
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

WEB APPLICATIONFOR INFORMATION DASHBOARD DESIGN
WEBOVÁ APLIKACE PRO NÁVRH INFORMAČNÍCH DASHBOARDŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR OLENA PASTUSHENKO
AUTOR PRÁCE
SUPERVISOR Ing. HYNEK JIŘÍ
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This paper describes the steps of designing and development of the Web Application for
Information Dashboard Design. The primary challenge is not only to visualize the data on
the charts, but also to increase the usability of the final product and to allow programmers
to add new widgets quickly and with minimum input required. Visualization tools are being
analyzed both from the historical and modern perspectives. Big attention is paid to how
human brain perceives information. Charts development tools (in particular, JavaScript
libraries) are analyzed and the need in a new application is proven. Development is then
described as an iterative process, including application prototype designing and several
phases of usability testing and evaluation. As a part of the project, the open-source Vue.js
extension for working with charts is developed. Resulting application satisfies all initial
requirements and allows to create a new dashboard based on custom design, or using one
of the predefined templates.

Abstrakt
Tato práce popisuje analýzu a návrh webové aplikace určené pro tvorbu informačních dash-
boardů. Nejdůležitějším úkolem je nejen vizualizovat data prostřednictvím grafů, ale také
zvýšit použitelnost konečného produktu a umožnit programátorům rychle přidávat nové
widgety. Vizualizační nástroje pro prezentaci dat jsou analyzovány jak z historického, tak
i z moderního hlediska. Velká pozornost je věnována tomu, jak lidský mozek vnímá infor-
mace. Nástroje pro tvorbu grafů (zejména knihovny jazyka JavaScript) jsou analyzovány,
z čehož plyne potřeba vyvinout nástroj nový. Součástí diplomové práce je open-source kni-
hovna pro tvorbu grafů založená na knihovnách Vue.js a D3.js. Vývoj samotné aplikace
je pak popsán jako iterativní proces, včetně návrhu prototypu a několika fází testování
a hodnocení použitelnosti. Výsledná aplikace vyhovuje všem počátečním požadavkům a
umožňuje vytvořit nový dashboard založený na vlastním gridovém systémů nebo pomocí
jedné z předdefinovaných šablon.

Keywords
Information dashboard, HCI, Web Applications, Data Visualization, Design Principles,
User Interfaces

Klíčová slova
Informačny dashboard, HCI, webova aplikace, vizualizace dat, zásady navrhování, uživa-
telské rozhraní

Reference
PASTUSHENKO, Olena. Web Application
for Information Dashboard Design. Brno, 2017. Master’s thesis. Brno University of Tech-
nology, Faculty of Information Technology. Supervisor Hynek Jiří.

Web Application
for Information Dashboard Design

Declaration
Hereby I declare that this project was prepared as an original author’s work under the
supervision of Jiří Hynek. The supplementary information was provided by Tomáš Hruška.
All the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

. .
Olena Pastushenko

May 23, 2017

Acknowledgements
I would like to express my gratitude to my supervisor Jiří Hynek for the useful comments,
remarks, borrowing books and engagement through the learning process of this master
thesis. And also for always having time for a consultation and discussion. Furthermore, I
would like to thank Vero Vanden Abeele, Groep T, KU Leuven for introducing me to the
topic of Human-Computer Interaction (HCI) as well for the book’s recommendations.

Contents

1 Introduction 3

2 Analysis of existing tools and methods for representing data
on one screen 5
2.1 Data visualization history . 5
2.2 Types of data visualization . 9

3 Dashboards 13
3.1 Business intelligence . 14
3.2 Dashboards taxonomies with examples . 15
3.3 Motivation for creating dashboards . 17
3.4 Review of the existing software for dashboard creation 19

4 Principles of dashboards design 20
4.1 Ergonomics of the iteration . 20
4.2 Dashboard display media chosen for the application 21

4.2.1 Graphs . 22
4.2.2 Icons . 24
4.2.3 Text . 24

4.3 Best user experience practices applied to dashboards 24
4.4 Bad design examples . 25
4.5 Analysis of Information Dashboards Usability 27

5 Analysis of available web technologies 29
5.1 Existing technologies review . 30
5.2 Mobile usability . 31

6 UXgraph library 32
6.1 UXgraph implementation . 32
6.2 Vue reusable components . 33
6.3 Passing data between components . 34

7 Web application for information dashboard design 35
7.1 User and Task Analysis . 35

7.1.1 Context . 35
7.1.2 Design guidelines . 36
7.1.3 Primary persona . 37

7.2 Features . 38

1

7.3 Technology stack . 38
7.4 Application prototype . 39
7.5 Application architecture . 40

7.5.1 RESTful API for handling dashboards operations 40
7.5.2 Dynamic props . 42
7.5.3 Explanation of application deploying process 42

8 User testing and evaluation 43
8.1 Primary functionality . 43
8.2 Formative usability testing . 46
8.3 Summative usability evaluation . 47

9 Conclusion 51

Bibliography 53

Appendices 55
List of Appendices . 56

A Attached CD content 57

B Application screenshots 58

C Summative usability evaluation materials 61

2

Chapter 1

Introduction

The focus of this Thesis is to create a Web Application for Information Dashboard Design.
Challenging part is to build such an application, which allows creating dashboards quickly
and with minimum input needed from a programmer, and at the same time – to make
resulting dashboards easily readable by the end user. Therefore, it is important to show
data on these dashboards well-arranged and understandable (Figure 1.1).

Figure 1.1: Example of a well-arranged dashboard [8]

The first Chapter of the Thesis shows different tools for representing data on a single
screen and then Chapter 3 reasons why dashboards are becoming more popular means of
data display. They help to summarize data or to monitor activities for achieving a particular

3

goal. There exist a wide selection of tools for creating dashboards, but as shown throughout
the paper, none of them satisfy all concepts needed for this particular project.

Chapter 4 shows essential principles of correct dashboards construction. Only when a
dashboard is properly designed it can help to perceive all needed information, so it is needed
to take into account how the human brain works. In this chapter, it is also shown which
widgets are selected for future application as the tools for data representation, and some
standard design rules. The primary value is that those graphs are created in accordance
with UX (User Experience) principles. Those principles are mainly based on the work of
Stephen Few. UX defines what impression (experience) users have from using an interface,
and how quickly they reach their goals. While analyzing existing software for a dashboard
creation it was noticed that mainly they have similar mistakes in designs, and this may have
a negative impact on a dashboard usability. That’s why there is a need in a way to analyze
dashboards usability. It would be possible to export dashboards to XML format, which
would contain only parameters needed for the usability analysis and clear grid structure.
It is also possible to export created dashboard as PNG image format, to make the analysis
from several angles.

Then in Chapter 5, there is an analysis of existing libraries for charts and widgets
creation, together with most important principles of web application development. The web
application consists of server-side and client-side parts, so it is needed to select appropriate
tools for each of them. Since in previous chapters clear need in a new tool for working with
graphs was proven, Chapter 6 describes the process of a new JavaScript library creation.
The main goal of it is to create a set of reusable Vue.js components based on D3.js and SVG
graphs. There are several angles in which practical utility of this library may be proven.
First of all, D3 helps to create a huge variety of different data visualization types. But, the
question is how usable and understandable they are. Since D3 offers a lot of possibilities,
a programmer may be focused more on finding an appropriate coding solution, then on
designing an understandable graph. UXgraph solves this problem by providing already
predefined and easy to use components. The user needs to specify several parameters only.
Vue was selected as a base library because it is fast and provides an opportunity to create
new reusable components which can be imported and used as a new custom HTML tag
throughout the web page. Components created during this project are gathered into Vue.js
library, which is hosted on GitHub as an open-source tool under MIT License. Beta-version
is already published as npm (Node Project Manager) module, so it is available for all Node.js
based projects. Article describing this library was also selected and represented in a for of
a poster during the ExcelFit 2017 student’s conference. [16]

Chapter 7 contains a description of user and task analysis performed before the applica-
tion development. As a primary persona, researchers were selected. Since the application is
developed directly for their purposes, the primary interface should be adjusted accordingly.
So, the user knows the goals of the project, is motivated enough to use the application and
looks for a way to generate samples for testing. Application architecture is also described
in this chapter.

