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Abstract
This thesis deals with codec detection from compressed speech signal. The primary goal
was to identify which features distinguish selected codecs, and then create an environment
facilitating experiments with various types of classifiers and their configurations. Support
vector machines and neural networks, modeled using the Keras library, were used. The
main contribution of this work is the experimental part, in which the effects of the neural
networks parameters are discussed. After tuning the parameters and finding their optimal
values, the network achieved accuracy over 98% on a test set comprising data from six
different codecs.

Abstrakt
Tato práce se zabývá detekcí kodeků z komprimovaného řečového signálu. Cílem bylo zjis-
tit, jaké charakteristiky rozlišují jednotlivé kodeky a následně vytvořit prostředí vhodné pro
experimenty s různými typy a konfiguracemi klasifikátorů. Použity byly Support vector ma-
chines a především neuronové sítě, které byly vytvořeny pomocí nástroje Keras. Hlavním
přínosem této práce je experimentální část, ve které je analyzován vliv různých parametrů
neuronové sítě. Po nalezení nejvhodnější kombinace parametrů dosáhla síť přesnosti klas-
fikace přes 98% na testovací sadě obsahující data z 6 kodeků.
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Chapter 1

Introduction

In today’s world, spoken communication is predominantly transmitted in a digitized form.
The need for good quality of speech at reasonable bandwidth usage led to development
and standardization of numerous algorithms, which are used to minimize a signal bit rate
without compromising its quality – codecs. The goal of this work is to present a way of
identifying a codec used to encode a speech signal using only the parameters of a decoded
signal, without the knowledge of the original signal.

Identifying the codec in case we do not have access to a file header can have many
possible applications. Since codec selection has a big influence on the perceptual quality of
speech signaů, it also has a great impact on the quality of automated speech recognition
(ASR), as proven for example by Besacier et al. [8]. If a codec in use could be detected,
ASR would be able to use models designed specifically for this codec and thus improve
its accuracy. Another field that could benefit from this work is IP telephony. Knowledge
of the codec can be used to refine the accuracy of estimation of bandwidth needed by a
VoIP connection – different codecs need different bit rates to achieve acceptable speech
quality. Another possible application is in law enforcement. Since many different codecs
are commonly used today, we can identify the source of the signal if we know which codecs
were used or detect if the signal was tampered with on its way.

This work will present a technique based on speech features and neural networks classifi-
cation algorithms. Input signals are classified by two distinct neural network architectures,
(both using a different approach to feature extraction). In the first step, a speech corpus
was encoded with six commonly used codecs – G.711, G.723.1, G.729, GSM-EFR, Speex
and MP3. Then the signal is framed and various speech features are extracted using freely
available software. These features were processed in two different ways. The first approach
was to construct a feedforward neural network operating on the statistical description of
the features – skewness, kurtosis, mean and variance. The second approach was to design
a recurrent neural network and feed the input frames as a sequence of feature vectors into
it. The input files were classified by the neural networks (first separately, then by a joint
network utilizing both approaches) and the results were compared with each other as well
as with results presented in another research papers.

1.1 State of the art
Despite the importance of this topic, there is only a limited amount of research papers
available regarding codec identification. A work by Sharma et al. [27] shows a method
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based on feedforward neural network which uses statistical description of various features
as their input, achieving 92% accuracy in classification of 5 codecs and their bitrates, even
with added noise. The feedforward network part of my thesis was inspired by this paper.

A team formed by Samet Hicsonmez, Husrev Sencar and Ismail Avcibas [16] used a
completely different approach – they use mathematical description of the randomness and
chaotic features in the signal, reaching 95% classification accuracy on 16 commonly used
codecs.

Another approach was presented by Scholz, Leutelt and Heute [26]. In their paper,
they decompose the signal into harmonic and noise parts and detect distortions typical for
specific codecs in each part. Their classifier achieved around 92% accuracy on 5 codecs.

1.2 Content overview
This first introductory chapter provides overview of the state of the art and the structure
of this thesis.

The following chapter deals with the theory needed to create a functional experimen-
tal environment. Codecs used in the experiments are outlined, together with principles of
encoding needed to understand the features that will be used as the inputs for the clas-
sifiers. The second part of the chapter contains an overview of the classifiers that will be
implemented, especially the description of the two neural network architectures. Metrics
employed to evaluate the models are described in the final part of this chapter.

The third chapter contains description of training and test data. Origin, parameters
and sizes of datasets can be found in this chapter, alongside with description of a method
used to encode them with different encoders.

The fourth chapter describes the implementation of classifiers discussed in Chapter 2.
It is an overview of what tools were used to construct the experimental environment. The
first part deals with feature extraction, how the features from Chapter 2 were obtained and
what preprocessing had to be done. The second part introduces Keras, a library used to
build the neural networks.

When the environment is ready, we can run the experiments. That is what Chapter
5 is about - all of the experiments are described and their results are presented there.
The final chapter 6 summarizes the experiments and provides some possibilities of future
development of this work.
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Chapter 2

Theory

This chapter serves as an overview of the principles I had to study in order to be able to
carry out the experiments. In the first part, techniques of speech encoding are explained,
and all of the codecs that will be used later on, are briefly commented. In the second part, I
look at the problem from machine learning perspective and suitable classification methods
are discussed. The complete pipeline for classifying the files is the following:

Figure 2.1: Classification pipeline

2.1 Codecs
The goal of this work is the identification of a codec used to encode a signal. The aim of
speech compression is to minimize the bitrate of a signal while keeping the speech quality at
desired level. There are two main approaches to speech compression: the waveform codecs,
which aim to exploit the redundancies in speech samples when coding and reconstruct the
original waveform as closely as possible during the decoding, and parametric codecs, which
use the knowledge of how speech is produced in human vocal tract to create a model and
represent the speech as a set of this models parameters. In table 2.1, some of the terms
used in following text are defined.

Name Bitrate
Very low bitrate < 2.4 kb/s

Low bitrate 2.4 - 8 kb/s
Medium bitrate 8-16 kb/s

High bitrate > 16 kb/s

Table 2.1: Bitrate ranges used later 1

1 Bitrate classification taken from slides at http://www.fit.vutbr.cz/study/courses/ZRE/public/pred/
06_kod/06_kod.pdf
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2.1.1 Vocal tract

Since the examined codecs exploit the nature of how human speech is generated, it is useful
to have at least basic understanding of the human vocal tract. The sound is produced when
air is pushed from lungs through the vocal cords and mouth. There are two types of sounds
in human speech – voiced and unvoiced. For voiced sounds, the local cords vibrate at a
given frequency, called the pitch frequency, whereas for unvoiced sounds, the vocal cords
stay open. A simplified human vocal tract scheme can be seen in Figure 2.2.

Figure 2.2: A scheme of a human vocal tract.2

2.1.2 Waveform codecs

Waveform codecs work by removing the redundancies and correlation in signals waveform
between speech samples. The most typical example is PCM (Pulse code modulation),
standardized by ITU-T G.711 standard [1], which uses logarithmic compression to quantize
14 or 13 bit samples down to 8 bits. The scale is finer at lower signals since it is known
that smaller signals are more represented in a speech.. This codec will be described in
more detail later. Another waveform codec is ADPCM (Adaptive differential pulse code
modulation) which in addition to ordinary PCM also predicts the signal from previous
samples and encodes only the error of the prediction. This approach removes correlation
between adjacent parts of signal, thus reaching further compression. The block diagrams
of ADPCM encoder and decoder are shown in Figure 2.3. The waveform codecs generally
operate at higher bitrates than parametric codecs, typically around 32 kb/s, and the speech
looses intelligibility at bitrates below 16 kb/s.

2https://www2.spsc.tugraz.at/add_material/courses/scl/vocoder/
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(a) Encoder (b) Decoder

Figure 2.3: ADPCM encoder and decoder block diagrams3

2.1.3 Parametric codecs

To compress speech further, parametric codecs use models of the human speech production
to encode the signal. Instead of signal waveforms, they only send parameters of these
models, which are used on the receiving side to reconstruct the speech. These parameters
occupy significantly less space than compressed waveforms, which allows them to use much
lower bit rates, starting at 800 b/s. The typical representative of these codecs is a technique
call Linear prediction coding – LPC.

