-
53000/52685.ps/_jer_content/renditions/52685.jpg

Some of the techniques most used in tunneling are HTTP and SSH tunneling, IPv6 over IPv4,
mentioned above, and VPN that can be created with different protocols, PPTP, L2TP, IPsec or SSTP,
depending on the most important needs of the VPN, such as, speed, security, and ease of installation.

Kaminsky and Gil independently implemented tools to covertly tunnel IP packets over the DNS
protocol. Communication takes place between a client and a fake DNS server. The client sends data
to the server in DNS requests (hostname lookups) where the actual hostnames are the encoded covert

information. The server sends data back to the client contained in the DNS responses.

1.3 Others kinds of tunneling, HTTP tunneling

Proxies do prevent direct inbound access to a protected machine. However, they can be bypassed

using HTTP tunnels. Using HTTP tunnels an individual can create arbitrary connection into or out of

a protected network. All that is needed to tunnel through a proxy is an individual inside the network
with basic web browsing access.

One technology that makes bypassing HTTP proxies so effective is encryption. While encrypting
network traffic offers the client and server privacy and security for their communications, the lack of
inspection can reduce the overall security for the network environment it is used in. When
encapsulated network traffic is encrypted and passed though a HTTP tunnel, network connections can
be created that allow arbitrary, bidirectional connections to remote destinations. When encryption
technologies are used in this manner, Virtual Private Networks or VPNs can be created between
internal and external machines. The VPN pushes the network perimeter of the protected network
beyond the firewall, router or other network security device. This opens the protected network up to

the possibility of attack or misuse SSH tunneling.

Simple HTTP tunnels are an unencrypted connection through a HTTP proxy to an arbitrary
destination. The tunnel takes advantage of the HTTP CONNECT method normally used for HTTPS
(secure web traffic) to connect to the destination server. A typical HTTPS connection through a proxy

should look like

CONNECT remote-server:443 HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)

Host: remote-server

Content-Length: 0

Proxy-Connection: Keep-Alive

Pragma: no-cache

In the example above, a tunnel is established between the client and the remote server with a
destination port of 443 or the standard SSL port. If someone wanted to make a connection to another-

server on any port all that is needed is to send the following connection request instead.

CONNECT another-server:anyport HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)
Host: another-server

Content-Length: 0

Proxy-Connection: Keep-Alive

Pragma: no-cache

As shown in the above example, HTTP tunnels are not restricted to web or SSL ports. Rather, HTTP
tunnels are capable of passing any outbound traffic on any TCP port as long as the client warps the
appropriate HTTP CONNECT header around the data stream. Simple tunnels typically do not require
control of the destination server. All that is needed is a remote server with a known listening service.
Put another way, the server does not have to be modified in any way to accept a TCP connection that

passes through a simple HTTP tunnel.

While the server does not need modification, some work will need to be done on the client side to
properly wrap the connection with the HTTP header. The client application may have proxy support
built-in and is able to directly create the tunnel. However, a bridging application may be used to allow
unmodified applications to pass through the proxy.

While simple tunnels are very useful and are the basic component of all the other more advanced
tunnels, they do have their limitations. One limitation to simple tunnels is that each connection to a
remote TCP port requires a separate tunnel. Another limitation is that they do not encrypt the
connection and pass the data in the clear. If the data needs to be encrypted, it is up to the application
to only pass encrypted data through the tunnel. For example, using a simple tunnel to check a pop
mail account over the Internet would pass all mail messages in the clear over the Internet. To protect
the contents of the mail messages an advanced tunnel employing some form of encryption would

need to be employed.

Somewhere T - e, “Home or

! - g . oy Home ,
(possibly behind firewall) .~ |nternet = s Internet
Cllant Pragran m"ﬁ HITP Yot . wo;‘;:'mw; e e Server Program
SN ST ~ | M
IR Seony ' : s
’ 3 ' d Oy-arc ® 'O s " 7 ‘
[- ' HrTe 1 - Ald dynanc 1P
, .

N roguied (8.0 company netaod) n order
¥ o 2l0e9s M Wntrel Rawowe W i bonl of
POraTOie 4 onatie

¥ Tha o] S48 8% & (o a8 Hp Py _' 1

notwark poct for MTTP Tusse! Server

M'ﬁwnc.-“pny Port = 9309

HepPrauyPon « 8 rranrrare marnber of (iralel Bready
wru-n:.:u-w Srsade s 300
MpPronyPasaword =

1 case Syramc P naecs 10 be eganoes

“ Ve
¥ in Cane you 4o ot Arve 8 datc T Addreas on

P Wt sarv The Ldiwrg propetry s to
oot 8 e
1eOynamic TusaeiServerUNL = brue

1D Yor gymamic I Roscktion

8 DONT CHANGE! Qorarsted Dy TostaSeng
Mo DynamiclP = xccx

N UNL W selrving Symamic Turmebiaree I

¥ OONTY OUANGE ! Gunavatad by TuvreiSedg
m-:r-munu.um- = hapct

SaBasiveh
poge y e ¥ Sirirg Kov 304ty Ihe WAN I i sesull fer WANIIMebeval oL
2 Tha SoWe) 44140 1hG ropenty & SAMhEd N T 06l igo Aol
B Vi WANFRG Y WUNL. The I A0ens o pand bore B locion
¥ The LIS, %r the Turmalieovsr 0 came " t
welyname Tirredlaredd, = Ll # o Pl 3G SO00 (P A0S N At 1) 00 Do 1ed v

3 # «CHR1 3 ang «OMR 90
static TernaiSarverURL » Aty Nocaivost 808 WANP RV P

URL S0 retdwing Cymarmis WAN P for local netaork
VEAND Ret ivalUR Lot Davd helinerryip. 104t anp

ot
¥ sl D fir sanang daa
SEND_BUFTFER_BYTES = 50000

Figure 1.7: Tunnel HTTP

http://www.zenz-solutions.de/assets/img/personalhttptunnel.jpg

1.4 HTTP VPN Tunnels

VPNs or Virtual Private Networks are connection between systems over public networks, such as the
Internet, that uses encryption methods to ensure privacy. VPNs can refer to single port to port
encrypted communications or to protocols such as IPSEC that are designed to encapsulate all traffic
between the two systems. A HTTP VPN tunnel is where any VPN technique is uses in conjunction
with a simple HTTP tunnel. VPN tunnels have several advantages over simple tunnels. The biggest
advantage is that the communications between the systems are encrypted. This prevents anyone
whom intercepts the commutations along the network path from being able to decipher the contents.
This also protects the traffic from any intrusion detection systems. Another advantage of HTTP VPN
tunnels, and the largest risk, is that with VPN tunnels it is possible pass any protocol in either

direction, creating a full VPN connection with a remote site.
PRiXY

Simple 'rfTTP tunnel

y: : Encrypted VPN tunne

Routed traffic betwieen the two networks

L

(IR R])

==

Romole Server

Figure 1.8: Tunnel HTTP VPN
https://www.softether.org/@api/deki/files/250/=4-4-3.png

1.5 Secure Socket Layer

Secure Sockets Layer or SSL “is a protocol developed by Netscape for transmitting private
documents via the Internet. SSL works by using a private key to encrypt data that’s transferred over
the SSL connection “ [REC 6101]. While SSL was developed and is the standard for secure web
traffic, a wide range of applications can make use of SSL. Using toolkits like OpenSSL, SSL
authentication and encryption can be built into almost any type of application. Furthermore, by using

a SSL wrapper program like Stunnel you can encrypt arbitrary TCP connections inside SSL.

1.6 Secure Shell

SSH (Secure Shell) was designed as a secure replacement for the UNIX “r” tools such as rsh (remote
shell), rcp (remote copy), and rlogon (remote logon). All three "r" programs require a method for
authenticating that you have permission to login or execute programs on the remote machine.SSH
requires that the user prove his/her identity to the remote machine using public/ private key pairs,
passwords, or hostname and account name information SSH main advantage is that it can “provide
secure encrypted communications between two untrusted hosts over an insecure network”. One
feature of SSH that goes beyond the “r” tools is its ability to create encrypted TCP tunnels between

the local and remote system.

W St

192.163.1.0/24

Terwrl
I

@7\

Figure 1.9: SSH tunnel
http://technologyordie.com/wp-content/uploads/2012/07/ssh_tunnel.jpg

Local tunnels listen on the local (client) machine and relay the traffic to the server. The server then
delivers the traffic to its final destination. The tunnel can be set to listen on the loopback interface or
127.0.0.1 of the client machine. This is convenient when configuring a locally running application to
use the tunnel. However, SSH is not limited to listing on the loopback interface. The tunnel can be set
to listen on a specified port on the network IP of the client system, allowing any machine on the local
network to leverage the SSH tunnel. The final destination for the tunnel can be the server’s loopback

interface, network IP or even a separate system that is reachable by the server system.

10

SSH tunnel final

bt ol e the Local SSH Tunnels

SSH tunnel could listen on
the network IP of the client

Clear toxt allowing another system to
pass traffic through the
SSH encrypted tunnel
SSH tunnel final Enari
destination could be a third SSH tunnel could listen on
party system the loop back IP of the
client allowing locally S

running application to use
the encrypted tunnel to
reach its final destination

Figure 1.10: SSH tunnel 2
https://chamibuddhika.files.wordpress.com/2012/03/sshsessionforwarding.j

Remote tunnels differ from local tunnels by listening on the remote (server) system. Like local
tunnels, the remote system can listen on the loopback interface or the network IP and relay traffic to
the client machine. The final destination from the tunnel can be the client’s loopback interface,

network IP or even a separate system that is reachable by the client system.

SSH tunnel could listen on
the loop back IP of the Remote SSH Tunnels
server allowing locally

running application to use

the encrypted tunnel to
reach its final destination

SSH tunnel final
destination could be a third
SSH tunnel could listen on party system
the network IP of the
server allowing another
system to pass traffic
through the SSH
encrypted tunnel

Figure 1.11: Remote SSH tunnel
https://support.zend.com/hc/article attachments/201327426/debugging_through tunnel.pn

11

1.7 DNS tunneling

DNS is used to perform a forward lookup to find one or more IP addresses for that domain name.
This is known as querying an A record. The user‘s network stack can then send http traffic to the
destination IP address. DNS is constantly being enhanced to provide new capabilities. DNS has over
30 record types with many of the common ones being critical to core internet services. As mentioned
earlier, the A record type maps a domain name to an IPv4 address. The AAAA record is used to map
a domain to an IPv6 address. The CNAME record type is used to map a domain name to the
canonical name. The MX record type is used to define mail servers for a domain. The NS record type
is used to define authoritative name servers for a domain. The PTR or pointer record is commonly
used to map an IP address to its domain name. This is commonly referred to as a reverse lookup. The
TXT record type is used to return text data. This record type has been leveraged for specific purposes
such as Sender Policy Framework (SPF) for anti-spam. DNS uses both UDP server port 53 and TCP
server port 53 for communications. Typically, UDP is used, but TCP will be used for zone transfers

or with payloads over 512 bytes.

1.8 Encoding and Techniques

The DNS tunneling utilities can make use of different DNS record types and encoding methods. In
some cases, such as iodine, the utility will auto detect the best possible encoding.

The implementation details are where the various DNS tunneling utilities differ. DNS utilities vary in
implementation language used, for instance, C, Java, Perl and Python to name a few. Some utilities
use a TUN or TAP virtual adapter to create a local interface and IP address for the tunnel on the hosts.
Other programs, as Netcat, simply create tunnels, encapsulating the information in any protocol,
transmit binary data and can be used to execute commands in a remote machine or transfer files.

The encoding method including DNS record type is an area where tools have been implemented
differently. Some utilities use common record types such as A records. Others use experimental types
such as Null records and EDNS to improve performance. There is also the Extension Mechanisms for
DNS (EDNS). If EDNS is supported by both hosts in DNS communication, then UDP payloads
greater than 512 bytes can be used. EDNS is a feature that can be leveraged to improve bandwidth for
DNS tunneling. One DNS tunneling utility, Heyoka will spoof the source IP addresses for requests to
the server (upstream data) to lower the visibility of the client.

One technique is to encode data in DNS payloads. This is an area where the specifics of each utility
vary widely. From a high level simplified point of view, the client wants to send data to server. It will
encode that data in the DNS payload. For example, the client could send an A record request where

the data is encoded in the hostname:

12

MRZGS3TLEBWW64TFEBXXMYLMORUW4ZI.t.example.com.
The server could respond with an answer as a CNAME response:
NVWW2IDPOZQWY5DJNZSQ.t.example.com.

In this way any data can be encoded and sent to the server. The server can also respond with any data.

Also If there is a need for the server to initiate a communication, it cannot be done directly. Clients do
not have a service listening for DNS requests and are typically behind a firewall. Server initiated
communication can however be accomplished by having the client regularly poll the server. Then, if

the server has data for the client it can send it as a response to the polling requests.

Base32 Encoding

Base32 or 5-bit encoding is commonly used for requests from the client. While DN'S names can have
upper case and lower case, the case is to be ignored which leaves 26 letters. Additionally, numbers
and the ' - ' character are allowed. This provides a total of 37 unique characters. Therefore, we can
take data 5 bits at a time which gives us 32 possible values. These 32 values can fit within our 37
available characters. We can then build a string of nested sub domains out of the encoded data. DN'S

will allow up to 255 characters in total with each sub domain (aka label) being 63 characters or less.

Base64 Encoding

Base64 or 6-bit encoding can be used for TXT record responses. A TXT record can have upper and
lower case which provides 52 characters. The numbers add another 10 characters. If we add two
additional characters such as - and +, then we have 64 unique values which can be used for base 64
encoding. Similar to the Base32 encoded request, the response can be encoded 6 bits at a time using a

TXT response and sent back to the client.

Binary (8 bit) Encoding

Binary 8-bit encoding can be used. The authors of Heyoka [Heyoka] found that although it doesn‘t
work with every DNS server, they could successfully use 8 bits per character for encoding which
supports greater bandwidth through the tunnel. Additionally, for example lodine, that is one

application for do DNS tunnels, uses Null type records for responses to provide 8 bit encoding.