After the development of the application had been finished, user testing and evaluation
were performed. There were two phases of the tests. Formative usability testing was
performed after the development of the application prototype. And then at the later stage
of the application development, summative usability evaluation was made. It helped to
define wrong interface elements at the early stage, when it is easy to make an improvement,
and then – to evaluate resulting interface, using selected metrics. The methods, results and
improvements made after the testing are described in Chapter 8.

4

Chapter 2

Analysis of existing tools and
methods for representing data
on one screen

Data visualization (or representing data on one screen) is a wide concept, which includes
some kind of visual transformation of an underlying data [3]. Visualization is a cognitive
agent which means that we use it as a way of making sense of complexity. It helps to reduce
cognitive overload, even though that is not the main goal. According to Stephen Few [9],
the goal is that data should be visualized in a way that leads to understanding. Whatever
else it does, it must inform.

2.1 Data visualization history
The concept of using pictures to understand data is an old one and takes the beginning
in the oldest discovered rock paintings – Lascaux Cave Paintings (Figure 2.1) which were
found in 1940 inside the network of caves in France.

Figure 2.1: Lascaux Cave Paintings.1

1Source: Wikipedia, Author: Prof saxx

5

https://en.wikipedia.org/wiki/Lascaux#/media/File:Lascaux_painting.jpg
https://commons.wikimedia.org/wiki/User:Prof_saxx

Another ancient example may be Anaximander world map (Figure 2.2), dated approx-
imately 550 B.C. and considered to be the first world map.

Figure 2.2: Reconstruction of Anaximander’s map.1

Data visualization principles were widely used by chronologers throughout centuries,
even though it took them quite a long period of time to progress from creating tables that
contained information to the charts which expressed it graphically [17]. This change was
especially noticeable in 16th-17th centuries. A nice example might be allegorical time-
maps, which were popular as mnemonics and showed information not chronologically but
locating events on a figure corresponding to some characteristics of them. Figure 2.3 shows
how Darius of Persia is located under the lungs of the David statue, and these may be
understood as a metaphor because during his rule Jews could «breathe freely».

Later on, during 17th and 18th centuries, a lot of graphs which are still widely used, were
created. Most of them were originally designed by William Playfair (1759-1823) and Johan
Heinrich Lambert (1728-1777) who made the idea of presenting data to a mass audience
quite popular. Playfair was the one who invented pie chart and presented the wide use of
line charts (examining the import and export differences between Britain and various other
countries, Figure 2.4).

Another important landmark is Minard’s map of the losses of Napoleon’s army in the
Russian campaign of 1812 (Figure 2.5). Edward Tufte claimed that it «may be the best
statistical graphic ever drawn» [18]. The map showed the size of the army and the path of
Napoleon’s retreat from Moscow, connecting it together with temperature and time scales.

At the same period a lot of other visualisation methods were invented, such as: first
wind-rose graph with the polar coordinates by L. Lalanne, dot map of disease data (cholera)
by John Snow and first graphs with variable width. It was also a period of data collection
and dissemination in different fields, development of statistical theory and new means of
technologies. Lithography started in the 1800s and then resulted in color printing at 1850s,
automated recording made possible by James Watt in 1822 and automated calculations by
Babbage in 1822, photography and motion developed rapidly as well. [17] All this resulted
in a great progress in the field of visual language. People started to use visualization
techniques to decide where to build roads and canals, to show changes over time and
differences over space. A nice example was created again by Minard in the field of civil
engineering. Investigating the reasons for the collapse of the bridge at Bourg-St. Andeol,
he used the self-explanatory diagram, which shows the power of visual explanation. It also
made possible such purely graphic discovery as Galton’s discovery of weather patterns. In

1Source: Wikipedia

6

https://en.wikipedia.org/wiki/Anaximander#/media/File:Anaximander_world_map-en.svg

Figure 2.3: Example of allegorical time-map. [17]

7

Figure 2.4: The Universal Commercial History, Playfair 1805.
Source: Wikimedia Commons

Figure 2.5: Minard’s map of the losses of Napoleon’s army
in the Russian campaign of 1812. [17]

8

https://commons.wikimedia.org/wiki/File:Chart_of_Universal_Commercial_History.jpg

1861 all weather stations across the Europe (there were 50 of them) were asked to record
data (barometric pressure, wind direction, and speed, temperature, rain, cloud) 3 times
daily during the December. These data were gathered into 93 maps, containing multivariate
glyphs showing all variables. Small graphs with grids and patterns were created from these
maps, what made direct comparison much easier (Figure 2.6).

Figure 2.6: Galton’s discovery of weather patterns.1

Then, with the help of abstractions, large patterns maps were created. These final
maps helped to analyze data and to understand how to predict it. Since then visualization
techniques increased in popularity [17]. Such visualizations as Distribution of passengers
and goods from the Paris railways to the rest of France (1884), State population diagram
in the US (1887), Proportions of Catholics and Methodists in the total population (1890)
to name just a few, were created.

Nowadays computers made possible to process and analyze larger amounts of data. So
these methods are used for representing annual reports, showing flight patterns, describing
the most important history events, global income and wealth distribution etc. Today graphs
are a vital part of statistical data analysis and a vital part of communication in science and
technology, business, education and the mass media [4].

2.2 Types of data visualization
According to Jorge Camões2, modern data visualization includes following concepts: visual
statistics, business visualization, infographics, data art. While speaking about these con-
cepts, it is also important to mention data-scientists who established these terms and wrote
the most influenceable papers in the relevant field. All these information is represented on
Figure 2.7.

On the very left, there is a group of visual statisticians like Cleveland and Tukey. They
do not care that much about the aesthetics of design, but designs they’ve suggested are still
easy to perceive and understand. Cleveland in his paper [4] shows how every graph may be
decided into elementary perceptual tasks, such as length, angle, area, volume (Figure 2.8)
and focuses on understanding how skilled are people each of those tasks [4].

1Source: Princeton.edu
2Infographics vs. Data Visualization www.excelcharts.com/blog/infographics-data-visualization/

9

http://libweb5.princeton.edu/visual_materials/maps/websites/thematic-maps/quantitative/meteorology/meteorology.html
www.excelcharts.com/blog/infographics-data-visualization/

Figure 2.7: Data visualization concepts and data-scientists.

He also made a lot of experiments to prove that bar charts are more effective than pie
charts and stacked bars. Paradigm of cleaner, minimalist charts started from his researchers,
but still we can see that aesthetic wasn’t taken into account.

Then there is a large group of functionalists. They pay a lot of attention to the functional
aspects of design and they tend to use them. The first author in that group is Stephen
Few. Mainly his concepts of dashboards usability would be covered in the next chapters
of this Thesis. His paper was chosen because he is aimed to find a golden mean between
functionality and aesthetic in terms of business visualization. He covers a lot of examples
of bad visualizations, describing what is the problem and a possible way to avoid it. An
example is Figure 2.9, where on the left is shown a typical mistake while creating a graph
– adding some unnecessary elements and effects, which results in increasing a time needed
to read the information. On the right of the Figure 2.9, the same data is presented but in a
way cleaner form. Web application which is a subject of this Thesis is aimed to allow users
to create quickly graphs like that, which are easy to perceive.