LPC

Linear predictive coding is one of the most widely used methods for speech analysis in low
or medium bitrate parametric coders [30]. It exploits the nature of speech production in
human vocal tract, modeling it using LPC filter. The main premise of LPC analysis is
that the human vocal tract can be represented as a buzzer (glottis) at the end of the tube
(throat and mouth). Its goal is to remove redundancies in a speech signal, thus lowering
the output bitrate. Let’s see how the human speech can be approximated using a simple
mathematical model, as demonstrated in Figure 2.4. In the first step, the signal is framed,
usually by 20 ms. The next step is to generate the excitation signal, which will later be
modified by a filter. For each frame, the model needs to decide whether the contained
speech is voiced (i.e. vocal cords vibrate when producing the sound) or unvoiced (vocal
cords are not involved). In case the frame is voiced, the pitch period (frequency of the
vocal cords vibration) is estimated and a periodic pulse train at this frequency is used as
an excitation signal (mimicking the vocal cords). Otherwise the model generates a white
noise. Then, this excitation signal is multiplied by signal energy, also referred to as gain,
and filter parameters are estimated by the LPC method relying on assumption that each
sample can be estimated as a linear combination of the previous samples. The LPC filter
has a form of 1/𝐴(𝑧) filter and mainly reflects the spectral envelope of the speech signal.
Its coefficients represent formants of the signal. After the estimation, following information
is sent to the decoding side – pitch period (7 bits in LPC-10), voicing decision bit, gain
(5 bits in LPC-10) and vocal tract model coefficients (41 bits in LPC-10). In the decoder,
these parameters are used to synthesize an output speech signal.

3http://electrotech99.blogspot.cz/2011/01/adaptive-differential-pulse-code.html
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Figure 2.4: LPC encoding and decoding4

2.1.4 Hybrid codecs

Parametric codecs can operate on very low bitrates while keeping intelligibility. However,
the reconstructed speech sounds somewhat mechanical, primarily due to binary voiced/un-
voiced decision, and the fact that the excitation signal is not a simple periodic pulse wave.
These issues are addressed by hybrid encoders, which use features from both waveform
and parametric codecs to achieve better perceptual quality. The way to manage that is to
match the excitation signal of the original speech as closely as possible. The approach used
in hybrid codecs is called Analysis-by-Synthesis – the codec features a speech synthesizer
(LPC and pitch synthesis) and performs a search in a database of waveforms, which is
called a codebook. Index of the best match is then sent together with other parameters to
the decoding side.

CELP

One of the most widely used techniques in hybrid compression coding is Code-Excitation
Linear Prediction (CELP)[30]. CELP coders contain codebooks of 256 – 1024 samples at
both encoding and decoding ends. It is often split into two codebooks, one containing
waveforms and one containing multi-pulse excitation signals.

2.2 Codecs used in the experiments
After previous brief summary of the techniques used in speech compression, this section
shows, how are these techniques used in practice. The codecs that will be used later on in
the experiments are presented in the next few paragraphs.

4Figure from Guide to Voice and Video over IP book [30]
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G.711 G.711 [1] is an ITU-T standard describing the PCM codec, used primarily in
telephony. It is a waveform codec with narrowband sampling rate (8 kHz) and sample
size of 8 bits, which results in bitrate of 64 kb/s. PCM provides toll-quality speech and
it is often used as “baseline” for evaluating low-bitrate parametric codecs, both regarding
speech quality and compression ratio. Two different compressions are used – mu-law, which
is used primarily in North America and Japan, and A-law, which is used in rest of the
world. The PCM encoder converts 14 bit (mu-law) or 13 bit (A-law) linear PCM samples
to 8 bit samples using logarithmic quantization, which allows finer scale on low-level speech
and coarser scale on higher frequencies, thus using the available sample size more effectively
since most of the human speech takes part in the lower parts of used frequencies.

G.723.1 ITU-T standard G.723.1 [4] was designed mainly for use in low bitrate telephony
applications and offers two algorithms operating on different bitrates for better flexibility.
Algebraic CELP (ACELP) for 5.3 kb/s bit rate and Multi Pulse-Maximum Likelihood
Quantisation (MP-MLQ) for 6.3 kb/s bit rate. 30 ms voice frames are used, each consisting
of four 7.5 ms subframes (60 16-bit samples), with one subframe look ahead, resulting in
total algorithmic delay of 37.5ms. On each of these subframes, 10-th order LPC is applied,
and both open-loop and closed-loop pitch period estimation is used on every two frames.

G.729 ITU-T G.729 [5], based on Conjugate Structure Algebraic Code Excited Linear
Prediction (CS-ACELP) algorithm, provides voice encoding at low bitrates (6.4 kb/s, 8
kb/s, and 12.4 kbit/s) at 8kHz sampling rate. The voice frame size is 10 ms and it is
divided into two subframes, with a look ahead of one subframe, which means that the total
algorithmic delay is 15 ms. 10 ms frame is used for LPC filter coefficients estimation and the
5 ms subframes are used to compute the excitation signal parameters. G.729 supports Voice
Activity Detection (VAD) and sends a special Silence Insertion Description (SID) frame,
describing the parameters of background noise, when a frame without a voice activity is
detected. Since it was designed for use in cellular and network applications, it is also able to
interpolate the frames, which are missing due to a transport channel error using a technique
called PLC (Packet loss concealment).

DTX As stated before, G729 supports different behavior based on whether there is a
voice activity in the sent frame - this behavior is called DTX, Discontinuous transmission.
First, the encoder determines if there is a voice in a frame and in case there is no voice
activity, it either sends a reduced size data packet, which contains the characteristics of
the background noise, or no data whatsoever. In that case, the decoder generates the same
noise as in previous frames. 5

GSM-EFR ETSI GSM-EFR [3] is a standard for second generation mobile networks,
which is used to transport most of today’s mobile communication. Its full rate version
operates at 13 kb/s, using Regular Pulse Excitation/Long Term Prediction (RPE/LTP)
coder, whereas the enhanced full rate (EFR) uses ACELP codec and at 12.2. kb/s bitrate.
The speech frame length is 20ms, each frame consisting of four subframes (5 ms each).
Pitch analysis, codebook indices and LPC coefficients are computed for every subframe.
Altogether 244 bits of information are sent with every frame, resulting in 12.2kb/s bitrate.

5http://www.adaptivedigital.com/pdfspecs/adt_g729.pdf
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Speex Speex [31] is an open audio compression format based on CELP speech coding algo-
rithm. It is used mainly in VoIP and was designed with a goal of making a codec optimized
for high quality speech, working at flexible bit rates. The codec supports ultra-wideband
(32kHz), wideband(16 kHz) and narrowband (8kHz) sampling rates and a wide range of
bitrates (2-44 kb/s), which can change dynamically depending on the encoded signal. It
is possible to choose between variable or constant bitrate mode. Many other advanced
features are implemented, including voice activity detection, discontinuous transmission or
perceptual enhancement in the decoder.

MP3 Unlike the others,MPEG-2 Audio Layer III [2], or MP3, is a general purpose codec,
which intended use is to compress audio in CD-like quality. The compression ratios for
unaltered perceptual quality range in between 9 to 12. Usual CD 2-channel audio has a
bitrate of 1411 kb/s at 44.1 kHz sample rate and it is often compressed to a bitrate in range
from 128 to 320 kb/s. To achieve such high compression ratio, MP3 exploits combination
of perceptual coding techniques and general purpose compression algorithms, like Huffman
coding.

Overview of all the codecs used is shown in Table 2.2.

Codec Bitrates Bandwidth Coding techniques Organization
G.711 64 kb/s 8 kHz PCM ITU-T

G.723.1. 5.3, 6.3 kb/s 8 kHz ACELP, MP-MLQ ITU-T
G.729 6.4, 8, 11.8 kb/s 8 kHz CS-ACELP ITU-T

GSM-EFR 12.2 kb/s 8 kHz ACELP ETSI
MP3 8-320 kb/s 8-48 kHz Many MPEG
Speex 2-44 kb/s kb/s 8, 16, 32 kHz CELP Xiph.Org

Table 2.2: Overview of codecs used in the experimental part

2.3 Used features
To classify the codecs, we need to find features that can distinguish them, that have specific
behavior for each class. In the following section, some of the more important features, that
have proven useful, are shortly discussed.

MFCC Mel-Frequency cepstral analysis [13] is one of most widely used techniques of
feature extraction in speech processing tasks, typically in speech recognition. Mel-frequency
cepstrum coefficients (MFCC) are coefficients obtained through this method. Mel-frequency
cepstrum is based on a nonlinear Mel scale, which reflects the human ear scale. The workflow
of the algorithm is following: First, an input signal is framed, usually with some overlap
and windowed by Hamming window to evade discontinuity and frame edges. Then a fast
Fourier transform (FFT) is computed for each frame to obtain frequency components of the
signal. Next, the Mel filter bank is applied to the frame processed by FFT. The Mel scale
is roughly linear up to 1kHz and then logarithmic. Finally, a discrete cosine transformation
(DFT) is performed upon the frame and the resulting coefficients are used as input features.
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LPC coefficients LPC coefficients are used in LPC based codecs to compress a signal
to ensure efficient transmission or storage. It is the prevalent method of compression in
medium and low bitrate codecs. The principle of the LPC compression is explained in
Section 2.1. Fifteen first LPC coefficients are used in the experiments.

