
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

VIRTUALIZATION OF I/O OPERATIONS IN COM-PUTER NETWORKS
VIRTUALIZACE VSTUPNÍCH A VÝSTUPNÍCH OPERACÍ V POČÍTAČOVÝCH SÍTÍCH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. JAN REMEŠ
AUTOR PRÁCE
SUPERVISOR Ing. DENIS MATOUŠEK
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This work deals with virtualization of computer systems and network cards in high-speed

computer networks, and describes implementation of the SR-IOV virtualization technology
support in the COMBO network card platform. Various approaches towards network card
virtualization are compared, and the benefits of the SR-IOV technology for high perfor-
mance applications are described. The work gives overview of the COMBO platform and
describes design and implementation of the SR-IOV technology support for the COMBO
platform. The work concludes with measurement and analysis of the implemented tech-
nology performance in virtual machines. The result of this work is the COMBO cards’
support for the SR-IOV technology, which makes it possible to use them in virtual ma-
chines with wire-speed performance preserved. This allows future COMBO cards to be
used as accelerators in the networks utilizing the Network Function Virtualization.

Abstrakt
Tato práce se zabývá problematikou virtualizace počítačových systémů a zejména síťových

karet ve vysokorychlostních sítích, a řeší implementaci podpory virtualizační technolo-
gie SR-IOV pro síťové karty COMBO. V práci jsou shrnuty různé přístupy k virtualizaci
síťových karet a popsány výhody technologie SR-IOV pro vysoce výkonné aplikace. Dále
práce obsahuje informace o platformě COMBO a popisuje návrh a implementaci podpory
technologie SR-IOV pro tuto platformu. Závěrem je provedeno vyhodnocení výkonnost-
ních testů implementované technologie ve virtuálních strojích. Výsledkem práce je podpora
technologie SR-IOV v kartách COMBO, což umožňuje jejich použití ve virtuálních stro-
jích při zachování vysokého výkonu. To umožní budoucím COMBO kartám fungovat jako
akcelerátory v sítích využívajících virtualizace síťových funkcí.

Keywords
Computer networks, network card, NIC, virtualization, virtualization technologies, SR-IOV,
COMBO, NetCope, firmware, drivers, FPGA, NFV

Klíčová slova
Počítačové sítě, síťové karty, virtualizace, virtualizační technologie, SR-IOV, COMBO, Net-
Cope, firmware, ovladače, FPGA, NFV

Reference
REMEŠ, Jan. Virtualization of I/O Operations in Computer Networks. Brno, 2017. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Denis Matoušek

Virtualization of I/O Operations in Computer
Networks

Declaration
Hereby I declare that this master thesis was created as an original author’s work under

the supervision of Mr. Denis Matoušek. Supplementary information was provided by Mr.
Martin Špinler. All the relevant information sources, which were used during preparation
of this thesis, are properly cited and included in the list of references.

. .
Jan Remeš

May 24, 2017

Acknowledgements
First of all, I would like to thank my supervisor, Mr. Denis Matoušek, for supervising my

thesis and providing me with excellent advice and support.
I would also like to thank Mr. Martin Špinler, who has spent large amounts of time

providing me with technical support and making SR-IOV firmware support possible, and
all the people at CESNET for allowing me to work with them and use their hardware.

Finally, I must thank Mr. Petr Kaštovský, Mr. Tomáš Závodník and others from
Netcope Technologies for being helpful and supportive, and providing me with great working
environment.

Contents

1 Introduction 1

2 Motivation 2
2.1 Virtualization . 2
2.2 I/O virtualization . 3
2.3 Network Function Virtualization . 4

3 I/O processing 5
3.1 Receiving data (RX direction) . 5
3.2 Transmitting data (TX direction) . 7
3.3 Driver processing . 7
3.4 NIC processing . 8
3.5 DPDK . 8

3.5.1 Kernel bypass . 8
3.5.2 Polling Mode drivers . 9

4 I/O virtualization 10
4.1 Virtual memory . 10
4.2 NIC emulation . 11
4.3 Paravirtualization . 11

4.3.1 virtio . 12
4.4 NIC virtualization . 12

4.4.1 SR-IOV . 13
4.5 Virtualization challenges . 14

4.5.1 Switching . 14
4.5.2 Migration . 14

4.6 Summary of virtualization technologies . 15

5 SR-IOV 16
5.1 SR-IOV principles . 16
5.2 Design of driver with SR-IOV support . 17
5.3 Design of firmware with SR-IOV support 18

6 COMBO platform 19
6.1 Platform overview . 19
6.2 Card Configuration . 20

6.2.1 Component addressing . 21
6.3 Data transfers . 22

1

6.3.1 SZE interface . 23
6.4 Software stack . 24

7 Design and implementation of SR-IOV support for COMBO cards 26
7.1 IOMMU, bifurcation and PCI-E endpoints 26
7.2 Advertising SR-IOV Capability . 28

7.2.1 Xilinx PCI-E IP Core . 28
7.2.2 PCI-E IP core configuration . 29

7.3 Virtual Function management . 33
7.4 Management of hardware resources . 34
7.5 VF component access . 35

7.5.1 VF virtual address space . 36
7.5.2 MI_VFT component . 37

7.6 Virtual function driver . 39
7.7 Implementation summary . 40

8 Performance Evaluation 41
8.1 Performance Analysis . 42

9 Conclusion 44

Bibliography 45

A Installation 47
A.1 Hardware setup . 47
A.2 Operating system and software . 49
A.3 Setting up virtualization . 49
A.4 Installing the SR-IOV support . 51

2

Chapter 1

Introduction

This work deals with virtualization of network input/output (I/O) devices in computer
systems – it describes I/O virtualization and common approaches to it, and the SR-IOV
technology. It continues with basic description of the COMBO network card platform and
describes implementation of the SR-IOV technology support for the COMBO cards.

I/O virtualization is usually a part of more general concept – hardware virtualization.
Hardware virtualization (or just virtualization) is understood as creating entire virtual
computers (machines) and running applications – and even entire operating systems – in the
virtual environment. These virtual machines do not have access to physical hardware. For a
virtual machine to perform network input/output operation, a virtual network input/output
device has to be created – I/O virtualization is needed.

Existing technologies for I/O virtualization differ in performance, flexibility and ease of
use. They are therefore suitable for different use cases. The SR-IOV technology provides
high performance at the cost of reduced flexibility, it is therefore suited for performance-
critical usage scenarios.

Chapter 2 describes the details, benefits and general motivation for using virtualization,
and I/O virtualization in particular, as well as describe its future application in the form
of Network Functions Virtualization (NFV).

Chapter 3 describes how input and output network traffic is processed by individual
components in the computer system, in order to allow for comparison of individual virtu-
alization technologies.

Chapter 4 starts on theoretical background, describing the concept of virtual memory.
Then it proceeds to enumerate existing approaches towards I/O virtualization, giving ex-
amples of technologies utilizing said approaches. It is concluded with challenges in the I/O
virtualization and the overview of the individual approaches and their advantages.

Chapter 5 provides an in-depth description of the SR-IOV I/O virtualization technology,
including the description of its requirements for the NIC firmware and its driver.

In chapter 6, the COMBO platform — developed as a part of the Liberouter project1

— is described, with focus on its components relevant for the SR-IOV technology.
Chapter 7 describes how the SR-IOV support for the COMBO cards was designed and

implemented. Performance evaluation is conducted in chapter 8.
Installation steps are described in appendix A.

1http://www.liberouter.org/technologies/cards

1

http://www.liberouter.org/technologies/cards

Chapter 2

Motivation

2.1 Virtualization
Virtualization is a technology for creating and running (multiple) virtual machines (virtual
computers, also referred to as guests) on a single physical machine (also referred to as a
host). The host runs a virtualization manager program (a hypervisor) which creates and
manages individual virtual machines. The virtual machines, isolated from each other, run
their own operating systems and software. Closer description of virtualization is given by
[14], detailed information and hypervisor comparison can be found in [9].

Many organizations run multiple network services (HTTP server, DNS server, etc.)
both for their internal use and for the public. For security reasons, service independence
and individual service requirements, it is widely adopted best-practice to run each of these
services on a separate machine (server).

In non-virtualized environments, this requirement results in a large number of physical
devices being:

∙ powered

∙ connected to physical network

∙ located in a server room

∙ managed

If high availability is required for a given service, the administrator must buy, install
and manage yet another machine, potentially doubling the machine count.

In non-virtualized environment, servers will likely waste a large percentage of their
computational power (CPU time), as their load will be low for most of the time. Each
server must be powerful enough to handle its service’s peak load, wasting this performance
when the load is lower (likely most of the time). Furthermore, performance required for
many services (such as DNS server in a small company) is much lower than performance
offered even by entry-level servers, leading to even bigger inefficiency.

If a physical machine stops responding (due to network misconfiguration, network in-
terface going down, or system error), the administrator needs to reboot it. This can be
done manually, or via remote access technologies, like Intel’s IPMI1 or Dell’s iDRAC2.

1See https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
2See https://www.dell.com/learn/us/en/555/solutions/integrated-dell-remote-access-

controller-idrac

2

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://www.dell.com/learn/us/en/555/solutions/integrated-dell-remote-access-controller-idrac
https://www.dell.com/learn/us/en/555/solutions/integrated-dell-remote-access-controller-idrac

The technologies allow for better manageability, yet they have to be separately configured,
maintained and provide a possible security hole3.

In virtualized environments, however, it is possible to run each service on an independent
virtual machine, and many such virtual machines can be hosted on a single physical server.
This resolves issues mentioned above:

∙ Single rack space is required

∙ Single physical network connection is required

∙ Single server will have greatly reduced power requirements

∙ Resource utilization is better, as computational power is shared among the services,
and since their load peaks are unlikely to coincide, the server need not be powerful
enough to handle all its services’ peak loads simultaneously

∙ Management is easier, since starting, stopping, resetting, cabling etc. can be done
in the hypervisor and does not require physical access to the servers nor specialized
interfaces like IPMI or iDRAC

∙ Virtual machines can be snapshotted, backed up, restored, or migrated to another
physical server for much less cost (in time and resources spent to the task)

High availability must still be ensured by duplicating the physical server, but duplicating
one server is far preferable to duplicating dozens of service servers.

To conclude, virtualization reduces the cost of deployment, provides better flexibility
and eases server management. For these reasons, it is now widely used.

2.2 I/O virtualization
All computer systems are usually required to perform some kind of I/O operations. For
this, I/O resources (I/O capable hardware) are required.

In a virtualized environment, physical resources (CPUs, RAM, hard drives, network
cards, etc.) are shared among the virtual machines. Since the virtual machines must not
affect each other’s environment, they must be in fact isolated from the real hardware, or
share it on the basis of exclusive ownership (that is, each resource can be assigned to —
and used by — a single machine only).

CPU cores can be shared in the same manner they are shared between running processes
in multiprocessing system – each virtual machine can be assigned the CPU for a given time
slice. RAM can be shared exclusively – each virtual machine may be given a portion of
the physical RAM and the Memory Management Unit4 (MMU) will provide mapping from
each machine’s virtual address space to physical address. This is discussed in detail in
section 4.1.

Sharing an I/O hardware is an issue, since such hardware is usually designed for being
used by a single system. In many cases, sharing it is just impossible – if a hard drive
was shared, individual virtual machine’s writing operations would affect the state of other
virtual machines, which is unacceptable.

Network cards sharing is problematic for following reasons:
3See http://www.itworld.com/article/2708437/security/ipmi--the-most-dangerous-protocol-

you-ve-never-heard-of.html
4https://en.wikipedia.org/wiki/Memory_management_unit

3

http://www.itworld.com/article/2708437/security/ipmi--the-most-dangerous-protocol-you-ve-never-heard-of.html
http://www.itworld.com/article/2708437/security/ipmi--the-most-dangerous-protocol-you-ve-never-heard-of.html
https://en.wikipedia.org/wiki/Memory_management_unit

∙ They contain host-specific settings, such as physical address used for incoming packet
filtering

∙ They must actively deliver inbound packet to the system memory – a switching logic
would have to select proper addressee

For exclusive ownership sharing, 𝑁 physical network cards (where 𝑁 is the count of virtual
machines the server ought to run) must be installed on the server. With modern servers
hosting dozens or even hundreds of virtual machines (for example, ESXi vSphere 6.5 allows
maximum 1024 machines5), this option is very inefficient.