Also working in the field of functionalism but more concerned on the infographics and
the art side of data is Alberto Cairo. He claims that effective infographics can still be fun
«if their designers don’t forget that their fundamental goal is to make the public better in-
formed» [2]. As one of the examples, he uses Chinese worldwide exports map (Figure 2.10).
Due to his book, great visualization should be truthful, functional, beautiful, insightful and
enlightening.

There is also a group of designers, where function becomes decoration. Here we can
meet the possible sacrifice of effectiveness for a pleasing design. This approach still cannot
be called «art» though. The main representative of this group is David Mccandless.

And then, the last group displayed in the image consists of pure artists. They are using
data as just another source for their art creations. A nice example may be composite photos
of airplanes in flight by Mike Kelley Figure 2.11.

Another example is a project which was getting bees to construct geographic maps.
Here was used a principle that a colony will follow the queen bee and build a hive based
on the pheromones that she releases, so if you move the queen the others in the colony act
accordingly (Figure 2.11).

Summing up all above, it might be said that every visualization developer is responsible
for finding a balance between the requirements of utility, soundness, and attractiveness
within given constraints [15]. It was first written in the book De Architectura in 25BC
by Roman architect Vitruvius. Utility here means usability and functionality and can be
measured by efficiency. Soundness represents the quality of the visualization presentation
algorithm. And finally, attractiveness corresponds with aesthetics.

10

Figure 2.8: Elementary perceptual tasks by Cleveland.
Source: Introduction to Data Visualization

Figure 2.9: Bad example of 3-D bar graphs (left) and improved version (right)
according to Few [8].

11

http://paldhous.github.io/ucb/2016/dataviz/week2.html

Figure 2.10: Chinese worldwide exports map as an example of effective infographics.[2]

Figure 2.11: Examples of data-art.
Source:

http://flowingdata.com/category/visualization/artistic-visualization/

12

http://flowingdata.com/category/visualization/artistic-visualization/

Chapter 3

Dashboards

There exist several definition of a dashboard. Different papers about dashboards, as well as
websites of dashboards’ software providers, agree that a dashboard must include graphical
display mechanisms. But the most suitable definition is made by Stephen Few in his article
for Intelligent Enterprise magazine: «A dashboard is a visual display of the most important
information needed to achieve one or more objectives; consolidated and arranged on a
single screen so the information can be monitored at a glance» [7]. A dashboard is not
some particular technology used for specific type of information. It is a type of display, a
form of a presentation designed to communicate (Figure 3.1). Dahboards are the part of a
bigger concept, called Business intelligence.

Figure 3.1: Example of a dashboard.1

1Source: Dashboard Insight

13

http://www.dashboardinsight.com/dashboards/screenshots/website-operational-dashboard.aspx

3.1 Business intelligence
Business intelligence (BI) is the part of information technology that focuses on reporting
and analysis. It is a very important tool to use in order to reduce cost and time. It may
be also defined as an interactive process for exploring and analyzing structured, domain
specific information to discern business trends or patterns, thereby deriving insights and
drawing conclusions. The business intelligence process includes communicating findings and
effective change. Domains include customers, suppliers, products, services and competitors
[10]. There are typically four types of presentation media: dashboards, visual analysis tools,
scorecards, and reports. They all serve a similar purpose, helping people to find trends,
correlations, and patterns. But in the same time, all of them differ with some unique
attributes.

Back in 1980’s, there were developed several executive information systems (EIS). Their
main purpose was to display financial measures on simple graphical user interfaces. But in
those times they didn’t become popular, as a technical side was quite difficult and required
a lot of information from different sources, which quite often appeared to be incomplete [8]
Later on, during 1990s data warehousing, BI and online analytical processing became more
popular. The main emphasis was now put on the technology itself and not on the methods
of usability and availability improvement. Primary persona was considered to be not an
average executive, but proficient in computer technologies user. And we might say that the
right data in the wrong form say little of importance.

The situation changed in 2001 after the fall of Enron. Enron was a US based corporation,
famous as innovator and technology powerhouse. It gave an illusion that it was a steady
company, but after an investigation, it appeared not to be so. This was made possible
by great frauds with accounting and surfacing information about hiding losses [11]. The
aftermath of this case showed the importance to monitor all inner processes and of being
able to present such information to shareholders. As a result, different BI providers started
to offer dashboard services. The increasing popularity of dashboards was documented in a
research done by AMR Research inc: «more than half of the 135 companies . . . recently
surveyed are implementing dashboards». But even taking into account rising popularity of
dashboards it was still difficult to give a precise definition of what a dashboard actually is.

Stephen Few also defines next key characteristics of a dashboard:

∙ All the visualization fit on a single computer screen. This is important to ensure that
all information may be perceived at one glance.

∙ It shows the most important performance indicators, important in achieving certain
goals.

∙ Interactivity such as filtering may be used in a dashboard, but shouldn’t be required.

∙ They are designed for wide circle of users and are easy to use.

∙ Updates are automatically.

Dashboards are composed of different data visualization tools, such as maps, graphs,
charts, grids, and gauges. So, taking into an account all said above, a dashboard may
be called an information management tool that visually tracks, analyses and displays key
performance indicators (KPI). They evaluate the state of the organization or business in a
particular activity. Dashboards are highly customizable and may fit the needs of different

14

companies and departments. They always show real-time information, tracking and com-
bining information from different sources. To do so, a dashboard is usually connected to
different files, API’s and services, even though for the end user it shows all information on
the one screen in a form of tables and diagrams. To make the difference between dashboards
and other types of business visualization clearer, key features of the others are covered next.
Visual analysis tools represent data on the one image as well, but they allow to pick differ-
ent ranges, products, detalisation levels. The main difference here may be that these tools
are always highly interactive and may contain lots of scrollbars or zoom inside its sections.
Since usually not real-time data is displayed there but mainly some time-lapses, they can
be used to define key performance indicators for future usage in the dashboards. A good
example of such a tool might be research on homicides in the D.C. by Washington Post,
held between 2000 and 2011, which was aimed to find out what exactly happened in each
case.

Then scorecard (Figure 3.2) is a tabular visualization of measures and their respective
target with visual indicators to see how each measure is performing against their targets at a
glance. They are not interactive and so have only one depth level, containing a measure, its
target and a visual indication of a status. Usually, it may be used as a part of a dashboard
or visual analysis tool.

Figure 3.2: Example of a scorecard.[8]

Reports usually do not content any graphics but still may use visualization to highlight
needed data. Mainly it presents data, containing from text and numbers, in a table, and is
optimized for printing.

3.2 Dashboards taxonomies with examples
Categorizing the dashboard plays an important role in its development, as it helps to
distinguish and select main features and concepts of the design. Of course, there are a lot
of common elements for all types, but differences in the details may play a significant role
in the perception of the information by a target user group.

According to Stephen Few, categorizing dashboards by the role they play relates mostly
to a dashboard’s visual design [8]. So the most common division is strategic, analytical,
operational or mixed dashboards. Within this taxonomy, choosing the type of a dashboard
depends on the type of the problem which needs to be solved.

1. Strategical dashboard may be called any dashboard used for making a strategic deci-
sion. They provide a quick overview of all processes and are aimed to monitor the

15

opportunities for improvement and the general health of the business. Since strategic
managers don’t usually provide any type of deep analysis, dashboards of this type
mainly do not provide any type of interactivity, on the contrary – the most simple
mechanisms work best for them. Too many details can also play a bad role here, since
they may distract a decision maker from his direct goals. They also do not need any
real time data, since decisions in a business are not being made on a go. But monthly,
weekly or daily snapshots might be really in use.

