
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DESIGN OF ENVIRONMENT
FOR MANY-CORE SYSTEMS DEBUGGING
NÁVRH PROSTŘEDÍ PRO LADĚNÍ VÍCEJÁDROVÝCH SYSTÉMŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL KLČO
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ HYNEK
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
This thesis describe problem of debugging many-core systems using the integrated devel-
opment environments. It presents some of the integrated environments, debuggers, their
features and analyse them. This thesis also describe designs and implementation of mod-
ifications of these tools that helps user to debug many-core system more efficiently and
comfortable.

Abstrakt
Táto práca popisuje problém ladenia man-core systémov s využitím intergrovaného vývo-
jového prostredia. Predstavuje niektoré z integrovaných prostredí, debuggerov, ich funkcie a
analyzuje ich. Táto práca tiež opisuje návrh a implementáciu modifikácií týchto nástrojov,
ktoré pomáhajú uživateľovi ladiť many-core systémy efektívnejšie a pohodlnejšie.

Keywords
debugging, multicore systems, integrated development environment, Eclipse

Klíčová slova
ladenie, viacjadrové systémy, integrované vývojové prostredia, Eclipse

Reference
KLČO, Michal. Design of Environment
for Many-Core Systems Debugging. Brno, 2016. Bachelor’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Hynek Jiří.

Design of Environment
for Many-Core Systems Debugging

Declaration
Hereby I declare, that this paper is my original authorial work, which I have worked out
by my own under the supervision of Mr. Ing. Jiří Hynek. Also, Mr. Ing. Ondřej Ilčík
provides me information. All sources, references and literature used during elaboration of
this work are properly cited and listed in complete reference to the due source.

. .
Michal Klčo

May 17, 2016

Acknowledgements
I would like to thank to my supervisor, Mr. Ing. Jiří Hynek for his time, help and willing-
ness. Also, I would like to thank to Mr. Ing. Ondřej Ilčík for the topic of the thesis and
professional advices, to Messrs. from Cardwork Laboratory for lending graphic card and to
my family for their support and respect.

c○ Michal Klčo, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Multi-core systems and parallelism 5
2.1 Multi-core processor . 5

2.1.1 Many-core system . 5
2.2 Advantages of multi-core systems . 6

2.2.1 Power Dissipation . 6
2.2.2 Hardware implementation issues . 6
2.2.3 Systemic considerations . 6

3 Integrated development environments 7
3.1 Eclipse . 7

3.1.1 The Eclipse Workbench . 8
3.2 C/C++ Development Tooling (CDT) . 9

3.2.1 Multi-core debugging features . 9
3.2.2 Debugger Services Framework (DSF) 10

3.3 Codasip IDE . 11
3.4 Nvidia Nsight Eclipse . 12

4 Debugger 13
4.1 GNU Project Debugger (GDB) . 13

4.1.1 GDB/MI . 14
4.1.2 CUDA-GDB . 15
4.1.3 Process/Thread/Core sets . 16

4.2 Multi-core Debug Solution (MCDS) . 16

5 Design of debugging environment 19
5.1 Data exchange . 19
5.2 Data visualizing . 20
5.3 Designs of modification and features . 20

5.3.1 Modification of GDB/MI . 20
5.3.2 Modification of Visualizer View . 22
5.3.3 Modification of Debug View . 22
5.3.4 Modifications of resource views . 23

6 Implementation 26
6.1 Visualizer View modification . 26
6.2 Debug View modification . 28

1

6.3 Implementation of hardware service . 30
6.4 Testing . 30

6.4.1 Time measurement of content drawing 30
6.4.2 Usability test . 31
6.4.3 Future improvements . 32

7 Conclusion 33

Appendices 35
List of Appendices . 36

A CD content 37

B Screenshots of the modified Visualizer View 38

2

Chapter 1

Introduction

Even in the past it was known that the operating speed of processor cannot be increased
again and again. It was when the first considerations of parallelism appeared. But the
processor frequency was not as close to its limits as it is today. During the last years multi-
core processors became a common part of the desktop personal computers. Nowadays we
can find multi-core processors even in a hand-held and mobile devices. This expansion
of multi-core systems has influenced the program languages that are used to develop the
software for such systems.

The code debugging is the important phase of the software development and its difficulty
depends on the used tool, too. This is the place where the tools called debuggers come in
play. The first debuggers used command line interface. Later they were integrated together
with editors and compilers into integrated development environments. It allowed creation of
the graphical interface to the debug tools and made the work with debugger more effective
and easier. Although this has some limits, too. When a developer needs to examine the
state of the single-core processor most of the IDEs are suitable. They provide the views
that show specific information like a list of threads and their state, values of variables and
registers, disassembly code and notifications from the debugger. IDEs also provides services
which can control an execution of a program with just clicking on the few buttons. The
problems appear when the program is debugged on a multi-core processor. In that case a
developer may want to look over information of more threads simultaneously. A developer
may even want to control the execution of the program only on the certain threads and
keep running the execution on others. This is the option that most of the debuggers do
not support. It could be problem to show just the basic information about threads in some
IDEs – in many-core systems there can be thousands of them and the typical view might not
show its content properly and make an IDE to react with longer delays. Another request
might be displayed with the same type of information of multiple threads, e.g. variables
comparison.

These are the tasks for which a lot of IDEs are not built properly. My goal is to design
and implement an extension for the Eclipse platform to support debugging of many-core
systems. There exist some projects that solve these problems at least partially and some
inspiration has been taken for this project from them.

In the following chapters the terms and connections are explained. The second chapter
describes multi-core systems and advantages of the multi-core approach. In the third chap-
ter the integrated development environment is introduced especially the Eclipse platform
and some of the extending plug-ins. The fourth chapter describes debuggers, the GNU De-
bugger Project and the known features of debuggers that provide efficient communication

3

with a front-end and debugging of multi-core systems. The other chapters are dedicated to
the design and modifications of the debugging environment, implementation and conclusion.

4

Chapter 2

Multi-core systems and parallelism

The multi-core solutions have become more attractive solutions than uniprocessors in the
last years for various reasons. It is known that frequency of a processor can not be risen more
and more and the manufacturers of the processors are still closer to the technology limits.
Historically the idea of the multiprocessors appeared as in early 1970s. In a landmark 1991
paper by Stone and Cocke [10]the authors argued that operating frequency 250MHz cannot
be achieved and therefore there cannot be provided the kind of performance required by
the future applications with a single processor. This prediction was proven false and the
progress in the speed performance of uniprocessor made parallel processing less attractive.
However the multiprocessors made a comeback and took advantage of various systems [6].