NetBIOS Encoding

NetBIOS encoding is another method of encoding data that has been used. For NetBIOS encoding,
each byte is split in to 4 bit nibbles. Decimal 65 is added to each nibble. Each byte then is encoded in
to two characters in a DNS label. This method is only used by DNScat-B

13

Hex Encoding

Hex encoding is another method of encoding. For hex encoding, the two characters hex values are

used to represent each byte. This method is only used by DNScat-B.

1.9 Uses of DNS tunneling

Some of the most common uses of DNS tunnels are to get free Wi-Fi access for sites with a captive
portal for http, but free flowing DNS. These tools can also be used for more malicious activities. A
DNS tunnel can be used for as a full remote control channel for a compromised internal host.
Capabilities include Operating System (OS) commands, file transfers or even a full IP tunnel. For
example, data exfiltration via DNS tunneling is a method incorporated in to the squeeza penetration
testing tool (Haroon, 2007). It has been shown that DNS tunneling can achieve bandwidth of 110
KB/s (Kilobytes per second) with latency of 150 ms (Van Leijenhorst, 2008).

In order to tunnel data up, so from your client on the protected network to the external server, your
machine will encode the data using Base32 (due to the limited character set allowed in the queries). It

will then launch a DNS request as follows:
[data].domainname.tld

What happens then, is that your client will request this to the local DNS server. It will contact .tld to
obtain the name servers for "domainname.tld", after which it connects to that name server with this
request. The name server at "domainname.tld" is of course under your control and instead of
interpreting it as a regular query, it will store the data in the form it sees fit. The response it gives in
the end, will be the downstream data to be tunneled back to you. This data is encoded using Base64,
as the characters allowed in the data part of TXT records (the response) is much more liberal. This
way it becomes possible for you to set up a session through DNS you send data up in the form of
queries, and get data back in the form of responses. One more example, in this case we would like to
tunnel out the command: "The flowers are growing in November" and you receive the response "As

they were growing in May".

DNS request:
k2qa6goccrreni9ej3826plcOpp4nntedjre6gdde3 8sknpeSbrdmi9e.domainname.tld

DNS response:
QXMgdGhleSB3ZXJlIGdyb3dpbmcgaW4gTWEFE5S

14

Using this same mechanism, not only can innocent messages be tunneled, but a complete IP tunnel
can be set up, or large files can be transferred. It just consists of converting the activity you want to

complete into this format, afterwards re-interpreting them at the receiving end.

User connects to internet DNS Tunnel
through DNS tunnel T
™ () o ‘—'. Latesrnat : ’_ » &

All other network traffic is blocked
Figure 1.12: DNS tunnel
https://www.blubgoo.com/wp-content/uploads/2014/01/ip_over dns_tunnel-e1389889549194.png

Some of the DNS tunneling utilities will create a tunnel or a TAP interface locally on the endpoint
system. There will also be a TUN or a TAP device on the DNS server hosting the DNS tunneling
tool. This will allow the user to tunnel IP traffic to the internet. This technique is similar to how VPN
software works such as OpenVPN. There are even commercial service providers that provide the
server side tunnel as a service. These services can be marketed as VPN over DNS.

All of the utilities use similar core techniques but have variation on encoding and other
implementation details. The core techniques used by all DNS tunneling utilities include a controlled
domain or sub domain, a server side component, a client side component and data encoded in DNS
payloads. The controlled domain is used to define the authoritative name server for that domain or
sub domain. The server side component will be referred to as a DNS tunnel server. The DNS tunnel
server will be the authoritative name server for the controlled domain. The DNS tunnel server will
typically be an internet accessible server controlled by the tunnel user. The client side component
hosts the other end of the tunnel. This could be an endpoint in a security controlled enterprise
environment. The tunnel could be used to communicate past the security controls and allow
communication between the controlled endpoint and an arbitrary host on the internet. The client side
component initiates a DNS request for which the DNS tunneling server is the authoritative name

SCrver.

15

1.10 Known DNS tunneling applications

There are a number of different utilities for DNS tunneling. Some of them are exposed here.

DeNiSe

DeNiSe is a proof of concept for tunneling TCP over DNS in Python. The github page for DeNiSe
has six python scripting dating between 2002 and 2006 (mdornseif,2002).

DNS2tcp

dns2tcp was written by Olivier Dembour and Nicolas Collignon. It is written in C and runs on Linux.

The client can run on Windows. It supports KEY and TXT request types (Dembour, 2008).

DNScapy

DNScapy was developed by Pierre Bienaime. It uses Scapy for packet generation. DNScapy supports
SSH tunneling over DNS including a Socks proxy. It can be configured to use CNAME or TXT

records or both randomly (Bienaime, 2011).

DNScat (DNScat-P)

DNScat (DNScat-P) was originally released in 2004 and the most recent version was released in
2005. It was written by Tadeusz Pietraszek. DNScat is presented as a swiss army knife tool with
many uses involving bi-directional communication through DNS. DNScat is Java based and runs on
Unix like systems. DNScat supports A record and CNAME record requests (Pietraszek, 2004). Since
there are two utilities named DNScat, this one will be referred to as DNScat-P in this paper to

distinguish it from the other one.

DNScat (DNScat-B)

DNScat (DNScat-B) was written by Ron Bowes. The earliest known public release was in 2010. It
runs on Linux, Mac OS X and Windows. DNScat will encode requests in either NetBIOS encoding or
hex encoding. DNScat can make use of A, AAAA, CNAME, NS, TXT and MX records. It provides a
datagram and a stream mode. There is also a DNScat-B based Metasploit payload (Bowes, 2010).

Heyoka

Heyoka is a Proof of Concept which creates a bi-directional tunnel for data exfiltration. This tool is
written in C and has been tested on Windows. Heyoka was developed by Alberto Revelli and Nico
Leidecker. It uses binary data instead of 32 or 64 bit encoded data to increase bandwidth. It also uses
EDNS to allow DNS messages greater than 512 bytes. Heyoka also uses source spoofing to make it
appear that the requests are spread out over multiple IP addresses (Revelli, 2009).

16

Todine

Iodine is a DNS tunneling program first released in 2006 with updates as recently as 2010. It was
developed by Bjorn Andersson and Erik Ekman. lodine is written in C and it runs on Linux, Mac OS
X, Windows and others. lodine has been ported to Android. It uses a tun or tap interface on the

endpoint (Andersson, 2010).

NSTX

NSTX (Nameserver Transfer Protocol) From Florian Heinz and Julien Oster was released in 2000. It
runs only on Linux. NSTX makes it possible to create IP tunnels using DNS (NSTX, 2002). It tunnels

the traffic using either a tun or tap interface on the endpoints.

OzymanDNS

OzymanDNS is written in Perl by Dan Kaminsky in 2004. It is used to setup an SSH tunnel over DNS

or for file transfer. Requests are base32 encoded and responses are base64 encoded TXT records.

Psudp

psudp was developed by Kenton Born. It injects data into existing DNS requests by modifying the
IP/UDP lengths. It requires all hosts participating in the covert network to send their DNS requests to
a Broker service which can hold messages for a specific host until a DNS request comes from that

host. The message can then be sent in the response (Born, 2010a).

Squeeza

Squeeza is an SQL injection tool. It splits the command channel and the data exfiltration channel. The
command channel can be used to create data in a database and execute other commands. It supports
three data exfiltration channels: http errors, timing and DNS. For the DNS channel data is encoded in

the Fully Qualified Domain Name (FQDN) used in the request (Haroon, 2007).

Tcp-over- DNS

Tcp-overdns was released in 2008. It has a Java based server and a Java based client. It runs on
Windows, Linux and Solaris. It supports LZMA compression and both TCP and UDP traffic
tunneling (Analogbit, 2008).

Tuns

TUNS was developed by Lucas Nussbaum. TUNS is written in Ruby. It does not use any
experimental or seldom used record types. It uses only CNAME records. It adjusts the MTU used to

17

140 characters to match the data in a DNS request. TUNS may be harder to detect, but it comes at a

performance cost (Nussbaum, 2009).

Malware using DNS

DNS has been used as a communication method by malware. Known malware using DNS include:
Feederbot (Dietrich, 2011) and Moto (Mullaney, 2011). Both of these malware examples use DNS

TXT records for command and control.

18

2. Security measures

Most of the programs or services to create DNS tunnels, are not very discreet to transmit information,
so if a good analysis of DNS traffic is performed can be detected easily, but it is more difficult to
know the content of what is this transmitting, because often times the information is encrypted.
Currently most companies focus their security in network traffic, HTTP, email, etc., and do not give
importance to the DNS traffic, which can be a major failure. Typically, URLs or domain names
FQDN (Fully qualified domain name), are easy words to remember for human familiar words that
may have some number or symbol also, words that exist in the dictionary or comply with rules of
writing, grammar, but as the DNS protocol is world there are many possibilities of FQDN because of
the variety of languages and different characters used in them. Also keep in mind that there DGA
generation algorithms name very similar to methods of coding domain name domain.

The format of an FQDN is the computer name a "." and the domain name, so an example might be,
servidorl.empresa.com. The maximum length allowed for one FQDN is 255 characters (bytes), with
an additional restriction to 63 bytes per label in a domain name. The FQDN labels are restricted to a
limited character set: letters A-Z ASCII, digits, and the character '-', and not case-sensitive. Besides
some characters more than were added in 2004 "4, 0, U, é, a, ¢ ...". For this to identify tunnels DNS
we will have to apply rules that determine when a DNS request is real or when trying to convey
hidden information.

Basically methods to uncover tunnels DNS, DNS are to analyze the traffic and the payload of the
DNS packets. Some of the important things to look for when analyzing for example the payload of
DNS are the size of requests and responses, the entropy of hostnames, analyze the types of records
that are not commonly used as TXT and its contents, see if some team frequently query external DNS,
assuming that in an enterprise environment will have internal DNS that provide most addresses used
in the company, perform statistical and grammatical analysis of the names of DNS requests, because
as | mentioned above, these are usually readable and easy to remember for humans, and there are also
signatures developed for certain applications that allow us to check the DNS header and payload
content of a DNS package.

19

R e e Gr Gamun Ml G Wegheny Wi s
AREN LORB e TLQERAAD

T e B0 e+
w e V) R L BT e .
o Al BN L0 1 L,) W) v 00 i goary reipenns e AN cLiantod puagle.com Ol cLlonto. L poagle, com AAM Dodd L4004 M)) (4,
CERE T TRNTERS RN WL m T Wanderd quiry BO30E A Wk pelitle o
S NLDOUS 10051800 ILLA A AL L M Sondord poary responot B398 A L ptotic,com A 1655, 599,95 08 rad peagle, oo W A2 pougle, o A6 i g,
LIRS IR Lol N TN N RN ML tm 1 Viderd gy il A Gk gutic o
LLLSIR AL DR TR e BL N L LLLRPEL I LI L o A VIl query Peipitae Bude M AL Gs L Rt cem WML JWRT TR L e W L g le e W) gy
ST LA 00001 WM 1M 0 " W Sanderd guary Dol 4 rlocomagrvmcpie, puogleviden e
(LS PR R TLR N BT PLLR LB LI L L] U0 100000 Qv PoLponce BuMte 4 20 0nCpivpe-cghe gl i Sed con DN TLia-Cpovpe e piaglavitee Coe
NL AR WA WLIN W Wkt qeary SATE AN 1o e e geegle e o
S NLAD 100818 0 100810 o, T Vwdard quary renporne BATE A Lo an cqoepn gt pongleviien con (MR TLan qrepe g preglevide
D ML W13, UP.2019.50 e 10 Sanderd qerry D230 & 2130 un paqliney. o Leviinsiom
SN JLTIY .00 M0 WL L 8 Stwnderd qutry retpinde SotD0 A rL2 o v pialiney proglevien, o (W 52,00 phaioney poigieviden (e A 11,
SN ML ME 0 RS SN RN o 03 St ey BT MM 7L an-pigl ey goeglevide, o
S DL NS Y I e LIS NN m TN VI ety Pepiact BeWATe ARA 7L< e liney Poievhing, oom (Y ri} VAP Ly i e L (i A, '
MA TRANTSS 0RO W0 L3 W Sndard gury Bk A wd et 0w
SR L RN L N B W v o 130 10wt utry ronponct Banlds 00 bech e & Dl P Bt con SO ¢ At o v

; Prae ASI0A1 307 yRek o wdre (3336 3AtH), 367 bylen captered (3330 Bt1) o deterfeie @ +
| ermet 25, Secl Mewletth M0 (00 i RIMIH), Bote AsatewC 3N e (0PI 00 fe)

|7 Intarnat Provocel Versies 4, Seci WO 20N, JAD, Duti M0, 000100 190

: Doer Datagrae Protical, 1r¢ rti W0 (M), Dt et Wzie (S0

| @ Gumnis Seme Syiies (resprese)

D0] '
[Thors B 0000000 wonends|

Traniacthon 1B BTy

Flagh BuRIBe VUMM Quiry (b, W i

Sestionsl |

e Wy)

Atheriny Wy 4

A el By .
[Nl dliNeg Ol .
:.‘ 2R R R E N B i
| . M]
“wa NESRIILeeN
e TN HAMANS)
nwvy JAR IR R 2

© 7 o o v (el T50em

Pades M) Derted 3 0 1IN I et
Figure 2.1: Capture DNS packets with Wireshark

As seen in the image, captured DNS packets on a network have this structure, we must analyze each
field and ensure that the information they contain is logical and does not violate the normal behavior
of a DNS message.
As we know there are 3 types of DNS messages, questions, answers and updates, their structures are
defined in RFC 1035, RFC 2929 and RFC 2136, each a set of values for these fields specified in RFC
are used. Normally the structure of the DNS message is:

Format PDU DNS

General Format

Header 12 bytes
0 or 1 issue (Q) Variable size
0 or 1 RR responses (R) Variable size

0 or 1 RR permitted references (A) | Variable size

0 or 1 RR additional information (I) | Variable size

Figure 2.2: Format PDU DNS

20

bytes 0-1

octet 2

octet 3

bytes 4-5
bytes 6-7
bytes 8-9

bytes 10-11

Bits

2.4

1.3

5.7

Format of the header DNS

Field

Identify

Type-PDU

Operation code

AA

TC

FROM

Error code

Number of questions

Number of responses

Authorized number of references

Number of additional information

Values

0=QUERY

1I=ANSWER

0 = Normal
1 = Reverse

2 = server status

1 = authoritative response
1 = truncated response

1 = requested recursion

1 = recursion available

0

0 = no error
1 = error on issue
2 = server error
3 = nonexistent name
4 = not answer
5 = Response refusal

Figure 2.3: Format of header PDU DNS

21

Format of question DNS

NAME | Resource name Variable size

1=A 2=NS 5=CNAME 6=SOA 12=PTR 13=HINFO
TYPE 2 bytes
15=MX 28=AAAA 255=*

CLASS |1 = Internet 2 bytes

Figure 2.4: Format question DNS

Format of a RR
NAME Resource name Variable size
TYPE RR type 2 bytes

CLASS O=Internet 1=Chaos |2 bytes

TTL Period of validity 2 bytes
RDLENGTH Size RDATA 2 bytes
RDATA RR data Variable size

Figure 2.5: Format response DNS

Then knowing the structure of a DNS message and possible values and meanings of the fields, I will
explain in more detail some methods that can be used to analyze and detect messages tunneling

technique.