2. Analytical dashboards. It usually follows tactical, short and medium-term objectives.
Data here demands a lot of contexts and extensive history. This types of dashboards
mainly do not need to present real-time data, but more monthly or weekly static
snapshots. However, it is quite important to give the user a possibility to explore some
data or time period in more details, when needed. So, interactivity (such as drilling
down into the details, examining some cases) is highly welcomed. It is important not
just to show some facts about the business (for example that the sales are decreasing),
but also to provide the end user with all needed means to find out the reason of this
process.

3. Operational dashboards show the data used by business managers or the general work-
force. The main difference from the other types is that data here needs to be dynamic,
so mostly presented in real time or near real time. They are used to monitor opera-
tions and activities so that end user may pay attention to some certain changes. For
example, a robotic arm which makes some fixes is a lack of important details, this
needs to be reacted immediately, and not on the next day, when a daily time-lapse
would be available. It also helps to maintain processes within certain borders. So that
when any of the parameters goes beyond the predefined border the relevant user gets
notified immediately. Since some situations may be the cases of the emergency, data
presentation should be simple and clear. Though at the same time it is extremely
important to have all needed details. For example, if a delivery of a hight priority
is about to miss a deadline, some high order statistics is not enough, it is needed to
show all details about the particular order and the reasons for the delay. So, it is
acceptable to have both interactive and static displays for operational dashboards.
On a static one, all needed information should pop up and grab an attention in the
case of emergency, while interactive dashboards should provide an end user with all
needed means to investigate the case quickly by himself.

Another possible classification is by data domain. It relies on the source of data which is
going to be displayed, or it may also be said that it is specific for the business departure or
field where it might be used. The main types within this taxonomy are:

∙ Executive dashboards (Figure 3.3). Used mainly by CEOs and top executives in order
to monitor KPI, different metrics and other data on the most higher, general level.
Below is the example of KPI dashboard, found on the website of one of the dashboards’
software providers:

∙ Healthcare dashboards. Usage of this kind of a dashboards may not be that obvious
in this industry, but in fact, they are widely used to display large amounts of data,
showing general status of the healthcare delivery. As a result client’s satisfactory may
be understood, together with ways of service improvement. An example of measures
may be the average length of stay and lab turnaround time.

16

∙ Marketing dashboards (Figure 3.3). They may be used by social media specialists,
web analytics, content marketers. They can help to evaluate marketing campaigns,
measuring ROI and. other metrics.

∙ Sales dashboards.

∙ Manufacturing dashboards.

∙ Human resources dashboards.

There may also be other taxonomies mentioned. Such as:

∙ type of data: quantitive, non-quantitive,

∙ types of measures: balanced scorecard, six sigma, non-performance,

∙ span of data: enterprise-wide, department, individual,

∙ update frequency: monthly, weekly, daily, hourly, realtime or near realtime,

∙ interactivity: static display, interactive display,

∙ mechanisms of display: primary graphical, primary text, their combination.

3.3 Motivation for creating dashboards
Motivation refers to psychological processes that are responsible for initiating and contin-
uing goal-directed behaviors. People have been monitoring businesses without dashboards
for ages. As a result, decision makers in companies often suffer from too many data which
have too little information which is delivered too late to make an effective decision. These
problems may be solved by using dashboards, developed in accordance with the best prac-
tices. Then they are providing a powerful mean to present information. Some of the most
common reasons for using a dashboard are:

∙ better visibility, as it allows to monitor whole business, process or an operation just
at one glance,

∙ time saving, because when it is needed to get some data, there is no need to wait for
a report – everything needed may be received from a dashboard.

Making more deep research about the motivation, all other reasons may be divided into four
groups: advantages for the users, a motivation of workers, rich data usage, improvement of
communication and better business planning [6].

∙ Advantages for the user. The main thing is that dashboards make possible to
monitor a status of several areas on one screen, allow to represent this status graph-
ically rather than in textual form. An important feature is that alerts about some
critical conditions may be easy-noticeable, and moreover – may allow a possibility
to click to see more details. And all this is done in such an intuitive form, that no
training is required. Dashboards allow users to get all needed information without
signing in some web service, printing and looking through reports or getting through
emails.

17

Figure 3.3: Examples of an executive (on top) and marketing (bottom) dashboards.
Source: Klipfolio dashboards examples

18

https://www.klipfolio.com/resources/dashboard-examples

∙ Motivation of workers. The well designed dashboard can help focus on what is
really important, providing different interfaces and functionality based on position
and circle of interests. It may help to quickly show employees that their contribution
counts in term of business growth, and also to motivate them to use goals, competition,
incentives and other methods of gamification.

∙ Rich data. This is achieved by blending data from different sources and allowing
both historical and real / time data, as well as both detailed and aggregated data.
Effective dashboard design utilizes colors, symbols and visualization techniques, such
as tables, line charts, and gauges) to highlight important data points.

∙ Improvement of communication. Using a dashboard allows better coordination
between departments, and between managers and employees. A key feature is that
you don’t need to be a marketer or analyst to understand what is represented on a
dashboard. It helps to keep every member of a business on the same page and allows
sharing. There are several ways of sharing a dashboard, depending on the privacy
level of used data. For example, a link for a public sharing may be created, when a
company wants to show its success to potential customers, though dashboard with
internal budget calculations may be shared only with several high-level managers.
Dashboards are getting more popular because they allow to create a virtual work
environment and as a result – make it easier for teams to collaborate. For example,
analysts may work in the background, providing more data to show on the dashboard,
while users can access and work with generated data anytime and anywhere.

∙ Business planning. The dashboard is also a very convenient tool for communicating
a strategy. It helps to ensure that everyone uses the same data, metrics and works
towards the same strategy. When storing dashboard on a cloud, it can be accessed
anytime and from any device (wallboard, computer, tablet or a phone). Dashboards
make reporting more efficient, as they may generate them automatically at any time
(and not only in the end of the month).

3.4 Review of the existing software for dashboard creation
Since nowadays dashboards are getting more and more popular, the number of software
providers for their creation is also increasing rapidly. Before looking into more details
about most popular ones, it is important to categorize them. The main difference is in
where the data is stored and from what kind of devices it may be accessed. The software
may be installed directly on a computer or internal network, on a cloud service or stored
within a native mobile application. When storing in a cloud, data may be accessed from
any device with the connection to the internet.

While making an analysis of a software for dashboard creation for this project, several
test accounts were created to see the demo versions of existing tools. None of them satisfied
all needed items which are going to be needed to create testing data quickly. Some applica-
tion were missing test data. Some of them needed additional installation, and this project
is going to be about a web application so that no installation is needed and it is available
for any device and OS. Also, there were some design mistakes (according to rules described
by Few) [8]. And the most important thing is that existing software do not allow to create
a custom export format. All above shows the need for creating a new web application, even
though there is quite a big selection of similar ones.

19

Chapter 4

Principles of dashboards design

To increase dashboards usability for an end user, it is important to understand it’s purpose,
how it will be consumed. For example, there might be different dashboards for a technician
and executive because of their different technical background, acronyms they are used to and
information they need. And different purposes require different visualizations. According
to Noam Iliinsky [13], to create a successful dashboard, one must be able to articulate the
purpose and focus firstly. Then, to select minimum info of a correct information needed
to present on a dasboard, and make a clear structure. And then, as a last step of the
development process, it is needed to make a formatting useful. Some rules of dashboards
construction are different for different types, but there are some general and fundamental
rules which should be taken into account in any case. Such rules are the subject of this
chapter of the Thesis.