2.1 Multi-core processor
A multi-core processor is a single computing unit with two or more processing units (cores)
that are able to read and execute program instructions. Simultaneous execution of an
instruction increases the overall speed of the processor for programs that are available to
parallel computing. Cores are typically integrated onto a single circuit die or onto multiple
dies in a single package.

The communication between cores can be designed differently. There might be used
shared caches or shared memory or message passing refer to the implementation. There are
used also the network topologies like bus or ring to interconnect cores. Multi-core systems
can be homogeneous with cores of the same type or heterogeneous with the cores of different
types.

2.1.1 Many-core system

There is no specific definition of the many-core system. Generally, it is a high count of cores
put onto a single device which is highly parallel. The software also has to be implemented
highly parallel to take use of such system as much as it can. It is appropriate for the task
that can be decomposed to same small tasks that can be performed simultaneously.

5

2.2 Advantages of multi-core systems

2.2.1 Power Dissipation

In the past the performance and cost were the primary considerations in the system design.
With the arrival of battery-operated mobile devices the energy dissipation became more
relevant.

Using a multi-core design complex systems can be divided into power domains. The
power switches are then used to cut off a power supply to a sub-system which is not required
to be active. It helps cut down the static and dynamic power that would be wasted. It
is also common to use dynamic voltage and frequency scaling (DVFS). Sub-systems that
need to provide the higher performance can operate at higher frequencies and voltage.

Multi-core system design offers efficient relation between performance and power con-
sumption. In comparison to uniprocessor operating at high frequency with high power
dissipation a group of processors with lower frequency and significantly reduced power
consumption can provide a comparable performance.

2.2.2 Hardware implementation issues

The timing closure1 problem in an automated design flow causes difficulties. Therefore it is
cheaper to design a multiprocessor system-on-chip where the processors work at moderate
speed than to design a single processor that work at much higher frequency with similar
system throughput. The delays caused by the parasitic inductance and capacitance of
interconnects make it difficult to predict critical path delays accurately during a design.

It also brings advantages during the testing. When there is a number of identical cores
it is possible to reuse the test patterns and reduce the effort in test generation. Application
of random pattern on the identical processor and comparing their responses is another
self-test approach. If there is a difference in the responses, it indicates an error.

2.2.3 Systemic considerations

In the case of single processor alternative the compilers written for such processors have
a limited scope of extracting the parallelism in applications. There are techniques like
out of order execution2 or speculative execution3 to increase the compute power. However
extracting parallelism from a single thread is prohibitive. With many applications resorting
to multithreading it is more appropriate to have a multi-core system with a compiler that
has more visibility of MIMD-type parallelism (Multiple Instruction, Multiple Data).

1problems occur when the timing estimates computed during logic synthesis do not match with the timing
estimates computed from the layout of the circuit.

2http://searchdatacenter.techtarget.com/definition/out-of-order-execution
3http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-823-computer-system-architecture-fall-2005/lecture-notes/l13_brnchpred.pdf

6

http://searchdatacenter.techtarget.com/definition/out-of-order-execution
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/lecture-notes/l13_brnchpred.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/lecture-notes/l13_brnchpred.pdf

Chapter 3

Integrated development
environments

Modern applications consist of components implemented in many different technologies. A
lot of the tools such as editor, compiler, interpreter or debugger supporting various program-
ming languages are used. Integrated development environment (IDE) provide integration
of such tools and tries to support development task flows. The main aim is to improve the
productivity of developers. There were found the new ways how to achieve it. Simple edi-
tors were replaced by complex ones with a presentation of the program in meaningful ways
(showing subclass hierarchy), automatic code completion and visual editors for creating
graphical user interfaces (GUIs). Some popular IDEs are Eclipse, NetBeans or Microsoft
Visual Studio.

3.1 Eclipse
The Eclipse Platform is an open-ended, language-neutral IDE that was released in late 2001.
Most of its functionality is very generic. It takes additional tools to extend the platform
to work with new contents or to focus functionality to something specific. These extending
modules are called plug-ins. Tool provider writes a tool as a separate plug-in which takes
care of showing its tool-specific parts of UI in the Eclipse’s workbench. The quality of such
a tool depends on how well it is integrated with the platform and how well it works with
other tools. Tools can be written as a single plug-in or can be split across several plug-ins
according to its complexness [8].

Eclipse is not the monolithic SW. It is a small kernel containing a plug-in loader. This
kernel is an implementation of the OSGi R4 specification and provides the environment
on which the plug-ins are executed. OSGi is a runtime model designed and implemented
specifically for the Eclipse. This modular design provides the functionality that can be
more easily reused to build an application by no-Eclipse developers. The Eclipse Rich
Client Platform is the minimal set of plug-ins necessary to create a client application.

Plug-ins are coded in the Java language and generally consist of Java code, libraries,
read-only files and some resources. Some of them do not contain code at all. On-line help
is the example of a plug-in that consists of HTML pages and no Java code. The important
parts of each plug-in are also MANIFEST.MF and plugin.xml files where declarations of
interconnections to other plug-in are defined. These interconnections are created by declar-
ing any number of extensions to the extension points of another plug-in. The extension

7

Figure 3.1: Eclipse plug-in structure. [1]

An example of how plug-ins depend on each other.

points are used as a mechanism for coupling chunks of functionality. They can be declared
in the plug-in manifest, exposing a minimal set of the interfaces and related classes for other
to use. Other plug-ins declare extensions to these extension points, implementing exposed
interfaces or referencing on the provided classes.

On the start-up, a set of available plug-ins is discovered, their manifest files are read and
a plug-in registry is built according to it. However during the start-up, not every plug-in
is activated. They are activated when they are needed by calling a method from a small
number of methods used explicitly for activating the plug-ins. This helps the application
to handle the big amount of plug-ins and avoids the lengthy start-up. Once activated it
remains active until the platform shuts down.

3.1.1 The Eclipse Workbench

The term Workbench refers to the desktop development environment and in the case of
the Eclipse each Workbench window contains one or more perspectives. Perspective is a
combination of the various views and editors. Multiple perspectives can be active, but only
one can be shown at once. Views are used to navigate resources and modify the properties

8

Figure 3.2: Screenshot of the debug perspective in Eclipse IDE.

of resources. They also serve to visualize the data provided by various services. Editors
allow to modify specific resource too, but they follow the open-save-close model whereas
changes made within a view are saved immediately [1].