LPC Residual signal Also called the error signal, LPC residual signal is the signal which
remains after performing an LPC analysis. It is the difference between predicted sample
and actual sample. Also see Section 2.1. Residual signals energy, spectral variation and
spectral flatness are the features used during the experiments.[30]

LSF coefficients Line spectral frequencies (LSF), sometimes also referred to Line spec-
tral pairs(LSP) are a way of representing LPC coefficients during a transmission, for more
precise description see for example a paper by Silva comparing speech signal feature ex-
traction methods [28].

2.4 Classification
The goal of this work is classification of the codec based on a speech signal, using supervised
machine learning classification algorithms. Many techniques were developed during the
years a their analysis is well outside the scope of this work. Two approaches were used in
the experimental part: SVMs and neural networks. Both are discussed shortly in the next
few pages.

2.4.1 SVM

Support vector machines (SVM) [6] are a type of an approach to supervised machine learn-
ing. They are usually used for classification, however they can also do regression analysis.
The algorithm is as follows: First all the samples from two distinct classes (blue and red
dots in Figure 2.5) are plotted in n-th dimensional space, where n is the dimensionality of
our features. Then the space in split in two by a hyper-plane which separates the data-
points into two classes as precisely as possible (with as few misclassifications as possible,
represented as a solid black line in the figure) and which has the widest possible margin
– distance from the hyper-plane to the nearest sample – the space between the solid line
and the dotted lines in the figure. If the dataset is not linearly separable, SVMs use a
operation called the kernel trick, which transforms the input space into higher dimensional
space and makes it separable. In this work, linear SVM is used with an one-vs-rest strategy
to transform the multiclass classification into binary classification. That means there are
no kernel transformations involved and one model is built for each class, where the samples
belonging in this class are treated as a positive result and all the other samples as a negative
result.
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Figure 2.5: Principle of SVM6

2.4.2 Neural Networks

Artificial neural networks are computational models loosely inspired by human brain func-
tion. They learn to produced an output based on input data by learning on large number
of samples. The networks consist of number of interconnected nodes, also called neurons,
which work together to solve a given problem. This problem is usually either output pre-
diction, pattern recognition, or, as is the case in this thesis, classification. The neurons are
organized in layers, typically there is one input layer, one output layer and one or more
layers in between them - these are called the hidden layers and number of hidden layers
defines a depth of the network. The samples are fed into the network via input layer. The
actual computations are done by the neurons inside hidden layers. One of the simplest and
oldest neuron models, called the perceptron, consists of one or more inputs 𝑥1, 𝑥2, .., 𝑥𝑛 that
are multiplied by weights 𝑤1, 𝑤2, .., 𝑤𝑛 and one binary output 𝑜. This output is set to one
if the sum of the weighted inputs exceeds a threshold 𝑡, i.e. :

𝑜 =

{︃
1 for

∑︀𝑛
𝑖=1 𝑥𝑖𝑤𝑖 > 𝑡

0 for
∑︀𝑛

𝑖=1 𝑥𝑖𝑤𝑖 ≤ 𝑡
(2.1)

The function deciding an output of a neuron is often referred to as an activation function.
Nowadays, more complex functions than a threshold are employed, since it is very hard
to train perceptron network with thresholded binary output - it is very sensitive, even a
slight change on the input might flip the state of a neuron from 0 to 1 and change the
overall output in almost unpredictable way. The popular choices of activation function are
sigmoid, tanh or ReLU, resulting in real-valued inputs and outputs.

Sigmoid Sigmoid takes an input and ’squashes’ it into range between 0 and 1. It was
historically one of the most used activation functions, since it provides a nice biological
analogy of a neuron function - 0 means inactive neuron and 1 represents a neuron firing
at full frequency. Nowadays it is rarely used in practice due to its many drawbacks, most
inconvenient of them being the saturation problem. The gradient at the minimum and
maximum of the function (0 a 1) are almost zero - this means there will be very little

6The figure comes from an online course STAT 897D by PennState university https://
onlinecourses.science.psu.edu/stat857/node/240
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gradient flowing through the neuron during backpropagation and it will be very difficult to
train the network. The equation of a sigmoid function looks like this:

𝜎(𝑥) =
1

(1 + 𝑒−𝑥)
(2.2)

Figure 2.6: sigmoid function

Hyperbolic tangent Tanh is a non-linearity similar to a sigmoid, in fact, it is just a
scaled sigmoid:

tanh(𝑥) = 2𝜎(2𝑥)− 1 (2.3)

It squashes the input into range (-1,1) and its principal advantage compared to sigmoid is
that the output is zero-centered.

Figure 2.7: Hyperbolic tangent function

ReLU Rectifier linear unit [15], shown in Figure 2.8, simply outputs zero for negative
inputs and lets trough any positive input unchanged. ReLU has grown very popular in last
years, since the computation is very fast and research has shown it may greatly speed up
stochastic gradient descent convergence, documented for example by A. Krizhevsky and I.
Sutskever [22].

𝑓(𝑥) = max(0, 𝑥) (2.4)
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Figure 2.8: ReLU function

The architecture described above can be used as an universal computational model, as
proven by G. Cybenko[12], but it does not learn anything. In neural networks, learning
means simply automatically adjusting the input weights to minimize the error function of
the output. In the training data, each input 𝑥𝑖 is paired with a label 𝑦𝑖. The error function
is computed based on difference of the label 𝑦𝑖 and the network output 𝑜𝑖.The goal is to
match the output 𝑜𝑖 with the corresponding label 𝑦𝑖 as closely as possible. In other words, if
𝑓(𝑥) is a function that produces 𝑦𝑖 for every 𝑥𝑖, we are trying to approximate this function
by 𝑓*(𝑥), that is composed by functions of the individual layers: 𝑓*(𝑥𝑖) = 𝑓𝑛(𝑓2(𝑓1(𝑥1))).
The actual adjustment of the weights is usually done via the backpropagation algorithm in
combination with some modification of gradient descent. The gradient for each weight is
computed based on the output of an error (loss) function, the weight is modified and the
network output converges towards an optimum.

2.4.3 Feedforward neural networks

Feedforward neural networks (also referred to as multi layer perceptron networks,MLPs)[14]
are networks where the information is always propagated in one direction - there are no
loops in connections between the nodes. In other words, the network can be represented
as an acyclic oriented graph connecting the nodes, which perform an operation defined by
their activation function on their inputs7.

Figure 2.9: Principle of a feedforward neural network8

7http://www.deeplearningbook.org/contents/mlp.html
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2.4.4 Recurrent neural networks

Recurrent neural networks (RNNs) are designed to make use of sequential data, which is
exactly what a framed signal is. The connections between units make up a directed cycle,
which allows the network to pass an information from previous state to the current one,
as illustrated in Figure 2.10. In other words, hold a state based on previous inputs. In a
feedforward network, each input is processed separately, without any influence of previous
samples. This ability to process sequences of data should prove useful in the task of signal
processing. One of the most serious problems of classical RNNs, is the vanishing gradient
problem. The traditional activation functions have gradients in range (−1, 1), causing
the error gradient to vanish exponentially with each timestep. This problem renders the
classic RNNs unusable for analyzing data with long-term dependencies, as shown by Yoshua
Bengio[7].

Figure 2.10: A scheme of a recurrent neural network9

LSTM

LSTM (Long short-term memory) neural networks are a modification of a basic RNN
model proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber[17]. They reduce
the vanishing gradient problem, which makes them much more effective on capturing long-
term dependencies. The key of the solution is usage of multiple gates and a cell state, which
runs through all the cells and is manipulated using these gates – parts of the state may be
added or removed. This enables the network to read, forget and write selectively, preserve
the error and backpropagate it into much deeper layers. Each gate is in fact a sigmoid layer
that outputs a number between 0 and 1. This number represents the degree of how much
the cell state is modified. The first gate is the forget gate, which says how much of the
state is going to be dropped. Then we need to know how much of the results of current
iteration to keep – input gate serves this purpose, it allows the network to “pick” the part
of the current result (also called the candidate result) to combine with a cell state. The
last gate, the output one, controls how much of the information flows out from the cell and
is made exposed to other cells and next timesteps. By tuning the weights for these gates,
the network learns how to operate with its own state.