4.1 Ergonomics of the iteration
The big mistake of any software development process is to focus on the features development
only, not carrying in mind the general application architecture and vision. To build complete
and of high usability dashboard, it is important to take into account also how people perceive
and think. At the same time, it is important not to end up developing a business software
which is more entertaining then useful.

Science that deals with designing things so that they fit the people who use them is
called ergonomics. Main principles are described in book by Jeff Johnson [14]. Only those
of them which are relevant to dashboards and are going to be used for this project. Main
ergonomics principles which are relevant to them are going to be used for the project and
are listed in this chapter.

People have attentive and preattentive ways of perceiving the information. Preattentive
processing is a subconscious accumulation of information from the environment. Important
information should be easily distinguished from the irrelevant parts, to help user to accu-
mulate it quickly. An example is shown in Figure 4.1. When given a task to calculate the
amount of ”5“ within certain amount of other numbers, it is much easier to do when target
number is emphasized.

More of these principles are combined in so-called gestalt psychology [14]. One of the
main principles says that in perception the whole is different from the sum of its parts.
Applying to dashboards, this means that it is not enough to pay attention only to the
design of the graphs. Whole dashboard should be developed in a way which helps to keep

20

Figure 4.1: Explanation of preattentive processing.

consistency for all widgets, and clear grid structure. Other gestalt principles explain rules of
clustering perceived items into groups, depending on their similarity, connection, enclosure
or symmetry. These principles may be used to design correct graphs or to choose a suitable
type of graph for a particular information. Nice example of applying gestalt principles
during designing a graph is shown on Figure 4.2.

Figure 4.2: Pie charts are used quite commonly, but they are less effective than the bar
charts. Whereas a bar chart uses the line length to encode the quantitive information, pie
charts use two-dimensional areas of the slices and their angles, and our visual perception
experience troubles comparing angles and 2-D areas.

Besides pre-attentive attributes, there are other factors which may influence user’s in-
teraction with a software, such as their experience, goals, and context. For example, most
common colors for the status icons are green (notification), yellow (warning) and red (er-
ror). But for color blinded people two of them might look almost similar. That’s why it is
better to use several hues of the same color, then different colors, to distinguish statuses.
Another use case is a difference in a context: percieved information would be different for a
user who have a lot of time and quiet surrounding during the interaction with a dashboard,
from the one who needs to get all needed information on a go.

4.2 Dashboard display media chosen for the application
To reach the full potential of a dashboard and clear communication with a user, it is
needed to use appropriate and well-designed display medium. Type of medium depends on
the nature of the information, its message and the need of the end users. Selection of the
display medium for this thesis was made based on the following principles:

∙ It must be able to efficiently present information when it is displayed on a small
screen, without additional scrolling needed.

∙ It must be the best means to display the most commonly used in dashboards infor-
mation.

∙ It must allow to create new dashboards for testing purposes with minimum efforts.

21

After analyzing different display media, the future library for the application was divided
into the following categories:

∙ graphs,

∙ icons,

∙ text.

Following sections contain the detailed description of each category.

4.2.1 Graphs

Graphs are the most commonly used dashboard display media [8]. According to the main
design principles which are described in the next parts of the Thesis, the best way to
provide information for the most types is to display quantitive data in the form of a 2-D
graph with X and Y axes. For this Thesis six types of graphs were selected, based on their
usability. They were preferred because they can provide information more effectively than
the other alternatives, and at the same time – are quite simple comparing to the others.
This is an important feature both while development and future use for the quick test data
creation. For example, the pie charts are used quite commonly in the dashboards, but they
are less effective than the bar charts. Whereas a bar chart uses the line length to encode the
quantitive information, pie charts use two-dimensional areas of the slices and their angles.
As it is shown in the Gestalt psychology principles, described in the previous chapter, our
visual perception experience troubles comparing angles and 2-D areas. There is a bigger
group of graphs which use 2-D space to encode quantitive values, called area graphs. None
of them where selected for this Thesis. Following list shows types of graphs which are going
to be used in the application.

∙ Bullet graphs (Figure 4.3). This type of graphs was developed by Stephen Few
specifically for dashboards [8]. Their main purpose is to replace gauges and meters
with a type of a chart which consumes less space in a dashboard and is more intuitive
at the same time.

Figure 4.3: Bullet graph example.[8]

∙ Bar graphs (horizontal and vertical). These graphs are also used to display
multiple instances of one or more key measures. Bar graphs are most effective when
showing measures associated with items in one category. It is also important to use
them only for appropriate data. There are nominal (North, East, South, West),

22

ordinal (1st, 2nd), and interval (like days or months) scales. And bar charts should
be used for the last ones. Following is the example of a typical bar chart.

∙ Stacked bar graphs (horizontal and vertical) (Figure 4.4). This is a variation
of a bar chart, which is better readable when you need to show several instances of
a whole, but with the emphasis on a whole. Next image shows an example of such
usage.

Figure 4.4: Stacked bar graph example.

∙ Combination bar and line graphs (Figure 4.5). This one is recommended to use
when some data should be displayed with the emphasis on a comparison of individual
values, and some – with an emphasis on the overall shape of the data.

Figure 4.5: Combination bar and line graph example.

∙ Line graphs are the best ones in showing the shape of data movement and the
dynamic. Since everything else is eliminated, it helps to create visual patterns which
are easy for understanding.

∙ Sparklines (Figure 4.6). This type of graph was invented by Edward R. Tufte and
defined as «data-intense, design-simple word-size graphics» [19]. They are a good
fit for dashboards, as they provide condensed forms of data display, helping to show
some measure within the context.

Figure 4.6: Sparkline example.

23

4.2.2 Icons

Icons are simple images that communicate clear and simple meaning [8]. They are not
always needed in a dashboard, but they are an important element to emphasize something
(alert icons), show status (on/off icons) or dynamic (up/down icons). The main challenge
with icons is to make them simple but noticeable at the same time. Ammount of alert
levels should be limited to two, or even better – to one. The reason beyond this is that
a single alert icon catches the eye a way more effectively than multiple alerts, because it
is easier to notice, and moreover no time is spent on comparing the colors of the multiple
icons. Also, it is important to select effective colors based on the information in Chapter 4.
Since 10% of males and 1% of females are color-blind, a solution that works for everyone
is using different saturations of the same hue, rather than different hues for the alert icons.
Different hues (such as green/red, for example) may be used for status or dynamic icons,
though when symbol itself is conventional enough.

4.2.3 Text

This element is included into all dashboards, even if they are fully graphically oriented.
Some information is simply more readable textually. Other type of information needs text
for explanation (such as categorical labels for the items on graphs). Fully textual display
medium is appropriate when it is needed to show a single measure alone, without comparing
it to anything. When there is a need to arrange a set of information in a particular manner
to communicate clearly, tables are considered to be the best display medium [8]. Tables
arrange data into columns and rows, which can help when being designed properly, to
analyze data easier and to perceive information quicker.