Each perspective has its own set of views that can be modified by the user to make
the environment more comfortable. On the other hand open editors are shared by all open
perspectives. Each view and editor can be resized by dragging the sizing border or moved
within the workbench.

3.2 C/C++ Development Tooling (CDT)
C/C++ development tooling is set of plug-ins that extend the Eclipse Platform with
specific-language (C/C++) functionality. It includes a lot of features like a compilation
of code using make tool, source navigation, syntax highlighting, source code refactoring
and code generation, visual debugging tools, and knowledge tools like type hierarchy, call
graph, include browser and more. [3]

3.2.1 Multi-core debugging features

Showing cores in Debug View labels

The Debug View allows a user to manage the debugging or running of a program. It shows
the the stack frame for the suspended threads for each target that is debugged. Each thread
in a debugged program appears as a node in the tree. This feature extends thread nodes
to show the core they are running on. [2]

Pin & Clone

Pin & Clone is the feature that make possible to show same type of information in multiple
views but for different threads in each view.

9

Figure 3.3: Screenshot of Debug view. [2]

Figure 3.4: Screenshot of Pin & Clone feature. [3]

Multi-core Visualizer

The Visualizer View displays the graphical representation of the current state of a debugged
system. It shows cores, threads and processes in the visual grid. The Visualizer View is
connected with the Debug View, it allows to select processes/threads with click and drag
and apply debugging commands to them.

3.2.2 Debugger Services Framework (DSF)

Debugger Services Framework is API that integrates CDT debugger into the Eclipse. It
provides extensive control over the content of debugger views and helps to achieve better
performance when debugging slow targets. DSF uses the GNU project debugger as un-
derlying debug engine. It sends a sequence of GDB commands to the GDB according to
the user actions and processes the output from GDB to display the state of the debugged
system. [2]

One of the interesting features of the DSF is a high utilization of asynchronous meth-
ods. These methods use a callback object to indicate their completion and return results.
The standard callback object is RequestMonitor which contains callback methods. These
methods can be overridden to add additional processing after the asynchronous method has

10

Figure 3.5: CDT Visualizer view. [3]

An example of selecting multiple processes running on multiple cores.

been completed. Another object needed by RequestMonitor is Executor. It extends the
Java class Thread that solves the problem of race condition – simultaneous access of multi-
ple processes to shared resources. It handles the synchronization of these processes. Thus
if all asynchronous methods are called in one thread (executor) there is no simultaneous
access to the shared resources.

3.3 Codasip IDE
Codasip IDE is the IDE based on Eclipse that integrates tools for designing Application
Specific Instruction Set Processors [5] (ASIPs). The intention of this work is to design
a debugging environment for this IDE. The Codasip extends CDT plug-ins to provide a
connection with Codasip simulator that is based on GDB version 7.4. Despite that these
extensions provide projects (CodAL project), CodAL language support, specific views and
perspectives and integration of other required tools.

The debug perspective of Codasip IDE provides a complex environment for debugging
designed systems. It consists of detail views that show variables and resources like ASIP’s
registers, ports, signals and their values and amount of writes and reads. As well as the
Eclipse’s basic debug perspective it has the Debug View, views for console and debugger
output, the Disassembly View and others.

11

3.4 Nvidia Nsight Eclipse
Nsight Eclipse is modified IDE powered by the Eclipse platform. It integrates the tools for
edit, build, debug and profile CUDA-C 1 applications.

As CUDA applications run on graphical processor units2 which can be considered as
the many-core system, Nsight Eclipse provide debug environment for debugging many-core
systems. It involves features like ability to control and observe only a part of the debugged
system. Some of the designed features for Codasip IDE have been inspired by Nsight
Eclipse.

1https://developer.nvidia.com/about-cuda
2http://www.nvidia.com/object/gpu.html

12

https://developer.nvidia.com/about-cuda
http://www.nvidia.com/object/gpu.html

Chapter 4

Debugger

A debugger is a tool used to debug the target program and get useful information about
the run of the program like values of variables, disassembly code. It also examines the
behaviour of the program when a code is changed. There is an option to run code with the
instruction set simulator. This technique allows stop the execution of the program upon
meeting some specific condition.

When the debugged program cannot normally continue a trap occurs. Then debugger
typically shows the position in the code where en error is located. It can show the error in
source code or in the disassembly, depends on whether it is a source-level debugger (shows
the location in source code) or a low-level debugger (shows location in machine code).

Debuggers offer features like stopping (breaking). It allows to pause debugged program
at some event or breakpoint to observe current values of variables or processor’s register.
Some of the debuggers have abilities like modifying the code during the run or bypassing
an error in the program and continuing at a different location.

The most used debuggers like the GDB have only the Command Line Interface (CLI)
that makes them portable and light-weighted. The most of the developers prefers debugging
via graphical user interface (GUI) because it is more user-friendly. Debugger front-ends can
be compatible with a more CLI-based debugger.

Debuggers contain also the interesting function called reverse debugging that is not com-
monly used. Reverse debuggers exist for C/C++, Java, Python and some other languages.
It makes possible stepping backward in time or causes the slowdown of the target.

4.1 GNU Project Debugger (GDB)
GDB is the one of the most popular debuggers. It supports the debugging of programs
written in C/C++, Pascal, Ada and other languages. GDB has four main functions:

∙ start the program

∙ stop the program on specified condition

∙ examine the state of program when it is stopped

∙ change the things in program

A program can be debugged with the GDB executing simple command gdb and the name of
the binary file of compiled program as an argument. With the command run the program

13

is executed under debugger control. When the program stops execution can be advanced on
the next line with command next or just n. If command step or s is used instead execution
is advanced in any subroutine. Another useful command for examining the content of the
stack is backtrace or just bt. It prints out the stack frame for each active subroutine. For
showing another information like values of variables command print or p with the name
of the variable as argument can be used. Commands continue or c resume the running of
the program and quit end the debugger. This is the basic list of commands for a debugging
program. [9]

4.1.1 GDB/MI

GDB/MI is a line based machine oriented text interface to gdb and is activated with the
–interpreter command line option. The communication of GDB/MI front-end with gdb
consists of three parts:

∙ commands sent to gdb

∙ responses to commands

∙ notifications

Each command evokes exactly one response which indicates completion of the command or
an error. In these responses the requested information is sent. In the case of the resume
command the response only indicates if the target was successfully resumed. Notifications
provide the information about the change of target but cannot be associated with a response
to commands. Important examples of notifications are the following:

∙ Exec notifications. They report the changes in target state – when a target is stopped
or resumed. This information cannot be included in responses to the resume com-
mands because one resume command can cause multiple changes in different threads.