2.1 Length of messages

Focusing on analyzing the size of requests and responses, usually in tunneling DNS as much possible
data is transmitted in each message, so using some application packet capture and network filtering
that interest us DNS, store information the values of DNS message ficlds in a database, and compare
these values within normal limits. For example, if you are trying to discover if DNS tunneling that
sends data out of the network, data exfiltration occurs, observe the values of the fields in which the
source computer sends twice or more data than that DNS response received, also if server responses
are 0 bytes, there is likely more concerned DNS tunnel. In the same way you can check if this
happening infiltration data, noting that DNS requests of small size (bytes) a team receives responses
from large size (bytes), in addition to further define a rule you can set a minimum value based on the
average size of requests or normal DNS responses, which could be for example 80 bytes as average
size for DNS requests and 180 bytes for DNS responses, as well as know the answer DNS contained
within the request DNS so the size the response will be greater than the demand, also if depending on

the number of responses you can make an estimate of the size that could have a reply Another feature

22

to consider that can help us discover a tunnel DNS is the label size, as we know that the limit for label
is 63 characters (bytes), all those that approximate this amount are suspicious of tunneling so we will
have to focus on analyzing them, besides those messages containing long names 255 characters,

Another recommendation is to look at all hostname requests longer than 52 characters.

2.2 In-depth analysis of DNS messages

As I mentioned earlier the names of servers or domains tend to be easily readable and memorable for
humans, so we can focus also on analyzing requests for DNS names with strange grammar or
characters, for example usually they have few numbers, thus making analysis of hostnames, we can
detect foreign hostnames, they can be with many consecutive numeric digits or interspersed with
consonants, several consecutive consonants would also be suspect, or apply the rules of grammar of
the language and set some benchmarks in which we allow to discover possible tunnels DNS through
information hidden in hostnames, also can be compared hostnames DNS requests with the words
from a dictionary or database, and it all depends if we analyze a packet or message more deeply we
must take into account the time it would use the system to analyze all the packages, if we want more
accurate cost analysis longer.

You can also analyze the entropy of host names to encode information because this value will be
higher than normal that when writing any word in any language.

You may also analyze the hostnames and look LMS, significant longest substring, or identify the
number of unique characters in a hostname, perform frequency analysis of characters, etc. You can
use many analysis techniques hostnames but bear in mind also the time taken to analyze in great
detail each message.

Another suspect point that can help us detect tunneling DNS is look at the types of records, if most
are unusual such as TXT, MX and also the number of bytes is quite large near the allowable limits,
this can be a good indicator that there DNS tunnel. Also it can be applied almost the same of analysis
techniques that hostnames, statistical analysis of information containing the TXT record, analyze
entropy, frequency of characters, etc, because normally the information in these records is usually
readable by human, and a high rate of entropy and large amount of data on this may be a good test of
DNS tunnel.

As it is known the limit of a DNS packet is 512 bytes but this can be increased to 1024 bytes with
EDnS, extension packages DNS, this is not normal but can be used sometimes for DNS messages that
contain a lot of information, for example, if a DNS message is about 250 bytes, 512-250 would have
about 262 free bytes to hide additional information by encapsulating with a protocol such as IP or
UDP, this does not mean that all DNS packets EDnS concerned insurance DNS tunnel, but it may be
an indication, also when this technique is used to hide information in a DNS packet, usually hidden
information is added at the end after the useful information from DNS message, which have the

facility to check the contents in the header the message DNS not the total size of the DNS message

23

appears because the records it contains can be variable in size but can be calculated inspecting the
contents of the message and consider whether to encapsulate IP or UDP after the useful content of the
DNS exists grand amount of added information, it may be DNS tunnel. There is a possibility that the
information does not hide this at the end of the IP or UDP frame this more difficult to detect the
hidden information so serious, but not impossible.

Caution because the most sophisticated techniques to hide data in DNS packets, these do not add
hidden information at the end of the packet data, in payload.

These techniques make use of pointers, adding a pointer to the end of the payload of the packet, after
the hidden information, referencing valid previous DNS packet fields, so that the package looks
normal, but contains the information hidden in the middle of the packet data.

This method also can be detected because it meets some features, for example contains several
pointers in the packet data in the payload, and all pointers referenced previous valid package labels,
and at the end of the packet data, will always be a pointer that pointed to data that match the size of
the UDP packet.

With this technique programs that capture network packets in a similar way as Wireshark do not
detect the package as suspicious but provide hidden information as shown in Figure 2.6.

192,168.0, 304 192.368,0.107 [05 [l STANGArd Suery response CNAME Bt

M

P TIags: SxBiB0 (STmdard query response, NS error)

Questions: 1

Answer FRs: 5

Authority RRs: 4

Additiomal RRs: 8§
8800 O 60 0L €0 G2 2l DY OB 96 83
800 109 02 W 91 007 2] BT
M0 0P 10200l M2
003 32 ¢® 10 O 10 00 02 00 81 00
§0e9 G 73 M) 10 de 06X TE 65 72
M N7 TS0

73 31 <0 18 co seasasE nsl...
8) &« 73 32 cO ns)
00 05 03 Ce 73 . " o
al bré0 0683 2..... e s ad ord
67 Of de Ge 6] nsd, . Nev er goona

R VESSRY

6t 1% 20 o J2¢ 20 4¢ 05 QIVE YO ¢ W, W
Gl0d T6 65 72 20 &7 61 G G 61 20 65 74 20 79 6t ver @om a2 let yo
Bl10 TS 20 G4 6T 77 6 2¢ 29 de 65 76 65 72 20 67 of U down, Never go

o
-

5 6 65 20 0] ANy run aroend a

3
D129 Ce Ge O} 290 72 7500 29 61 72
2 7420 TYGTYS Je 20 3¢ nd deser T you., N

OL3 Gc 64 20 63 65 V3065 12
Figure 2.6: Packet tunnel DNS with injection of data in the middle
http://3.bp.blogspot.com/-xeVQApHISdc/TnJ1 Q74DI/AAAAAAAAABC/HIEbID7 yMI/s1600/dns.png

Another feature that can help us identify tunneling DNS, is to control the destinations of DNS
requests, because if we are in a controlled environment company, which have local DNS, then most
normal DNS requests are found in the cache or local DNS of the company, so if we find that some
client is constantly performing DNS queries to external servers on the Internet, it is possible to be
transmitting hidden information through external DNS servers.

There are specific to detect DNS tunneling techniques in certain applications. These are called
specific signatures, developed by some researchers or companies, and these can detect the method

used to create DNS tunnels in some popular applications.

24

But the problem of these firms is that only detect certain specific types DNS tunnels developed in a
concrete way.

For example, Snort signature was developed for detecting NSTX DNS tunneling (Van Horenbeeck,
2000).

alert udp SEXTERNAL NET any -> SHOME NET 53 (msg:"Potential NSTX DNS

Tunneling"; content:" |01 00|"; offset:2; within:4; content:"cT";

offset:12; depth:3; content:" |00 10 00 o1|"; within:255;
classtype:badunknown;

sid:1000 2;)

To summarize, this signature is looking for a standard DNS query for a TXT resource record with text

"¢T"l near the beginning of the domain name.

Applying all these tips mentioned above have a great chance of detecting most of attempts to perform
DNS tunneling. We can use any of them and best of all is when they are combined. Besides this we
can also focus on analyzing the DNS packet traffic on a network, because everything mentioned so
far is to analyze the content of DNS messages and not the amount or frequency of these messages.
Below I will focus more on explaining methods to control and detect any DNS tunneling tips based
on traffic packet and not its content. And at the very end if we use a combination of methods
previously explained, and I will explain, we would get a good level of security against DNS tunnels,

does not ensure that none exists, but greatly reduces the likelihood that these exist in our network.

2.3 Analyze network traffic

Other tips that can help us to discover a hidden DNS tunnel is to analyze network traffic to port 53
which is used by DNS, considering what is the origin of the requests and what is the destination. Also
if you see a great number of unusual requests DNS this could be another indication. As is known, if is
not used EDNS technique, extension of DNS messages, the limit of the DNS messages is 512 bytes,
so for transmitting big amount information will be necessary a lot of requests and responses DNS.
Also as is explained before, if the client is receiving a big amount information from outside, from
fake DNS server, and the server cannot send requests to client, the client will continually sending
small false requests to server for receive the information in responses from server.

Therefore, I will explain some points more specifically to discover DNS tunneling. For example, if
we observe a continuous amount of DNS requests from the same source IP to a DNS server, it might
indicate a DNS tunnel. But with this we are not only safe as it can falsify or manipulate source IP so it
appears that the source IP is different in each case.

Another important point is to look at the domain being queried, if detects many DNS requests, and all
of them to a specific domain where only change the subdomains in the requests, and also if
subdomains looks strange, exist a big possibility that will be DNS tunnel. Because the domain that is

consulting can belong to fake DNS server that is controlled by evil user or unwanted user.

25

The part of the DNS request that belong to subdomain is the hidden information, but be careful with
this because the same DNS server controlled by unwanted user, may have multiple alias or multiple
domains names and the DNS requests can be targeted each time to one of these different alias or
domains names.

Also if we see the same domain in which there have been many requests to unique names that have
not been repeated, it can be great indication of DNS tunnel.

In a company that does not do business internationally, look for a significant number of DNS requests
or responses, to parts of the world where there should be communication, control foreign origins and
destinations. Further it is also advisable to observe when certain DNS records Type A or NS to our
DNS servers are added if these domains should not be strange or may be an indication to detect DN'S
tunnels.

Another feature that can help to detect a covert DNS channel is to analyze the applications that use
the DNS requests. Because a DNS request usually is related to an application like HTTP or another
applications, that need to know some IP address for communication with other computer. Also note
that sometimes some applications do DNS requests for security, so do not confuse this with strange
applications, or sometimes one device may do reverse lookups for know one IP address.

Anti-spam solutions use DNS queries to check if IP address given is on a black list. An endpoint
security product DNS queries use an encoded file hash with embedded in the FQDN to check the
reputation of suspicious file.

Finally, we see that there are many characteristics that may indicate that there are DNS tunnels on a
network, but it is very difficult to make a program or application to detect with 100% reliability all
the techniques of DNS tunnel. However, there are many indications that can help us to detect this, so
would be possible create one application that report strange traffic in the network, also with the help
of a computer expert in the company, can be reduced or completely eliminate the risk of DNS tunnels.
One application that eliminates any communication that is indicative of this technique, maybe can
eliminate false positives too, or restrict communications that should be allowed and this is harm for
the network.

How difficult is to establish the optimal values of the parameters?, like delay of packets, size of
requests and responses, or amount of DNS traffic.

This depends on each company or network according to the purposes and characteristics that these
have, as the numbers of users, the type of network, etc, so cannot set static values.

With the use of signatures or programs to detect we can reduce the possibility of tunnel DNS on our
network, but not 100% guarantee that this does not exist, because there are many ways to convey
hidden information and any hacker could change the existing tunneling methods making the detection
algorithms clueless.

Another important point to consider depends on the security and information involved in our network,

is important have a good organization of our DNS servers, good control about DNS zones in our

26

server and which servers can consult our DNS server if it does not have one IP in his database, this is
called the recursion on DNS server and is good controlling which servers are authorized for resolve
this.

Also is not the same the work in one network that can allow connection any user or computer that
connect in our network, this kind can have dynamic IPs and will be more difficult identification the
computers if something happen, that one network where all users or computers must be known, where
can be assigned statics IPs for each computer, where is not allow connection for any computer, and
where can be controlled which DNS server is used for the computers.

Using all the tips mentioned in this document there is a high probability of detecting a DNS tunnel
and eliminate or restrict its use, analyzing the content of DNS requests and responses or analyzing the
traffic that flows through our network.

This last point to analyze network traffic, can also be taken into account to detect any abnormality in
our network, either DNS or tunneling tunnel through any protocol or method, good control of network
traffic can help to reduce the risks of unwanted information is transmitted.

In the following parts of this document I will explain more practical issues and demonstrate how to

implement a DNS tunnel with existing tools and how to apply countermeasures for detecting this.

27

3. Experiments

After researching on the various existing applications available to create tunnels DNS, I think the best
and most complete is Iodine. This program works on multiple operating systems and distributions,
Linux, Mac OS X, FreeBSD, NetBSD, OpenBSD and Windows but in Windows needs a TUN / TAP
device. The bandwidth is asymmetrical with limited upstream and up to 1 Mbit/s downstream. No
matter that the client and server are on different operating systems, they can communicate with each
other.