8Figure from Michael Nielsen’s book, http://neuralnetworksanddeeplearning.com/chap1.html
9 https://github.com/cazala/synaptic/wiki/Neural-Networks-101

15

http://neuralnetworksanddeeplearning.com/chap1.html
https://github.com/cazala/synaptic/wiki/Neural-Networks-101


Figure 2.11: Structure of LSTM cell10

The step by step workflow of LSTM network is the following, based at Michael Nielsen’s
book [24] and an article by Christopher Olah [25] . Let us assume that in time 𝑡 we have
an input vector xt, an inner cell state ct−1 and an output from previous step, ht−1, which
is also called hidden state. First, the network decides how much of the information from
previous steps to keep stored in its cell state. This decision is done by the forget gate,
which consists of a sigmoid function applied to weighted sum of previous output, input plus
a bias:

ft = 𝜎(Wxfxt +Whfht−1 + bf ) (2.5)

In Equation 2.5, W are the weights, which are updated through the backpropagation al-
gorithm and bf is the bias, which is habitually set at 1 (as well as in experiments in this
paper) and improves the networks performance as shown by Rafal Jozefowicz’s paper [20].
As apparent from the equation, the forget gate in fact states how much of the information
to remember, i.e. value 1 means to keep everything stored in the cell state, which may be
a little confusing at first.

The subsequent step is to decide how much of the inner state is going to be updated,
i.e. which portion of the result is the cell going to store in its state. The input gate serves
this purpose. Its equation is very similar to the one before:

it = 𝜎(Wxixt +Whiht−1 + bi) (2.6)

At this point, we know in what way is the state going to be modified, but we still need
to compute the new values which will be stored in it. These values are often called the
candidate values. They are computed as an activation function (hyperbolic tangent is a
popular choice) of the weighted sum of input and previous output plus bias:

c̃t = tanh(Wxcxt +Whcht−1 + bc) (2.7)

Now it is possible to update the cell state based on the two gates, previous state and
the candidate values. The procedure is as follows. We multiply the previous state by the

10Figure from http://colah.github.io/posts/2015-08-Understanding-LSTMs/, a site with very com-
prehensible and intuitive explanations of machine learning topics
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forget gate, the candidate values by the input gate and add these two vectors together to
obtain a new cell state for the current timestep, ct:

ct = c̃t ⊙ it + ct−1 ⊙ ft (2.8)

The only step that remains is to produce the actual output of the cell. This output is based
on the newly updated cell state, which is transformed by tanh function and multiplied by
the output gate, which has a familiar form of:

ot = 𝜎(Wxoxt +Whoht−1 + bo) (2.9)

And the final equation producing the result (and the hidden state for the next timestep) is:

ht = ot ⊙ tanh ct (2.10)

GRU

Gated Recurrent Unit (GRU) networks, introduced by Cho et al. [11] are very similar
to LSTM networks and have been found to yield comparable results on various machine
learning tasks, see for example a paper by Cho et al.[10]. The principal difference is that
the output gate is omitted, so the GRU only uses two gates, which results in less matrix
multiplications and thus better performance in terms of computational complexity. These
gates are called reset and update gate. Update gate translates roughly to forget and input
gates of a LSTM and reset gate modifies if the output hidden state is based more on the
current input, or the previous hidden state. Also, the hidden state and the cell state are
merged into one, and there is no second nonlinearity applied to the hidden state (like tanh
in (2.1)). This network architecture was proposed in 2014 by Cho et al. [11]. The workflow
of the unit is very similar to LSTM. The units hidden state is updated based on the update
gate, which has an equation:

zt = 𝜎(Wxzxt +Whzht−1) (2.11)

Analogically, the reset gate:

rt = 𝜎(Wxrxt +Whrht−1) (2.12)

The new candidate hidden state is now, after applying reset gate:

h̃t = tanh(Wxhxt + r⊙Whhht−1) (2.13)

And the final state of the cell, combining the candidate output and the previous hidden
state is:

ht = (1− zt)ht−1 + h̃tzt (2.14)
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Figure 2.12: Structure of GRU cell11

Loss functions

Loss functions, also called objective functions, are used to measure how much a classifier
output differs from the desired (correct) output. In other words, it is the function, which
result we try to minimize by adjusting the network parameters. In the experimental part,
categorical crossentropy is used as a loss function.

Categorical crossentropy The categorical crossentropy loss function, also referred to
as negative log likelihood, is used to measure dissimilarity between two probability distribu-
tions - in case of machine classification between the distribution of a classifier (implemented
as a softmax layer in a neural network) and true data labels. Categorical crossentropy is
defined as:

𝐶 = − 1

𝑛

∑︁
𝑥

[𝑦 ln 𝑜+ (1− 𝑦) ln(1− 𝑜)]

where 𝑛 is the number of samples, 𝑦 is the probability distribution of the correct labels and
𝑜 is the distribution of the networks output.

Optimizers

The most widely used technique for neural network training is the gradient descent, ex-
plained for example in Chapter 212 of Michael Nielsen’s Deep Learning book [24]. The
goal of optimization is to find model parameters which provide the best results. First, we
need to define a way of quantifying “best results” - an objective function, e.g. categorical
crossentropy, which is parametrized by model’s parameters (i.e. weights). The algorithm
then searches for the parameters (weights) which yield the minimal objective function result
by changing the weights in direction opposite to the gradient of these weights with respect
to the objective function. The gradient gives us the direction in which we need to move
(i.e. where the function has the steepest slope), but it is not able to compute the size of the

11http://colah.github.io/posts/2015-08-Understanding-LSTMs/
12http://neuralnetworksanddeeplearning.com/chap2.html
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step to take. This parameter is called the learning rate and it is one of the most important
hyperparameters to tune in neural networks.

SGD The difference between ordinary gradient descent and stochastic gradient de-
scent (SGD) is that ordinary gradient descent is computed over the whole dataset, whereas
SGD updates the parameters for every sample and target pair. This has few advantages
and few disadvantages. Since the data are usually correlated, it is redundant, even wasteful
to compute the objective function for the whole dataset to make a single parameter update.
We also must be able to fit all the data into memory in order to compute the function out-
put. On the other hand, when we compute the function for a single sample, the variance is
greater and this fluctuation may make it harder to reach a local or global minimum, since
we may overstep it. In practice, SGD is usually used to denominate mini-batch SGD, which
takes the best from both approaches – the update is done over a small subset of data.

Adam Adaptive Moment Estimation (Adam) [21] is a modified version of SGD, where
the learning rate is set and changed automatically throughout the learning process.

Regularization

Since the ultimate goal of machine learning is to be able to perform on unseen data, its
ability to generalize the patterns it has learned is crucial. One of the pitfalls of neural
network classification is called overfitting. During the training period, the model fits its
weights to the training data. The overfitting problem arises when the model generates very
complex functions to fit the training set almost perfectly, when it has a lot of parameters
compared to number of training samples. In that case, it will be very difficult for the
network to generalize, since even a small fluctuation, or a random noise in input data can
influence the output. On the other hand, a model that is too simple does not fit even the
training data, so it is even less useful. There are many techniques designed to find the
compromise between the two extremes, a model that fits the training set well, but that
keeps low enough complexity to generalize reasonably. These techniques are collectively
referred to as regularization. Regularization does not lower training error, it fact often even
raises it, but it is intended to lower the test error.

The most used methods in neural networks are the L1 and L2 regularization and dropout
[29]. The idea behind L1 and L2 regularization is to penalize large model weights, so that
the model does not fit training data perfectly. The implementation of both is straight-
forward: we add one more term to the loss function. This term represents the penalty and
the way it is computed is the difference between L1 and L2 regularization. In case of L1
regularization, the term is computed as a sum of a absolute values of all weights, whereas in
L2 regularization, it is sum over squared values of all weights. The equations are following:

𝐶* = 𝐶 +
𝜆

𝑛

∑︁
𝑤

|𝑤| (2.15)

𝐶* = 𝐶 +
𝜆

2𝑛

∑︁
𝑤

𝑤2 (2.16)

where 𝐶 is the original cost function, 𝐶* is the new cost function, 𝑤 is the input weight, 𝑛
is the number of input samples and finally 𝜆 is the coefficient, that is usually tuned using

19



cross-validation. Thus, models with lower weights are favored, which intuitively means the
model will not be affected too much by random noise in the input and will learn more
general patterns than unregularized one.