∙ Console output and status notifications. They report information about the execution
of commands and progress of long-running operations that has to be printed before
the command is complete.

∙ General notifications. These notifications can inform front-end about side-effects of
commands or some other changes to a target.

When we want to retrieve the information during the debug session we have to ask in
context of a specific thread and frame. The stack frame is part of the stack associated with
the calling of function and consists of the given arguments, local variables and the address
which the function is executing. This context is maintained and remembered by gdb and
it supplies on each command. It means that not each command need the context to be
specified. In the case of MI and communication between front-end and gdb, this preserving
of context is not so useful. In the front-end, there can be more views associated to different
threads or the need to acquire data in the context of thread that is not focused. MI shares
the selected thread with CLI and because of that, the simplest way how to switch thread
is using the -thread-select command. However this could double the count of messages
exchanged with front-end and causes longer delays during showing of the actual data. The
MI commands allow to specify the context for each command separately by passing the
–thread and –frame options with the global identifier for thread and frame as values.

14

The asynchronous command execution is the capability of gdb to process MI commands
even if the target is running. The target has to support it and the front-end has to specify
-gdb-set mi-async on (target-async option instead in version <=7.7) before running
the executable or attaching to the target. If asynchronous command execution is off the
gdb has to wait for the program to stop before processing further commands.

Some commands that access the running target might work even if gdb accepts them.
Therefore the combination of asynchronous command execution with non-stop mode is more
useful. This mode allows stopping the target thread and examining it while other threads
are still running. This helps to debug a program where threads have real-time constraints
or need to react to external events. The set non-stop on command has to be used before
running or attaching program. All execution commands are applied to the one thread, e.g.
continue command is applied on the thread that is stopped. But stopping just one thread
does not change the current thread. Again it is recommended to use –thread and –frame
options.

GDB as the debugger can support debugging of multiple processes or several hardware
systems with several cores running many processes on each core. When the target thread
is specified with the –thread option, it is not known which process that thread belongs to.
To discover grouping of the threads in processes and to support of hierarchy machines/-
cores/processes, MI introduces the concept of thread group. A thread group is a collection
of threads. With the -list-thread-groups command, top-level thread groups that cor-
respond to the processes of the debugged target can be listed. Each thread group has
string identifier that can be passed as an argument to the -list-thread-group command
to obtain members of the specific thread group. To obtain a list of threads that are not
debugged but can be attached, the concept of available thread group is introduced.

4.1.2 CUDA-GDB

With the interesting idea to use the high-performance graphics processing unit (GPU) for
parallel computing, Nvidia invented programming model CUDA. GPU typically consists of
hundreds of small processing units that can be used for the efficient computing of highly
parallelizable tasks. For developers it is required to provide a debugger for such device.
This is familiar to the problem of debugging programs on the many-core systems.

CUDA-GDB is Nvidia tool for debugging CUDA applications. It is an extension to
the port of GDB and is capable of debugging CUDA applications on actual hardware.
The already implemented commands of GDB are unchanged. CUDA commands are just
prefixed with cuda keyword. For example, info thread prints out list of threads of the
target and the info cuda threads command prints out a list of a current group of 32
threads called warp. [7]

To simplify visualization of the information about the state of an application, commands
are applied to the entity of focus. Since the CUDA-GDB also supports debugging on the
host (CPU), the entity of focus can be a host thread or a device thread. The entity of focus
is always the lowest granularity level device thread. To set the focus on the specific entity,
the two kinds of coordinates are used - hardware and software coordinates. The software
coordinates consist of threads that belong to a block that in turn belongs to a kernel. Lanes
belong to a warp that belongs to streaming multiprocessor [11] (SM) that is contained in
a device. These are the hardware coordinates. The both of the coordinates can be used
interchangeably. One thread is executed on one lane. The interesting fact is that the step
command can be applied only on a warp (not on a single device thread).

15

Figure 4.1: Architecture of a stream multiprocessor of GTX460 graphic adapter.

4.1.3 Process/Thread/Core sets

In a program with hundreds or even thousands of threads the two options that GDB
currently provides can be limiting. Either work with one thread or all of them at once.
PTC sets extend commands of GDB with options to use a command with multiple threads,
processes or cores. There are few examples:

∙ step .34-59 - step threads numbered between 34 and 59

∙ step @2 - step all threads running on core 2

∙ interrupt *,future@5-7 - stop everything running on cores 5 to 7, preventing new
threads from being started

Although, no record about real deployment has been found.

4.2 Multi-core Debug Solution (MCDS)
This debug solutions handle debugging of embedded multiprocessor system-on-chip (SoC).
It allows executing real-time accurate tracing of selected processors, buses, signals within
the chip non-intrusively and without adding pins to the chip. It offers the benefits like the
full visibility of cycle-accurate trace, complex triggering modes, support for code profiling
and more [4].

16

Figure 4.2: Concept of data flow in MCDS. [4]

MCDS works on a principle of collection and store of the trace data by adding logic to
a chip. This data are transferred to the debug system for the further analysis.

Included trace logic can be implemented either in production chip or in a special debug
die. MCDS supports any number of debug targets. A target can be a signal, a bus or a
processor. The trace logic collects the information about the target like instruction point-
ers, addresses, data, signal values and forwards them to the trace storage when specified
condition is met. Message filtering can be used to not collect all of the available data all of
the time.

The trace storage holds the trace messages in the memory that can be accessed by a
Device Access Server (DAS) over a hardware interface such as JTAG. The trace messages
are compressed to minimized required size of memory. The DAS is the abstraction of the
physical connection which provides a generic interface to the debug tools.

MCDS consists of software and hardware part of the debug system. Hardware side is set
of certain blocks assembled as it needed. Processor Adaptation Logic (PAL) or Bus Adap-
tation Logic connects processor/bus to its corresponding Processor Observation Block/Bus
Observation Block (POB/BOB). The observation blocks collect trace data, assemble and
buffer trace messages and extract the triggers for trace qualification. The Multi-core Cross-
connect (MCX) enables simultaneous debugging of multiple targets. And the Debug Mem-
ory Controller (DMC) sorts messages from observation blocks and forwards them to the
user.

This debug solution, however, is not appropriate for debugging many-core systems.
Such amount of observed cores is overwhelming for implementation and maybe impossible.
Nevertheless, it is used solution for embedded multi-core systems which is worth to analyze.