As a result, I/O virtualization must be performed in virtualized environments.

2.3 Network Function Virtualization
Network Function Virtualization (NFV) is a proposal of network architecture published
by ETSI [2]. The main idea in the proposal is that network functions (such as firewall,
load-balancing, tunneling, etc.) should run in software on dedicated virtual machines using
commodity hardware.

Today, these functions are usually provided by specialized hardware boxes, especially in
large networks. These dedicated devices are usually very expensive[3] due to the fact their
market is much smaller than that of commodity hardware.

Running a network function as a virtual machine provides significant benefits to the
network administrators, namely:

∙ Reduced cost (cheaper hardware, less maintenance)

∙ Flexibility (installation, modification, upgrade, relocation)

NFV has a major requirement for the virtual machines, though, and that is performance.
Multiple virtual network functions running on a single server operating on 10 Gb/s (or more)
network will collectively have to process tens of millions of packets per second.

In such an environment, the requirements for I/O virtualization are:

∙ to provide close to bare-metal performance, and

∙ to avoid performance bottle-necks (e.g. extreme load on the hypervisor CPU)

5https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf

4

https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf

Chapter 3

I/O processing

This chapter describes the process of receiving and transmitting packets for network appli-
cations running in Linux. Understanding the process is important for explanation of the
differences between I/O virtualization technologies.

For the purpose of this work, network applications are divided in two groups: Regular
and High Performance (HiPerf) applications.

A regular application is one that utilizes system network I/O capabilities for communi-
cation with a remote site. Most of the classical network applications (web browsers, e-mail
clients, on-line video games, etc.) fall in this category, as well as their corresponding servers.
These applications usually open a TCP or UDP socket, and send (and receive) data through
it.

A high performance application works on the link layer of the ISO/OSI model. It uses
system’s networking services to receive (and send) individual frames. Applications like fire-
walls, network monitoring tools, or packet analyzers fall in this category. These applications
usually open a raw socket (SOCK_RAW) or use specialized frame capturing mechanisms
like DPDK (covered in section 3.5). The applications require higher performance, since
they analyze entire network traffic, and often run on a dedicated machine in order to be
able to fully utilize its resources.

3.1 Receiving data (RX direction)
When a frame is received by the NIC (network interface card), it fires an interrupt (RX
interrupt in figure 3.1) to notify the system about it. Subsequently, the kernel calls cor-
responding driver’s polling function to receive the data. This is usually achieved through
DMA transfer from the NIC buffer to a kernel buffer (see figure 3.2).

Inside the kernel, the frame is parsed, its L2 to L4 headers analyzed and acted upon
(ICMP response, TCP acknowledgment, etc.) if necessary. The destination application (or
rather, destination socket) is chosen here, if one exists.

Finally, the payload is extracted and delivered to the application’s socket. If the appli-
cation has issued recv() call before, it has been blocked, and gets waked at this moment.
Otherwise, the data will be returned when the application issues the call.

If the application is HiPerf, its data will consist of the entire frame as seen on the wire
(the delivery is done before parsing).

5

Kernel Application

recv()

Driver
rx_intr_handler()

Firmware

RX interrupt INTERRUPT HANDLER

netif_rx()

ip_rcv()

ip_local_deliver()

SOCKET DATA

tcp_v4_rcv()

Figure 3.1: RX Packet Processing (Linux kernel network stack function call graph)

Application

Data

Kernel

Buffer

Firmware

RX buffer

Wire Receive
Parsing

Buffer

TCP DataIPEthernet

Determine
target host

Determine
target appl.

Forward

Figure 3.2: RX Packet Processing (data flow)

6

KernelApplication

send() tcp_sendmsg()

ip_queue_xmit()

ip_output()

dev_hard_start_xmit()

Driver

ndo_start_xmit()

Figure 3.3: TX Packet Processing (Linux kernel network stack function call graph)

DMA

Direct Memory Access is a technology for data transfers from/to the main memory inde-
pendent of the CPU.

This technology alleviates the CPU of the need to control the transfer and allows it to
do other work when the data is copied.

Older architectures required so-called DMA controller to perform DMA operations, but
modern PCI devices are able to do so on their own. Therefore, with DMA-capable NIC, its
driver can allocate a DMA buffer in the memory and pass its address to the device, and it
will copy the data there.

3.2 Transmitting data (TX direction)
Data transmission starts with the application issuing a send() call (see figure 3.3 for call
graph). Transmitted data is copied to the kernel (see figure 3.4), then L4 to L2 headers are
added and the right NIC for transmission is chosen based on routing tables.

When the frame is assembled and placed in a buffer, the driver of the chosen NIC is
called to transmit the data. It copies the buffer to the NIC using DMA and instructs the
firmware to transmit it.

If the HiPerf application sends data, it skips the protocol stack (adding headers and
routing) by using the raw socket.

3.3 Driver processing
The NIC driver registers its associated device as a networking device, providing among
others the receive and transmit method.

When there is data to be transmitted, the driver’s transmit function is called by the
kernel. The driver’s code ensures the data is copied to the NIC via DMA.

On reception, kernel (after being notified by interrupt) will call driver’s receive method
to copy the inbound packet’s data from the NIC to the kernel buffer (see figure 3.1).

7

Application

Data

Kernel

Data

TCP header Data

TCP header DataIP header

Buffer

Routing

Firmware
TX bufferTCP DataIPEthernet

Wire Transmit

Figure 3.4: TX Packet Processing (data flow)

3.4 NIC processing
The firmware in the NIC processes packets provided by the system (e.g. calculates their
checksums) and transmits them on the physical medium.

At the same time, when it receives a packet from the medium, it stores it in a local
memory and fires an interrupt to notify the system of the new packet.

3.5 DPDK
Data Plane Development Kit is a network framework for fast packet processing developed
by Intel. High Performance Applications using DPDK can achieve higher throughput due
to DPDK’s features described below. It should be noted that DPDK is unsuitable for
Regular Applications, since it does not provide the abstraction (the application has to work
with frames) and, being a framework, it requires the application to be written specifically
for the DPDK backend.

3.5.1 Kernel bypass

DPDK applications run completely in user-space, therefore avoiding the need for costly
context switches between the application and the kernel. To achieve that, DPDK employs
(see figure 3.5):

∙ user-space polling-mode NIC drivers (PMDs)

∙ internal memory management utilizing hugepages

thus avoiding the need to call kernel during the application run.

8

DPDK framework

Regular
Application

DPDK
Application

Kernel

Memory management

Interrupt-mode NIC
driver

Memory management

Polling-mode NIC
driver

NIC

Figure 3.5: DPDK Kernel Bypass

3.5.2 Polling Mode drivers

Interrupt driven I/O is prevalent in today’s computer platforms, because the interrupt mode
has removed the need for periodical checking of I/O devices’ state, leaving the CPU to do
useful work when there are no I/O events.

However, in an environment where the platform’s single task is incoming packet pro-
cessing on Gb/s link speeds and high performance is required, sheer amount of interrupts
per second and the overhead necessary for handling them become significant.

Polling-mode drivers allow the application to check for incoming data in an active spin
like this:

unsigned char * data = NULL;

do {
data = driver_get_next_data();
} while(data == NULL);

Since DPDK works in user-space, it requires the drivers used to be polling-mode, since
interrupts would switch the context to the kernel, which is undesirable.

9

Chapter 4

I/O virtualization

In chapter 3, network I/O processing on a bare-metal (non-virtualized) system with a
physical NIC was described. This chapter will elaborate on approaches of virtualizing the
NIC and their differences. Rosenblum[10] gives an overview of I/O virtualization benefits
and provides the logical view on virtual NICs from the guest and the host view.

The goal of the I/O virtualization technologies is to create a virtual NIC (vNIC) in the
virtual machine. They aim to achieve high performance (throughput and low latency) of
the vNIC and high flexibility (e.g. allowing virtual machine migration to another physical
host).

In the first section, memory virtualization will be described, since it is essential to
the understanding of NIC virtualization technologies. Later, starting with section 4.2,
individual technologies will be presented.

4.1 Virtual memory
Physical memory (RAM) installed in a computer system can be conceptually seen as a
contiguous array of bytes, indexed from zero to the physical RAM’s size. Modern computer
systems, running multiple processes need a way to share the RAM among them, which is
made difficult by the fact that total memory requirements of each process are not known
and that the process may allocate or free memory at any time.

Virtual memory addresses this issue. Each process is provided 4 GB (or more with 64bit
systems) of its own contiguous virtual memory, indexed from zero. Physical RAM is split
into fixed-size (usually 4 KB) pages, and a mapping

(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑃𝑎𝑔𝑒) => 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃𝑎𝑔𝑒

is established in the operating system (see figure 4.1). When such program’s memory
is accessed, kernel installs appropriate translation in a hardware circuitry called MMU
(Memory Management Unit). The memory address used by the application is split – the
upper bits serve as an index to the translation table, while the lower bits form an offset
within the page. For example, an access to the address 0x000001a0 made by Application A
from figure 4.1 would result in access to physical RAM address 0x6ca0411a0. Upon context
switch, the MMU is instructed by the kernel to use mapping for the process switched to, so
that every memory access from that program is translated (mapped) by the MMU to use
the right page.

Since the virtual machines are seen as processes by the host, they are assigned their
virtual memory and MMU mapping like any other. There are MMUs which offer hardware

10

Physical RAM

Page 0

0x00000000

0x00000010

0x00000ff0

Page 1

0x00001000

0x00001010

0x00001ff0

Page N

0x6ca041000

0x6ca041001

0x6ca041ff0

Application A

Page 0

Page 1

Page 2

Application B

Page 0

Page 1

Figure 4.1: Virtual memory mapping and sharing

support for virtualization, and those allow the virtual machine to set its own mappings
inside its virtual address space, like the physical machine would do with physical RAM (see
figure 4.2). Where such hardware support is missing, the hypervisor must emulate it.

During a DMA transfer, the I/O device provides the memory address the data are to be
copied to/from. When the device is assigned to a virtual machine, the address (programmed
to it by the virtual machine driver) will be the address as seen by the virtual machine. The
hypervisor must ensure – using hardware circuitry called IOMMU (Input/Output MMU)
– that the memory accesses from a device assigned to a VM undergo that VM’s MMU
translation.

4.2 NIC emulation
Emulation is the slowest, but most reliable technology of NIC virtualization. The hy-
pervisor vendor chooses a well-known hardware product (such as AMDPCNet Fast III 1),
supported by most of the major operating systems, and emulates its behavior in software.
The advantage of this approach is compatibility with most of the operating systems, but
the overhead required may cause severe performance drops.

Software emulation can be hardware-accelerated using technologies like VMDq (Virtual
Machine Device Queues), which makes the physical NIC classify inbound packets into
queues for individual virtual machines, removing the need to steer them during software
processing. This improves throughput, scalability and capacity of the system[13]. VMDq
technology overview[12] provides further information.

4.3 Paravirtualization
Paravirtualization refers to virtualization where the virtual system is to a certain level aware
that it is virtualized. Paravirtualization of I/O devices is similar to NIC emulation described

1See https://www.virtualbox.org/manual/ch06.html

11

https://www.virtualbox.org/manual/ch06.html

Host Physical RAM

Page 0

0x00000000

0x00000010

0x00000ff0

Page 1

0x00001000

0x00001010

0x00001ff0

Page N

0x6ca041000

0x6ca041001

0x6ca041ff0

VM Physical RAM
=

Host App Virtual RAM

Page 0

0x00000000

0x00000010

0x00000ff0

Page 1

0x00001000

0x00001010

0x00001ff0

Page N

0x6ca041000

0x6ca041001

0x6ca041ff0

Host
MMU

VM App Virtual RAM

Page 0

0x00000000

0x00000010

0x00000ff0

Page 1

0x00001000

0x00001010

0x00001ff0

Page N

0x6ca041000

0x6ca041001

0x6ca041ff0

VM
MMU

Figure 4.2: Multi-level virtual memory mapping

in section 4.2, but instead of well-known hardware model, a special virtual network card is
emulated.