4.3 Best user experience practices applied to dashboards
In previous chapters rules for separate elements were described. This chapter is about
general rules and design principles, which should be applied to a dashboard as a whole.
Some of them are used as quantitive measures for the framework of dashboards evaluation,
which is described in Chapter 4. In a paper by Edward R. Tufte the data-ink ratio concept
was introduced [18]. Everything that is displayed may be divided into data and visual
content which is not data (non-data). Due to this concept, when quantitive data is printed,
data-information is when the ink is changing as the data change. It is the non-erasable core
of the graphic, while usage of the non-data ink should be minimized. So, the data-ink ratio
is equal to data-ink divided by total ink used to print the graphic. And this ration should
be aimed to be equal 1. Since this Thesis is about software, ink may be replaced by pixels,
but the formula would be the same:

𝑑𝑎𝑡𝑎 𝑝𝑖𝑥𝑒𝑙𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ

𝑑𝑎𝑡𝑎 𝑝𝑖𝑥𝑒𝑙𝑠
(4.1)

Figure 4.7 shows the difference between data-information and non-data:
The first step to improve this ratio is reducing the non-data pixels, and the next one

is enhancing the data ones. All unnecessary non-data pixels on a dashboard should be
eliminated, and the ones which are needed to make the information readable should be
de-emphasized by making them visible enough just to do their job, but not catching the
eye. On the contrary, the most important data-pixels should be highlighted. Figure 4.8

24

Figure 4.7: Data (shades of black) and non-data (red) pixels.

shows how grid lines in a graph may be eliminated without any information loss. They are
also considered to be the most prevalent form of distracting non-data pixel in dashboards.

Figure 4.8: Effect of grid lines elimination.

While emphasizing important data, not only colors and contrast should be taken into
an account, but also the location of the elements. Figure 4.9 shows different degrees of
visual emphasis associated with different regions of a dashboard.

4.4 Bad design examples
According to Few, there might be distinguished several groups of reasons which lead to a
poor usability of a dashboard:

1. Exceeding the boundaries of a single screen. It is important to show all information on
a single screen, without scrolling or switching between multiple screens needed. This
might help to discover some connections between different measures show. And on
the contrary – it might lead to losing general picture or important details which were
not presented on the first visible screen. The reason beyond this is that people can
hold only small part of the information in their short-term memory. It is important
to mention here that allowing navigation to further details may be useful for some
dashboards, but it must be implemented carefully.

25

Figure 4.9: Degrees of visual emphasis associated with different regions of a dashboard.

2. Supplying inadequate context for the data. Supplying context for measures means
involving comparison to other similar measures or presenting several contexts. On
the other hand, incorporating of a rich context may overwhelm a user with too much
irrelevant data, so it is important to keep a balance here. The amount of a context
presented in a dashboard also depends on its purpose and end users. More context
should be provided only if it results in a real value.

3. Displaying excessive details or precision. Too precise details (for example $2,978,765.99
rather than $2,978,765 or $2,9M) can slow the process of perceiving the information.

4. Choosing inappropriate display media. This one is considered to be the most common
design mistake, not only when speaking about dashboards, but also in other forms of
quantitive data presentation. [8]. For example, using a pie chart when a bar chart
would be more explanatory or using a graph when a table would work better.

5. Introducing meaningless variety. Since the main purpose of a dashboard is to present
meaningful information, it is not a problem if all of it would be displayed with the
help of the same type of graph. It would be a problem though if a variety of graphs
would be used when their types are not adding any value. Also, consistency in the
means of the display can help users to use similar patterns of information recognition.
Explanation of how such patterns work was provided in Chapter 4 of this Thesis.

6. Using poorly design display media. It is important to use not only the correct type of
a graph but also to design it properly. More information on the design of the different
means of media display was provided in Chapter 4.

7. Ineffective highlighting of important data. The most important or critical informa-
tion should always catch user’s eye firstly. To avoid cluttering of the display useless
decoration shouldn’t be used at all. Another important rule is that color shouldn’t
be used haphazardly. Hot colors should be used to the elements which should catch
an attention. Cooler colors are less noticeable. Similar colors may be used to create
recognition patterns.

26

8. Designing of unattractive visual display. Unnecessary decoration elements shouldn’t
be used, as it was stated before. But, data still need to be presented in a nice way. If
a dashboard would be ugly, the user would avoid to use it often. So aesthetics should
be taken into account. These items show main issues which should be avoided while
creating a dashboard. So it is important to keep them in mind while creating a new
software for this purpose.

4.5 Analysis of Information Dashboards Usability
As shown in the previous chapters, information systems are becoming more and more widely
used nowadays, even though before they were mainly used by corporations only. But still,
quite often dashboards are not being used up to their full potential. The most common
reason for failure is poorly designed implementation, and not the software itself. A lot
of software developers are paying more attention to entertaining a customer with their
product, and as a result, these displays may become annoying and not useful at all. An
effective dashboard is a product not of cute gauges meters and traffic lights, but rather of
informed design: more science than art, more simplicity than dazzle [8]. But since some
users are getting used to such products, they do not realize that there might be a way to
create a dashboard, which makes information perceiving a way easier. Cooper calls such
effect dancing bearware. He says that the sad thing about dancing bearware is that most
people are quite satisfied with the lumbering beast. Only when they see some software with
a hight usability level, they begin to suspect that there is the world beyond suffering. So
few software-based products have exhibited any real dancing ability that most people are
honestly unaware that things could be better [5].

Stephen Few shows in his book [8] that there are many dashboards with usability prob-
lems. The main problem while creating a dashboard is to squeeze all relevant information
into a one screen and to keep it easily understandable at the same time. But, it is often
quite a challenging task to follow them, if one is not a design guru. So, there is a need for
a tool, which helps to evaluate dashboards usability and quality, as well as classify them
into groups (Figure 4.10).

Figure 4.10: Steps of evaluating a dashboard usability.

27

There have already been developed a framework, which describes main steps of a dash-
board evaluation. To make it work, there is a need in a big amount of test data. That
can be weather raster image (matrix of pixels), or some language based dashboard, for
example, HTML + CSS. Then, information about separate graphical elements, together
with general dashboard histograms needs to be converted into an internal representation.
Currently, for the internal representation XML is chosen. The purpose of this step is to
select only the important information for the analysis of dashboard. The example of such
XML representation is shown below.

<dashboard>
<x>0</x>
<y>0</y>
<width>1908</width>
<height>1148</height>
<type>CHART</type>
<graphicalElement>

<x>0</x>
<y>50</y>
<width>52</width>
<height>1118</height>
<type>TOOLBAR</type>

</graphicalElement>
</dashboard>

After such representation was created, it can then measure attributes which correspond
with dashboard usability. The result of these calculations may be then used for the dash-
board clarification and evaluation. Among attributes which are proposed for the evaluation
are:

∙ data-pixel ratio,

∙ contrast,

∙ hue-saturation ratio,

∙ clear grid system.

The main purpose of this Thesis is to develop a software tool which can help to create
dashboards easily so that they can be used as test data for machine learning algorithms.

28

Chapter 5

Analysis of available web
technologies

Nowadays there are a lot of different ways how to build the web application. The technology
stack is a combination of software products and programming languages used to create the
web or mobile application. Since applications have two software components: client-side
and server-side, there are front-end and back-end stacks respectively. Figure 5.1 shows an
explanation of how such stacks work.

Figure 5.1: Server and client-side stacks.

It is called a stack because each layer of the application is built on the features of the
previous one. The back-end is all about the logic behind the application, which will never
be accessed directly by the user because all information is passed to front-end means firstly.
And front-end is the visual part of the application, and the one user would see and interact
with. This chapter shows a review of existing technologies, as well as the selection of the
ones which would be used for the application.

29

5.1 Existing technologies review
Since the most important part of the application is going to be a dashboard creation pane
together with single widgets, it is more appropriate to start from choosing a front-end
technology stack. As the main front-end language, JavaScript (js) was selected because it
provides needed dynamics. First of all, analysis of existing libraries for working with graphs
was performed. Since this list is quite a long one, the first step is a selection of the main
JavaScript framework for a front-end representation.