The program for the side of server and the side of client, it is easy to use but depends of operating
system which use, normally is enough with install the program is both sides and execute one
command for run, but as I said this depends of operating systems. In my experiments I used the server
in Ubuntu system and the client in windows 7 system, will be explained step by step how install and
run the lodine program in these systems.

Also in internet is possible found a lot information about how install this application lodine in
different operating systems, as those named above, Mac OS X, FreeBSD, etc.

There are more programs like heyoka but there is little information about it, how to install and use,
plus Iodine has more options and parameters that allow us to adapt to the network environment in
which we find ourselves, allowing us to use various types of DNS records to transmit information,
such as NULL, PRIVATE, TXT, SRV, MX, CNAME and A. It also allows you to use various types
of character encodings, which according to the amount and/or type of information we want to convey

can use one or the other. The types of encoding are as follows:

e Base32 is the lowest-grade codec and Should always work; When this is used auto detection
fails.

e Base64 Provides more bandwidth, but May not work on all name servers. Base64u is equal to
Base64 except in using underscore (' ") INSTEAD OF plus sign (+'), possibly working
Where Base64 does not.

e Basel28 use high byte values (mostly accented letters in is08859-1).

Other existing programs already mentioned above as Ozymandns, or DNScat, Squeeza, only allow
transmitting information with a type of coding or some type of DNS single record. Others like NSTX
are obsolete and no longer maintained and people who used this program now recommend using
iodine.

Iodine is the most advanced program that exist at moment, it allow create DNS tunnels with different
configurations, as I said before it can use all of types records of DNS packets, as NULL, PRIVATE,
TXT, SRV, MX, CNAME and A, also it allow running with different kinds of codification for the

28

communication, as Base32, Base64 or Base 128. Also it allows use any network interface that have in
the computer, as Ethernet, Wireless, etc, and configure which interface will work with tunnel or
which interface we want work like normal. Besides it has options for use any port that you wish for
the communication, not is obligatory used the port 53. It allows to establish the maximum MTU size,
it allows force maximum downstream fragment size., maximum length of upstream hostnames, by
default is 255, besides maximum interval between requests (pings) so that intermediate DNS servers
will not time out. It is most used for this kind of communication also it is the most completely and it
allow the most different executions using its several parameters, these will show below. For more

information, consult your manual page lodine.

3.1 Requirements to create a DNS tunnel with Iodine

Iodine 0.5.x can be downloaded from http://code.kryo.se/iodine/. If used in Windows you must first

install a TUN/TARP interface, which is a part of Open VP, for instance. Open VPN can be downloaded
from here: https://openvpn.net/index.php/open-source/downloads.html

DNS server is required with internet connection and public IP, is needs a domain. (If you do not have
this you can use any DNS service free internet in my example, I use FreeDNS

(https://freedns.afraid.org/).

3.2 How to install Iodine

In my experiments I used Windows 7 and Ubuntu, but lodine can run in several operating systems, |
will explain how to install Iodine in this systems. First know that lodine work like client-server, so
will be necessary install the program in both sides.

First of all, we will add two new entries to our DNS server, in our domain, if we don't have DNS
server, use the previously mentioned FreeDNS. In my case, I used a free public domain,

"chickenkiller.com". The steps to configure iodine are as follows:

e We added a record type with the name you want for our DNS server.

tlnn IN A 147.229.176.18

e Weadd a NS record type point to our previous server.

tlnnns IN NS tlnn.chickenkiller.com

First for run lodine in Windows is necessary install the TUN / TAP interface in computer of server
and computer of client, you can do it downloading the program OpenVPN from here.
e After this for install the server part in Windows 7, download the program from the link above. In

the folder will have the application for side client and for side server, we can differentiate because

29

the program for the client is Iodine.exe and the program for the server is lIodined.exe, look the
final "d".
e After this, open a console in windows 7, always work like admin, go to the directory where is the
program and execute the follows command:
e For server side in Windows:
>TIodined.exe -f 192.168.1.1/24 ourdomain.com
Where 192.168.1.1/24 will be the IPs for our tunnel, and ourdomain.com will be our name of domain,
in my experiments I used tlnn.chickenkiller.com, but can be another one, also the program will ask
you for one password, write the password that you wish and remember this for after. Now we have

the server running on windows, then I'll show you how to run the server on Linux, Ubuntu.

e For install Iodine in Ubuntu, open one console and write:

$sudo apt-get install iodine.

e After open the file /etc/default/iodine and edit this file:
$gedit /etc/default/iodine
Default settings for iodine. This file is sourced from
/etc/init.d/iodined
START IODINED="true"
IODINED ARGS="192.168.1.1 tlnn.chikenkiller.com"
IODINED PASSWORD="Password for the connection"

"The IP 192.168.1.1 can be any private IP, this will be IP for the tunnel connection."

e Save the file, and write the next commands in the console, this commands are for the server send
forward all the traffic received from client, will allow the client connect to internet, eth0 must be

the interface that provide internet to server:

Secho 1 > /proc/sys/net/ipv4/ip forward
Siptables —-A POSTROUTING -t nat -s 192.168.1.0/24 -o eth0 -j MASQUERADE

e Finally restart the iodine server for apply the changes, the server will be running;:

$/etc/init.d/iodined restart

If everything was correct server you will be running as shown here:

30

Figure 3.1: Iodine running OK

The client side was in my case installed on a Windows 7, but can be installed on another Linux or any
other system. Installing client in Linux is the same as the server but instead of using the executable
iodined, the executable is iodine. To use iodine on Windows as I mentioned before, a TUN/TAP
interface must be properly installed. It can be installed as a part of Open VPN. If you do not want to
install the full program, install only the interface TUN / TAP. To do so, choose the option TAP
Virtual Ethernet Adapter as shown in Figure 3.2.

31

4 PEN \v/P N zmm&wz.ximmm-

Sedect the components D rstalLpgrace. 5500 amy Openv® ™ crocesses or the Operi®ny
soruoe £ 0o eaveg. Al DULs e ntabed localy .

Setect covporents 1o ratal

Figure 3.2: Installing TUN/TAP interface

After this installation, if we already have the iodine downloaded in our computer, open the console

like root or admin and go to the directory of iodine, and run the following command in our console:

iodine.exe —-f 147.229.176.18 tlnn.chickenkiller.com

If everything is correctly configured the tunnel will be created between a Linux (server) machine and
Windows (Client) machine as the data discussed in this document, the IPs tunnel created will be
192.168.1.1 the server side and 192.168.1.2 the client side to verify that the tunnel is successfully
created and the communication is working, try to do ping from one end to another, as shown in Figure

3.3.

32

El- e 2| 4] . BT IO R

Figure 3.3: Checking connection with "ping" after create the tunnel

Now the tunnel between the two machines is created and we can transmit information. If you want the
client machine send all the information through the DNS tunnel, you have to modify a client’s routing
table. Type the following commands in the CLI of you client’s operating system (in my case

Windows, but for Linux it will be similar):

>route add 0.0.0.0 mask 0.0.0.0 192.168.1.1 metric 10 1if 20
>route del 0.0.0.0 mask 0.0.0.0 10.10.10.1

Here, 192.168.1.1 is the IP of server side, the metric should be smaller that the existing default route,
number 20 in my case is the number that identifies my interface TUN/TAP, and 10.10.10.1, in my

case is the IP address of the existing gateway..

The client will be transmitting all information through the DNS tunnel, the server is receiving all
information through the tunnel and forwarding of this information to others computers in internet or
where will be necessary, also the server is providing the answers and necessary information that the

client asked to server,

33

this can be checked by doing a tracert from the client to any address on internet and seeing that traffic

is sent through the server.

Figure 3.4: Checking the route of the packets with traceroute

To verify that the tunnel is working well and that all information transmitted through it, you can run
any sniffer like Wireshark and see that all packages are being forwarded to the VPN created. In
addition, the data are encrypted in the DNS packets, so routers, firewalls or other security equipment

will see this traffic as DNS packets with unknown content, see Figure 3.5.

34

Q¢)72 06 oD @OEX O

Mo o= * Dprenon Clear Csadar

o Tise Surce Destination Moteced Lemt! Info

DD L DR P N .o LR L AL AN} SO DLARIE Gy BAICEL A B 0LITNL ORI Ce

I0027 T90 450K 10,10 10212 10.10.1 BF Standard Quary Betald AL 0. client chanee] poogle. com

D 1) MIRIN W 0. 103 10.30.212 109 Standard queary reiponte Sxlcll A T4, 133,106,189

VOOSL 2960 4255 10 . 10. 191 A0.00.012 151 ST Query Teipirde Bulald AN 2000 1450 4815 001 : b

JOOAL N2 040N 10, 10,10, 18 18.10,10.212 85 Standard quety GBI WAL yrohSL, tlmn, chickenkiller, con

P2 2902 5246 0. 0. 10, A8.00.188 149 Standard query redponse SIb3S MAL yBASL. T1nn, chdckenkiLier . con

WOR) L2 3MTN M, 1800, B Standerd query BedBT ML vasaskegtlq. tlsn, chichenkiller. con

PORAL 902 526006 14, 19, 18, 115 Standard responte GedRAT ML vaaaakaas g Timn, i clenkl Tler, con

190N 152,370 8. W, 113 Stancard guaty SuDT9S MULL LAGOOASITuaoe Lodlt LatooagerdLi 1inn, Chichenhiller

s B2 MWM
L0043 1312 483440 10,
10040 2942 40420 10,
L0050 2902 8848530 10,
052 2922.0050040 10,
IO 952 SAA5N 0,
10054 2312.606730¢ 10,
PSS 1952 A2 10,
uno »a2 omm u.
et i v aas wpeme e L
Tthernet I3, Srcc foomasMeddcdecyf (fo:
Eaterset Protocel wersias 4, Src: M08,
Vetslon: &

Meader Tength! 2% bytes
PDiTerentinted Services Fleld: Dud® (DSCF Dub0: Defacil: CON: Babd: Mot LCY (Mt PON-Capable Trasapert))

Total Langth; 18l
10ent 111 o NZIAC (B¢

sFliagn: ® {fon't Fragaerst)

BN S M BBt HIr e VMM R nn = t

M0 VB NRDWUNI fTedbbalaath e eilg i

158 Standard query responie ubT96 AL 1abbOAIITVEor 1 oalt Iuiieasgder3 . Tion . chic
05 Standerd quary GelteS WAL LahSo. Tina. chichenhilier con

105 Standard guery feigonne GafScs MAL (ahSo.tlmn. chickonhdller . com
02 Uohooan cperation (3) response Suitgl [Malforsed Pacher]

62 Undnown cporation (3) respomse Gxlddl [Melforsed Pachet |

02 Unhnown operation (X) responde Buitdl [Melforwed Packet]

182 Ushnown: cperation (J) response Gxlodl [Melforsed Pachet]

102 Unkonown operation (3] resporae Guifdl [Malformed Packet)

00 Unhnown cperation ()l reiponse Ou10dl [Malformed Pachet)

o wap el v (eae werey s wwias e

S30), Ost: AsustedC 2):43:fc (wd:: 00 0:45:)

LI B MS), Dst: U000 0202 (M. 00 20202)

ssssssssésssssssss
EERERERABLINRERERE)

ESEEEEESS
~
B

8!
§=

MY MM SN ENN 150 ¢y
HURHERERE HERQ®EB RN L abhERS2Y
o0, Srad Sve (aplare N D109 Fackets 1101¢ Daplayped !'Mn\h) Prafle Defalt

Figure 3.5: Capture of packets in DNS tunnel with wireshark

. . ul@ =«
p " =
SO 4ANL A X QC)3 F24 88 cceuDEFEEX @
e O v Dpresson Cleel A ' b4
~ Tine Source Destinetion Pretece’ Lemgt! Infe
W7 IS MM 1. 18 10, L 100000202 L 206 STndard guery Tesponse Bublel CWVE googlesall.l.google. com AMA Jobe 14364
TO026 T9E7 0430 0. 10. 10.212 19.10.10.1 L 87 Standard query Bxlci2 A 8.client-chitenl google.con
LOO2Y 2067 A43300C 10, 10, 10, 212 " B Standdard query Sucald AMAA 0. client Channel. google. com
OO0 3980 45N 1A, 10,002 ' £ 19 Standard query response GIcRZ A T4, 135,106,189
0031 2947 045920 10.10.10.1 18.10.10.2712 o83 151 Stendard Query relpomie Oucald AMA 2000 1459:4010:¢01::bd
DOBAL 1942 520408 10, 10 10, 100 18.10.10. 212 A 5 Standard G208 ML yrds] . tlen. chdchenkd | Ler, con
10040 FR12.2046126 14, 10,198,203 A5 148 Blandold Sty teiponte BaJti9 AL yrieOl. Llne, chockamiilier, con
PO0E3 T902 S24770(18, 10, 10, 108 L) SLSTandard query DattaT AL vassakagtie Timn, chichenkiller. con
MOOS4 N2 5260 0. 0. 0.2 | 0105 S 115 Standard query respone GodS6T WAL vassskagila, tlnm, chiciank]ller, con
1003 1932.33794 10,19, 10. 18 19.10.10. 212 o 115 Standard guery MuBTH WAL Labbbhaitudor Loditluttensgdn 811, 11mn, chichenhiller
PO05 1902 52000 14, 10 10212 18.10.10. 185 ws 158 Standerd query response SubT96 MAL 1abboASItwoor Lodlt Ivddomsgdwr 31l . tlmn, chic
LO0SE 2902 N3N 10, 10,10, 100 10.10.30.212 b B8 Standlard query BaieS MLL LS. tlmm, chichenhiller con
L0008 1502 A03IM 8. 10 . 10212 18.10.16.18% wy 105 Standard query responde SdSeS WAL 1ahSo. tinn, chdchenklller. con
TORSA TR02 ARARINE 19,190,190, 198 19,190,101 o €2 Unknown cperation (3) cesponas Gxl0dl [Malformed Packet|
PORAD 2900 4850040 14,10, 10.200 10.10.10.108 " 62 Uniinown cperation (3] response Gxindl [Malforsed Pachet]
PISD BRI A6655 10 10, 101 wae0e w5 §2 Undnown cperation (1) response Sxifdl [Malformed Packet]
U0054 2902 8047500 10,10, 10, 108 me 162 Unknowe cperation (3] retponde Dolodl [Malforsed Packet |
DOUSS Y02 486225 10, 10, 19, 1 e 212 s 102 Unknown operatlon (3] response Suingl [Malforsed Packet]
wirwr ety 1wy
Asditioral W) 0
wOuweries
eyl then Onichank | Llec comi type WAL, <iatn IN
Nane: proasl tise chicheshiiler con
Type: WAL CAAL resperce recers)
Claan: IV (Balee)
g whrdeeiy
- Pyransl, then, chichanikiller. con type WAL s N

15
E030 00 01 0 00 0 0 TR M N M Y
o T e uun BBk
PO 1050 §) ¢f 4 88 % s 0 ST W N»
" €353

=

K(Oﬂ“ul‘lll(“ﬂ“ " n ” %
_ d 2

o~

ST Tent Dem eyl 35 ytes w-rs 10968 - Ovs plaryed kuo.c\) Prafie Dnfoslt

Figure 3.6: Capture of packets in DNS tunnel with wireshark

As you can see in Figure 3.5 and Figure 3.6, the first bunch of packets sent through the tunnel are
recognized by Wireshark, if we analyze closer we see that the type NULL of DNS records is used to

transmit information, so the first messages are recognized but the following will not, because once the

35

tunnel is established, the program iodine modifies packets so that they are not recognized by

Wireshark but contain the hidden information.