Paravirtualized drivers consist of frontend driver running in the guest, driving the vir-
tual device; and backend driver running in the host (usually as part of the hypervisor),
providing the virtual device’s services to the guest. Figure 4.3 shows the drivers in the
overall schema.

Since the NIC is designed to be emulated, it can offer different functionality and API
than regular NICs. It is therefore designed with virtualization efficiency in mind, potentially
yielding superior performance to the emulated NICs.

4.3.1 virtio

Virtio is common layer for para-virtualized devices in Linux. It was created by Rusty
Russell with the aim to simplify writing virtual device drivers and to reduce the amount of
code present in the drivers.

Russell [11] describes virtio as a three-part platform: it provides frontend drivers, trans-
port mechanisms (virtqueues) and configuration access. These can be understood as an API,
and hypervisor vendors can implement backends for their devices using this API.

Jones [5] shows how virtio architecture leverages the performance, reducing number of
per-packet traps.

4.4 NIC virtualization
Both emulation and paravirtualization create the vNIC in software. With (full) NIC vir-
tualization, an actual hardware device (or hardware-emulated virtual hardware device) is
assigned to the virtual machine, so that it communicates with it directly, without the
hypervisor or the host operating system being involved (see figure 4.3).

12

Host

Hardware

Driver

Hypervisor
vNIC

Guest

Common Device Driver

Host

Guest

Paravirtualization
Driver Frontend

Guest

Common Device Driver

Host

Driver

Hypervisor

Paravirtualization
Driver Backend

vNIC

Hardware

Hardware

HW HW HW

Driver

Hypervisor

Figure 4.3: Comparison of virtualization technologies

PCI-E Interface (IP Core)

PF0
config.
space

VF0
config.
space

VF1
config.
space

PF/VF logic

Other PCI-E logic

Application Core

PF0
buffers,
registers

VF0
registers

VF1
registers

Figure 4.4: SR-IOV hardware resources

This approach yields the best performance, since the virtual machine communicates
directly with the hardware, but there are caveats – either the physical machine has to have
enough physical NICs for all the virtual machines, or hardware-level NIC virtualization
must be performed. Industrial standard for hardware-level virtualization is the technology
called SR-IOV.

4.4.1 SR-IOV

SR-IOV is a full NIC virtualization technology developed as a PCI standard by PCI SIG
(Special Interest Group) consisting of major hardware vendors. It allows a PCI device
which supports it to present itself to the system as multiple devices on the PCI bus level.
Although such devices (called Virtual Functions as opposed to the original device called
Physical Function) have limited capabilities, they may serve as NICs and may be assigned
to individual virtual machines.

The device must contain hardware resources (buffers, descriptors, etc.) for each virtual
function. Therefore, a device can only support so many virtual functions (usually 8, 64 or
256). Figure 4.4 shows example card firmware with resources for a single physical and two
virtual functions. Furthermore, its firmware must be able to process requests from various
machines simultaneously. If used for NIC virtualization, the device also needs to implement

13

some kind of switch to determine which virtual machine should receive the packets delivered
on the physical medium.

Technology primer[7] from Intel gives first insight into SR-IOV, the technology is closer
described in chapter 5.

4.5 Virtualization challenges
I/O virtualization faces challenges associated mainly with two changes it introduces:

1. Extending the network by adding multiple new network interfaces (vNICs)

2. Binding virtual machine with the I/O hardware

Extending the network requires some form of packet switching, while binding hardware
with the virtual machines poses a challenge for virtual machine migration – their transfer
to another physical host.

4.5.1 Switching

For a computer system running on bare-metal with a single interface NIC, network topology
and behavior are largely external issues. The system’s NIC forwards to it packets matching
its physical address or broadcast packets, and drops all others.

When an I/O virtualization technology creates multiple network interfaces, the hyper-
visor or the host system must connect the vNICs to the network in some manner. The
requirements can differ (“seamless” bridged connection to the outer network, host-only
network, ...).

In any case, the hypervisor must implement a switching mechanism to decide which
packets will be delivered to which virtual machine. One of the possible approaches is to
create a virtual switch (e.g. Open vSwitch2) and connect the vNICs to it. Switching
mechanism is closely bound to the migration problem discussed in the following section.

4.5.2 Migration

Virtual machine migration is the process of transferring a virtual machine between physical
hosts. Offline migration is performed when the virtual machine is not running, and is
relatively straightforward. Online migration, on the other hand, is performed while the
machine is running and places serious demands on I/O virtualization system (e.g. the
requirement to preserve open TCP connections).

Virtualization technologies bind the virtual machine with vNICs, which may be diffi-
cult to duplicate on the new physical machine. For emulation and paravirtualization (see
sections 4.2 and 4.3, respectively), the vNIC is software-based and can be recreated on the
target machine (provided the hypervisor is the same or at least provides the same function-
ality). With NIC virtualization, this is not possible, because from the host’s perspective,
the virtual machine is assigned one of the available physical devices, and this cannot be
propagated with the machine – the target machine may well not even have such a device
available.

2http://openvswitch.org/

14

http://openvswitch.org/

4.6 Summary of virtualization technologies
Virtualization technologies described in this chapter use different methods to provide virtual
NIC for virtual machines. They achieve different results both in terms of performance and
flexibility. This is illustrated in table 4.1.

Emulation is the basic, slowest technology. It is widely supported by the hypervisors,
since it works with any guest system which supports the emulated hardware, and does not
reveal to the guest that it is virtualized.

Paravirtualization improves performance (while keeping flexibility) by emulating a de-
vice designed for virtualization. It requires this device’s driver to be present in the guest.
Modern hypervisors usually utilize virtio technology, and modern systems usually include
a driver for the virtio-net device, making paravirtualization relatively easy to run.

Full virtualization is designed for performance-critical environments. It requires hard-
ware support and limits flexibility (as the virtual machines are bound with physical hard-
ware), but it offers close to bare-metal performance.

The following chapters deal with SR-IOV, which is the standardized technology of full
virtualization for PCI-E devices.

Emulation Paravirtualization Full virtualization
Performance Low Medium High

Host CPU load High Low None
Complexity Hypervisor Hypervisor, Guest Hardware, Host, Guest
Flexibility High High Low
Technology Hypervisor-specific virtio SR-IOV

NIC example Intel 82540EM virtio-net Mellanox Connect-X 4

Table 4.1: Virtualization technology comparison

15

Chapter 5

SR-IOV

PCI Single Root Input/Output Virtualization is a standard1 for PCI devices virtualization
and sharing. Compliant devices are able to spawn virtual PCI devices, with which the
computer system then communicates.

This chapter describes how SR-IOV works, and follows with design requirements for
SR-IOV capable device driver and firmware. More information can be found at [8]

5.1 SR-IOV principles
SR-IOV is a PCI-level technology. It allows a physical device to be “seen” as multiple
devices on the PCI bus itself. Therefore, it is necessary to understand how PCI devices
present themselves on the bus and how they are accessed.

The PCI bus is organized in a hierarchical manner (see figure 5.1). The computer
system may contain several buses, which may connect several devices, and each device may
host several functions. This distinction is based on understanding that a single physical
expansion card may contain multiple individual devices (e.g. USB controller and FireWire
controller). Basics of the PCI bus are described in [4, chapter 12].

As a result, the PCI devices use bus:device.function addressing, where
1https://pcisig.com/specifications/iov?field_document_type_value%5B%5D=

specification&speclib=

Bus 0

Bus 2

Bus 3

Bus 1

Root Complex

Bridge

Bridge Bridge

Device Device Device

Device

Function 0
Function 1

Figure 5.1: Example PCI-E Hierarchy

16

https://pcisig.com/specifications/iov?field_document_type_value%5B%5D=specification&speclib=
https://pcisig.com/specifications/iov?field_document_type_value%5B%5D=specification&speclib=

PF0: 0xc000 - 0xcfff

VF0: 0x0a00 - 0x0aff

VF1: 0x0600 - 0x06ff

Kernel

Driver
struct pci_dev * dev; /* VF1 */
long * devmem;
devmem = pci_resource_start(dev);
/* devmem == 0x0600 */
*(devmem + 4) = 42;

PCI bus

Figure 5.2: SR-IOV memory mapping

∙ bus is a number from 0x00 to 0xff (0 - 255)

∙ device is a number from 0x00 to 0x3f (0 - 31)

∙ function is a number from 0x0 to 0x7 (0 - 7)

Example PCI device address would be 01:1a.0.
The PCI devices have 3 address spaces – configuration, memory an I/O. When the

system boots, the BIOS enumerates the devices and maps them to the processor’s address
spaces. This mapping is written to the device’s BAR (Base Address Register) registers, so
that it knows which address ranges are assigned to it and may respond appropriately.

PCI devices’ capabilities are advertised to the system through the list of so-called ca-
pability structures located in the device’s configuration space. These capabilities form a
logical linked list, and the system enumerates the list to determine device’s capabilities.
An SR-IOV capable device contains a SR-IOV data structure in this list. The driver writes
data to this structure to configure and enable SR-IOV and reads it to obtain SR-IOV status.

When the driver enables SR-IOV (it must be turned off after boot), the firmware creates
virtual functions (in the PCI meaning). These functions are subsequently assigned unused
PCI addresses from the same bus (leading to maximum 255 virtual functions). After the
functions are enabled, they are configured (provided their memory mappings) by the kernel.

Subsequently, when the driver communicates with the device, it uses addresses from
the device’s mapped address range (see figure 5.2). The device only responds to requests
with address within its range. When virtual functions are configured, each with its own
address range, the physical device’s logic needs to account for multiple ranges and process
the request accordingly.

5.2 Design of driver with SR-IOV support
SR-IOV distinguishes two types of functions.

Physical function (or PF) is the original function of the SR-IOV device. It is available
at system boot and is usually capable of device configuration. AT the very least, it is able
to configure and enable SR-IOV through the SR-IOV capability structure.

Virtual Function (or VF) is a function created when SR-IOV is enabled through PF.
This function usually has a limited or zero access to the device configuration, for it is
meant to be assigned to a virtual machine, and as noted before, virtual machines should
not affect each other’s state. As a result, virtual function’s abilities are usually limited

17

PF 0
VF 0

VF 1

Host

HypervisorPF
driver

Guest 1

VF driver

Guest 2

VF driver

Figure 5.3: SR-IOV Driver Schema

to the performance-related operation (e.g. data transfer) and configuration that does not
affect other virtual functions.

As a result, the SR-IOV system requires a PF driver and a VF driver. The VF driver
provides the data transfer operations, while the PF driver provides data operations, con-
figuration operations and SR-IOV configuration operations.

The host usually runs the PF driver, while the guests run VF drivers, see figure 5.3.

5.3 Design of firmware with SR-IOV support
The firmware of an SR-IOV device must address, in addition to the device’s function, the
following:

∙ SR-IOV configuration and enabling/disabling

∙ Providing configuration address space for virtual functions

∙ Separating transactions by virtual function number

∙ Multiplexing commands from virtual functions

∙ Limiting virtual function capabilities

The firmware can distinguish between virtual functions by the PCI address used in
the respective transaction. This information can be used to provide proper result for the
command or to block it, if it is configuration command issued by a virtual function.

18

Chapter 6

COMBO platform

The COMBO cards are programmable high-speed network cards developed in the Liber-
outer1 project by CESNET2 and, more recently, Netcope Technologies3. They work on 10
Gb, 40 Gb or 100 Gb Ethernet, and are capable of delivering full 100 Gbps of network
traffic to software for processing.