17

Figure 4.3: Example of hardware implementation of MCDS. [4]

18

Chapter 5

Design of debugging environment

Debugger integrated into nowadays IDEs is the common thing. Though, the most of them
cannot deal with the many-core systems properly. The high amount of cores (hundreds
or thousands) causes the slow retrieving of data from debugger and presentation of such
amount of information is not compendious.

The main problem can be decomposed into the two partial tasks:

∙ The first task is discovery of appropriate communication protocol that allows targeting
and controlling certain parts of a multi-core system. It is required to ensure that there
will be a reasonable amount of exchanged data. If there is a need to get the detailed
data about a part of the system, only data about that observed sub-system should
be retrieved.

∙ The second task is finding a way how to show all of the important information from
the debugger well-arranged and allow the user to choose which kind of information of
selected debugged system part would be displayed.

5.1 Data exchange
This part of the problem needs the DSF to be changed to properly handle communication
with the debugger. On the debugger side there are two approaches that can be used – the
use of the PTC sets or modification of the GDB/MI (described in 4.1.1).

The PTC sets as mentioned before extend the GDB commands with an option to target
the multiple threads. With the combination of DSF and CDT’s Visualizer view it could be
the most efficient way how to retrieve data from the debugger and control the execution of a
debugged program. The single GDB command would be applied on all the threads selected
in the Visualizer view. Although, there could be a problem with caching of responses from
a debugger.

Another approach is to improve communication trough GDB/MI interface. The options
–thread and –frame allow to specify the context for each command. For each selected
thread a command will be sent to the debugger. However, DSF offers the command caching
that could make the front-end to not ask for the same information repeatedly.

I chose combination of these two approaches. In this chapter the modification of
GDB/MI is described. The idea of using context management that is provided by PTC
sets is taken and used to design improvements for the GDB/MI. Although, there have to
be ensured sending commands to the debugger according to actions of the Visualizer view.

19

5.2 Data visualizing
Since the goal is to create an extension for CDT and DSF plug-ins, already created features
will be used and improved. First of all the thread hierarchy in the Debug View (described
in 3.2.1) could help in the presentation of a big amount of threads. The model of Debug
View can be changed to show the machine which the program is debugged on as a node in
a hierarchical tree. This node could be expanded to the list of cores and each core would
expand into a list of threads. This would decrease the amount of content in the Debug
View and amount of data exchanged with the debugger.

Another useful feature is the Pin & Clone (presented in 3.2.1). In the Nvidia Nsight
Eclipse (described in 3.4) there can be multiple threads selected (pinned) simultaneously.
For all the selected threads the information in other views is shown. This may not be
efficient if many threads would be selected but when just a few values of variables on
different threads need to be compared, it could be helpful and effective.

The most valuable feature is Visualizer View (presented in 3.2.1). The DSF provides a
framework to design own Visualizer view. The key information, that should be visualized
are cores, threads, and processes – their activity, state, PIDs. There are different designs
of the Visualizer View which are already used in IDEs. Some of them even display the
network topology of a processor and its capacity utilization. In this work the Visualizer
view will be used and modified to meet the requirements for the Codasip IDE many-core
debugging environment.

5.3 Designs of modification and features
In this section the modification of existing features is described. The improvements of the
specific features like GDB/MI protocol or Visualizer view are designed to handle debugging
of many-core systems. They also need to be compatible with the Codasip IDE and its ASIP
design.

5.3.1 Modification of GDB/MI

It is possible to debug multiple threads running on multiple cores through the GDB/MI
interface. But as was mentioned in 5.1, there are problems with debugging many-core
systems. Specifically the problem is a number of messages and notifications exchanged
with front-end and the context management.

The one of the most produced messages in communication between front-end and
GDB/MI are messages called async records that are associated with the thread activity.
In the most cases they are a consequence of GDB/MI commands or target activity and
provide additional information about changes. Every time a thread is resumed or stopped,
one async record is generated and sent to the front-end. If the non-stop mode (presented
in 3.2.1) is not used and one hundred threads are debugged, two hundred async records
are generated after each step that is made in the debugging process. Similarly the async
records are created when a thread or a thread group is created or exited. Coalescing of
these async records is the option which can decrease the number of produced records. To
achieve it the modification of communication protocol is needed. Also the timers that delay
the sending of records are required.

20

The following list of messages shows the selected async records and suggested modifi-
cations of these records:

∙ *running,thread-id="thread"

Description:
– It notifies front-end that thread is running. The thread-id field can be the

global thread ID that identifies thread or all if all threads are running.
Modification:

– Additional result thread-ids="thread-list" is added instead of the thread-id
variable. The thread-list field can be either the list or the range of global
thread identifiers.

∙ *stopped,reason="reason",thread-id="id",stopped-threads="stopped",
core="core"

Description:
– It notifies that the thread has stopped. The id field identifies the thread that

caused the suspension by the global thread ID. The reason field determines
the reason why thread stopped and the core field identifies the core on which
the event happened. The value of stopped item can be all when all threads
are stopped. Otherwise it contains identifiers of particular stopped threads.
Presently the list always includes a single thread.

Modification:
– There can be used the stopped field as the list of the global thread IDs and

the global thread IDs ranges.

∙ =thread-created,id="id",group-id="gid"
=thread-exited,id="id",group-id="gid"

Description:
– It notifies that the thread has been created or exited. The id field contains

global identifier of thread and the gid field identifies the thread group this
thread belongs to.

Modification:
– There can be added the ids="thread-list" result instead of the id variable

and the group-ids="gid-list" result instead of the group-id variable. As
well as in the case of other async records, the thread-list and gid-list
fields are lists that contain identifiers of threads (or thread IDs range) and
identifiers of thread group identifiers.

The reason for the next modification was to reduce an amount of the GDB/MI com-
mands that are sent to the GDB by front-end. One way how to do it is to select a set
of commands and extend them with PTC (presented in 4.1.3) sets. There is a demand to
control a specific part of the system (select cores, processes, threads) and get information
about that part of the system. The program execution commands and thread commands
are the most suitable because they allow to stop or resume threads and get information

21

about threads. The commands that switch context will not be extended. The most of front-
ends do not rely on currently selected context but they use -thread-group and –thread
options. The following list shows the specific commands that will be extended with PTC
sets:

∙ -thread-info [thread-id]

∙ -exec-continue [--reverse] [--all|--thread-group N]

∙ -exec-interrupt [--all|--thread-group N]

∙ -exec-next [--reverse]

∙ -exec-step [--reverse]

The modification of this commands consists of adding the –set ptc-value option. Same
as the –thread option it allows to choose the target part of the system. The ptc-value field
can be valued with the following notation:

process-id.thread-id@core-id

All the id fields in this notation can be enumeration of identifiers where identifiers are
separated by comma or wildcard (*) to identify all processes, threads or cores. Range of
ids can be used, too.