Dropout The idea behind dropout is fundamentally different, simpler, but the goal is
similar. Dropout randomly selects predefined fraction of input connections for each data
sample and sets the according weights to 0, i.e. turns a portion of the neurons off. Neurons
are only switched off during the training phase. This makes the model more robust, since
it is forced to learn to produce output based on different subset of features. One way to
look at why dropout helps to solve overfitting is that in fact, with each change of dropped
neurons, we train a slightly different network, which overfits in different way. Then all
of the models are averaged, when we turn the dropout off in testing and actually using
the model for predictions. One of the pitfalls of conventional dropout is that it does not
perform very well on RNNs – simply put, dropout on the recurrent connection ”corrupts“
the ability of the network to learn long term dependencies. However, there are modified
algorithms that do help to decrease overfitting even in recurrent nets, for example a paper
by Zaremba, Sutskever and Vinyals [32].

2.4.5 Metrics

In the next two paragraphs, I will discuss the classification metrics that will be used dur-
ing the experiments on an example with binary classification, where we have data in two
classes and the classifier predicts whether the input belongs to one of them, i.e. the classifier
outputs positive prediction if the sample is classified into the first class, and a negative pre-
diction if the sample is classified into the second class. This explanation can be generalized
to arbitrary number of classes. To explain the metrics, four terms must be defined:

True positives (TP) - Number of times the classifier predicted positive result and the
input indeed belonged into the first class.

True negatives (TN) - Number of times the classifier predicted negative result and the
input was in the second class.

False positives (FP) - Number of times the classifier predicted positive result, but the
input belonged into the second class.

False negatives (FN) - Number of times the classifier predicted negative result, but the
input belonged into the first class.

Accuracy

Accuracy is the most simple and most commonly used evaluation metric for classification
problems. It is the proportion of the true negatives and true positives among the classifier
outputs, that means it is the number of times the classifier was correct, divided by the total
number of classifications.
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F1 score

The principal metric used in the experiments is F1 score, also called the F1-measure:

𝐹 = 2× 𝑝× 𝑟

𝑝+ 𝑟
(2.17)

It is a harmonic mean between the precision and recall. Harmonic mean can be viewed as
a very conservative average – the result is closer to a minimum of the two values than in
case of using geometric mean. Precision 𝑝 is the number of true positives divided by the
sum of true positives and false positives:

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.18)

and recall 𝑟 is the number of true positives divided by the sum of true positives and false
negatives:

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.19)

To show what precision and recall is on an example, I consider a set of samples, where
half of them has a value A and half of them has a value B. Then we take the samples
which were classified as A, and see which part of them had in fact value A. This ratio is the
precision. Now we see how many samples were classified as A correctly and what is the real
count of A samples in the dataset. Ratio of these two numbers is the recall. This approach
works only for two classes – one considered a positive and the other one a negative result.
However, in practice, as well as in this work, the results of precision and recall for all the
possible binary combinations are represented as a confusion matrices, which are averaged
in order to yield a single number for all the classes.

Comparison

F1 score should almost always be preferred to simple accuracy, especially in cases with a
strong class imbalance. In this work, F1 and accuracy are very similar, since the all the
classes are equally sized and in most of the experiment, both precision and recall are high,
above 0.9, and very similar, so their harmonic mean is also above 0.9 and corresponds
to accuracy. Therefore, the main motivation for using F1-score is because this metric is
universally accepted and it is possible to compare the results directly with other papers.
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Chapter 3

Data

The speech corpus used for experiments consists of short (2-20 seconds) audio files down-
loaded from voxforge.org, namely corpora in cmu_com_kal_ldom1, cmu_us_awb_arctic2

and 8kHz3 directories. Each file typically contains one sentence. The database contains
recording from many speakers with different accents and dialects of English language,
recorded at a different recording qualities. The first part (473 files) of the training/val-
idation data used was recorded with 8 kHz sampling rate and 16 bit sample size on a
telephone microphone, the second part (1304) was recorded with 16 kHz sampling rate
and 16 bit sample size. The test data come from corpus CMU_ARCTIC US uwb, which
consists of 1138 utterances from Project Gutenberg by a Scottish male, recorded at 16 kHz.
First, a bash script was used to resample all the files to 8 kHz as some of the codecs (G.711,
G.723, G.729, GSM-HR) require this sampling rate, encode them with desired codec and
then decode them back into a raw wave file. A bash script using ffmpeg was used to encode
all the files. The files were randomly shuffled and partitioned into training (700 files for
each codec), validation (100 for each codec) and test (again 100 files) sets. Validation set
was used for hyperparameter and architecture tuning, whereas the test set was used for the
final evaluation.

Set Size Original corpus
Training 700 8 kHz1 and cmu_com_kal_ldom2

Validation 100 8 kHz1 and cmu_com_kal_ldom2
Test 100 CMU_ARCTIC US uwb3

Table 3.1: Used sets
1 http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Original/

16kHz_16bit/cmu_com_kal_ldom.tgz
2 http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Original/

16kHz_16bit/cmu_us_awb_arctic.tgz
3 http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Original/

8kHz_16bit/
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Codec Bitrate Other settings
G.711 64 kb/s

G.723.1 6.3 kb/s
G.729 8 kb/s DTX on

GSM-EFR 12.2 kb/s DTX on
MP3 8 kb/s
Speex variable (ffmpeg default)

Table 3.2: Configuration of encoders used in the experimental part
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Chapter 4

Implementation

In the previous section, all the components necessary for the experiments were outlined in
theory. In the next sections, I will describe how the particular parts were implemented and
which tools I used to develop a working experimental framework, from preprocessing the
data, through extracting the features, to finally classify the files. An overview of the used
tools can be seen in Figure 4.1, which defines the tools used in each step of the pipeline
from Figure 2.1.

Figure 4.1: Tools used in the classification pipeline

4.1 Used tools
As apparent from Figure 4.1, a number of libraries and tools was used to prepare the data
and carry out the experiments. This section provides an introduction to each of these tools.

4.1.1 Soundfile

Soundfile is an audio library based on libsndfile that allows us to open a sound file and store
the signal levels in a NumPy array, which is a format used by all the other components of
the system. File format, sample rate and sample size can be deduced from a header or set
explicitly.

4.1.2 Yaafe

Yet Another Audio Feature Extractor – Yaafe[23] is a feature extraction software written in
C++ and Python, which offers many advantages over its competitors, at least in open-source
community. It provides a big range of available features while keeping low computation
complexity due to exploiting feature computation redundancies. In other words, many
of the features share the same intermediate representations and parts of the algorithm,
like FFT, signal envelope or spectrum magnitude. These representations are computed
only once for each signal and then they are used repeatedly for each feature extraction
algorithm that needs them. To allow this behavior, Yaafe works in two steps. The first step
is to create a feature extraction plan. A feature extraction plan is a Python class, whose
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attributes can be set manually or can be read from a file. Each line of such file defines one
feature to extract, e.g.

lpc:LPC LPCNbCoeffs=10 blockSize=256 stepSize=128

This line will tell the engine to split the signal into frames of 256 samples with 50% overlap
and compute the first ten LPC coefficients for each frame. Each feature is represented as a
series of steps, for example Frames, FFT, MelFilterBank and Cepstrum for Mel-frequency
cepstral coefficients. The feature plan is then parsed into a reduced directed graph with all
the redundancies omitted, because each of the steps is computed only once and the results
are shared between different features. Yaafe can be used as a command line program with
the results stored in HD5F or CSV file format, or it can be imported as library in a Python
script and in this case, the results are returned as a NumPy array, which makes it easy to
process them by the next tools, SciPy[19] and Keras[9].

4.1.3 SciPy

SciPy is a collection of functions and algorithms extending the NumPy library. It also
provides the user with ability to plot graphs bringing Python close to tools like MATLAB
or Octave. In this work, SciPy used for data preprocessing.

4.1.4 Keras

Keras[9] is a high-level Python neural networks library. Its development goals are simplicity
of prototyping while keeping maximal flexibility of the network. The computational engine
can run on top of either Theano or Tensorflow deep learning libraries. Keras code can run
on either CPU or GPU and the benchmarks show that it is one of the fastest Python neural
network libraries available.

There are two ways of defining a model in Keras. The first, more straightforward, is the
Sequential API, where you initialize a class called Sequential and then linearly add layers
via the add method, for example:

model = Sequential()
model.add(Dense(64, activation=’relu’, input_dim=50))

where Dense is a name of the class representing the layer, activation is name of the activation
function, 64 is the output dimension and 50 is the input dimension (number of features).
Dense layer is just a regular fully connected network layer where the output of each node
is connected to the inputs of all nodes in a consecutive layer.