In this work, we shall use the COMBO-100G2Q card. This card features two physical
QSFP28 ports which can work in 4x10G mode (four 10Gb Ethernet links), one of them
even in 1x100G mode (one 100Gb Ethernet link). We say that the whole card works in
100G1, 10G8 or 100G1-10G4 mode, based on the ports’ configuration.

Mode Port 0 mode Port 1 mode Total interfaces
100G1 1x100G disabled 1
10G8 4x10G 4x10G 8

100G1-10G4 1x100G 4x10G 5

Table 6.1: COMBO card modes

The COMBO cards utilize multiple DMA channels – RX and TX queues accessible by
software. Through the channels, packet classification is possible – firmware can implement
a decision process to determine target DMA channel for each incoming packet.

6.1 Platform overview
The COMBO cards can be conceptually seen as an FPGA chip connected to the Ethernet
ports and to the PCI-E interface, as seen in figure 6.1.

FPGA (Field Programmable Gate Array) is an electronic circuit, whose behavior is
reconfigurable. FPGA is a middle way between an ASIC (very fast but single-purpose
chip) and a generic processor (very flexible but slow chip). In the COMBO platform, the
speed of the FPGA allows to process the extreme data speed, while its flexibility allows
software-controlled changes in card behavior.

The FPGA consists of many logic blocks interconnected by programmable paths. When
the FPGA is programmed, a sequence of bits (bitstream) is loaded into it, configuring what
function the logical blocks shall perform and how the blocks shall be interconnected. The

1http://www.liberouter.org
2http://www.cesnet.cz
3http://www.netcope.com

19

http://www.liberouter.org
http://www.cesnet.cz
http://www.netcope.com

FPGA

Ethernet

Ethernet

PCI-E

Auxiliary
components

Figure 6.1: COMBO: High level overview

bitstream is usually generated from a specification in some hardware description language
(VHDL, Verilog) in a design software tool from the chip’s vendor. The design tool compiles
the specification into a chip design – it analyzes the requirements from the specification,
maps individual components to the logical blocks of the FPGA and places them on the chip
in the manner allowing the whole design to run at the required frequency. The bitstream
loaded into the card determines its behavior – it forms the card’s firmware. In the rest of
this work, we shall use the terms “design”, “bitstream” and “firmware” interchangeably.

The COMBO designs consist of several common components, and an Application Core
(see figure 6.2).

The application core is the packet processing unit of the firmware. It can process
packets on the wire speed, allowing it to work as an accelerator. There are several existing
application cores with different capabilities:

∙ NIC – no filtering, sends packets to software, can choose DMA channel (interface
number or round-robin)

∙ HANIC – static packet filtering, can send packets to the software, crop them, send
their Unified Headers to software, or drop them

∙ SDM – dynamic flow-based packet filtering, can send packets to the software, crop
them, sned their Unfiied Headers to the software, or drop them

The IBUF and OBUF components are in control of a particular Ethernet port (in RX
and TX direction, respectively). The RX_DMA and TX_DMA components are the DMA
controllers of individual DMA channels. Note that it is possible to have varying number of
RX and TX channels, because the RX channel is in no way tied to the TX channel.

6.2 Card Configuration
Hardware devices in the computer are controlled and configured by software requests – the
processor reading and writing data to the device’s control registers. The COMBO cards are
capable of extensive configuration, utilizing many registers. This section covers the design
of COMBO cards configuration system.

20

Ethernet
Interface

IBUF
OBUF

Application
Core PCI-E

Ethernet
Interface

IBUF
OBUF

RX_DMA

TX_DMA

RX_DMA

TX_DMA

RX_DMA

TX_DMA

RX_DMA

TX_DMA

AXI2MI

MI32 bus

ID

Figure 6.2: COMBO firmware data path components

When the system boots, each PCI device is assigned one or more continuous regions
in the processor’s address space (outside the addresses used by the actual RAM). The size
of those regions is determined by the system through reading the BAR register, and upon
the assignment, the base address of that region is written to the BAR. The system ensures
that when the processor reads (or writes) data from the memory in the region assigned to a
PCI device, this “request” shall be delivered to the correct device; the device shall respond
appropriately.

The device can subtract the address in the BAR from the address in the request –
basically, for the card, every request is accessing certain offset in certain BAR’s address
region.

6.2.1 Component addressing

The firmware consists of individual components. Each component that contains software-
accessible registers must be placed to a unique offset in the card’s address region, so that
its registers may be uniquely addressed.

To achieve this, each component’s designer must declare the component’s size – the size
of the memory region the component shall occupy. The firmware designer then enumerates
all the components in the firmware and assigns to them base addresses in the firmware,
taking into account their size so that their memory regions do not overlap. This assignment
forms an address space of the firmware.

21

The firmware uses an internal bus called MI32 to propagate the software requests inside
the card. The bus consists of following signals:

ADDR[31:0] Address (offset within the card)

DRD[31:0] Data Read

DWR[31:0] Data Write

BE[3:0] Byte Enable (validity of individual bytes)

RD Read (command)

WR Write (command)

ARDY Asynchronous Ready (command acknowledgment)

DRDY Data Ready

When a request arrives to the card, the MI32 root component (AXI2MI32) asserts the
ADDR signal and the RD (or WR and BE) signal. The MI32 bus contains address decoders which
use the higher bits in the ADDR signal to activate the bus signals for the right destination
component. The component then uses the lower bits in the ADDR signal to address the right
register within itself and asserts ARDY (and DRD and DRDY if the command was Read) signal
to acknowledge request completion.

Since the components only use the lower bits of the address for their internal addressing,
they may be placed at any offset in the card, as long as this offset is aligned to a multiple
of the component’s size.

The component hierarchy differs between the firmwares. The software needs to know
the offsets of individual components in the firmware it is working with, so every firmware
is accompanied with an XML file called design.xml, which contains the component tree
description in defined format. The applications parse it to know where the components
they need to work with are located.

The design.xml contains XML nodes with the following structure:

<component cversion="1.0" version="2.4"
name="IBUF" index="0" base="0x00008000" size="0x100">

<comment>Input Buffer 0</comment>
</component>

Using the information in the card, the software can query for the existence (or count) of
specific components in the firmware, learn their location (offset, base address) and access
them correctly.

6.3 Data transfers
The main function of a network card is receiving and sending data. This section deals with
high speed network data transfers between the software and the card.

22

6.3.1 SZE interface

When a new packet is received from the network, the network card stores it in the internal
buffer and makes sure the packet data is retrieved by the operating system before it is
overwritten by a new packet.

With the standard approach, the NIC fires an interrupt to inform the kernel about it.
The kernel calls the NIC’s driver to initialize DMA transfer to the kernel buffer, and when
the packet is processed with the kernel network stack, it is finally copied to application
buffer in a call like recvmsg().

The approach is generic, flexible and allows the processor to work on other tasks when
there are no packets available. However, the interrupt handling costs dozens or hundreds
of CPU cycles, and the “kernel to application” copy doubles the memory utilization. This
becomes a problem for higher Ethernet speeds.

Ethernet
standard

Data speed
64B frames*

Frame speed
64B frames** Time / frame Cycles / frame

3.20 GHz processor
1 Gb/s 95.24 MB/s 1.488 Mpkts/s 672 ns 2150

10 Gb/s 952.38 MB/s 14.881 Mpkts/s 67.2 ns 215
40 Gb/s 3809.52 MB/s 59.524 Mpkts/s 16.8 ns 53

100 Gb/s 9523.81 MB/s 148.810 Mpkts/s 6.72 ns 21

Table 6.2: Packet processing time for high speed Ethernet
*Ethernet requires at least 12B of inter-frame gap and has 8B frame preamble, amounting
to 20B per packet of transmitted, but unused data. Therefore, the theoretical maximal data

speed for frames of a given size can be calculated as:

𝐷𝑎𝑡𝑎𝑆𝑝𝑒𝑒𝑑 = 𝐵𝑖𝑡𝑆𝑝𝑒𝑒𝑑/8 * 𝐹𝑟𝑎𝑚𝑒𝑠𝑖𝑧𝑒/(𝐹𝑟𝑎𝑚𝑒𝑠𝑖𝑧𝑒+ 20) (6.1)

**64B is the minimal size of an Ethernet frame, resulting in the highest possible frame
speed

With rising network speed, the interrupts become too slow and costly. Looking at table
6.2, it is clear that an interrupt (whose handling and even dispatching costs hundreds of
microseconds [6]) cannot be fired for every received packet on higher Ethernet speeds and
is unfeasible even for batch processing where an interrupt is fired for several packets.

As a result, the COMBO cards use (proprietary) technology called Straight Zero
Copy (SZE). It consists of kernel modules (szedata2, szedata2_cv3) and user-space library
libsze2. It does not use interrupts – instead, it allocates memory buffers and allows the
network card to write data to these buffers through DMA. The buffers (areas) are arranged
in the form of a single logical ring-buffer, where the card continuously writes new data and
the software reads it. They update Head and Tail pointers respectively to inform the other
party of the data / free space available in the ring-buffer. The disadvantage lies in the need
for the application to constantly query the memory for new packets (so-called polling)
and in the fact that SZE applications receive their packet as Ethernet frames, and cannot
directly use the abstractions (like TCP sockets) provided by the kernel.

Today’s computer systems employ multiple processor cores, allowing parallelization of
tasks. COMBO cards utilize several DMA channels through which they send data to the
processor. The SZE technology allocates independent ring-buffers for each channel, which
allows multiple processor cores to perform packet processing simultaneously, reading from

23

individual channels. Steering individual packets to the DMA channels is performed by the
card’s firmware.

6.4 Software stack
The software stack of the COMBO platform consists of the card drivers, user-space libraries
and configuration tools (see figure 6.4).

The card drivers (Linux kernel modules) manage the card as PCI device, and provide
to the user-space device files to work with. The combo6core module provides functions
common to all the COMBO cards. The combov3 module, which handles the configura-
tion accesses and provides access to the card components, creates file /dev/combosixN,
where N is the card’s number (starting from 0). Similarly, the szedata2 module creates file
/dev/szedataIIN, where N is the card’s number. The binding module szedata2_cv3 is used
to provide the szedata module with the device-specific information.

The main userspace libraries, libcombo and libsze2 provide functions for card configura-
tion and data transfers, respectively. Most applications use at least one of these libraries,
sometimes with common helper functions from libcommlbr.

User-space tools generally fall into two categories – configuration tools querying or
modifying card status, and data transfer tools (whose name starts with sze2) designed for
network traffic generation, receiving, transmitting, etc.

The COMBO platform is designed for custom applications, written on top of the libsze2
library, working with the individual frames, without utilizing the kernel network stack. It
is, however, possible to have the drivers create Linux network interfaces (netdevs) from
individual DMA channel pairs (RX + TX channel). This allows to run standard network
applications, albeit with limited performance. This is done by loading the szedata2 mod-
ule with parameters no_eth=0 and dma_channels=C1,C2,C3 where C1, C2 and C3 are the
channels we want to use as netdevs.

24

SZE
ring-buffer

Area

Area

Area

Area

Area

Head
Pointer

Tail
Pointer

Figure 6.3: SZE ring buffer abstraction

combo6core

combov3 szedata2

szedata2_cv3

libcommlbr

libcombo libsze2

ibufctl

obufctl

csboot sze2fastwrite

sze2loopback

Drivers

Libraries

Tools

Figure 6.4: COMBO Platform software stack

25

Chapter 7

Design and implementation of
SR-IOV support for COMBO cards

This chapter covers design and implementation of the support of SR-IOV technology for
the COMBO platform. The goal is to add the support to the existing pieces of software
and firmware (see section 6.4). With the SR-IOV support implemented, it shall be possible
to create virtual functions in the COMBO card, assign them to virtual machines and use
them in the VMs, achieving close to bare-metal performance.

To achieve the goal, the following tasks were defined:

1. the card must advertise its SR-IOV capability (see section 7.2),

2. the drivers must provide a way to create and manage virtual functions (see section
7.3),

3. the hardware resources in the card must be assigned to individual virtual functions
(see section 7.4),

4. individual virtual function’s hardware accesses must be distinguished and isolated
from each other (see section 7.5),

5. and the VF driver must be created to be used in the VMs (see section 7.6).