If we look close in the first DNS packets are recognized like normal packets in DNS ,but if we see the
content of DNS queries, these queries are performing request to server for strange domain name, for
example that appears highlighted in orange in the first picture, also in second picture appears the
query that ask for a strange domain name like show below:
-First picture, figure 3.5, asking for FQDN:
"labbh52tudorlod2tlu50oxsg2mr5li.tInn.chickenkiller.com"
-Second picture, figure 3.6, asking for FQDN:
"yrbh5l.tInn.chickenkiller.com”

The name of an internet address seems a little odd and complicated to remember for a person as
mentioned above, the server names are used to provide people access to Internet addresses without
remembering the IP. This is because iodine is encrypting the information and sending it to our request
hidden in the DNS server. This is actually send IP traffic on the DNS protocol.

As mentioned above lodine has several options to use different records and different types of coding,
Figures 3.7 shows multiple runs of the program with different parameters and can be seen as lodine
uses certain types of records and transmits information.

For example with CNAME record types, using parameter -T CNAME in the command for run:

- > iodine.exe -f -T CNAME ipserver domain

36

e e e 0 G My g

i N » XE] o ALan

‘ 0001000 ST ’) " Ty) v — s e
' ‘ 210 TR Y y .o ' ST 4 w e lenind Le
o NTNTRT TRTRT .) - ’ ' ' . v i aroer ool pnde

¢ Domln W Spiten {gury
At im bt
" M Vs ’

Miwte M
"
AL el My
o Qurle
| .- e . e Onae sy N
N T L LT E AT Y !
" TI I 1N

RO RTRUE)

FFHF

Figure 3.8: Capture of Wireshark with Iodine running with CNAME

37

Note that after each restart of lodine client with different parameters the information about new
default route must be refreshed.

Also in figure 3.9 lodine running with TXT record types, using parameter -T TXT in the command
for run:

- > iodine.exe -f -T TXT ipserver domain

e em

S N RN R

sk LB 2

BERREF S ERNE]

Padat: 173 -Deglaves: & 25 3%

Figure 3.9: Iodine running with records TXT

38

M woieriern gy —_— ﬂ " . n 4 . ——— — “_5).0”

A Yo b e e 0o Waheny e e

in'H» RE 4 "t ": =l R 80
) [\ (L
% " i Dy MBS W N
R P TR ST wawil (v S Pt gy R THT pomashagn o thae (MLl o0 o
TN LN A [L0 Vet gry ronponnt Ba00 T cambabiqian e bl lnd e I
LR LA RS R wani Ly LIS $omderd gotry DA THY Dacerudtyt by rd oot] L hame e b dihom L1 e 0w

LM R M BB R a2 o 03 Ui dge aLlon (3) Pwiginns BORED Usbaawn (3040) CnbAawn dolanded Lt Mesterend Pacint
Hosal winn il L) ML Uvdommns sper b o0 () #esperar Bo)B) Uetapn (D000 itioown eviendied Lobels ihon ())00) can el
manie el nam L 00 Oty Mertion (5) "nipotar OSBd] Iniaown [JRINT) cvinom avtended Lot > Ml fermed Pt

Flagr Wb il ury reent, W arvy

SN L

M By

anvrity Mo

AN Wy
f Qatin

Inghd, thoe onbchancdhlar com tppe T, s v |

¢ My

g) b Lo Rl o A TWT, e N

KU n VY N0 LUENLN I
NUNRNAIBNL UNHRMANN
T A A AR R AT A 2. 0. |'-

D HENNEN

v L

) i!illl'li kN Rien Iﬁ
AR NENDUTA e Taaiw

Figure 3.10: Capture of Wireshark with Iodine running with TXT

As I said earlier there are many types of records and all can be used with iodine, here are shown 3, but
all can be used. This is one of the advantages provided lodine versus other programs DNS tunnels,
Also we can choose the kind of codification for information transmitted in the tunnel with the
parameter -O, we can choose between Base32, Base64 or Basel28, above the benefits of each are
explained.

Below one image of Iodine running with encoding Basel128, figure 3.11, the command for execute

Iodine with this kind of encoding is:

> iodine.exe -f -0 Basel28 ipserver domain

39

whets V17 Deglormds €11 (2N Nl Cetar

[L e Al

o 4 -
Figure 3.11: Iodine running with coding Base128

Well, as has been explained step by step above, you can create a tunnel between 2 computers and
transmitting all the information hidden in DNS packets, this is a great technique of communication
but if we think a little about this, depends of the intents of men which use this method DNS tunnel
can be very good or can be a big problem for our network if the DNS tunnel is not wanted because
with this technique we can avoid hotspots, in some cases firewalls, or communicate with any internet
computer covertly to other teams, whenever we have a team with connection to a network, of course
that the router or where we are connected should allow traffic on port 53 which is used for DNS, but
in most networks this, even a firewall is allowed depends on the type of restrictions that apply to a
computer can be avoided with this technique, because if allows us traffic on port 53 can avoid it.

Iodine also has the option to change the port through which traffic is sent, if another port that allows
connection can be changed to redirect this traffic and not by 53, with the -p option, it is known that

well described in the manual of 1odine:

40

-p port
Make the server listen on 'port' INSTEAD OF 53 for traffic. If 'listen ip'

does not include localhost, this 'port' can be the same as 'dnsport'.
Note: You must make sure the DNS requests are forwarded to this port

yourself.

It could redirect traffic to our client in a different port using this command:

> iptables -t nat -A OUTPUT -p tcp -3 --dport 43 DNAT --to-destination
127.0.0.0:xxx

Where xxx will be the port that we want use for send.

With all that explained it can be seen that the DNS tunnels are a fantastic, very useful and can be
created with many different configurations and different ways, using this tool lodine.

But the use of DNS tunnel can be harmful for our network or our company, for example if we have a
private network, where we control the communication to internet and is only allowing access to
internet one of our computer in all network, this computer would be identified and associated with a
responsible person and with confidence in the company, but all computers are connected to the
network, we can restrict access to internet by one firewall or some way that limited or control that
only one computer can access to internet, but all of them have authorization for do requests DNS, the
DNS tunneling can be used by one of these computer unauthorized to access internet and it sent
private information of our company outside of our network without authorization.

For this reason, below we will explain how to detect DNS tunnels in our network and as prevent and

eliminate them, but with everything that we have seen will not be an easy task.

41

4. Detecting DNS tunneling

In this chapter I will explain and perform some experiments and techniques for detecting DNS tunnel
of practical way, now that have seen the different ways by create DNS tunnel, the differents types of
codifications that can be used, the differents kinds of records in DNS packets that can be used to send
hidden information, and after perform experiments with one of these tools to create DNS tunnel, that
was lodine, remembering all of the tips in the second chapter in this document, let to experiment and
discover how detect DNS tunnel in efficient way and practical.

As explained in chapter 2 of this document, the main features to detect tunnels DNS can distinguish
between:

e Size and quantity of DNS packets.

e Analyze network traffic

e Analyze in depth DNS packets

To do this we need a packet sniffer tool, in my case I used Wireshark, because Wireshark is a good
tool for analyze the network traffic, Wireshark have many options for filtering the network traffic
allow capture and show just the traffic that we wish and locate the DNS tunnel or another problems in
the network in one way easy and fast, we can filtering the traffic by protocols, by IPs, in different
interfaces, etc.

Also with this tool we can see the graphics of network traffic, size and kinds of network packets,
content of the packets, the source and destination, traffic IP and UDP, etc.

In this part I will teach how use Wireshark and many of its options, but for more info you can consult
here.

So with good use of this program we can detect DNS tunneling looking in the correct places as I will
show below.

I tried also sniffers like tcpdump and other cloud shark, but none of them detected packets encrypted
by lodine, all of them showed the packets like Wireshark as unknown packet types.

42

(R0 UoRRQeelTGARD

™ W) . ¢
» Tre e Inwa Pl ek N "
NN e naan o 170 Shandard qurry Aeipunnt Ount PR LR LD b e g T L Rt TR B,
T s L R o I nonn operathon ()] ronponie Babbil imiwe (DA5) thwinor axtinded 1abeds aohnan [ED) dimiosien avten,
D ey HAN m 100 Uniiwnn dpevatlon (J) renpunie oS0ds el fivend 'uu(:
AL e B i I Usidown aperallon (7] ronponie DOONG Dntns (JN5) cimhnmne ontonded [obeds anhian (DETE) (i evim,
U RO T N T BT RS ER Y) 119 Uit dpo/athan (3] remponie Mo melfimed hachet|
R LR N UL R oy M Urtrenn dperatlon ()] responie BebL (s (JAITY) (ishron trbended [obelr osbamn (EXE1 (iamn evins,
N e e en . o 119 Uninown aperation ()] remponie ks [Nl formed Pactat|
LR N R L R i L N VR oty B0 PTR LN T e e y
N e W L) 00 Stnderd query eapomne BCE IR L DM 000 AT At arpe PTR Ddebar, PLE wrthr cx W merige et 6 Ml
MW N wami o 1 AR qeiry Sale) A el piegle 1
DR L LA LA LA A W 71 Saanderd quary beld 4w poogle cx
WAy el 0N Ll D0 Anaderd gorvy Aotpernit INAILE & we goole 00 A SO0 DD ZEL D WA) ol oo W . puigle oo W0 ML ey
MEmY e nahhn ol Mhmdm'nm'h‘til-miuvﬂh\l)'»lIﬂnlnumltmlm‘.lm%ulm
BAL R U R RTRL) o L 11 S0mderd quary B3hn A e iegle o1
U R R AL LR) W o I Urianwn pperod fan (1) renpomie BapG Uninee (37004] (oo evbended Labels pvnen (TN o evlee,
UL RUL U SRR e L 108 Semnderd quary ronporan BcIade & s google ez & BN ZEL D a0) goagle oo Wl groghe oo ¥ mal g
BRI RN N R g "y 71 Wt pary il A -mh,u
AN e LN i 108 Smdard gotry riapomr el A wew grogleicr & 200560000 W ol geoghe, oo 6l proghe o V6 aek ey,
WA N E RN R o 1) Yo d qutry Bemd W wee g le 00
O S e LN . 367 Shandard oty ropomin Bemder A e grogie o AN Tl LASH SIL D00 00 W M) rogie o N6 ned gy,
O R U BT RT RS naam o SO0 DN g atlen () remponit MSND Dviaiet (30) CLs ONbadwt (32909) ML) Wekaien [10002) chist) [l
95 NN 108 LA RN L3 # Ustnown aperation () respomse BOND (vinens (SNI96) oivhnown exbended Lobels bmwn (07) tinhaows euten,
I Sl e en nay o 140 UNEAOW APt lon (1) responia BcEREs Uniwown (10710) (hednawn axtended Label) ovhnown (D070 dlvonaen enten,
A B L M LN NN e ony 4 Ustownn gperadlon (0) resgumse BeRML (M (VME12] thvinme talonded |
UL R N R LA NN .0 J51 Usnown aperat e (3) renpmnes DM vt (1059) tivirow axtended |
AT N g oy T Uit v ol Lid (1) raginte BoMG Uvinind (LGEN) Oniawt tatendid Lol e,
MAMM s B L IS vran speration (V] renponer BSML Invard dont) (ntson (9410} (hoets .
(UL R ir E R RTRTRT) E N R R o T sttt et lon (1) repnie BUEMES Usaitd chidt) 00 \2LIG P Ui .mﬁ . ,., ') \HL 1L
DO ARG L8 080 PAAD A0 0 ~oa ok ' PP aid
Prose S0 120 yten o wdre (000 BEna), A1) Dyt captuced (D08 BIne) oo Daterface | ;) 0 ‘
It 51, 140 Sl Wy W00 30 00 INT), Dat i Attt 2 NTE (0)TN 4
Evternet Probacal woradon 4, S0 B0 000000, Duty B0 1A b0 002)
Tr Datagion Pratadal, W0 Mot T (ORI, Bt Mets 0D (W)
¥ Bosaln Nese Spvtem (reapones) Saiial :
Toaminrios 18 i1
D7 wnherdenionid Paden 11 Oughernd 26100
——— e

Figure 4.1: Capture Wireshark in network with DNS tunnel active

4.1 Size and quantity of DNS packets and

network traffic analysis

After filtering packages just to show those belonging to DNS, as we can see in the image above,
figure 4.1, we can difference between 2 kinds of packets belonging to DNS communication, the kind
of packet standard query that is the normal packet that works the DNS protocol, and another type of
packet is detected that it is unknown packets, this kind of packet can appears sometimes in our
network because some error happened but is not normal the quantity of packets that we can see in the
image before, because this image show one capture in one network that there is one DNS tunnel
active, if we look there more packets of type unknown than normal packets, more than 50% and in
this picture only show a little part of the capture, if we check the full file of the capture we can check
that more than 80% of the packets are unknown in the network, so it is not normal in the network, just

with this we can suppose that something wrong is happening in our network concretely with the

43

protocol DNS, also we can know where is the source of the problem like we can see in the previous
figure 4.1, that the source and destination of all of these packets is same, in my case we know that all
of packets the type unknown are from the communication between IP 10.10.10.105 and 10.10.10.212,
because in my experiments the IP 10.10.10.105 belong to client of DNS tunnel and 10.10.10.212
belong to server of DNS tunnel, but in other network that we can try to detect DNS tunnel, we don't
know if this IPs belong client or server DNS tunnel or just is some error in the communication

between these computers, so is need to continue analyzing the network traffic and packets.