5.3.2 Modification of Visualizer View

The Visualizer View is available as the standalone plug-in that offers the basic graphical
representation of the debugged system. A lot of other development environments include
modified Visualizer view that is extended to show additional information. Similarly this
modification is based on Codasip IDE requirements.

To properly design functional system in Codasip IDE a user has to create the CodAL
project. A user has to specify the processing unit (ASIP) of the whole system. He also has to
specify the surroundings of ASIPs like memories and interfaces that are used to be connected
with other platforms and ASIPs. The levels within the project can be used to divide
components hierarchicaly. One level can contain multiple ASIPs and levels. Therefore
there will be many options how to build a system with a complex hierarchy of the multi-
core or many-core system.

The goal of this modification is to show the hierarchy of debugged system in the Visu-
alizer View. Such graphical representation helps to distinguish different levels of debugged
system and helps to identify ASIPs. It is also easier to find and select specific threads that
a user wants to control, pin or get information about. Figure 5.1 shows mock-up of the
modified Visualizer View that represents the hierarchy of platforms and ASIPs located on
different levels.

5.3.3 Modification of Debug View

The Debug View is the key component of the debug perspective. It shows which processes
and threads are running on the debugged system. It is also the main interface to control
and observe parts of the system. Although there are no improvements to effectively show
a big amount of threads and processes.

22

Figure 5.1: Mock-up of the modified Visualizer View.

Example of system with multiple platforms and ASIPs.

Modification of this view consists of two parts – add support for visualization of the
Codasip level hierarchy and grouping action for the thread groups and threads. The first
part is similar to the modification of the Visualizer View. It divides threads according to
the relation with ASIP or level they are running on. Analogous to the Visualizer View
it helps to find individual ASIP in a possible complex hierarchy. The second part helps
to reduce the amount of shown nodes in the Debug view. When a lot of thread nodes or
thread group nodes int the Debug View would be shown on a single level, additional nodes
will be created and aggregate the thread nodes or the thread group nodes under these
nodes. Also if there is no need to retrieve the detail information about grouped nodes, this
decrease of shown nodes reduces the amount of exchanged messages between the front-end
and debugger.

5.3.4 Modifications of resource views

Values of the system resources and variables are the valuable information that helps to
debug an application. With the parallel application it is useful to be able to compare these
values on different thread or core. Pin & Clone is a feature that allows it. It is possible to
open one of the detail views (e.g. Register View), pin to the context of the specific thread,
open another instance of the same view and pin it to the context of another thread. When
two different contexts are compared the views do not occupy a big part of the workbench.
However if the user wants to compare resources of many different cores, multiple views can
hide other useful information or not show all the information in an efficient way.

The Nsight Eclipse comes with the interesting modification of the Variables View. When
the contexts of the threads are selected and pinned the new column is created in the
Variables view for each pinned thread. Each value is shown for each variable and each pinned
thread in the associated column. This idea is used to design a new view for comparing
system resources.

23

Figure 5.2: Mock-up of the modified Debug View.

Example of visualizing the Codasip level hierarchy and thread group/thread grouping.

The basic idea is to create a view that is able to show multiple values of resources for
various contexts. The modification of the Variables View used in the Nsight Eclipse is
usable only for that view. It is because there is provided more information about resources
in Codasip IDE. Despite the value of the resource there are counts of writes and reads of
the resource. In this case it is required to show 3 dimensions – a list of resources, a list
of pinned contexts, a list of information of resource. A 2-dimensional view can be divided
into blocks that show one item from the third dimension (e.g. one resource from a list of
resources). The following image shows one of the possible layouts of the view. Each column
provides values of different information, each line provides values of different context and
each block is relative to a specific resource.

Even this layout is not proper for every debugged system. In Codasip IDE some of the
debugged systems can be heterogeneous and have various types of ASIP. Each ASIP can
have different resources and therefore they are not comparable. It requires some protection
to avoid the comparison of two or more different ASIPS/core types. However in case of a
many-core system a system generally consists of cores of the same type.

24

Figure 5.3: Mock-up of the modified Register View.

Example of displaying values of registers for multiple threads simultaneously.

25

Chapter 6

Implementation

The two of the modifications designed in the chapter 5 have been implemented:

∙ Visualizer View modification

∙ Debug View modification

The existing plug-ins for CDT and Codasip IDE were modified or extended. Also the
new plug-in com.codasip.debug.visualizer.ui was created. All these plug-ins cover the
functionality of modifications designed for debugging environment.

6.1 Visualizer View modification
The following list describes the most important classes of the Codasip Visualizer View
implementation:

∙ CodasipMulticoreVisualizer

It provides the core functionality of the view. It instantiates the important classes,
creates and populates the view model with data model contexts [2].

∙ CodasipMulticoreVisualizerCanvas

It instantiates classes that represent the system components (levels, ASIPs) and
draws them.

∙ CodasipDSFDebugModel

It uses the DSF services to get the data about the hardware hierarchy and provides
this data to other classes of Codasip Visualizer View.

∙ CodasipMulticoreVisualizerModel

This class represents the view model and holds the data about the components that
are drawn in the view.

∙ CodasipMulticoreVisualizerLevel

It represents the level in the Codasip hardware hierarchy and defines how the level
is drawn.

26

Figure 6.1: Class diagram of the most important classes of Codasip Visualizer View.

∙ CodasipMulticoreVisualizerASIP

It represents the ASIP in the Codasip hardware hierarchy and defines how the ASIP
is drawn.

∙ CodasipMulticoreVisualizerThread

It represents the thread in the Codasip hardware hierarchy and defines how the
thread is drawn.

The most problematic task of the implementation is the visualization of the hardware
hierarchy. The basic implementation of Visualizer View can draw just a flat model of
processors with multiple cores. However the levels displayed in the view are drawn on top
of their parents. It has to be clearly visible what relations are between them and what
content do they contain. Also the size and the location of each of the components has to
be properly calculated to avoid overlapping.