In addition, the SR-IOV support requires the IOMMU unit to be turned on, which
contradicts the requirements of standard COMBO installation due to the usage of PCI
slot bifurcation. Section 7.1 covers both the IOMMU/bifurcation problematics and the
implemented solution.

The firmware support is added to the code in the fwbase repository hosted by CESNET,
the software support is added to the code in the netcope-common repository hosted by
Netcope Technologies, a.s.

7.1 IOMMU, bifurcation and PCI-E endpoints
The PCI Express bus consists of multiple separated serial point-to-point links (or lanes)
which connect the physical slot to the PCI Express Root Complex, interconnecting the
CPU and other devices. An individual physical slot can contain 1, 4, 8 or 16 such lanes
(the slots are accordingly marked x1, x4, x8, x16).

26

The current version of the PCI-E bus, present in the server motherboards and supported
by Xilinx Virtex7 PCI-E IP Core, is PCI Express version 3.0, which offers transmission
speed 8.0 GT/s. GT/s stands for GigaTransfers per second. Since each lane is serial, it
transfers a single bit at a time, the effective data transfer speed of a single lane is nearly 8
Gb/s1.

In order to achieve full 100 Gbps throughput to software, an x16 lane or an equivalent
has to be used, since 8 lanes per 8 Gbps can only transfer nearly 64 Gbps. However, the
Xilinx PCI-E IP Core used in the COMBO platform can only create an x8 endpoint. This
has been overcome by instantiating two Xilinx PCI-E IP Cores in the COMBO platform
and enabling PCI Slot Bifurcation feature of the motherboard (it essentially turns the
x16 physical slot into two x8 slots).

This allows the desired 100 Gbps transfers, but from the system’s view, it turns the card
into two separate PCI-E devices – primary and secondary. The COMBO drivers perform
only a minimal initialization of the secondary device, all the work is done through the
primary device. The secondary device is only used for SZE data transfers. Therefore, the
system sees two separate devices both writing the data to the same memory area (SZE
buffers).

However, with IOMMU on, every device can only transfer data to the memory region
that was allocated to it through dma_alloc_coherent() or other kernel function. The
reason is that the IOMMU maps devices’ memory accesses. When using IOMMU, the
devices are expected to use bus addresses instead of physical addresses and, similar to
the MMU unit, the IOMMU establishes mapping (𝑑𝑒𝑣𝑖𝑐𝑒, 𝑏𝑢𝑠𝑎𝑑𝑑𝑟) → 𝑝ℎ𝑦𝑠𝑎𝑑𝑑𝑟 which is
then used for the device’s memory accesses. The bus address is returned to the driver on
successful DMA memory allocation call (like dma_alloc_coherent()), which also sets up
the IOMMU mapping.

So, why is the IOMMU needed at all? A running virtual machine is seen as a user process
by the host system. Like any other process, it works with virtual memory – the memory
addresses the VM uses are virtual addresses and are translated to physical addresses by the
MMU unit. When such a VM is assigned a PCI device and starts a DMA transfer with it,
it programs the device with the address of the DMA buffer in the memory. But, since the
VM uses virtual memory, the programmed address (which the virtual machine considers
physical memory address) might not match the real physical address where the data should
be transferred.

As a result, for direct device assignment to a VM, the device’s memory accesses must
undertake the same mapping that is used for the VM. Hence, for an SR-IOV environment,
the IOMMU must be present and turned on.

The COMBO firmwares can be built using a single endpoint only. This is done by
setting the DOUBLE_PCIE variable to ”0“

set DOUBLE_PCIE "0"

in the main configuration file in the firmware application’s top directory (fwbase:
applications/nic/100g2/top/Vivado.tcl)

The change also requires removing unused signals and pins from the whole design (see
the patches on the CD).

1PCI Express version 3 uses 128b/130b encoding, which lowers the effective speed by cca 1.5%

27

7.2 Advertising SR-IOV Capability
The SR-IOV capability is a data structure in the PCI device’s configuration space2 used by
a PCI device to inform the system that the device is SR-IOV capable (see section 5.1).

In the COMBO firmwares, the PCI-E communication, including managing the configu-
ration space, is handled by Virtex-7 FPGA Gen3 Integrated Block for PCI Express; an IP
core (prebuilt block of FPGA logic) provided by Xilinx, Inc.

7.2.1 Xilinx PCI-E IP Core

Xilinx allows licensed users of their products to incorporate the PCI-E IP core into their
firmwares. Using Xilinx’s IDE, Vivado, it is possible to configure the PCI-E IP core and add
it to the firmware. The configuration creates a file containing the PCI-E IP core settings
(referred to as wrapper file). Since the COMBO firmware uses the IP core, the file is already
present; in the fwbase repository, the file path is

ndk
common

comp
external

ip_cores
pcie

virtex7
general

pcie3_7x_0_wrapper.v
When the IP core is configured in Vivado, a new wrapper file is generated in the direc-

tory, from which Vivado was started. Its path is
<PROJECT>.srcs/sources_1/ip/pcie3_7x_0/synth/pcie3_7x_0.v

where <PROJECT> is the name of the Vivado project (usually “combo100g2_core”).
In the following section, I will cover the BAR registers, since they are set up in the IP

Core configuration process, and later the configuration of the IP core for SR-IOV support
and its integration to the COMBO firmware, which will be done by partial replacement of
the old wrapper file with the one produced during configuration.

Base Address Registers

Base Address Registers (BARs) are registers in the PCI device’s configuration space which
are used by the system to determine device’s memory requirements and to store the address
on which the system will map the device. Since PCI devices are accessed via memory
read/write instructions, each device must be mapped somewhere in the processor’s logical
address space.

Upon system boot, when PCI devices are probed, the BIOS or the kernel will write 1’s
to their BARs and read back the value. The read value determines the size of the BAR –
the size of the address space it requests to be assigned. Subsequently, the system allocates
address space region of required size and assigns it to the BAR (writes the lowest address
to the BAR). From this moment, accesses to the addresses in this region shall reach the
device, and the device shall use the Address value in the request and the Base Address in
the BAR to determine the access’s offset within itself.

2Don’t mix with COMBO configuration accesses

28

In COMBO firmwares, this is how configuration accesses are performed. The memory
accesses are transformed - first to the AXI bus by the PCI-E core, then to the MI32 bus
by the AXI2MI component. Therefore, the size of the BAR0 must encompass all the
components on the MI32 bus. Basic NIC components are located on offsets up to 0xF000,
but some special ones go up to 0x880010 and the application core employed in some designs
is usually located at 0x2000000. That requires the BAR to be at least 0x4000000 (64 MiB)
large. Recently, another BAR was added to the firmware for experimentation. With SR-
IOV, using this second BAR is discouraged, because the memory requirements shall grow
due to the BARs for individual VFs, and the system may run out of assignable address
range (an error known as “not enough MMIO resources”).

The VFs are designed to work with the basic components only. As a result, their BARs
can be as small as 0x10000 (64 KiB).

7.2.2 PCI-E IP core configuration

For the IP core configuration, you need Vivado Design Suite. The work was performed in
Vivado 2016.3, although other versions may work as well.

For IP core configuration, it is possible to either create a new project in Vivado, or gener-
ate one containing the COMBO firmware and open it in Vivado. To achieve the latter, nav-
igate to the top directory of your desired application (e.g. applications/nic/100g2/top),
edit file Vivado.tcl, change the line

set SYNTH_FLAGS(PROJ_ONLY) ”0“
to

set SYNTH_FLAGS(PROJ_ONLY) ”1“
and run make to generate Vivado project file combo100g2_core.xpr.

In Vivado GUI, locate the IP Catalog in the left pane and when it opens, locate Virtex-7
FPGA Gen3 Integrated Block for PCI Express under

Standard Bus Interfaces
PCI Express

Virtex-7 FPGA Gen3 Integrated Block for PCI Express
Double clicking (or choosing “Customize IP” from the context menu) will open a window

with IP customization. In this window, we shall modify certain fields to configure the IP
core for SR-IOV support properly. The screenshots of the window with appropriate fields
can be found in the Appendix.

Following tables list changes to be performed in individual tabs.

Table 7.1: Tab “Basic”

Field New value Old value Note
Mode Advanced Basic Enable advanced configuration options

Lane width X8 X1 Enable x8 PCI-E lane
Maximum Link Speed 8.0 GT/s 2.5 GT/s Enable PCI-E gen. 3 link speed

Table 7.2: Tab “Capabilities”

Field New value Old value Note
SRIOV Capability Checked Unchecked Advertise SR-IOV capability to the system

29

Figure 7.1: Selecting PCI-E IP Core in Vivado 2016.3

Table 7.3: Tab “PF0 IDs”

Field New value Old value Note
Vendor ID 1B26 10EE Use INVEA-TECH vendor ID
Device ID C0C1 7038 Use Combo-100G2 device ID

Subsystem Vendor ID 1B26 10EE Use INVEA-TECH vendor ID
Subsystem Device ID 0000 0000

Base Class Value 02 05 Network Controller class
Sub Class Value 00 04 Ethernet controller subclass

This is for compatibility with the COMBO firmware values only. Can be left unchanged if
caution is applied when merging wrapper files.

Table 7.4: Tab “PF0 BAR”

Field New value Old value Note
Bar0: 64-bit Checked Unchecked Enable 64-bit BAR
Bar0: Size Unit Megabytes Kilobytes
Bar0: Size Value 64 4 Use 64MB BAR0

This is for compatibility with the COMBO firmware values only. Can be left unchanged if
caution is applied when merging wrapper files.
Caution: Enabling BAR2 may conflict with SR-IOV support, because the system may not
have enough MMIO resources (memory available for PCI devices) to allocate big BAR0,
big BAR2 and small BARs for VFs.

Table 7.5: Tab “SRIOV Config”

Field New value Old value Note
Number of PF0 VF’s 6 0 Enable maximum (6) VFs

30

Table 7.6: Tab “PF0 SRIOV BARs”

Field New value Old value Note
Bar0: 64-bit Checked Unchecked Enable 64-bit BAR

Bar0: Size Value 64 2 Use 64KB BAR0

31

After the changes are confirmed with “OK”, Vivado offers to generate the IP core “out-
of-context”. Confirming this, IP core synthesis is asynchronously started. When it finishes,
the new wrapper file is created and ready to be used.

Running a diff on the two wrapper files shows many differences. We will modify the
configuration lines, following the line

pcie3_7x_0_pcie_3_0_7vx #(

We shall apply those modifications, which relate to the SR-IOV capability, other capa-
bilities and BAR sizes, namely:

∙ .ARI_CAP_ENABLE(”TRUE“)

∙ .PF0_AER_CAP_NEXTPTR(’H140)

∙ .PF0_ARI_CAP_NEXTPTR(’H200)

∙ .PF0_BAR0_APERTURE_SIZE(’B10011)

∙ .PF0_BAR2_APERTURE_SIZE(’B00000)

∙ .PF0_BAR2_CONTROL(’B000)

∙ .PF0_DEV_CAP_EXT_TAG_SUPPORTED(”TRUE“)

∙ .PF0_DPA_CAP_NEXTPTR(’H200)

∙ .PF0_DSN_CAP_NEXTPTR(’H200)

∙ .PF0_LTR_CAP_NEXTPTR(’H200)

∙ .PF0_PB_CAP_NEXTPTR(’H200)

∙ .PF0_RBAR_CAP_NEXTPTR(’H200)

∙ .PF0_SRIOV_BAR0_APERTURE_SIZE(’B01001)

∙ .PF0_SRIOV_BAR0_CONTROL(’B110)

∙ .PF0_SRIOV_CAP_INITIAL_VF(’H0006)

∙ .PF0_SRIOV_CAP_TOTAL_VF(’H0006)

∙ .PF0_SRIOV_FIRST_VF_OFFSET(’H0040)

∙ .PF1_SRIOV_BAR0_APERTURE_SIZE(’B01001)

∙ .PF1_SRIOV_BAR0_CONTROL(’B110)

∙ .SRIOV_CAP_ENABLE(”TRUE“)

∙ .VF0_PM_CAP_NEXTPTR(’H90)

∙ .VF1_PM_CAP_NEXTPTR(’H90)

∙ .VF2_PM_CAP_NEXTPTR(’H90)

32

∙ .VF3_PM_CAP_NEXTPTR(’H90)

∙ .VF4_PM_CAP_NEXTPTR(’H90)

∙ .VF5_PM_CAP_NEXTPTR(’H90)

7.3 Virtual Function management
SR-IOV virtual functions management is rather limited. The user may only specify the
number of requested virtual functions (henceforth designed 𝐾) and, upon success, first 𝐾
virtual functions are enabled. Disabling is done by specifying the 𝐾 as zero.