In the following images a comparison of two packet captures made on the same network, shown in
one if the technique is working actively DNS tunneling and the other is the same network without

DNS tunnels.

A wiarsemionmy T T .-
R e e G Camun M oG Wagheny e ek My
AN UORE AT EQEIRAAD

| T A BT b+

e e - Ow dtar L e »
WEVINN IR TR 3] 3 0 Unbhin aparation (1) rwuponts NI Oehnows (SM56) ciimows ovtnnted Lotals tnmen (NTM) e mite. |
WMWY I an wnann e 120 Ukt st/ ahlon () soipmens BulBl Ushomes (19073) (Dvlowant avionind Labals Unbimen (0720) b moli.
RN e BTN R W NN L 108 Simderd quary renponnt Susbin AMA s poogle con AN 2ol LM MRIE M0 0004 85 ma) poagle e M M g
BN e HUBIR N L) 19 Unhaint ape/athon (3] oipoer Buldl Welnown (15430) e avtondnd Labels Uhaonn (LIDM) Mbiowt iate.
NN 0 wawam o 208 Unboiun spetallon (0) rospione BedMEL Ushaann (S6034) (ivinin evinnded Lobels Dtosen (2030) (ihmpen vies,
LI L U N R LALE NI 1L 145 Unknawn speration () rwaponss BeiM] stnown (TUN) dindooen avtondnd Lobels ininown (MTIH) dmbeown e,
LR AN T RT S| N ILRLN NN Im 100 st Speration () foiposts Bl naind choots Unnns (WTL) GAMt) Umioows (1I7)9) 1“*[!1“ -
MR s waunapawnm m 10 Unkomn speenthon (1) rwapmene Bniid] Udomen [I0000) (vhomen evtonind Labe s inineen (LIW) sk mete.
W e W i I Uskaan agerathon () rosposne Inid] Uskoas [I216) opsioonn autonded Tobels Wsiooes (120) rishoown anim,
N AN W amn [130 Unkacun o/ oblon (9) Pwapines B30 Unbnawt (B2433) (Ovhounnt avtanded Lobels Dvwnn (L1900) vinboient it
BRI e (LR Bt L 14 Uniommn speration (3] fesporoe S0l Ustaoen (HU451) tmown eviended Lobels oo (D00N) vinboown exte,
MV e ILNTN NN bo 0 Untanen ageration (3) /mapotar BIndl Uiaows [35458) vinann evtended Late s inaw (0H1DN) dosbaown it
LRI DT BT RS) naunwm m 1D Unhamt ige ot 1in (1) Pesputie Bu)ME] Ubaien [1A7) (hnowt ewtondnd Lobel s Palforsed Faitet |
LRI e LR D e I Unboomen aperathon (1) Pwnpomne Be)d] Unkapem (34A7) dimbnon evtanded Tabely Unbaown [10A0) tisbomen setend,

’ » Q " v

L LA I RS P RLELR A

o 10 Unkoms aperation (1) swagumne BxdBE) Ushomn (1007) (Dsbomnn avtonded Lobels Ginmn (LID) b #obe.
10520000 100k W e) sk aperation (1) renpenan D] (nhaann (D0AF) clonts ininown (L1I6A) dhnn mtinded [an e[l fore,
1A 1.00.00.t0 oo 3 Unban et lan (9) Aepenan OuIBEl Uakoawn (3M40) R0t Uit (L1000) e sctended Labils e
LLRCH LB LB LR LLALA L L 143 Unboan ageretion ()) fespemse SIML sioon (1219) visimonn totended Tobelr sioin (12099) 1soon e,
100 V7. 000 140000 00 LN NIV o 9 ninon operation () rerpome Suibd] Usinown ($5456) cmtnown axtended Labels imknow (MTIH) ambioe mite. v
| Flagh: S Uniowwn sperition repnie, W ey ‘
Qeition wan
Aviwr My
Aeriny e 54
M el B \
* Qi]

L P A
AR etonied Lobeln | e Seioin ([RNB1), (lals I

ANNbY

TN

« T
L S AR N
"

"l imall

Fatets A Daglepnt W00 (W I Mo 200N Lot e 300 e Dt

Figure 4.2:Capture Wireshark, detecting packets unknown

44

Traen JT) TEL bytes ww wioe (6343 ME0A), THS bptes saphered (6308 Mo0e) wn beterdane @

Cohermat 11, Sect Qlge Byt M 0ei S0 (ForterddiddiBerdr), Doty Asvateel Y5ombefe (of) 30 08 oisefc)
It Poatocal Wrades 4, 301 D010 00005, Outi 100008000

Voer Dutagree Protaal, 1eq Aty SI084 (DATRE), B Merti W) (VD)

nulv

Fabetn A Daglepet N0 (80 I8 Marted 200N Lot S 00 200 ool Dt

Figure 4.3: Contents of packet unknown
LR TN S R
L T e
AR UDRE AT LQERAQD

L Bl towm +
w e - B L BT N o
o N A LLALR N L3 17 awend Bochhe & v sl o ¥
- WA O wmann 0330, ne L
NN e nuna (L 17 Stondord gy R A o Losbiroeft. e
MMMME e 030000 s 00 VUl Gty PApaet BARIIE A L RLereattt oom NI (7 Lo e, ShAInL ot DM al000 0000 Wiamed Mt AL
LR SR USTRTRT) (LR R N o B3 Vimdard query SRS & s reoelangr oty vt
SHLN NN e [LALI N L 108 Branderd poary ronponas BoBeth 4w racetongrathe set OWE reawtaigratin st A TN BAY 10 LEL W6 ol don,
DU T TRTR TR [T " 1) Wdard vy Beibal A recotaigratie st
AR NG B waanpan e LA Wkt quary roapemar Badbed 4 rereteaput oot A LU LS J1E 130 WA oot demalnenmtonl bem W adh deel
WA N LALE A e T7 Miwderd quiry INTOb MM recetingratia et
0 3.0 100000 W30.0.m e 149 e d qeary reipinit 00000 ANMA (wortongr olis. et 308 S0, e liien el v
M0 A1 10000000 LRI A L W Stavderd gty Backe A Perty, prgdesols cow
ST AN N LLNLN N vo 0 Stmanrt guary fadts A festy geogleagly.com
LR NV EAR L RTRTRT wwom m LR e L S D R e L
LR LB LA LR (LA A e 12 Bndard quary BhMd A (] recetnngrmin et
LU T R TR TR IUETRTNY [12 Vet quiry Webiie A el recetatgranii st
ML AR ATRTRT RS . T andard aerrs panmns MaaiLd Suste mnin lomi s om ORI s londonln Lownle o 4 2 LML L et
Pranialtiod 1N SN .
Flagr: RIMe anierd Qury (RN, N At
Pt 4
Avvwar My 4 |
Anhoriny Wh b '
Al Wy Y
Qarien
¢ Mamrs
i ey o e OWIEL Class I8, ovme w0l (rapaf on o iptiey ret
W Lerenoft oo adgrtry et type OWRE, clin IV, coeme e mieronaft con c, adgainy et glmeledln san et
e LTIl ooty T LR R et T Toge ONPE, CLAGE DN Chame S DRI S0 Mhnialadge et
nﬂunm&q-c- e 4, chuho&nl\ ll&l -
W I enwn T R ERN R | . -
DM UTE RN LAKN
VRN BRI RS |
B AREDERANS DM OM
PRI NG o nee pleyw it
HRUMNBDT TDHUSOTRE Ty walin
P40 00 000 00 0 2R AT e g *
. T Nt of vy v gutnt Jre wrt rwet.) bym Pabote M1 Cogtumndt 100 0990 Mokt) L0 ned o R 0D ol Dedant

Figure 4.4: Capture Wireshark, in network without DNS tunnel.

45

In figure 4.2 we can see that more than 80% of DNS packets are unknown like I said above, because
this picture show the capture in one network with DNS tunnel active, but in figure 4.4 that is a capture
in a network without DNS tunnel the kind of packets are normal queries, so we can appreciate easily
the difference.

But now we must look the size of the packets and the difference of size between the kind of packet
normal and unknown, first we can look in figure 4.4 where we see that the average size of normal
packets of DNS approximately, for the packets of request is around 80 bytes, and for the packets of
responses, depends of numbers of responses in the packet but for example in the figure 4.4 in the
packet that appears mark in grey, this packet have four answer and its size is 541 bytes and also in the
same figure 4.4 more down appears some response packet and its size is 505 or more down another
packets with size between 145 bytes and 170 or 200 bytes, is because this packets have less
responses.

So if we compare these sizes with the size of the packets in the figure 4.2, where the DNS tunnel is
active, we see that for example the packet marked in grey have a size 781 bytes and down of this we
can see others packets with size around 420 bytes and also others more packets with size around 250
and other with 515, so the packets in this capture are biggest.

Also in figure 4.3 that show the expanded content of one unknown packet belonging capture of figure
4.2, and is marked in blue the content of the packet belonging to DNS protocol, the first bytes that are
not marked in blue belong to another protocols like Ethernet, IP or UDP. As we can see more than
80% the content of the packet belong to DNS protocol.

Just looking at the number and size of packets that occur on a network with an active DNS tunnel we
can have a good indication that something strange is happening on our network, the number of
packets of unknown type which are detected besides its size is unusual, as some are smaller or normal
100 or 200 bytes but others come to reach a size of 700 or 900 bytes which is too much information to
an unknown or malformed DNS packet protocol.

After detecting that our network is happening something strange, we need to see in which moment the
Wireshark begin to capture the unknown packets, so in the figure 4.5 we can see the begin of capture
in the network where the DNS tunnel start to run, and like is show in the picture with the packets
marked in black, we need to see the query that these do.

The kind of the packet is standard query, but if we look the domain name that these consult, we can

see that are so strange.

46

e e T TS T e
A e v e Caun e Mo Waphesy e hex

i N » RE 3 » !. SANN

I o [N ’

U R R RN R TRTE" KT w 00 Mhamn el ol LA (V) Pespui I[Pl et Pacaet!
WM g e L 0 Unbrown aperatlon (V) respemae Bel] [el fornnd Pociet

DR R L LRI NIN 0000 [10 Unknown peration ()] repente Sitdl tnlaows 1164 Sehnown etanded 1adels Usbanwn [)0M) Wsiaoe eetend
AN s IR N (8 140 sbrmen sgerot| Y) rorgonse Bn)id] hage {20050 phsmy avtonded Lot o ralfaread Pachet |

N 305N Wnnan waanag e 100 Onbomts dgo/alhin (9] rwigutusr Bl Usboins [IM7) cOsbamms selended Laolel) Ui (I1D0) Cisboues seldnd

Miwer By §
ety Wb
Ml by

* Darin

¢ L ol pon T mmapdanwny. T bl e oo Type L, clent

Nte) Db s] s e foiidptanwmg Lo (M Lhesh | e .
ey (s 4
el e A
Pyper WAL B (10
Tonns I8 (il
MHOUNEES DUV UM ES
A AL A LR) 2
v e eTY R B
. 3 L | &)
| M XK
0 7 winied tivm Pachrte WA - Caplent T [0 T vt 1000 1N et o 0 070 ool Delapt

Figure 4.5: Beginning of DNS tunnel

DNS requests that are observed before starting to receive packets of unknown type are a little strange,

they try to resolve these strange domain names:

-labgxsgmrxtmlyvvfejv0kO04gd4xewnmg.tlnn.chickenkiller.com: NULL type, class
IN
-yrbzvqg.tlnn.chickenkiller.com: NULL type, class IN

-vaaaakatgwe.tlnn.chickenkiller.com: NULL type, class IN

We can see that the hostnames, the first part of the FQDN, are too strange and if we remember the
tips in the second chapter of this document, where I talked about usual domains names, are remember
easily by humans, and these hostnames like "yrbzvq", "labgxsqmrxtmlyvvfejvOk04gd4xewnmq" and
"vaaaakatgwe" don't signify nothing readable for the humans.

In addition, they all belong to the same domain that is t1nn.chickenkiller.com therefore this is strange.
In figure 4.6, we can see the result after choose the option expert information in Wireshark, in one
capture of network where is working one DNS tunnel, in the first line the program show us that it
count is 7470 DNS packets of type unknown, we see that there are 4 packets from PNG protocol of
type unknown and 6 packets from TCP protocol and also type unknown. These packets appears for

47

some error or something sporadic but is not normal detect 7470 unknown packets and all of them

from DNS protocol.