After the data are retrieved from a backend, the hierarchical tree of levels is created.
Hash maps are used to map the relations between levels. The class that represents the level
also holds the information about ASIPs that are located in it. At first the size of ASIPs
is calculated according to the count of ASIPs, the count of levels and their margins. The
drawn ASIPs have to fit to the size of a canvas including all the spaces between components.
Then the size and the location of each level is computed based on the number of the ASIPs
located in it, number of the child levels and their ASIPs. The hierarchical tree has to be
traversed multiple times to make all these calculations.

27

There are occasions when the displayed content is too excessive. Two features have been
implemented to help with it. The basic implementation of the Visualizer View provides
option to filter the displayed content. It allows to display only chosen processors and cores.
In our case it has to display selected leves and ASIPs. Therefore the parts of the hierarchical
tree that contain selected components have to be found and drawn. Some of the levels can
be bypassed. Also if there are levels that contain no ASIPs, another levels with no ASIPs or
no levels, they are considered empty and they are not visualized. This is the second feature.
The levels with no content unnecessarily consume the space. If they are not displayed, other
content can be visualized bigger.

Figure 6.2: Screenshot of the Codasip Visualizer View.

Example of displaying the three levels containing ASIPs.

6.2 Debug View modification
The following list of classes describes the most important classes of the modification:

∙ LevelVMNode

The class represents the level node in Debug View.

∙ ThreadGroupClusterVMNode

It represents the thread group cluster node in Debug View which groups the certain
amount of thread group nodes.

The implementation of Debug View is located in the Eclipse plug-ins. However the
classes mentioned above are located in the Codasip plug-ins that extend Debug View.

28

Both of the view model nodes use the DSF services to get the information about data
model contexts and their properties. They create the view model contexts according to
them and populate them with information. The view model contexts of thread group
cluster node are created only when there are enough of thread group nodes displayed in the
same level. Both of nodes also have to implement the behaviour that defines how they react
on certain events. This behaviour specifies when the state or content has to be updated.

When a debug session starts all the nodes in Debug View are expanded. It is the default
behaviour given by the implementation of the nodes in the Eclipse plug-ins. This does not
happen after the recursive node is added (can have itself as a child). Despite the new nodes
implement this behaviour, not all of the nodes are expanded. This is caused by the bug
that is documented on Eclipse website1.

Figure 6.3: Screenshot of Codasip Visualizer View.

Example of displaying three levels containing ASIPs and one empty level.

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=306868

29

https://bugs.eclipse.org/bugs/show_bug.cgi?id=306868

6.3 Implementation of hardware service
DSF services are used to obtain information about the data model and propagate this
information to view model. The special service to obtain data about Codasip hardware
hierarchy was created.

The service represented by the CodasipHardware class creates the GDB/MI command
to retrieve data about hardware hierarchy of debugged system. Retrieved data are parsed
from the string form and the hierarchical model is created. The reference on the top level
node of this hierarchy is returned to the view model.

6.4 Testing
Complete validation of the correct behaviour of implemented features is not possible. The
features are designed and implemented for Codasip IDE 6 that has not been released at the
time which this thesis is written. Therefore some functionality is missing or is simulated.

There are 2 tests that were used to test the implemented features:

∙ time measurement of content drawing

∙ usability testing

6.4.1 Time measurement of content drawing

This test measures the time which is needed to draw all components in Codasip Visualizer
View. The measured time is the time needed to execute method that is responsible for
drawing a content of the view. The results expose how big is the impact of count of
displayed objects on delays in the user interface.

ASIP count
Level count 100 300 500 750 1000 1500 2000 3000

1 0,073 0,114 0,142 0,209 0,412 0,318 0,468 0,817
3 0,080 0,112 0,156 0,210 0,447 0,310 0,498 0,836
9 0,105 0,148 0,186 0,209 0,257 0,385 0,481 0,874

Table 6.1: The time in milliseconds needed to draw content of Codasip Visualizer View.

Table 6.1 shows the results of the test. Various amounts of ASIPs and levels were used
as the input data as it is noted in the table. While count of ASIPs can vary from few dozens
to several thousands in many-core systems, it is not expected that the user will use more
than few dozens of levels. The time of visualizing was calculated as average value of 20
values of the time needed to recalculate the size of graphical objects and redraw them. It
was measured as a difference of times at the start and in the end of the method responsible
for recalculation and redrawing. The results showed that redrawing of the view’s content
does not create long delays (all values are under 1 millisecond) in comparison with the
delays caused by retrieving the data from debugger. These delays could not be measured
due to missing functionality of other tools.

30

6.4.2 Usability test

The five people from the Codasip employees were chosen to test the usability of the new
debug environment. The environment and the basic commands were introduced to them.
After that, several debug sessions were executed with prepared input data. They were
requested to do some actions in each session. Finally each participating employee has been
asked a few questions. The goal of the test was to find out the easy use and the lucidity of
the environment.

Modified Debug View and Codasip Visualizer View were the main objects of the test.
The following actions were introduced and performed in each debug session:

∙ start and stop debug session

∙ do few steps of debug session

∙ select multiple targets (threads, ASIPs)

∙ filter multiple targets (only Codasip Visualizer View)

∙ expand and contract nodes (only Debug View)

The systems that were debugged were not the same as the environment presented. They
did not consist of levels and, in some cases, they did not contain the amount of ASIP that
were displayed. The systems with up to 56 ASIPs can be debugged using the debugger.
Others with higher number of ASIPs were artificially created in GUI code. ASIPs are
randomly distributed to all levels of the system. The following systems were debugged in
the test:

∙ 3 levels and 10 ASIPs

∙ 3 levels and 56 ASIPs

∙ 9 levels and 500 ASIPs (not supported by debugger)

∙ 9 levels and 1000 ASIPs (not supported by debugger)

∙ 9 levels and 2000 ASIPs (not supported by debugger)

In the end of the testing the participating employees answered the following questions:

∙ How easy it was to perform all asked actions?

∙ Was new debug environment comfort and fast?

∙ What were the pros and cons of the environment?

∙ What are your suggestions to improve the environment?

Some of the shortcomings have been found out from the answers of the testing users. The
most of complaints have been aimed to the long launch of debug sessions and unreadable
ASIPs IDs when the count of ASIPs was higher than 500. All participants complained about
the low value of frames per second when the system with 2000 ASIPs was debugged. 2 of 5
participants did not like the colours used in Codasip Visualizer View. The readability of a
hardware hierarchy and the filter feature of Codasip Visualizer View were rated positively.