For the development of an application for fast and easy dashboard creation, Vue.js
framework was selected as the most suitable one. It is open-source and supports the devel-
opment of reactive components for Modern Web interfaces. It uses model – view – View-
Model (MVVM) paradigm, which helped in the simplification of the design. It was selected
because it helps easily create re-usable components, which would have the same HTML
structure but still would use different parameters for styling. This feature is extremely
useful while developing the library of elements for a dashboard, described in Section 4.2.
Another useful for this particular project feature of Vue.js is that it uses two-way data
binding to update the model and view, which allows reactivity of the web application.
Then, after the main framework is selected, the list of possible js libraries for working with
graphs had shortened. To select from them, following criteria were developed: free/paid,
all needed elements available, adaptivity. The result is shown in the next table:

Figure 5.2: Comparision of JavaScript libraries for charts and graphs.

As a result of this research, D3.js library was chosen for the development. There also
exist a several open source D3-based libraries for building custom charts and graphs, for
example – xCharts. This one may be used to scale application to other custom elements.
XCharts library also would help to ensure that all graphs are working good when viewed
from a mobile device.

30

At the beginning of each project it is important to set up version control system. Git is
selected for this particular project. It allows remote repositories creation so that working
from several computers would be easier. Also, useful feature of git is that it has branching
system, so that when a developer needs to try out a new feature, they can create a new
branch in the repository and work there without affecting the code in the main branch. It
is merged with Master branch only after tests.

5.2 Mobile usability
According to a survey conducted by Harris Interactive for Tealeaf1, 23% of users were
cursing at their phones, 11% have screamed at them, and 4% have actually thrown their
phone when experiencing a problem with online interaction. This shows increasing need
of mobile optimization for web applications. The problem here is that nowadays mobile
devices come in all resolutions and screen sizes, so there is no clear resolution or cutoff to
maintain.

Figure 5.3: Different screen sizes which had to be taken into account while adaptive
development.2

The best way to make a web application looking good on different devices is to make
it responsive. Nowadays, there are several frameworks for this purpose, along with manual
CSS media queries. For this project, Bootstrap Framework is chosen as the mean of respon-
siveness because it has clear 12-columns grid structure and supports a principle mobile-first.
This is important because it is always more difficult to shrink information to the size of a
mobile device then vice-versa.

1Mobile transactions survey http://www.marketwired.com/press-release/tealeaf-announces-new-
mobile-transaction-research-conducted-harris-interactive-shows-1419058.htm

2Source: XappMedia

31

http://www.marketwired.com/press-release/tealeaf-announces-new-mobile-transaction-research-conducted-harris-interactive-shows-1419058.htm
http://www.marketwired.com/press-release/tealeaf-announces-new-mobile-transaction-research-conducted-harris-interactive-shows-1419058.htm
https://xappmedia.com/creating-great-content-interaction-experience-mobile/

Chapter 6

UXgraph library

Since Vue.js was selected as a front-end base for the application, there was a need in the
Vue extension for working with D3. Developing graphs in plain D3 is also possible, but
it offers a lot of possibilities and it takes a lot of efforts to achieve needed design quality.
Currently, there already exist several Vue.js / D3.js open-source components available on
the internet. But firstly, they do not represent even minimum set of needed graph types
and allow you to create only one or two types. For example, in Tyrone Tudenhope GitHub
project1 provides only sparklines and line charts. There are a lot of different D3 examples
created by Mike Bostock2, but they do not offer a possibility to quickly set custom settings.
The other problem of their components (and the main problem solved in this project) is that
they do not fulfill design requirements specified by different graphic visualization experts,
Stephen Few [8] in particular. Not following these requirements makes these graphs difficult
to understand, and as a result – less effective. At the current stage, UXgraph also contains
only several types of graphs, but they all already follow required design principles and
allow easy definition of custom properties, so the first part of the challenge was solved. The
extension is already published in its beta version on npm (Node Project Management)3.

6.1 UXgraph implementation
UXgraph requires running Vue application or vue.js script connected to any other codebase.
Vue.js is a progressive framework for building user interfaces. It is focused on the View
Layer, and provides reactive and composable view components. Vue advantage is that even
though it is a JavaScript framework, it still supports HTML and CSS right in the single
file components (on the contrary of React, where everything is just JS).

UXgraph supports latest versions of Vue and D3. This feature is quite important since
with the last version change there were some core updates in both of them.4 5

1https://github.com/johnnynotsolucky/samples/tree/master/vuejs-d3
2https://bl.ocks.org/mbostock
3https://www.npmjs.com/package/ux-graph
4Vue2.x migration guide
5D3v.4 changes description

32

https://github.com/johnnynotsolucky/samples/tree/master/vuejs-d3
https://bl.ocks.org/mbostock
https://www.npmjs.com/package/ux-graph
https://vuejs.org/v2/guide/migration.html
https://github.com/d3/d3/blob/master/CHANGES.md

6.2 Vue reusable components
Components in Vue can help to extend basic HTML elements to encapsulate reusable code.
To make it work, Vue’s compiler attaches special behavior to these custom elements. To
register a global UXgraph component following steps are needed:

Vue.component(’my-component’, {
// options

})

After that, the component may be used in the web page template as a custom element:

<my-component></my-component>

Every graph type component is located in its own single file template, which contains
HTML, scripts for declaring properties and behavior and styling (Figure 6.1). That makes it
possible to use them all independently. Following components are already implemented and
can be imported: Sparklines, Linecharts, Barcharts, HorizontalBarcharts. StackedBarcharts
and BulletGraphs components would be added during the next stage.

Figure 6.1: Integration of UXgraph into a Web project

General D3 methods are connected to .vue components by installing d3 package via
NPM, and then importing d3 as a global variable. But to make application reactive, it is
not enough to create D3 SVG elements as usual. That’s why UXgraph uses Vue mounted
event to call a method for creating a graph after a component instance was rendered. When
calling the method it is also needed to specify its parameters, which represent customizable
graph settings. For example, for sparklines it would be:

mounted () {
this.createSparkline
(’#id’, this.data, this.label,
this.circle, this.color)

},
methods: {

createSparkline(id, data, label,
circle, color) {}

}

As a result, variables represented by these parameters may be used anywhere during the
SVG construction.

33

6.3 Passing data between components
Another Vue feature which is used in UXgraph is a possibility to pass data to a component
with properties. Since components are reusable and can be inserted in basically any place
of a web page, it is important to keep them in their own isolated scope, and so – not to
directly reference parent data from a child component. That’s why all data in this library
are passed to child components using props. Firstly, in all child components (which contain
graph templates) properties are defined using Vue props option:

Vue.component(’sparkline’, {
// props declaration
props: [’data’, ’color’,
’circle’, ’label’]

})

After this, every property can be referred as this.propertyName within a component.
Then properties can be passed from the parent template like following:

<sparkline
color="#4682B4"
label="Daily defects"
circle=true>

</sparkline>

Result is shown on Figure 6.2.

Figure 6.2: Example of generated sparkline component, with custom parameters

For all UXgraph components default properties are specified in order to make including
of a new component easy (Figure 6.3). Users need to specify a property only if they want
to use custom values.

Figure 6.3: Example of a bar chart component included without any parameters

34

Chapter 7

Web application for information
dashboard design

The main goal of this project is to create a web application which would allow researchers to
quickly and simply create dashboards, all components of which fulfill best UX requirements,
described in Chapter 4.

7.1 User and Task Analysis
Task analysis is the process of learning about ordinary users by observing them in action
to understand in detail how they perform their tasks and achieve their intended goals. It is
really important to make task analysis as early as possible in every project, as it helps you
to understand better goals and needs of the users, their actions and experiences, physical
environment and previous knowledge influence.