M el oy ' 3

AN ———— — oz —

M W rar Lt shenaton - wrrdeder il
o - Porwd e

N Matvrond o MR
Nas - perrar i p i
o Watormed W 0M05) e 1
Awe g e u
Purte Vet el Ead)
hare g w 1l
Pare e qeien (U] Bl
Ll (Bl nnocr)
Pty o peren P '
O Sz KP o

W aint FaTan00d 1a0e L) UNbiies | 100) CObatet #atand

W sawt avtended Lot [malformed Fachet |

Adhrsmn selevdnd Lalels Ushamme (1300 sbeues seland.

Enedmebnd iuao.ﬂ ML NI et 15 0.1 Laed e B4 220 e Selat
i P ————

Figure 4.6: Expert Information in Wireshark, detecting amount unknown packets with DNS tunnel

By comparing this image with the same option on a network where it is not running a DNS tunnel,
figure 4.7, we see we get some malformed packet which is normal, it can belong to any protocol, and
some miscommunication or some error occurred specifically at some point time may receive some
malformed packet, but not a lot as we have seen before 7470, in the following image the expert option

information is displayed in a packet capture network where DNS is not working the tunnel.

48

Al MLt AoVt Aal‘ “ :‘...
R aad

BT Teea) Taae
e 4 Seveane -

WMt wnd Faoast hadtgton 600wl o . sote
L Mate—ed Peder Dicaprars worsred
ON Mahowmad Potat Kasograns scowmd
L Matead Tadet Coatinin ovswd
-] = »
o Yo Aot YL e S
DU PR Ll rgnes® wa T Mhertl o il
PO el hpok grart o P Mered e vk
0 il Appd Lgeert s KB ertter not
Ml sl bpgd srgrment somm P Mertd e ot
A5 Il dpgd egrennt o T Martlar nel
Cate e w =
¢ New bl »]
AT T s mae prre o, reThees bet
AR T e e e, fey el Loy
R O el e T
* N Werorar . '
L4 TP Gy scidbonenton lobod & yong boarwd.
BELE WT TP by 1o Brnn v Ladek bpveg el
L e e L L

B not running 4 DNS
Delong 10 any peotoced,
PONE TN May
7470, in the following
Kwhere DNS i not

A et G
&l T alldnl 45 .

Figure 4.7: Expert Information in Wireshark, detecting amount unknown packets without DNS tunnel

So after see the figure 4.7 where is show capture of network without DNS tunnel, we see that appears
some unknown packet also in a network without DNS tunnel but this is normal like I said before this
can appear because some error or problem in communication, we see only 4 unknown packets and
besides these are not from DNS protocol, these are from PNG protocol.

After see the 2 images, figure 4.6 and figure 4.7, and compare is easy to recognize that something
wrong is happening with the DNS protocol in the network if we get information similar to figure 4.6.
So if we use the option expert information in Wireshark, the program show us important information
and the program warns about the protocol DNS is not working good, following the tips mentioned in
chapter 2 in this document and with our knowledge about how would be normal behavior of one
normal network without DNS tunnel, with this information we begin to suppose that in our network
may exist the DNS tunnel active.

To be more safer the next step is check the amount of DNS traffic and compare between one network
without errors and another network suspicious or with strange DNS traffic, and this can seeing the
graphics generated by Wireshark, as it will show in next images, figure 4.8, figure 4.9 and figure
4.10.

49

Graphs with tunnel DNS:

A3 e emwT
LR B
e A2 e le e
BEL 5L NETT I8N,
BAALAME e e
BOEAT NS WY
(LR IE L
L S ANME e
LR b U N NN

PR TR R T
(L RN A L
LT P AT
| RN LAY LA,
TR TR
¢ frese 1501 W Wyt on wire
ot 18, Sor: dlga-dyt
T Intetet Preasial Yersien 4,

N - 1 - AT

e
» L

M

HH

zagee2

Eagetz
segs3z
stz
=s33s3
srzans
gtz

o 3
~
l sagits

i 8

1 Mpacien
(K een

Figure 4.8: Traffic DNS with DNS tunnel

Graphs without tunnel DNS:

- ——

=z —
. [/ 7
I I A

i £ e R

§
PYES * SUTEN

S

it - Wireshark 10 Graphs: wiresharkclientesotundl
%0 b
oo >
il
o 2000 4
o (::::)
i A i A A iH
b = » «] ™ £
Tme 5)
e e R s o ran
;m Depiay "o ot Wyle) ¥ e rectng ,
| AN pacet: des L Facketyy Nose
|7 WP amenn tpanabyuaflage L] Packatys Nere
o =8 Mase @ S 1 o s B v 1) T ot 2oy Ul e

Figure 4.9: Traffic DNS without DNS tunnel

50

- e aaary
: ' b e *

J 1‘ Wresha'c)O(xap‘m wvgh.‘kk;ﬁm.omm: . $ —— , (rl'

echile

Wireshark 10 Graphs: wiresharkdientenotunel

800 -

Paclatys

-t

i . . 2 . :
0 0 a oY k- »
Tese (5)

Norer pew She ot Sor cetay

Name Oveplay fiter Colo Shyle Y fooz Y Faeld Smeocthing
. V1 A packets dns B s Packets’s None _
| TCP emars 1PN BLIgs B e Packets/s None
A AREIRL Moasme @ drag roma Miervdd (oo ¥ Time of day Log seale Reset
Ry | 1 2.

Figure 4.10: Traffic DNS without DNS tunnel, extended

The figure 4.8 and 4.9 shows the graph the same network with DNS tunnel active, and without this,
measured with the same interval time and displayed each of 10 seconds information.

We can see how in just 750 seconds there are a big difference between this 2 graphs, for example in
figure 4.8 network with DNS tunnel active, the amount of DNS traffic is bigger than 750 packets or
even 1000 packets, in some moments see the time between 600 and 750 seconds.

Compare this with figure 4.9 where is shows the amount of DNS traffic in the same network without
DNS tunnel, and in 750 seconds only near to second 100 exist a little amount of DNS traffic that is
almost 150 packets.

So with this analysis we know that in our network exists:

- A big quantity the DNS traffic, only the network with DNS tunnel.

- That the most of the packets are type unknown, only the network with DNS tunnel.

- All of this unknown packets are from the communication between 2 computers that always are the
same, in my case 10.10.10.105 and 10.10.10.212.

- That the size of these packets can be big, more than usual.

- Also the first packets before begin unknown packets performs strange queries .

- All of this queries ask for the same domain, in this case tlnn.chickenkiller.com, and strange

hostnames.

51

All of this points are big evidences for exist DNS tunnel in our network, but this amount of unknown
packets, we don't known what are they doing yet, so the next step is analyze the packets with more

deep.

4.2 Analyze in depth DNS packets

To analyze unknown types packages, Wireshark provides an option that will be very useful, this
option is "Follow UDP stream".

This menu item Brings up a separate window and displays all the UDP segments captured That are on
the same UDP connection as a selected packet, which shows the contents of the package with this
option analyzing several packages of unknown type will detect that finally these strange packages
strangers who belong to the DNS protocol are discussed in reality communication DNS tunnel, below
some pictures showing are option 2 selected packages, one is a normal package DNS traffic and the

other is a package of unknown type or malformed, where you will see that belongs to the DNS tunnel.

———
M e et gy
AN » RE 3§ ; ‘.'.'\al'.
Lt Ol IO SR .
‘ve - s 3 e
M TR Y wn w to g ol ' -
TR T TR T 5.30.30.5m o 0 Nandard qeary Poapinat BaRidn A arbonberunidt i OWE or Lo ou, shadoi sl OWT 20000 dieg mamad et A A
e SN -
F T S L T e]
e
O L e, g et por o MRIER BIng il AN ra
. g L g g
g) x g 0 g g
neducg.
by 't “w
\
L}
I
Aer ity Wy b
T My
P
st o T A, ok N
e
PRl h i e OB, (lass TN, Oname 0] mt taden el
Cr oo an ahning vt type OM, chann 0N, o a0 dacg dhanal e
AL Anig amal wtl type 4, clags 6, M 30200, 100 0
M) g shamn) ety bype A, rlewm I8, ol LT M M S
Rh e
ML '
UR R LETR R L NMVNRNAN
NN oMM nN ' N |
MR BN DR NEN N
NN NP
MMM NN N o
MR ENEMRON T N n -
INMIBUN MDA NS s am ‘
Q 7 et :t.'.r
———— p— ——r—— == .

Figure 4.12: Content of normal DNS packet

52

M el ey » R) o

AR » RE Qonuid x{:c‘k'u’&" P " N—P\Dﬂ
b LB N PO — S
! % yhuvg Vi
OO o
- yrrey tim
VORI (.
L) el 1 Foo 0000 g o iy n vassL et e lan
AN T TS TR
n Lo At t
-no-n-u“r R
el '] sbqorgrven] revee i bighreemg ¢
OOV LM e
Longn 10w w1l prv f o SRR atatng . TLm
Onicheshiller com
AN A8 1008) Vo PR A00. S, 2200, 0601 2. 1000 20,0 ot
AL 500 L0 18 18. 200 " Sitabi M ., .
€ WANT I " ’ laive. St
;i.i.rv._..;.:..i < ovicvestsller com,
o 30N e 18N on) N
R TR T R TR TRT [TRTRTR o |
:
Flaghi Bwiedh Drmaien ageretlon reipinee, N erre ™ (B o LA AN
Qaestiime AN ¥ 5 Qv re Jiorw ‘C' e e hg
Aviwir Wy MW w) 0G0t TR e CHNEN | A 0 YT S R
At iny Bhy) 1eRSE e
M el B SN Y 3k SRIRLERER ' bove w00 ~c-.-w vor ol
« Qurin erellidorae LA,) B SN ’ ve sl r.2 - “” .;l L N
s Vi ML A . 8,20t A4 o .Moh ’
* (inin ool Mbalh) 'f"f"**’m*' Gane. Wieen R RS T T "-A ORI T o T S TR A e
Wi Ghfonn evtraied Suels PR PR et X80 I RO I T R S S T T
Nowe Langihi M) T Ve
[oabel Coomt)) - -, YA 2~ PPN N | [¥ L ST v
[UMD OB N N~) .'. v‘ LR L UL E 4 ‘N’-"-‘-, s "]
GO0 4330 TI de Ch M b NS A8 W5 Ce 02N M OO e A 4 : SNl
17606 1199 3 chcS 06 @ 20 ce <) 21 88 |..‘ M. .20, .1.0 . '.. . Ul e e AN, 0 140 kb
W2 02 % A 47 B0 Be A5 % 90 34 36 ¢ A3 ed T2 BELLNE L b b (A O S L .
£ 70 %0 of 3.7 95 c5 $4 11 56 70 a7 o7 & ol [T ot SRR L L £ 2O R R L
TeTM M B A et TN YA S EpIARSS Biaalors sHE B cna b e imarl
L M 8 2 S uM"n.A-ww\c--—
0 7 i ek, v v —————— a PSSV ~——rer e

Figure 4.13: Content of unknown DNS packet, in DNS tunnel (Header)

Ml Wosesark - Foliow UDP Stresm (ud.stresm eq 4) "4-!‘ thueral T e i

-y

ttaen. SN MTI. . . .RB\.K9[..G. ... 3. .e.... Vf.ei..r.g-2].9.38.).. <
.a..c-,_....a...e.....4.).w..u g |
P P, . it P B 1" SRR T T S «2k).D)...b.. /b,edy8...... 7 A | 47 Al

7. ﬂ-\b ..l..Q.....)...t.td...lQ weaf..68.75, Pkl .S..k..-.fS.. ...<t...6 sevsnsnnsVansafs |
15050 ST R S LIS O SRS T SO SRR SLTCON D R 1 J S

E T PR IOY PRPRRTIDL Y SN S TR B SRR N L L DT N {2 S

B M3 P Q. PG DB nnnnnsns S L DS S "I N (R TRV R LR WS SO TR 58 VTN S |
Neana¥,

......... LI EPPSRE SRS A C PPPRRRRCENtoT VR - T SRR SRR | e I A, P
SMWoaranarrrar o 86, FCRC, WLV, L TR v o9, 00, 0 D80 (e s 2 " B0 0,00, 90,6000

B A R S e TR o i g W T T T A R S0 s e f.r

O T (LT LTI Tt I O ey S L A

ALy faE SR R 0 | SRS FUL R SR AN SR ST A

K et T L OB R M0 B 0N 2Pl PLOUY2,
2.9 Yeeearanann 1 1 yi-o 9.0 ko097 L. 3
W YO r i ea oGl THONTAQ, AR, .). [>

LR S I VY SO -V S " TR YR S CAE ot PGP Qe A Vie.q.8.0wSy-..... E RN T PN
SeZuvePros Eovswr eS8 on S Z)0 000V, Ry, . YR*, Qe[. 8. R.. R QL VR QR RV a0
0..k;..l€9...‘..z.ﬁ.k..u..Of.bN.i.bSB...q... Y] 0ua®e il naen o.R,.£... .01, .8,

Eoee® v QuuvedawXd
€5 Pt 7 &8 FATPATER BRI N tne . o mEeeT IpEaeaiies H..4%.T0.Y..V.q.0.R...0....1
PPN O 1 Y PN e 7" 15 TN LT) SRR T QR & PN S

F S S TR | £ L SRR O R LG 17 ThT PRl TR TR, 7TV A PR T RIS R T 1 ¢ R S e

TR S PR BT L Y £ e

vron® T 100, 0 30, 00,5 0,0,,

Rv..a[.%QeX.\S.n.....;.[>8]..;.5..8..p .I:’*..'.{L.,n........!.)....l....:.....-C.XQ-.O.JM..U.O.&.O....'
WasesansPisa B [CFPREE NS PRTTT RS 5[A0 T R [TR Pavar B R E I B

S R be PoulBacoas BT Ty R o X TR RO R R Ry R SRR S FORT INEFSRREPPRIEPIIR R ST e

B..Q...O.q..........‘..‘q o uls Cabiomw bl ol e unrp vy 8l.y./

LS | RS L I1 N (N BT SR PN | AL R T I Y S SR RS BN R ST T
R R R A Ty s TRt R e (R T TGV 22 T TU A

(‘{[.yb.!tl.k].h...?(v...,..[s. vavaree MavavonsvasEra v iueraPersnsPasOe e i tPotecrvrinens

- TP C R A SRR R S yeiq.h. 8. .(.0..