The management is done in the PF device driver (the combov3 module). It must
provide a way for the user to specify 𝐾 and use the kernel-provided functions:

pci_enable_sriov (pcidev , K);
pci_disable_sriov (pcidev);

for the actual enabling/disabling.
The newer kernels (starting with kernel 3.8) allow management through a /sys file,

namely /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs for a PCI device located at
03:00.0. Here is an example of virtual function management through the /sys file:

Listing 7.1: Example of /sys-based VF management
cat / sys /bus/ pc i / dev i c e s /0000 : 03 : 00 . 0/ sriov_numvfs
0

l spc i | grep 1b26
0 3 : 0 0 . 0 Ethernet c o n t r o l l e r : Device 1b26 : c2c1

echo 6 > / sys /bus/ pc i / dev i c e s /0000 : 03 : 00 . 0/ sriov_numvfs

cat / sys /bus/ pc i / dev i c e s /0000 : 03 : 00 . 0/ sriov_numvfs
6

l spc i | grep 1b26
0 3 : 0 0 . 0 Ethernet c o n t r o l l e r : Device 1b26 : c2c1
0 3 : 0 8 . 0 Ethernet c o n t r o l l e r : Device 1b26 :0000
0 3 : 0 8 . 1 Ethernet c o n t r o l l e r : Device 1b26 :0000
0 3 : 0 8 . 2 Ethernet c o n t r o l l e r : Device 1b26 :0000
0 3 : 0 8 . 3 Ethernet c o n t r o l l e r : Device 1b26 :0000
0 3 : 0 8 . 4 Ethernet c o n t r o l l e r : Device 1b26 :0000
0 3 : 0 8 . 5 Ethernet c o n t r o l l e r : Device 1b26 :0000

In order for this method to work, the device driver module must define an SR-IOV
configuration function, which handles VF management (it can perform driver-specific ini-
tialization and then call pci_sriov_enable()). The configuration function must have
prototype

int sriov_configure (struct pci_dev *pcidev , int num_vfs);

33

and the sriov_configure field of the driver’s struct pci_driver structure must be filled
with a pointer to this function. Otherwise the attempts to write or read the /sys file end
with error.

Older kernel versions, including kernel 2.6.32 present in CentOS 6, do not have the
sriov_configure field in the struct pci_driver structure, so this method cannot be
used. As an alternative, I chose to use a /proc file (called /proc/combo-sriov) which could
be created during module loading and removed during its unloading, and whih performed
the same function (except that there could only be one file, which would cause problems i
multiple COMBO cards were present).

The module checks kernel version and through conditional compilation (see listing 7.2)
it uses the /sys file version, if the kernel is new enough to support it, otherwise the /proc
version.

Listing 7.2: combov3 module SR-IOV configuration support checking
define HAS_SRIOV 1

#ifdef HAS_SRIOV
#if LINUX_VERSION_CODE >= KERNEL_VERSION (3 ,10 ,0)
define NEW_SRIOV 1
#else
define OLD_SRIOV 1
#endif
#endif

7.4 Management of hardware resources
The hardware contains a limited number of resources, and the simultaneous access from
multiple VFs would cause problems, if the same resource was used more than once.

This led to the decision to use the NIC firmware, which can work in a pass-through
mode, that is, it is built with the same amount of physical interfaces (IBUF/OBUF pairs)
and DMA channels (RX and TX DMA controllers) and its core only forwards packets from
𝑛-th IBUF to 𝑛-th DMA channel, and from 𝑛-th DMA channel to the 𝑛-th OBUF, as
depicted in figure 7.2.

This setup splits the components into groups independent of each other (IBUF 0’s state
cannot affect RX_DMA 1’s state and so on), so it is possible to assign different groups to
the different VFs (as shown on figure 7.3).

In order for a VF to be able to transmit and receive data, it must access the DMA
channel controllers (in order to set up the SZE addresses and pointers). In order to be
able to manage its physical port, it needs access to the IBUF and OBUF of that port.
And finally, the drivers and the software need access to some information about the card,
provided by the ID component.

So, concluded, here are the components that must be provided to a VF in order to make
it a self-managed data transferring NIC:

∙ IBUF (component controlling ingress physical interface)

∙ OBUF (component controlling egress physical interface)

∙ RX_DMA (component controlling RX DMA channel)

34

NIC
Application Core

IBUF 0

OBUF 0

IBUF 7

OBUF 7

IBUF 1

OBUF 2

RX_DMA 0

TX_DMA 0

RX_DMA 1

TX_DMA 1

RX_DMA 7

TX_DMA 7

Figure 7.2: NIC Application Core scheme

∙ TX_DMA (component controlling TX DMA channel)

∙ ID (component providing basic information about the card and the firmware)

Since the ID component is used read-only, it is possible to share it among the VFs. As
for the other components, it is possible to assign 𝑛-th group to the 𝑛-th VF.

7.5 VF component access
We have learned before that the components inside firmware are controlled by memory
operations (Read, Write) on certain addresses within the physical card’s assigned memory
range.

In order to access certain register in certain component, the software must know the
offset of the component within the card, and the offset of the register within the component.
While the latter is the internal knowledge of the software tool (a tool working with a
component X ought to know the component X’s registers’ offsets), the former is subject to
change among different designs and is provided to the software tool through the design.xml
file.

The VFs shall, by design, work with only a subset of the components present in the
firmware. Therefore it is needed to design what components they shall use (see section
7.4) and how shall they access them.

The naive approach would be removing the unused components from each VF’s virtual
machine design.xml files. However, this is dangerous, as it allows the possibility for the VFs
to access components not assigned to them (be it by misconfiguration or malicious intent).
The other disadvantage is that the VFs are not uniform – each requires a slightly different
design.xml file, as each’s components lie on different offsets.

These problems can be solved by adding a firmware component, which will manage the
VFs’ accesses to the other components. Two possible approaches were suggested – access

35

NIC
Application Core

VF7

VF1

VF0
IBUF 0

OBUF 0

IBUF 7

OBUF 7

IBUF 1

OBUF 2

RX_DMA 0

TX_DMA 0

RX_DMA 1

TX_DMA 1

RX_DMA 7

TX_DMA 7

Figure 7.3: COMBO components assignment to the VFs

filtering and access mapping. For both approaches, the component must be aware of the
individual components’ VF assignment.

With access filtering, the component shall block the accesses outside the memory regions
of the components assigned to the requesting VF. This approach solves the security problem,
however, the non-uniformness issue remains, as each VF needs to use different offsets, hence
needs a different design.xml. It could be partially solved by providing the VF number to
the VM and the software, and utilizing it to choose the right file or add proper offsets to
the data in it.

Access mapping is an approach which takes inspiration in the memory mapping of the
userspace addresses, and the MMU unit. The basic idea is to create a virtual address space
(represented by design.xml) for the VFs and then map accesses to this virtual space to
the real components, using the VF number to find the right one. Similar to the pages in
the regular virtual memory context, only a portion of the address, which determines the
component, would be mapped, while the lowest part of the address, representing an offset
within the component, would remain intact.

The access filtering only solves the security issue, while the access mapping allows for
uniform VFs and may perform access filtering too. As a result, we have chosen to use
access mapping.

7.5.1 VF virtual address space

For the VF’ successful operation in the access mapping environment, the VF address space
needs to be designed – the VF must be presented with a design.xml file containing the
components accessible to it, placed on the offsets the VF software shall use.

Each VF shall have access to 5 components: the ID component (shared, read-only),
and the IBUF, OBUF, RX_DMA and TX_DMA components with the same index as is
the VF’s number (e.g., VF0 shall have access to IBUF0).

36

Component Offset Size
ID 0x0 0x1000

IBUF 0 0x8000 0x200
OBUF 0 0x9000 0x100

RX_DMA 0 0xC000 0x200
TX_DMA 0 0xD000 0x200

Table 7.7: Widely used locations for certain components

Although most of the software works with design.xml, there are tools that use hard-
wired constants for component location (offsets). This works because in nearly all the
designs, most of the components are placed on the same offset. The table 7.7 lists standard
locations of the components relevant for the design.

To maintain the compatibility and not to break the software relying on these offsets, we
have decided to design the VF address space, as if the VF was a regular firmware with but
a single interface, and a single DMA channel, that is, we have placed the components of
the VF on the same location as shown in the table 7.7. The mapping for individual virtual
functions s depicted in figure 7.4.

VF0
ID 0x0000

IBUF0 0x8000

RXDMA0 0xC000
TXDMA0 0xD000

OBUF0 0x9000

VF1
ID 0x0000

IBUF0 0x8000

RXDMA0 0xC000
TXDMA0 0xD000

OBUF0 0x9000

COMBO firmware

ID 0x0000

IBUF0 0x8000
IBUF1 0x8200

OBUF0 0x9000
OBUF1 0x9200

RXDMA0 0xC000
RXDMA1 0xC040

TXDMA0 0xD000
TXDMA1 0xD040

TSU_GEN 0x4000

Figure 7.4: COMBO component mapping for individual virtual functions

7.5.2 MI_VFT component

Mapping of the configuration accesses is implemented in the MI_VFT component of the
COMBO firmware. The component (depicted on figure 7.5) is placed on the MI32 bus and
performs address mapping (and sometimes data modification) for the MI32 transactions.

37

MI_VFT

IN_FUNCTION

IN_ADDR

IN_DWR

IN_BE

IN_RD

IN_WR

IN_DRDY

IN_DRD

IN_ARDY

OUT_ADDR

OUT_DWR

OUT_BE

OUT_RD

OUT_WR

OUT_DRDY

OUT_DRD

OUT_ARDY

MAP

To PCI-E To MI32

Figure 7.5: MI_VFT component architecture

The component only maps accesses from the virtual functions. Using the IN_FUNCTION
signal (whose value is 0 for the PF and 64 + 𝑖 for 𝑖-th virtual function), it changes the
address signal as described below.

It uses the fact that the IBUFs, OBUFs and individual DMA channel controllers have
a constant offset between them, so the part of the address space can be interpreted as an
array, which is indexed by the virtual function number.

For example, IBUF0’s base address is 0x8000 and offset between IBUFs is 0x200. There-
fore an access to an address in the range [0x8000, 0x81FF) by virtual function 3 should be
mapped to the range [0x8600, 0x87FF), preserving the offset.

The range [0x8000, 0x81FF), expressed in binary, is

1000 0000 0000 0000
...

1000 0001 1111 1111

Therefore, this can be tested by comparing the upper 7 bits to a binary constant 0b1000000.
Since the MI32 bus uses 32-bit addressing, there are four more zero bytes above, so in the
VHDL syntax, the comparison constant is X”00008“ & ”000“.

The component code for such mapping is listed below.

OUT_ADDR <= X"0000" & "1000" & IN_FUNCTION(2 downto 0) & IN_ADDR(8 downto 0)
when IN_ADDR(31 downto 9) = (X"00008" & "000");

The ID component is mapped flat:

OUT_ADDR <= IN_ADDR when IN_ADDR(31 downto 8) = X"000000";

38

Since the design.xml file contains only the main RX_DMA and TX_DMA controllers
(the controllers for individual channels are located through known offsets), a register in
the ID component is used to determine the count of DMA channels present in the design.
In order to provide this information to the virtual functions as well (the original read-
only register cannot be used), a new register was added to the ID component, and a fixed
mapping

OUT_ADDR <= X"00000078" when IN_ADDR = 64;

ensures that the virtual functions use the new register.
In specific cases, the component modifies written data as well. When the individual

DMA channels are configured, they must learn their virtual function number, so that they
can tag data sent to the Xilinx PCI-E IP Core and the proper PCI device is used for them.
This is done by writing the virtual function number to the DMA controller register. This
could be done in the software layer, but it would require the software writing the data to
be aware of its virtual function number, which we tried to avoid.