Another way, which is used in this work, is so called functional model, which allows
multi-input and multi-output networks, shared layers and generally gives more flexibility
to the developer. The idea is following – all layers are in fact functions, that take an input
in form of a tensor, transform it a return a tensor again. Thus, layers are callable and
accept output of a different layer as an input. Also the whole model is callable in exactly
the same way, which makes it easy to embed a complete, possibly pre-trained model into
a more complex structure. This work exploits this feature by combining the feedforward
statistical model and recurrent model, concatenating the outputs of the last hidden layers
of both and adding a dense layer on top of them. It is also possible to share a layer between
different models, or train part of the model with different weights. Example:
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g=GRU(128,return_sequences=True) (input1)
g=GRU(256,dropout_W=0.2,return_sequences=True) (g)

The first layer shown takes an output tensor from layer input1 and transforms it (GRU is
the type of recurrent network used in this work) . The next layer does the same operation on
the output tensor of the first layer – more detailed description of what exactly is happening
here can be found in the implementation part of this work.

After we are done with architecture definition of the model, we need to configure how
to compute loss, backpropagate it in the model to adjust weights and how to evaluate the
results – define the metrics used. All three things can be done via the ’compile’ method:

model.compile(loss=’categorical_crossentropy’, optimizer=SGD(lr=0.01),
metrics=[’accuracy’])

This line sets categorical crossentropy as the loss function (function, which output are
we trying to minimize during the training) and uses stochastic gradient descent with a
learning rate of 0.01 to propagate the loss. Metrics values are shown in a text output
during the training and evaluation. There are more ways to feed the data into the model,
in this work, fit method of the Model class is used.

model.fit([x[:-200],labels[:-200], batch_size=40,
validation_data=[x[-200:],labels[-200:]], nb_epoch=50)

This line says that training data and their labels are stored in variables x and labels. For
the training phase, use all of them, except for the last 200, process data in batches of size 40
– this means that the loss is computed and propagated through SGD and backpropagation
every 40 samples – validation data are the 200 last elements in x and labels, and we will
train for 50 iterations over the whole dataset. After training, it is possible to save the
weights of the network in HDF5 format via

model.save_weights(filename)

To show a concrete example of a network generated by Keras, consider the following
source code, which is very similar to the actual code of the network used in the experiments.
A diagram of such network can be seen in Figure 4.2 and a graphic representation of a single
neuron in Figure 4.3.

input=Input(shape=(3,))
d=Dense(6,activation="relu")(d)
d=Dense(6,activation="relu")(d)
d=Dense(6,activation="relu")(d)
output=Dense(2, activation=’softmax’)(d)
model=Model(input=input2,output=output2)
model.compile(loss=’categorical_crossentropy’,

optimizer=Adam(clipnorm=1.),
metrics=[’fbeta_score’])
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Figure 4.2: A feedforward neural network with three hidden layers
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Figure 4.3: A single ReLU neuron 1

4.2 Data preprocessing
After downloading the data, script recode.sh was used to create the directory structure,
resample and encode the input files with used codecs. The scripts takes the original input
file, recodes it into desired format and then into uncompressed sound file with sample size
of 16 bits and 8 kHz sample rate.

4.3 Feature extraction
Now that the corpus is prepared, feature extraction can be executed upon it. LPC error
signal, sometimes also called the residual signal, was extracted from the files using Edin-
burgh Speech Tools. 2 and saved in an auxiliary file. Then each file was loaded into NumPy

1http://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
2http://www.cstr.ed.ac.uk/projects/speech_tools/
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array using Soundfile library and the features were extracted from both the original signal
and the residual signal with a Python script, using SciPy, NumPy and Yaafe libraries.

In a speech processing, the signal is usually split into 10 – 40 ms long frames. 256 samples
at 8000 kHz sampling rate are equal to 32 ms and as you can see in the experimental part,
this size has proven to be ideal. However, for the baseline experiments, resulting NumPy
array was split into frames of 1024 samples with 50% overlap. From these frames, features
were extracted using Yaafe. Summary of all features used during the baseline experiments
can be seen in Table 4.1:

Feature Coefficients Frame size Step size Other parameters
Autocorrelation 15 1024 512 -
Hilbert envelope 1 1024 512 -

Energy 1 1024 512 -
Envelope shape statistics 1 1024 512 3

Spectral flatness 1 1024 512 -
Spectral variation 1 1024 512 -

Spectral shape statistics 1 1024 512 4

Zero crossing rate 1 1024 512 -
MFCC 13 1024 512 -

LPC coefficients 15 1024 512 -
LSF coefficients 15 1024 512 -

LPC residual. energy 1 1024 512 -
LPC res. spect. variation 1 1024 512 -
LPC res. spect. flatness 1 1024 512 -

Table 4.1: Summary of used baseline features

4.3.1 Feature statistical description

For the feedforward network architecture used later, 4 statistical functions were used on the
features: skewness, kurtosis, mean and variance. All of them are part of the stats module
from SciPy library.

4.4 Classifiers
After obtaining the features and scaling them using SciPy, it is finally possible to classify
the samples.

4.4.1 SVM

A module called LinearSVC (Support vector classifier) from scikit-learn library was used as
a simple baseline. It employs a linear kernel and one-vs.-rest strategy to handle multiclass
classification. LinearSVC expects the input to have zero mean a unit variance – function
scale from SciPy library was used to accomplish this task.

4Centroid, spread, skewness and kurtosis
4Same as above
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from sklearn import preprocessing
X_scaled = preprocessing.scale(X)

4.4.2 Neural networks

Keras was used to build models of the neural networks. In the baseline experiments, three
networks were used: feedforward network, recurrent GRU network and a combination of
the above. Exact specification of the networks is presented in the next chapter.
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Chapter 5

Experiments

5.1 Hardware
Unless stated otherwise, the experiments were conducted on a laptop with Intel Core
i7-2620M CPU, 4GB RAM and SSD hard drive. The final experiments, using the best
networks, with increased amounts of data, were performed on Czech computer grid for
academic community, Metacentrum1.

5.2 Network architectures
Three network models were designed – feedforward, recurrent and combined. Categorical
crossentropy was used as a loss function, Adam as an optimizer and F1–score as an eval-
uation metric. More detailed description of these functions can be found in the Theory
in Chapter 2. For the baseline experiments, the architectures of the networks were the
following (corresponding Keras codes are shown). The feedforward network had one hidden
fully connected layer with 256 neurons, rectifier linear unit as an activation function and
an output layer with 6 neurons activated by a softmax function.

input2=Input(shape=(x2.shape[1],))
d=Dense(FEEDFORWARD_NEURONS,activation="relu")(b)
output2=Dense(classes, activation=’softmax’)(d)
model2=Model(input=input2,output=output2)
model2.compile(loss=’categorical_crossentropy’,

optimizer=Adam(clipnorm=1.),
metrics=[’fbeta_score’,’acc’])

The recurrent network was built using a GRU layer, with 256 nodes activated by hyperbolic
tangent activation function and the same output layer as above. The first 150 feature frames
were used as an input.

input1=Input(shape=(FRAMES,x.shape[2]))
g=GRU(RECURRENT_NEURONS,activation="tanh"return_sequences=False) (input1)g)
output1=Dense(classes, activation=’softmax’) (g)
model=Model(input=input1,output=output1)
model.compile(loss=’categorical_crossentropy’,

optimizer=’adam’,

1http://www.metacentrum.cz
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metrics=[’fbeta_score’,’acc’])

Also a linear SVM was used for a comparison:

clf = svm.LinearSVC(C=10)
cf=clf.fit(x2[:-TEST_FILES_COUNT], labels.argmax(1)[:-TEST_FILES_COUNT])
pred=clf.predict(x2[-TEST_FILES_COUNT:])
print (metrics.f1_score(labels.argmax(1)[-TEST_FILES_COUNT:], pred,

average=’weighted’))
print (metrics.accuracy_score(labels.argmax(1)[-TEST_FILES_COUNT:], pred))

5.3 Data
For the baseline experiment, 4800 (800 for each codec) files from training and validation
datasets were used, 4200 for training and another 600 (randomly chosen from the whole
dataset) files were set aside for validation. Samples were randomly shuffled before running
the training.

5.4 Features
Features used in this work were selected based on previous works by Sharma et al. [27] and
F. Jenner and H. Kwasinski [18]. For the feedforward network, 4 statistical functions were
calculated for each feature – mean, variance, skewness and kurtosis. Input of the recurrent
network consisted of the first 150 frames for each feature. In the baseline tests, silent frames
were still present in the dataset. To speed up the experiments, preprocessed features were
saved in a binary format using pickle library distributed with Python. For the baseline
tests, features described in Table 4.1 were used with a frame size of 1024 samples and 50%
overlap, resulting in total of 74 features.