2 Qe wanaabaas N N GRRRNEE PR O LAY) L NS 2 L N P P ST EL T TR - |

LB e TSRS | N W 9 O | RS AR Y W -V (N IR S o R T EE IR L R i--
$.q.1.0....8".(.Ps. T DUUL) R FL PR TR NPT %) RN 1 S PORPS PRI RN _ U IR € U NN R
\.2.3.. >

Pocker 2475, 2 W chect) 4534 srve i) «uuw Clok 12 wwincs.
(mmmomm - Srow dats 83 |ASCHL - Sweam 4 °

Figure 4.15: Content of unknown packet, in DNS tunnel (Load)

Finally, we can compare the contents of a normal DNS packet and a packet of unknown type of DNS,
the standard package is much smaller and contains less information, also seen as queries to normal
and readable domains for humans, in this case is a query referred to a server Microsoft.

But if you look at the package of unknown type, the first telltale belonging to the tunnel, in the first

lines we see as are references to foreign domains that were previously identified as:

fol Yrbzvg.tlnn

chickenkiller.com

............ .. * Yrbzvg.tlnn

chickenkiller.com

....... 0O UUUU Cc 0..IR ag% s..DOyPW.H!
...... vaaaakatgwe.tlnn

chickenkiller.com

............ ..h Vaaaakatgwe.tlnn

chickenkiller.com

G i, et e VACKS labgxsgmrxtmlyvvfejv0kO4gd4xewnmg.tlnn
chickenkiller.com

.......... ..g labgxsgmrxtmlyvvfejv0k04gdxewnmg.tlnn
chickenkiller.com

192.168.1.1-192.168.1.2-1130-27.0 ..t v iazvt.tlnn
chickenkiller.com

Or viiiiinnnn. iazvt.tlnn

All this we note that meets the feature of DNS tunnel, as sub domains
xxxxxxxxxxxx.tInn.chickenkiller.com query type, where the sub domain xxxxxxxxx is unreadable
for a human is a meaningless word, also is always the same for all packages unknown type, which
meets all these tips herein above, it looks like encrypted information and hidden nonsense is being
transmitted hidden in the domain address, also if we look besides that the package is malformed
contains a large unreadable amount of data, which is not normal for this type of packages, this
information will be coded characters, depending on the encryption option that was used to launch the

tunnel Iodine can be base32, base64 or base 128.

54

This last step confirms that all packets of unknown type that are transmitting refer to domain
tlnn.chickenkiller.com, besides all these packages are communications between two computers or
ips, which are always the same in this case 10.10.10.101 and 10.10 .10.212.

Finally we know that in our network exist one DNS tunnel active, we cannot know perfectly what are
they transmitting because the information is encoded, but we know how is performed, by DNS
protocol exactly with DNS tunneling , and also we know the source and destination of this
communication, so let see how prevent this technique at least do more difficult the way for the

unwanted user or evil user and how delete this technique in our network.

55

5. Discussion and Conclusions

In this chapter I will explain how prevent the DNS tunneling, how delete this technique or at least
reduce the harmful for our network, because in the experiments performed here and besides all
information mentioned here, as we saw too there are many ways to do the tunnel and maybe can exist
others ways that wasn't mentioned here and unknown by the moment, we cannot confirm that one
human may not invent others differents ways and methods for do it.

We have seen the advantages of using a DNS tunnel that allows us to communicate with the outside
of our control equipment hidden from the other teams form, so this can be a problem for the network
of a company in which we want to control all information our, because by this technique can be
entered or sent outside of our network, important or privileged information we do not want this to be
so. It depends on our internal configuration of the network of the company that this is easier to avoid
or not, for example if we have a network in which all computers have a fixed IP, with which we can
identify each computer, using the techniques explained earlier we can identify that team is doing the
DNS tunnel, and block traffic from that IP, assuming that the client cannot obtain an [P DHCP, which
would be the case. This can be done in several ways, the best way to have a secure network is to
control all the computers on our network and keep them identified, this can be done through a firewall
or configuring the DHCP to always assigned by the MAC the same IP to one computer. The bad thing
of this method is that each time you connect a new computer to the network would have to register,
but it depends if any pc that connect in our network, it can have access to our network equipment or

not.

5.1 IP control and ports

For delete or prevent the DNS tunneling one of best ways is controlling of the IPs and ports in the
computers in our network, because in one network that the users need internet access we cannot deny
access to internet or DNS protocol for everyone, for this the best way is have a perfect control and
identification of our computers.

In the moment that we have already detected the DNS tunnel, we can identify the computers involved
in the tunnel.

With our firewall we can configure some rules for deny the access and communication with our
network, for example with iptables some rules like these:

Following with the IPs in my experiments, ipsourcecomputer would be 10.10.10.105 and

ipdestinationcomputer would be 10.10.10.212

iptables -A INPUT -s ipsourcecomputer -I ethl -p tcp --dport 53 -j DROP

56

iptables -A INPUT -s ipdestinationcomputer -I ethl -p tcp --dport 53 -7
DROP

iptables -A FORWARD -s ipsourcecomputer -I ethl -p tcp --dport 53 -j DROP
iptables -A FORWARD -s ipdestinationcomputer -I ethl -p tcp --dport 53 -j
DROP

But after locate the problem and add in our firewall some rules if we don't have good control about
our computers, they can change their IPs, we have a trouble because can do the tunnel with another
IP.

Also in the computer outside of our network we don't have control over it, it may change its IP and
try again with another different, but if we blocked the another end of the tunnel, the computer inside
of our local network, they cannot do the tunnel between them.

Even DNS tunnel can be created in other different port to 53 so we must be careful, but in one case
that we have already detected the tunnel we know if is in different port because packets using another
port and we see this with Wireshark then we can deny the traffic in other port and the tunnel will be
finished.

In the worst case if they try to do the tunnel in different ports many times we can block all traffic of
these computers in our firewall with the same rules without the parameter --dport 53, like I show

below.

iptables -A INPUT -s ipsourcecomputer -p tcp -I ethl -j DROP
iptables -A INPUT -s ipdestinationcomputer -p tcp -I ethl -3j DROP
iptables -A FORWARD -s ipsourcecomputer -p tcp -I ethl -j DROP
iptables -A FORWARD -s ipdestinationcomputer -p tcp -I ethl -j DROP

And also if we have control over the computers in our network will be better, that they don't can
modify their ips, one way would be with static IPs in our local network but it may be annoying for big
networks, other way may be control our DHCP server and link the IPs with the MACs, assigning the
same [P for one MAC all of the time.

5.2 Controlling access as admin or root

Other point important to defend our network versus DNS tunnel, is the control in our computers like
admin user or root user, as we saw above, for create a DNS tunnel is necessary install some programs,
for example Iodine or even in Windows is necessary install a TUN/TAP interface, also when we
execute the commands in Iodine or another program for create DNS tunnel, when the tunnel is created

Iodine change some information in our computer, like the IP, or create a new virtual interface and one

57

private network where the information will be transmitted encapsulate with DNS protocol. But all of
these operations cannot performed without privileges of admin or root.

Then if the users in our network only have access as normal users, they will can work good without
any problem, and for us or the administrator of network will be better situation because less troubles
will appear.

In this aspect we can't do nothing with the user outside of our network because we can't ban that he

install his programs or he modify his network configuration.

5.3 Recursion control the DNS server.

If our network is a controlled environment, where the computers of our company need only consult
information from some websites known or they only need access to intranet, not in all internet, we
can do some configuration in DNS server from our local network for improve the security versus
DNS tunneling, this will be disable the recursion in DNS server.
But if we want that this method to work, first we must meet the point above, the users can't modify
the network parameters in the computers of our network or company, this can be meet restricting
access like admin user o root user for every people and computers in our network, only the
administrator of network or the boss of the company can have this kind of access. Even for the boss
of the company this is not necessary because he can have other network configuration with access to
internet but made by the network administrator. I will explain how do it.
Satisfy the point that all users can't change the IP or DNS of the computer.
We configure all computers in our network for do the queries only with the DNS servers from our
network, our own DNS servers, and none more if we don't have totally control over it.
In our DNS server disable the recursion queries, with this method our DNS servers don't do queries to
DNS servers in internet then will be impossible communicate with the fake DNS server for make the
tunnel, but if is necessary to know some IP address of internet this will not be possible neither.
So with this configuration the users in our network and the computers only can access to IP address in
our intranet because this information is from our zone and is stored in our servers, if is necessary
some specific IP address to internet we can add this manually.
Also if one computer need free access to internet the network administrator can configured in the
computer one DNS alternative outside of our network, or some DNS server that will be our property
too, but with recursion queries active.
Then for disable the recursion in DNS server this depends of operating systems in DNS servers or the
program that use these servers to provide the service DNS.
Can be different in all of them but for example for disable the recursion in one DNS server with
Windows server 2008, will be this:

- Open administrator of DNS.

58

- In the tree of console, click with second button in the correct DNS server then open
properties.

- Where?

- DNS/applicable DNS server

- Open the advanced options

- In options of server, active the box disable recursion and then accept..

Also if you want know more about the configuration one DNS server in Windows 2008 see here.

5.4 Conclusions

Finally, after seeing much related to DNS tunnels, from my point of view I can say that it is a
technique very completely and complex. Is similar to another kinds of communication hidden or
encoded like VPN, if we understand good, the DNS tunneling is one VPN between two computers
where the information is transmitted encapsulated with DNS protocol.

I talked too about the different protocols that can be used the similar method to perform the same
purpose, like HTTP tunnels or SSL tunnels.

In my experiments and specifically with lodine the information is encoded with some method like
mentioned above as Base32,Base64 or Base128 for example with the program lodine that it was what
I use, but it was mentioned too that exist others types of encoding information, like hexadecimal
encoding or binary encoding.

Exist to many ways to sent the hidden information in packets DNS in different kind of records DNS,
as TXT,A, MX, NULL,etc.

Also exist many tools or programs to perform this technique, I used Iodine, but many program was
mentioned in this document, for me the best was Iodine but we know that there are others programs
that allow this in differents ways.

Besides in this document I explained some uses that allow this technique, as skip firewall, hotspot,
with bad configurations or just that they allow the DNS traffic, that in the most of cases the DNS
traffic is allowed because is one of the principal and more basics protocols for the communication
over internet, because of this always is allowed the DNS traffic in networks.

Some of uses of this technique can be harmful for our network if we want have a secure network,
because allow to transmit hidden information and maybe this information is confidential or very
important for our company so not is good that this information go outside of our company or network
without anybody know.

After know the different techniques and tools or programs, I performed some experiment and I

showed how it work.

59

Also I explained how we can detect when DNS tunneling is happening in our network, with good
analysis of the network traffics and doing comparisons between normal networks and networks with
DNS tunneling active and looking the correct evidences.

Finally I explained the method for reduce the danger, or delete completely in our network DNS
tunneling.

After all of this I want to say that the security in the networks is a topic very difficult and
complicated, because there are many protocols, many differents ways of communication and is
impossible have a network or computer 100% secure, in this document I did the focus in DNS
tunneling, but as I mentioned exists HTTP tunnels, SSL tunnels and not only techniques of tunnels,
there are too many methods for skip firewall, proxies, steal information, transmit hidden information,
etc.

But one good network administrator can do more difficult the way by hackers or unwanted users if he
keep good and secure control in his networks, also perform several and periodic analysis of network

traffic and detect all of things that can be strange in one network.

60

References

[1] Infosec potpourri network security monitoring (NSM), Size of request and response DNS.
http://blog.vorant.com/2006/05/traffic-analysis-approach-to-detecting.html

[2] DNS for Massive-Scale Command and Control Kui Xu Member, IEEE, Patrick Butler, Sudip
Saha, Danfeng (Daphne) Yao Member, IEEE.

[3] HTTP Tunnels Though Proxies - SANS Institute
https://www.sans.org/reading-room/whitepapers/covert/http-tunnels-proxies-1202

[4] PSUDP: A Passive Approach to Network-Wide Covert Communication, Black Hat USA
2010. https://media.blackhat.com/bh-us-10/whitepapers/Born/BlackHat-USA-2010-Born-
psudp-Passive-Network-Covert-Communication-wp.pdf

[5] Reroute traffic from an IP and IP and port to another port, by usemoslinux
http://blog.desdelinux.net/redireccionar-trafico-iptables/

[6] Erik Ekman <yarrick@kryo.se> and Bjorn Andersson <flex@kryo.se>. Guide lodine
http://code kryo.se/iodine/iodine _manpage.html

[7] Alejandro Ramos, tunneled DNS, another option with Iodine 0.5.x
http://www.securitybydefault.com/2010/01/tunelizando-dns-otra-opcion-con-iodine.html

[8] Manuel Jimenez, How to mount our own tunnel server always online (Part 1)
http://www.hackplayers.com/2014/09/montar-nuestro-propio-servidor-de-tuneles-1.html

[9] NorfiPC, How to block and prevent access to websites and web sites.
https://norfipc.com/articulos/como-bloquear-impedir-acceso-paginas-sitios-web-internet.html

[10] SANS Institute InfoSec Reading Room, Detecting DNS Tunneling.
http://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152

[11] Wikipedia , iptables
https://es.wikipedia.org/wiki/Netfilter/iptables#Destinos_de reglas

[12] Firewall with iptables
http://wiki.elhacker.net/redes/administracion-de-redes-gnu-linux/firewall

[13] How work the DNS queries
https://msdn.microsoft.com/es-es/library/cc775637(v=ws.10).aspx

[14] Disable recursion in DNS servers.
https://technet.microsoft.com/es-es/library/cc771738(v=ws.11).aspx

61

62