31

6.4.3 Future improvements

The tests exposed the limitations of the implemented features. One of the biggest limita-
tions is visualizing more ASIPs than 2 or 3 thousands. In this situation ASIPs have too
small size even if the view is resized to the maximum. There are 2 improvements that can
help to solve this problem. The first is the ability to expand or contract levels in Codasip
Visualizer View. Levels with observed ASIPs could be expanded and other could be con-
tracted to save some space for other objects. Another approach is Codasip Visualizer View
with the zoom ability and with scrollbars. The user could zoom in and display the part of
the content he would want.

Some of users could desire different colour and shapes of objects displayed in Codasip
Visualizer View. Colour palette and list of shapes for each objects would make the visual-
ization more flexible. User could adapt the view to his requirements.

32

Chapter 7

Conclusion

The goal of this thesis was to design and implement the debug environment for many-core
systems. The thesis described the problems with debugging the many-core systems using
the integrated development environments. The modifications of IDE and debugger were
designed and some of them implemented and tested.

The tests showed that implemented features solve some of the problems with debugging
the many-core systems. There are the cases when these features do not solve the problems
or only partially. The modifications of Debug View and Visualizer View offer different
overview of the hardware hierarchy. They help to locate and identify ASIP in the debugged
system. They also offer more convenient observation and control of the specified part of the
debugged system. But there are limitations of this environment too. Retrieving data and
internal reconstruction of hardware hierarchy make launching of a debug session longer.
When there are displayed more than 1 thousand of ASIPs, the visualization loose clarity.

It is possible to improve this environment by implementing other modifications in the
future. Implementation of the modification of GDB/MI protocol designed in the section
5.3.1 could solve the long debug session launch. The content of the modfified Visualizer
View can be more lucid by adding an option to zoom and scroll the content or expand and
contract the part of the content.

The contribution of this thesis consists of design and implementation improvements of
debugging environment that will be used in Codasip IDE. The features that were imple-
mented are just prototypes and will be modified in the future according to requirements of
R&D and customers of Codasip.

33

Bibliography

[1] Eric Clayberg and Dan Rubel. eclipse Plug-ins. ISBN 978-0-321-55346-1. Pearson
Education, 2008.

[2] IBM Corporation. Eclipse documentation. 2006. url:
{http://help.eclipse.org/mars/index.jsp} (visited on 04/17/2016).

[3] Eclipsepedia. url: {https://wiki.eclipse.org} (visited on 04/17/2016).
[4] IPextreme. Infineon Multi-Core Debug Solution. 2008. url:

{https://www.ip-extreme.com/downloads/MCDS_brochure_080128.pdf} (visited
on 03/21/2016).

[5] Kurt Keutzer, Sharad Malik, and A Richard Newton. “From ASIC to ASIP: the next
design discontinuity”. In: Computer Design: VLSI in Computers and Processors,
2002. Proceedings. 2002 IEEE International Conference on. IEEE. 2002, pp. 84–90.

[6] Georgios Kornaros. Multi-core embedded systems. ISBN 978-1-4398-1161-0. CRC
Press, 2010.

[7] Nvidia. CUDA-GDB. 2015. url:
{http://docs.nvidia.com/cuda/pdf/cuda-gdb.pdf} (visited on 04/17/2016).

[8] Jim des Riviêres and John Wiegand. “Eclipse: A platform for integrating
development tools”. In: IBM Systems Journal 43.2 (2004), p. 371.

[9] Richard Stallman, Roland Pesch, Stan Shebs, et al. “Debugging with GDB”. In:
Free Software Foundation 51 (2002), pp. 02110–1301.

[10] Harold S Stone and John Cocke. “Computer architecture in the 1990s”. In:
Computer 24.9 (1991), pp. 30–38.

[11] Michael Wolfe. Understanding the CUDA Data Parallel Threading Model A Primer.
2010. url: {https://www.pgroup.com/lit/articles/insider/v2n1a5.htm}
(visited on 03/21/2016).

34

{http://help.eclipse.org/mars/index.jsp}
{https://wiki.eclipse.org}
{https://www.ip-extreme.com/downloads/MCDS_brochure_080128.pdf}
{http://docs.nvidia.com/cuda/pdf/cuda-gdb.pdf}
{https://www.pgroup.com/lit/articles/insider/v2n1a5.htm}

Appendices

35

List of Appendices

A CD content 37

B Screenshots of the modified Visualizer View 38

36

Appendix A

CD content

The content of CD consists of the following files:

∙ src – a directory that contains plug-ins for Eclipse and source code files

∙ ide – a directory with executable Codasip IDE

∙ readme.txt – a basic description of the application and execution instructions

∙ tex_src – a directory with source codes of technical report

∙ report.pdf – the pdf file of technical report

∙ user_guide.pdf – instructions how to use the implemented features

37

Appendix B

Screenshots of the modified
Visualizer View

Figure B.1: 1 level 2 ASIPs

38

Figure B.2: 1 level 30 ASIPs

Figure B.3: 1 level 200 ASIPs

39

Figure B.4: 1 level 1000 ASIPs

Figure B.5: 1 level 2000 ASIPs

40

Figure B.6: 3 levels 100 ASIPs

Figure B.7: 3 levels 500 ASIPs

41

Figure B.8: 3 levels 1000 ASIPs

Figure B.9: 10 levels 50 ASIPs

42

Figure B.10: 10 levels 200 ASIPs

Figure B.11: 10 levels 1000 ASIPs

43

	Introduction
	Multi-core systems and parallelism
	Multi-core processor
	Many-core system

	Advantages of multi-core systems
	Power Dissipation
	Hardware implementation issues
	Systemic considerations

	Integrated development environments
	Eclipse
	The Eclipse Workbench

	C/C++ Development Tooling (CDT)
	Multi-core debugging features
	Debugger Services Framework (DSF)

	Codasip IDE
	Nvidia Nsight Eclipse

	Debugger
	GNU Project Debugger (GDB)
	GDB/MI
	CUDA-GDB
	Process/Thread/Core sets

	Multi-core Debug Solution (MCDS)

	Design of debugging environment
	Data exchange
	Data visualizing
	Designs of modification and features
	Modification of GDB/MI
	Modification of Visualizer View
	Modification of Debug View
	Modifications of resource views

	Implementation
	Visualizer View modification
	Debug View modification
	Implementation of hardware service
	Testing
	Time measurement of content drawing
	Usability test
	Future improvements

	Conclusion
	Appendices
	List of Appendices

	CD content
	Screenshots of the modified Visualizer View