5.5 Baseline results
Exact specifications of the classifiers and results are presented in Table 5.1
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Parameter Feedforward GRU Combined SVM
Layers 1 1 3 -

Neurons per layer 256 256 256 -
Activation ReLU tanh ReLU / tanh -

Regularization None None None -
Optimizer Adam Adam Adam -

Loss function Cat. crossentropy Cat. crossentropy Cat. crossentropy -
Batch size 80 80 80 -
Frame size 1024 1024 1024 1024
# of frames - 150 150 -
# of epochs 150 50 50 -

Epoch duration 0.4s 123s 125s -
F1 score 0.9358 0.9406 0.9309 0.8609

Table 5.1: Comparison of baseline classifiers

Both models yielded similar results, but the simpler feedforward network converged
much more quickly. The feedforward network was trained during 150 training epochs (it-
erations over the whole dataset), while the recurrent network was trained for 50 epochs.
The duration of one epoch was around 0.4 s for the feedforward network and 123 s for the
recurrent one. Peak memory usage was around 600 MB for the feedforward network and
900 MB for the recurrent one. Courses of the F1-score function on evaluation set during
the training can be seen in figure 5.2. The Y axis represents the score, while the X axis
shows the number of epochs. The comparison of the classifier architectures used is shown
in Figure 5.1 and Table 5.1. It is obvious that the combined architecture does not bring
any improvement compared to recurrent model, and only makes the model more difficult
to train. Based on this observation, only the two distinct neural network architectures and
a SVM classifier will be used in the following experiments.
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Figure 5.1: Comparison of baseline classification methods.

(a) Feedforward network

(b) Recurrent network

Figure 5.2: Learning curve of the models in the baseline setup.
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5.6 Improving the networks
These baseline results are consistent with studied research papers referenced in the intro-
duction. Still, there is a number of steps we can take to improve the accuracy.

5.6.1 Possible improvements

Possible ways of improving the models performance include:

∙ different activation functions – tanh, sigmoid, leaky ReLU

∙ different optimizer – RMSprop, adagrad

∙ different network architecture (using LSTM instead of GRU, Highway instead of
Dense)

∙ data normalization

∙ regularization techniques (e.g. dropouts to prevent overfitting)

∙ tuning the hyperparameters

– number of layers
– number of nodes in each layer
– learning rate, momentum, decay rate – does not apply to Adam optimizer, which

is adaptive

∙ some of the activation functions can be parametrized too

∙ more or better quality training data

∙ data preprocessing (removing silent and/or unvoiced frames)

∙ more features

∙ select only the important features so the network converges more quickly

∙ different (smaller) frame size during the feature extraction

∙ more iterations of the learning process

∙ feed more frames into the recurrent network

5.6.2 Hyperparameters

It is obvious from the previous list that there are many ways to improve the classification
performance of the networks. First we look into tweaking the network architecture and
enhancing its performance on unaltered training data.
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Hidden layers

The most obvious and important hyperparameters to change are depth and width of the
model, i.e. number of hidden layers and number of neurons in each layer. The effect of
hidden layer width can be seen in Figure 5.3. The results are measured on a network with
a single layer and they show us, that there is not much, if anything, to gain by increasing
the number of neurons over 128. One of the heuristics used to find out the ideal number of
neurons in a hidden layer in feedforward networks says that the number should be roughly
the average of input and output vector dimension, in our case 179+6

2 = 92.5, which coincides
with our findings. Based on these results, if not stated otherwise, both networks will have
128 neurons per layer in the following experiments, with three layers in case of feedforward
network and a single layer in case of the recurrent one.

(a) Feedforward network

(b) Recurrent network

Figure 5.3: Effect of hidden layer size on classification performance
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Different activations

In the next step towards the improved results, different activation functions were evalu-
ated. As apparent from Figure 5.4, ReLU(Rectifier Linear Unit) and tanh yield the best
results for feedforward and recurrent networks respectively, so we will use these functions
in further experiments. ReLU function is not bounded, which led to NaN values during
the computations in recurrent networks, so it was necessary to set the maximum value to
which all larger results were clipped.

(a) Feedforward network

(b) Recurrent network

Figure 5.4: F1-score while using different activation functions

Regularization

Training f-score for feedforward network surpasses 0.99 after only a small number of epochs,
while validation score stays at roughly 0.93, which provides a strong argument to use some
form of regularization. GRU network yields similar values for both training and testing
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phase and overfitting is not so evident here. Techniques used here are described in section
2.4.4.

Dropout Effects of applying dropout to the network can be seen in table 5.2 and figure
5.5.

Table 5.2: Effects of applying dropout to the networks

Dropout Feedforward GRU
0 0.9299 0.9357

0.1 0.9308 0.9413
0.2 0.9355 0.9202
0.3 0.9399 0.8247
0.4 0.9409 0.7853
0.5 0.9440 0.7648
0.6 0.9413 0.6457
0.7 0.9414 0.3754
0.8 0.9193 0.2315
0.9 0.6083 NaN

Figure 5.5: Effects of dropout on performance

5.6.3 Data manipulation

Frame size

In the baseline experiment, feature extraction was carried out on frames consisting of 1024
samples. At 8 kHz sampling rate, these frames were 128 ms long. In speech processing,
the usual frame size is about 10 - 40 ms and features we used are often expected to work
with these quasi-stationary frames. Shortening our frames should provide more meaningful
outputs from the feature extraction and in result increases the classification score. Indeed,
especially for the recurrent network, decreasing the frame size to 256 samples (32 ms) has
proven to improve the accuracy notably, see Figure 5.6
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Figure 5.6: Effects of frame size

Increasing the amount of training data

As visible from Figure 5.7 and Table 5.3, adding more training data increases the network
performance notably. Doubling the number of input files yields F-score over 0.98 for the
recurrent network. The results also show that the feedforward network outperforms GRU
network with smaller training set, but with increased amount of samples, the recurrent
network learns to generalize better.

Number of files 400 800 1200 1600
Feedforward 0.9189 0.9444 0.9538 0.9609

GRU 0.9145 0.9455 0.9669 0.9808

Table 5.3: Number of input samples

Figure 5.7: Number of input samples
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5.6.4 Different architecture

GRU is simplified form of LSTM, with less computational complexity, but yielding similar
results on many tasks. Indeed, as seen below, there is practically no gain in performance
while using LSTM instead of GRU, however, the training time of one epoch is 65% lower
for GRU, due to less matrix multiplications needed. Note that this experiment was done
with the optimized model from the next section, hence the higher F1 score.

Network Epoch duration F1 score
GRU 193 s 0.9705

LSTM 320 s 0.9711

Table 5.4: Comparison of recurrent architectures

(a) F1 score (b) Duration of an epoch in seconds

Figure 5.8: LSTM vs. GRU in terms of performance and a training epoch duration

5.6.5 Optimal networks

Utilizing the observations from previous experiment, I trained the networks with the fol-
lowing specifications and validated it on a validation set of files that were not used in any
way up to now. The results are presented in Table 5.6.

Table 5.5: Optimal network specifications

Parameter Feedforward GRU
Hidden layers 3 1

Layer size 128 128
Activation ReLU tanh
Dropout 0.5 0.1

L2 regularization 0 0
L1 Regularization 0 0

Frame size 256 256
Number of frames 600 600
Training samples 1400 1400

Validation samples 200 200
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Network F1-score Accuracy
Feedforward 0.9645 0.9660

GRU 0.9981 0.9985
(a) Validation set

Network F1-score Accuracy
Feedforward 0.9089 0.9095

GRU 0.9793 0.9805
(b) Test set

Table 5.6: Results of the best network on validation and test sets

5.7 Further experiments
In this part, we will build upon the results from the previous part a delve into more advanced
experiments using the optimal models disclosed earlier.

5.7.1 Features

The first task will be to determine which features are the most relevant for classification.
Two very simple approaches were applied; first, the classifier start with all of the features
and one more was turned off for each consecutive experiment, until there was a single
feature left. The second approach was to run classifier with only one feature available. As
evident from table 5.7 and figure 5.9, the most significant features were LPC residual signal
energy, spectral variation and spectral flatness for SVM and feedforward network and LPC
coefficients for GRU network. Other important features were MFCC, Spectral shape and
envelope statistics.