As a result, the virtual function number is added to the data by the MI_VFT component
when the address corresponds to a DMA controller’s control register. The mapping follows.

OUT_DWR <= IN_FUNCTION & IN_DWR(23 downto 0)
when (IN_ADDR = X"0000C000" or IN_ADDR = X"0000D000")
else IN_DWR;

7.6 Virtual function driver
The virtual function driver is designed to operate in a virtual machine, controlling one of
the virtual functions. Standard COMBO driver was analyzed and modified to work as a
VF driver.

From the system’s point of view, the virtual function behaves as a standard COMBO
card, with limited configuration capabilities. The driver already has a system of card’s
capabilities (to support various cards from the COMBO family), so a new capability,
COMBO3_CAP_VIRTFN, was added to hold the information whether or not a PCI device is a
virtual function.

The driver code uses the capability flag to disable the code which works with the PCI-E
bus or sets interrupts (functions like pci_set_master() or request_irq(). It also inhibits
code which works with the components not present in the virtual function design.

The virtual function uses a different Device ID than all the COMBO cards, therefore
regular drivers do not recognize the virtual functions as COMBO cards. This is useful in
the host, because the COMBO drivers are usually loaded there and if they recognized the
virtual function Device ID, they would start controlling it. For this reason, the support
for this particular Device ID is enabled in the driver by setting VM_DRIVER to 1 in the
kernel/drivers/combov3/cv3.c file. It is also advised that the virtual function driver is
compiled without physical function SR-IOV support. This is achieved by setting HAS_SRIOV
to 0 in the same file. The lines

#define HAS_SRIOV 1
#define VM_DRIVER 0

should be changed to

39

#define HAS_SRIOV 0
#define VM_DRIVER 1

for the VF driver.

7.7 Implementation summary
This section lists the modifications to the overall code-base which were necessary for SR-
IOV support implementation.

Firmware modifications

All changes are in the fwbase repository.

∙ Changed the PCI-E IP Core configuration

– fwbase:ndk/common/comp/external/ip_cores/pcie/virtex7/general/
pcie3_7x_0_wrapper.v

∙ Implemented the MI_VFT component

– fwbase:ndk/100g1/src/comp/mi_vft/mi_vft_arch.vhd

∙ Added the DMA channel count register for virtual functions

– fwbase:ndk/common/comp/base/misc/id32/id_comp.vhd

∙ Switched the design to use only one PCI-E endpoint

– fwbase:applications/nic/100g2/top/Vivado.tcl

Driver modifications

All changes are in the netcope-common repository.

∙ Added VF management (enable, disable) through /sys (new kernels) and /proc (old
kernels)

– sources/drivers/kernel/drivers/combov3/cv3.c

∙ Added “VIRTFN” capability and used it to disable PCI operations for virtual func-
tions

– sources/drivers/kernel/drivers/combov3/cv3.c

∙ Implemented per-channel DMA controller configuration

– sources/drivers/kernel/drivers/combov3/sze2cv3.c

40

Chapter 8

Performance Evaluation

The goal of the performance tests was to evaluate performance (in terms of RX and TX
speed) of the virtual function NICs in QEMU/KVM virtual machines.

The tools used were

∙ data transfer tools (sze2fastwrite, sze2loopback) from the netcope-common pack-
age for transmitting and receiving data

∙ Bash built-in time for elapsed time measurement

The tested machine was installed and configured according to the appendix A. Its
COMBO card was connected to another COMBO card (on a different physical machine,
running Netcope standard NPC firmware), which was used as a traffic generator. They were
connected using 8 10Gb/s Ethernet cables. The setup is depicted on figure 8.1.

For each test, the environment was set up (see below), then the data transfer tool was
started (with its execution time measured using time) and kept running for approximately
10 seconds. Then it was terminated using the SIGINT signal and the values of processed
packets and elapsed real time were recorded.

Each test was performed in the “single” environment (where only the measured tool
was running) and in the “full” environment, where equivalent tools were launched on all

Tested card

VF0

Generator

ETH0

VF1

ETH7

ETH1ETH1

ETH0

ETH7

RX/TX DMA0

RX/TX DMA1

RX/TX DMA7

VM0

VM1

Host

Figure 8.1: Performance Evaluation card setup

41

Direction Packet
size Mode Time

[s] Packets Packet speed
[Mpps]

Data speeed
[Mb/s]

RX 64 B Single 13.686 203437342 14.865 7610.691
TX 64 B Single 14.457 214972222 14.870 7613.321
RX 1500 B Single 12.529 10291947 0.821 9857.400
TX 1500 B Single 11.355 9279071 0.817 9806.468
RX 64 B Full 13.402 147449030 11.002 5633.033
TX 64 B Full 11.080 127183333 11.479 5877.276
RX 1500 B Full 13.843 7997814 0.578 6932.968
TX 1500 B Full 10.622 5972739 0.562 6747.905

Table 8.1: COMBO with SR-IOV performance in virtual machines

the virtual machines and on the unused DMA channels 6 and 71, so that 8 tools were run
simultaneously.

For the RX direction evaluations, the generator card generated 10 Gbps of traffic (with
specified fixed packet size) on each interface.

Tested packet sizes were 64 and 1500 B – the smallest and nearly largest allowed packet
sizes (see [1, p.108]) for regular Ethernet.

The results of the evaluations are presented in table 8.1.

8.1 Performance Analysis
Theoretical maximum speed (data throughput) of an Ethernet link is dependent on the size
of the transmitted packets. The Ethernet standard [1] defines an 8B preamble transmitted
before every Ethernet frame and mandates that there is a gap between individual frames
transmission. This gap (interpacket gap) must be at least 96 bits (12 B) long. This means
that every transmitted packet has 20 B overhead. Therefore, theoretical maximum speed
𝑆𝑛 for transmitting packets with size 𝑛 bytes on an Ethernet link with speed 𝑆 is calculated
as

𝑆𝑛 = 𝑆 * 𝑛

𝑛+ 20
(8.1)

With this knowledge, we can calculate theoretical maximum speed 𝑆64 and 𝑆1500 for
64B and 1500B packets on 10Gb Ethernet link, shown in table 8.2.

Packet size 𝑆𝑛 [Mbps]
64 7619.05

1500 9868.42

Table 8.2: Theoretical maximum speed for certain packet sizes on 10Gb Ethernet

We can see that in single mode, the performance very closely reaches the theoretical
maxima.

The “full” mode is expected to have worse performance due to the fact that the design
only runs on a single x8 PCI-E lane (see section 7.1). The single lane provides nearly

1the Xilinx PCI-E IP Core only supports up to 6 virtual functions

42

64 Gbps throughput, which corresponds to nearly 8 Gbps per DMA channel. The SZE
technology adds some overhead on the PCI-E bus, since some of the transactions are used
to update the SZE pointers (see section 6.3.1) and each packet transferred by SZE is 8B
aligned and prefixed with an 8B or 16B SZE header.

So, assuming the SZE protocol overhead is 2%, theoretical maximum speed 𝐹𝑛 of a
single channel in the “full” configuration for packet size 𝑛 is calculated as (assuming PCI-E
bus throughput for one channel to be 𝐹)

𝐹𝑛 = 𝐹 * 0.98 * 𝑛

(⌈𝑛8 ⌉ * 8) + 16
(8.2)

With 8 processes running the same application, we shall assume the bus throughput to
be divided equally among them – the 𝐹 then equals approximately 7877 Mbps2.

This allows us to calculate theoretical maximum speed 𝐹64 and 𝐹1500 for 64B and 1500B
packets in the “full” mode, described in table 8.3.

Packet size 𝐹𝑛 [Mbps]
64 6175.57

1500 7617.89

Table 8.3: Theoretical maximum speed for certain packet sizes on 7.877Mbps SZE channel

We can see that the measured values for the “full” mode are approximately 10% below
the theoretical maximum. This can be caused by higher SZE protocol overhead (since the
2% are an estimate) or by overhead caused by multiple virtual machines contending for the
PCI-E bus access.

Generally, the SR-IOV support has enabled the virtual machines to transfer data at
nearly wire-speed, with the drawback of the single PCI-E endpoint being supported, limiting
the overall system throughput.

2Less then 8000 due to the 128/130 encoding

43

Chapter 9

Conclusion

In the first part of this work, the problematics of network input/output operations virtual-
ization was analyzed and described. The work provided motivation and reasons for adopting
virtualized environments, and discussed requirements to provide high-speed virtual network
cards in these environments. Standard network traffic processing in Linux kernel was de-
scribed, documenting its complexity and overhead hindering high performance network
applications and software-based virtualization.

Individual virtualization technologies, namely emulation, paravirtualization represented
by the virtio technology, and full virtualization represented by the SR-IOV technology,
were described and compared to each other in terms of performance and flexibility. The
SR-IOV technology was described more closely.

Based on the information from the first part, support of the SR-IOV technology has
been designed and implemented for the COMBO hardware platform. The design included
modifications to the COMBO card firmware, as well as the card drivers.

Firmware changes included reconfiguration of the card’s PCI Express IP Core and
adding a component for mapping accesses from virtual functions. Enabling the IOMMU
unit (required for SR-IOV) resulted in limiting the firmware to a single PCI-E endpoint,
which has lowered the platform’s maximal throughput.

The driver changes included virtual function management using /sys or /proc file,
recognizing the virtual function as a specific COMBO card, and extending the driver’s
capability system to prevent PCI-E related operations being performed for the virtual
function.

Performance of the system was evaluated with multiple virtual machines receiving and
transmitting data simultaneously. The results have shown close to wire-speed performance
for “single virtual machine” test cases, “full throughput” test cases (where all the machines
communicated simultaneously) demonstrated lower performance, since the combined data
throughput has reached the limits of the single PCI-E endpoint.

This work can be expanded further by

∙ finding a way to run the SR-IOV design with both PCI-E endpoints (could be achieved
by hard splitting the DMA channels to the endpoints or through tweaking the IOMMU
configuration with IOMMU groups in modern kernels)

∙ designing and implementing support for multiple DMA channels in a single virtual
function

44

Bibliography

[1] IEEE Standard for Ethernet. IEEE Std 802.3-2015. 2015.

[2] Chiosi, M.; Clarke, D.; Willis, P.; et al.: Network Functions Virtualisation –
Introductory White Paper. White paper. ETSI. 2012.
Retrieved from: https://portal.etsi.org/nfv/nfv_white_paper.pdf

[3] Han, B.; Gopalakrishnan, V.; Ji, L.; et al.: Network function virtualization:
Challenges and opportunities for innovations. IEEE Communications Magazine.
vol. 53, no. 2. Feb 2015: pp. 90–97. ISSN 0163-6804.
doi:10.1109/MCOM.2015.7045396.

[4] Jonathan Corbet, G. K.-H., Alessandro Rubini: Linux Device Drivers. O’Reilly
Media. Third edition. 2005.
Retrieved from: https://lwn.net/Kernel/LDD3/

[5] Jones, M. T.: Virtio: An I/O virtualization framework for Linux. 2010.
Retrieved from: https://www.ibm.com/developerworks/library/l-virtio/

[6] Kim, I.; Moon, J.; Yeom, H. Y.: Timer-Based Interrupt Mitigation for High
Performance Packet Processing. In In Proc. 5th International Conference on
HighPerformance Computing in the Asia-Pacific Region, Gold. 2001.