Feature SVM Feedforward GRU
LPC coefficients 0.5933 0.7145 0.9264
LSF coefficients 0.5752 0.7226 0.7253

MFCC coefficients 0.6083 0.6541 0.8610
Spectral shape 0.4435 0.5406 0.9176

Spectral variation 0.4333 0.4150 0.5247
Spectral flatness 0.4950 0.6180 0.7111

Envelope statistics 0.3450 0.3013 0.8851
Energy 0.1310 - -

Hilbert envelope 0.1410 - -
Autocorrelation coefficients 0.1843 0.0793 0.1887

Zero Crossing Rate 0.3974 0.3991 0.1887
LPC Residual 0.6450 0.8040 0.8908

Table 5.7: Comparison of features importance
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(a) SVM

(b) Feedforward network

(c) Recurrent network

Figure 5.9: Effects of particular features
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5.7.2 ”Production“ model

Based on the observations from previous sections, I simplified the best performing model
to speed up the training, while keeping good classification performance. Only LPC based
features were used – LPC coefficients and LPC residual signal power, variation and flatness.
Other parameters were the same as in the optimal model, see Table 5.5. Table 5.8 shows
that with the recurrent network it is possible to achieve F1-score and accuracy around 0.9
using only LPC based features.

Network F1-score Accuracy
SVM 0.7765 0.7783

Feedforward 0.8848 0.8817
GRU 0.9060 0.9017

(a) Validation set

Network F1-score Accuracy
Feedforward 0.7405 0.7414

GRU 0.8952 0.8950
(b) Test set

Table 5.8: Results of the ”production“ network on validation and test sets

5.7.3 Shorter window

I also tried to find out how short can a window of samples for the recurrent network be and
still be classified correctly. The network was trained using 900 frames by 256 samples, but
for the tests the number of frames was gradually lowered. Also, silent frames were removed
from test files by the remove_silence.sh script, since number of files started with a period
of silence, which could have affected the results. Table 5.9 shows that the network needs at
least about 10 seconds of input signal to perform feasibly.

Frames F1-score Duration
400 0.9428 12.8s
300 0.8942 9.6s
200 0.7105 6.4 s
100 0.6116 3.2 s

Table 5.9: Shortening the frame window for the recurrent network

5.8 More subsequent encodings
In this experiment I encoded the files subsequently using more codecs. I tried a number
of possible combinations to study the classifier behavior. The networks were trained on
the six classes as in the other experiments, the transcoded files were added only during
the evaluation. The results are shown in Table 5.10. In some cases, the network classified
roughly the same number of samples into both of the categories. In other cases, like when
recoding GSM-EFR with G729, only the second codec was detected. Interestingly, when I
trained the network with a separate class for GSM-EFR_G729 combination, most of the
samples were classified correctly, see Table 5.11.
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Codecs MP3 G.723.1 G729 GSM-EFR Speex PCM mulaw
GSM-EFR_G729 0 0 785 11 3 1
G729_GSM-EFR 0 0 332 468 0 0

G729_Speex 0 37 317 6 440 0
Speex_G729 0 20 752 14 14 0

G723.1_GSM-EFR 0 0 15 785 0 0
GSM-EFR_G723.1 0 89 173 534 1 3

Table 5.10: Classification of samples encoded by multiple codecs

Codecs mp3 g.723.1 g729 gsm-efr Speex pcm gsm-efr_g729
gsm-efr_g729 0 0 17 1 0 0 782

Table 5.11: Classification of samples encoded by multiple codecs when specific transcoding
class is added to the training set.
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Chapter 6

Conclusions

6.1 Summary
The goal of this thesis was to create a codec classification tool based on the current state of
the art in the field. I managed to create a classification tool performing comparably with
other papers on this topic. The result is an environment composed by number of scripts,
which allowed me to experiment with different features and neural network architectures
to find an optimal classifier. I succeeded to create two different approaches, recurrent and
feedforward, and then increase the performance above the baseline primarily by adjusting
the frame size of the feature extraction and tuning the networks hyperparameters. The
final results of the best performing network seem very promising, yielding an F1-score over
0.98 on a test set.

From the perspective of the features, LPC coefficients and residual signal energy, spec-
tral variation and spectral flatness has proven the most useful, followed by spectral shape
statistics and MFC coefficients. I also found that both approaches of feature extraction are
feasible – computing statistics from all the frames for a feedforward network and SVM, as
well as feeding the frames one by one into a recurrent network.

Aside from the main task, I inspected behavior of the classifier in case when the sample
is encoded subsequently by more encoders, and found out that it is possible to classify such
sample correctly by creating a special class for specific combination of the codecs.

6.2 Future work

6.2.1 Easily achievable goals

Some of the improvements mentioned in the experimental chapter were not implemented, for
example different optimizers. However, there is probably not much to gain by implementing
the rest of them, the networks perform almost perfectly on the validation set and generalize
well on the test set, when enough training data is available. It would be more interesting
to make the classification harder for the networks and examine its performance on more
general signals.

Therefore, the first short term task is to train the models on more codecs and then
evaluate them on some real signals. It is also possible to investigate their behavior when
the sample is deliberately distorted, for example by adding noise. These improvements are
well possible using the current scripts, the only component to change are the data.
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6.2.2 Long term goals

Possible long term applications may be in the field of law enforcement. In some countries,
codec detection is allegedly one of the steps to verify the audio recording so that it can
serve as a part of judicial proceeding. Sadly, information on whether similar systems are
used in practice, are very sparse.
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Appendix A

Cookbook

A.1 Software and modules
Necessary software is summarized in this section.

A.1.1 Python

Python Version: 2.7.13

External modules

Name: Keras
Version: 1.1.1
Used to create neural networks.

Name: tensorflow
Version: 0.10.0rc0
Keras runs on top of either Tensorflow or Theano libraries, Tensorflow was used in this

thesis.

Name: NumPy
Version: 1.12.0
Necessary for the matrix operations.

Name: SciPy
Version: 0.18.1
Data preprocessing, SVM.

Name: Yaafe
Version: 0.64
Feature extraction.

Name:PySoundFile
Version: 0.8.1
Loading sound files into NumPy arrays.
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A.1.2 Other tools

The Edinburgh Speech Tools Library http://www.cstr.ed.ac.uk/projects/speech_tools/

FFmpeg Version:2.8.11 Encoding the files, removing silence.

GSM-EFR encoder from ETSI

G729 encoder

A.1.3 Scripts

get_corpora.sh Downloads the corpora and creates the necessary directory structure.

recode.sh Encodes the files obtained through get_corpora.sh with ffpmeg and other en-
coders, creates the training/test sets.

lpc_extract.sh Extracts an LPC residual signal from specified files.

do_lpcs.sh Calls lpc_extract.sh on data prepared by recode.sh

remove_silence.sh Removes frames with volume level under threshold from specified
viles.

resample.sh Resamples 16 kHz files from the corpora to 8 kHz.

do_everything.sh Should do everything, assuming that the paths to Edinburgh speech
tools and GSM-EFR and G729 encoders are set correctly on its first three lines – download
the corpora, resample, encode and extract LPC residual signal. After running this script,
the environment is prepared for running the classifier.

classify.py Builds the models and trains them. Possible parameters:

–test Do not train the model, only classify the input files. Must be used together with
–ffweights and –gruweights

–files= Number of files to process from each of the input directories

–outffweights= Path to a file to save the weights from the feedforward network

–outgruweights= Path to a file to save the weights from the recurrent network

–ffepochs= Number of epochs to train the feedforward network

–gruepochs= Number of epochs to train the recurrent network

–l1= L1 regularization coefficient

–l2= L2 regularization coefficient

–ffweights= File with weights for feedforward network
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–gruweights= File with weights for GRU network

–help Print help

–save_features= Prefix of files to save the NumPy arrays of features for both networks to.

–ffdropout= Feedforward dropout.

–input= Prefix of the two files to load the NumPy arrays of features from.

–grudropout= GRU dropout.

–fflayersize= Feedforward layer size (number of neurons)

–grulayersize= GRU layer size

–frames= Number of frames to use as an input for the recurrent network.

–frame_size= Number of samples in each frame

–optimizer= Optimizer to use for the networks.

A.1.4 Step by step

1. Preparing the files should be fairly straightforward – only things that must be set are
paths to Edinburgh Speech Tools, G729 codec and GSM-EFR codec. These paths
can be set in the first lines of do_everything.sh. In case the script is unsuccessful, it
is possible to run the steps separately:

(a) get_corpora.sh
(b) resample.sh
(c) recode.sh
(d) do_lpcs.sh

2. Now it is possible to run classify.py, which is documented by the Readme file and by
source code comments.
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