[7] Kutch, P.: PCI-SIG SR-IOV Primer. Technical report. Intel Corporation. 2011.
[Online; accessed 15-Dec-2016].
Retrieved from: http://www.intel.com/content/www/us/en/pci-express/pci-
sig-sr-iov-primer-sr-iov-technology-paper.html

[8] Lowe, S.: What is SR-IOV? [Online; accessed 15-Dec-2016].
Retrieved from: http://blog.scottlowe.org/2009/12/02/what-is-sr-iov/

[9] Müller, P.: Virtualizace platformy x86. Bachelor thesis. Brno University of
Technology. 2008.

[10] Rosenblum, M.; Waldspurger, C.: I/O Virtualization. Queue. vol. 9, no. 11.
November 2011: pp. 30–39. ISSN 1542-7730.
Retrieved from: http://doi.acm.org/10.1145/2063166.2071256

[11] Russell, R.: Virtio: Towards a De-facto Standard for Virtual I/O Devices. SIGOPS
Oper. Syst. Rev.. vol. 42, no. 5. 2008: pp. 95–103. ISSN 0163-5980.
doi:10 .1145/1400097 .1400108 .
Retrieved from: http: // doi .acm .org/ 10 .1145/ 1400097 .1400108

45

https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://lwn.net/Kernel/LDD3/
https://www.ibm.com/developerworks/library/l-virtio/
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://blog.scottlowe.org/2009/12/02/what-is-sr-iov/
http://doi.acm.org/10.1145/2063166.2071256
http://doi.acm.org/10.1145/1400097.1400108

[12] Intel R○ VMDq Technology Overview. Technical report. Intel Corporation. 2008.
Retrieved from: http: // www .intel .com/ content/ www/ us/ en/ virtualization/
vmdq-technology-paper .html

[13] Virtual Machine Device Queues. [Online; accessed 15-Dec-2016].
Retrieved from:
http: // www .intel .com/ content/ www/ us/ en/ ethernet-products/ converged-
network-adapters/ io-acceleration-technology-vmdq .html

[14] Wikipedia: Hardware virtualization — Wikipedia, The Free Encyclopedia. 2016.
[Online; accessed 15-Dec-2016].
Retrieved from: https: // en .wikipedia .org/ w/ index .php? title=
Hardware _virtualization&oldid= 719994632

46

http://www.intel.com/content/www/us/en/virtualization/vmdq-technology-paper.html
http://www.intel.com/content/www/us/en/virtualization/vmdq-technology-paper.html
http://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/io-acceleration-technology-vmdq.html
http://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/io-acceleration-technology-vmdq.html
https://en.wikipedia.org/w/index.php?title=Hardware_virtualization&oldid=719994632
https://en.wikipedia.org/w/index.php?title=Hardware_virtualization&oldid=719994632

Appendix A

Installation

This chapter provides the information on the environment in which the work was performed,
as well as requirements that must be met in order to run a COMBO card and a virtual
machine, as well as installation and configuration steps needed to repeat the process.

A.1 Hardware setup
The COMBO cards are designed to be run on a GNU/Linux system on 64-bit x86 processors.

The cards require an x8 or x16 PCI-E slot. When x16 slot is used, the hardware must
support and enable PCI Slot Bifurcation (x8x8) which allows the system to work with the
x16 endpoint as with two x8 endpoints. Note that the bifurcation is required for the regular
operation of the COMBO cards only, the firmware with SR-IOV support does not require
it. It is also advised to turn off HyperThreading, if the processor supports it.

For KVM-based virtualization with SR-IOV support, the machine must support hard-
ware virtualization (Intel’s VT-x or AMD’s AMD-V), must contain the IOMMU unit (which
is called VT-d by Intel) and must support the SR-IOV technology itself. Usually, these fea-
tures are optional and can be enabled in BIOS.

For running virtual machines, it is advisable to have more RAM than all the virtual
machines’ total allocated RAM size, and a multi-core processor with at least 1 core per
virtual machine.

The following list describes reference hardware configuration.

∙ ASRockRack EPC612D4I

∙ Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

∙ 4 * 8 GB Kingston DDR4 RAM @2133 MHz

∙ BIOS

– HyperThreading (HT): OFF
– SR-IOV Support: ON
– Virtualization (VT-x): ON
– IOMMU (VT-d): ON
– See figure A.1 for BIOS settings screenshots

47

Figure A.1: Setting the required items in AsRock BIOS

48

A.2 Operating system and software
At the time of writing, the operating system supported by the COMBO software stack was
CentOS 61. Note that CentOS 7 has a different kernel configuration which is not compatible
with the COMBO software stack. The system was installed from CentOS 6 Minimal DVD
ISO file and subsequently updated.

On the vanilla, up-to-date system, the epel-release package was installed in order to
get the dkms package needed for COMBO drivers. After that, the netcope-common package
(from Netcope Technologies2), version 3.0.2, containing the standard COMBO card drivers,
as well as basic software tools for card management, was installed. The package installs
several other packages for dependencies, notably kernel-headers, kernel-devel, dkms,
gcc and make, which allow the drivers to be built on the target machine for the running
kernel.

To summarize, following steps need to be performed:

1. Update the system (yum -y update)

2. Reboot it (reboot)

3. Install the epel-release package (yum -y install epel-release)

4. Obtain and install the netcope-common package
(yum -y install ./netcope-common-3.0.2-1.x86_64.rpm)

A.3 Setting up virtualization
For virtualization (creating and management of the virtual machines), the QEMU/KVM
+ Libvirt solution was chosen, since this solution is native to Linux, allows to utilize the
hardware acceleration and allows PCI device pass-through required for SR-IOV.

For the KVM setup, the information were retrieved from CentOS wiki3, specifically the
command for installing the required packages:

yum -y install @virt* dejavu-lgc-* xorg-x11-xauth tigervnc \
libguestfs-tools policycoreutils-python bridge-utils

and the command to enable the libvirtd daemon and restart the system:

chkconfig libvirtd on; shutdown -r now

The other commands from the Host Setup were found unnecessary, since the packet
forwarding is enabled automatically by libvirtd and bridging was not needed.

For creating the virtual machines, the graphical manager, virt-manager, was used.
Screenshots of the procedure are depicted on figure A.2.

Note that without any further settings, the virt-manager installation creates default
network and virtualized NIC running in NAT mode for the guest. This means the guest
has network capabilities.

The guest operating system is CentOS 6 as well, and the installation is the same as
described in section A.2.

1http://www.centos.org
2http://www.netcope.com
3https://wiki.centos.org/HowTos/KVM

49

http://www.centos.org
http://www.netcope.com
https://wiki.centos.org/HowTos/KVM

1 2

3 4

5

Figure A.2: Creating new virtual machine in virt-manager

50

A.4 Installing the SR-IOV support
For SR-IOV support, you need to build SR-IOV capable COMBO design, compile both PF
driver in the host and VF driver in the guest, set up their design files and use the hypervisor
to assign the virtual functions to a virtual machine.

Building SR-IOV firmware

In order to build the SR-IOV firmware, you need complete fwbase repository, the fwbase
patches from the CD, Vivado design tool and COMBO build environment4.

The patches should be applicable to the master branch of the repository, commit
eb5dc74bffeaeab98ae8997619a1a758bdce593a.

When the patches were applied, running make in the applications/nic/100g2/top
directory of the repository should invoke Vivado (provided the COMBO buil environment
is set) and build the design (produce files combo100g2_core.bit and combo100g2_core.msc).

When the firmware is built, the produced firmware files (either of them) may be copied
to the machine and booted to the card using the csboot tool from the netcope-common
package.
csboot -f100 /root/combo100g2_core.bit

Building SR-IOV drivers

In order to build the SR-IOV drivers, you need the drivers directory of the netcope-common
repository, target kernel headers and standard Linux build and development tools (gcc,
autoconf, automake and others). All required software (except the drivers themselves) is
installed through dependencies for the netcope-common package.

The drivers are available on the CD int he netcope-common directory (the patches in
the patches directory were included to demonstrate the work that I actually did).

In the netcope-common/sources/drivers directory, invoke
aclocal
autoconf
./configure
make

to build the drivers.
When building the VF driver, it is advised to turn off SR-IOV support by changing the

defined value HAS_SRIOV in the kernel/drivers/combov3/cv3.c to 0.
#define HAS_SRIOV 0

For the drivers to become active, you must load their kernel modules using insmod.
Note that the netcope-common package contains the default drivers, so you will need to
remove them first. The following sequence of commands, issued from the drivers directory,
removes current COMBO driver modules and loads the built ones.
rmmod szedata2_cv3 szedata2 combov3 combo6core
insmod ./build/drivers/base/combo6core.ko
insmod ./build/drivers/combov3/combov3.ko
insmod ./build/drivers/szedata2/szedata2.ko
insmod ./build/drivers/combov3/szedata2cv3.ko

4Contact the CESNET TMC department

51

Installing design files

The design files for the PF and VF are available on the CD as design_pf.xml and
design_vf.xml. The tools expect them symlinked to the locaation specified by the
firmware’s SW ID and Text ID (0x41c10700 and NIC_100G2_10G for this firmware).

Running

mkdir -pv /usr/share/mcs/NIC_100G2_10G
ln -s /root/design_pf.xml /usr/share/mcs/NIC_100G2_10G/0x41c10700

installs the PF design file located in /root. Without the design file installed, the tools will
report missing or invalid file. You can check installation correctness by running

csid -s

This applies to the host and to the guest in the same way, except that in the guest, the
VF design file should be installed. Installing the PF design file in a guest machine may lead
to system hangup (due to potential invalid accesses).

Assigning virtual functions to the virtual machine

After you have successfully built an SR-IOV firmware and installed SR-IOV drivers and
design file on the host, you can enable 𝑁 virtual functions by writing the 𝑁 value to the
/proc/combo-sriov file (or the appropriate /sys file if you have new enough kernel, see
section 7.3).

You can verify success by running lspci, which should list 𝑁 newly created Netcope
Technologies, Device 0000 or 1b26:0000 devices. Also, dmesg should report no errors.
You should note the PCI identification of the virtual functions for the actual assigning step
described below.

When you have virtual functions available, you may assign them to a virtual machine
created int the hypervisor. This can be done (in QEMU/KVM + Libvirt) either through
editing the virtual machine XML file (virsh edit) or using virt-manager GUI (see figure
A.3). Either way, you need to specify the PCI ID of the function you are assigning.

When the assignment is finished, you may start the virtual machine. If this fails, it is
likely you do not have IOMMU turned on.

After the machine has started, if you have built the drivers on it and loaded the modules,
you should be able to use the virtual COMBO card in the virtual machine. You can verify
it by running

csid -s

and test the installation with

obufctl
obufctl -Ae1
sze2fastwrite
^C
obufctl

If more than 64MB of data were transmitted, the installation can be considered suc-
cessful.

52

Figure A.3: Assigning virtual function to virtual machine

53

	Introduction
	Motivation
	Virtualization
	I/O virtualization
	Network Function Virtualization

	I/O processing
	Receiving data (RX direction)
	Transmitting data (TX direction)
	Driver processing
	NIC processing
	DPDK
	Kernel bypass
	Polling Mode drivers

	I/O virtualization
	Virtual memory
	NIC emulation
	Paravirtualization
	virtio

	NIC virtualization
	SR-IOV

	Virtualization challenges
	Switching
	Migration

	Summary of virtualization technologies

	SR-IOV
	SR-IOV principles
	Design of driver with SR-IOV support
	Design of firmware with SR-IOV support

	COMBO platform
	Platform overview
	Card Configuration
	Component addressing

	Data transfers
	SZE interface

	Software stack

	Design and implementation of SR-IOV support for COMBO cards
	IOMMU, bifurcation and PCI-E endpoints
	Advertising SR-IOV Capability
	Xilinx PCI-E IP Core
	PCI-E IP core configuration

	Virtual Function management
	Management of hardware resources
	VF component access
	VF virtual address space
	MI_VFT component

	Virtual function driver
	Implementation summary

	Performance Evaluation
	Performance Analysis

	Conclusion
	Bibliography
	Installation
	Hardware setup
	Operating system and software
	Setting up virtualization
	Installing the SR-IOV support