There are several types of task analysis [1]. Cognitive Task Analysis is required when
decision-making, problem-solving, memory and attention of users are involved in the project.
And Hierarchical Task Analysis is focused on decomposing high-level tasks into several lay-
ers of subtasks. But to create full task analysis it is important to perform user analysis
firstly. Neither User Analysis or Task Analysis are about the interface directly, together
they help to understand the constraints and requirements for future interfaces.

7.1.1 Context

Primary users are already interested in usage of the application. They are researchers, which
need to generate big amounts of informational dashboards quickly for testing purposes.
Moreover, they do not want to spend time with every single widget, making all design
adjustments. They need to have all UX settings by default. They would work with the
application in their offices or labs, and during working hours mostly. While interacting with
the application users probably wouldn’t be interrupted a lot, as they are in the working
environment. But, since the creation of the dashboard itself is not their primary goal, they
probably wouldn’t like to spend too much time on this task, or on learning about how to
use the application.

35

7.1.2 Design guidelines

Based on human psychology design guidelines were developed. This is not something that
changes as fashion does, but design patterns which correlate with how our brain works.
For this web application design guidelines described by Nielsen and Molich in 1990 [1] were
chosen, as the ones which describe needed system more accurately:

∙ consistency and standards,

∙ visibility of system status,

∙ match between system and real world,

∙ user control and freedom,

∙ error prevention,

∙ recognition rather than recall,

∙ aesthetic and minimalist design,

∙ provide online documentation and help.

In order to achieve goals of the project and make it successful, following guidelines are
added:

Design for short sessions:

∙ Avoid long startup

∙ Avoid long configurations

Design to make dashboard creation quick:

∙ Easy way to add a new sample

∙ Default settings which follow best UX practices

∙ Several sets of designs available

∙ Test data exists and easy to fill in

Design for researchers:

∙ Ability to autogenerate testing samples

∙ Saving history of interaction

∙ Export of samples in needed format

Design to make application scalable:

∙ Responsive design

∙ Cross-platform solution

∙ Content, optimized for future usage on tablets

∙ Some popular platform

As a design guideline for future application, Material Design is chosen.

36

7.1.3 Primary persona

While working on any application it is important for a developer to keep in mind that
“You are not the user”. In other words, it is important to understand the needs of the
end user. It is then possible to identify the features and functionality that will make the
intranet or website a success, and how the design can support users with different goals
and levels of skill. There are many ways to identify the needs of users, such as usability
testing, interviewing users, discussions with business stakeholders, and conducting surveys.
However, one technique that has grown in popularity and acceptance is the use of personas:
the development of archetypal users to direct the vision and design of a web solution.

Personas identify the user motivations, expectations and goals responsible for driving
online behavior, and bring users to life by giving them names, personalities and often a
photo. Although personas are fictitious, they are based on knowledge of real users. The
goal is to find a single persona from the set whose needs and goals can be completely and
happily satisfied by a single interface without disenfranchising any of the other personas.
This persona is typically referred to as the primary persona. By definition, each primary
persona requires their own user interface in a particular application. As in my application
there is going to be only one primary persona (the researcher who is creating dashboards
for test purposes), there should be only one interface also. Figure 7.1 shows my suggestion
of primary persona for this project.

Within this project, only one abstract user may be defined – researcher. Since the
application is developed directly for their purposes, the main interface should be adjusted
accordingly. So, the user is aware of the goals of the project, is motivated enough to use
the application and looks for a way to generate a sample for testing.

Figure 7.1: Primary persona.
Source of portrait picture: Max Pixel

37

http://maxpixel.freegreatpicture.com/People-Business-Woman-Student-Students-Startup-849818

7.2 Features
Application at its current form will not be suitable for implementing an information dash-
board for a real business since its backend will not be suitable for this. But, it will be easily
scalable, so no problems in adding such a function. Every researcher would need to create
an account, in order to save created sets of widgets, preferences and etc. After login, they
get a possibility to work with the app.

∙ User needs to create an account and log in to use the application,

∙ Landing page of the application shows quick buttons for creating different predefined
dashboards,

∙ User can save created dashboards,

∙ User can start generating script, to generate big amount of dashboards, which satisfy
certain criteria,

∙ User can leave comments under generated samples (for research purposes),

∙ User can export a dashboard.

7.3 Technology stack
Based on the research described in Chapter 4, following technology stack is defined for the
web application (Figure 7.2).

Figure 7.2: Illustration of technologies used for server and client sides of the application,
and explanation how hybrid mobile application may be generated in the next stage.

Frontend:

∙ Bootstrap. It is one of the most popular frameworks for developing responsive ad
mobile first projects, which is a very important feature in regards to this project. It
is based on HTML, CSS, JS.

∙ jQuery. It is cross-platform JavaScript library, which is aimed to handle events on
HTML pages. Such widgets as a tooltip (popup tips which make interactions with the
application easier for the user), slider, accordion (displays collapsible content panels
for presenting information in a limited amount of space) and date picker (allows to
select a date from a popup or inline calendar) might be used in the project.

38

∙ HTML5. A markup language used for structuring and presenting content on the
World Wide Web. In HTML5 version a lot of useful for the project features were
added. Mainly, the ones which are connected to multimedia and graphical content.
As, for example, <video> element, which helps to include and manage video content
on the page without any additional plugins or APIs. Also, new HTML5 elements, as
<main>, <header>, <footer>, <nav> are helping to improve semantic structure of the
document.

∙ CSS3. It is the latest standard for CSS stylesheet language which is going to be used
to describe the presentation of the HTML document.

∙ Vue.js. It is a library for building interactive web interfaces. It provides data-
reactive components with a simple and flexible API, and is component-oriented, what
is important for the current project because of a need in reusable components for the
widgets.

∙ D3.js. A JavaScript library for visualizing data with HTML, SVG, and CSS. It will
be used for building charts and graphs.

∙ gridstack.js. A jQuery plugin for creating dashboard grid. Allows drag-n-drop and
changing size of the widgets.

Backend:

∙ OS: Linux Ubuntu. To serve all needed purposes version should be at least Ubuntu
16.01.

∙ Web server: Node.js HTTP server

∙ Database: MongoDB

Build system:

∙ Gulp.js. This is a toolkit for automating tasks. In the project, gulp would be
used to compile sass and to minify resulting CSS, to combine and minify all external
JavaScript files and to optimize images. It also makes the development process easier
by enabling CSS and js spelling checker and browser live reload functionality.

For convenient versioning control git repository would be created.

7.4 Application prototype
Application prototype is developed based on requirements described throughout the paper
using Axure software. This is a software for prototyping of applications. It should be
used before writing any code, in order to validate a solution or make any user tests. Page
structure is as follows:

1. Landing page. Explains the project in several words, has the login form.

2. Add a dashboard (Figure 7.3). This is basically a pop-up form, which asynchronously
loads after any content when floating button is pressed. After all options are selected
– a grid for constructing a dashboard is shown.

39

Figure 7.3: Add a dashboard form.

3. Constructing a dashboard page (Figure 7.4). Contains a selection of possible widgets,
and selected grid system. The user can add needed widgets into selected grid cells.

4. List of all dashboards created by users (Figure 7.5). With buttons for edit, export or
delete a dashboard.

5. Profile page. Where all information about logged in user is listed.

6. FAQ page. Contains general information about the application and instructions on
functionality.

7. Data sources. Lists possible data sources and have a possibility to import new ones
or create them manually.

7.5 Application architecture
The Project uses Single-Page Application (SPA) architecture. It loads a single HTML page
and dynamically updates it as a user interacts with the app. So, View Layer is handled by
Vue, with routing managed by vue-router. Server communication works with the help of
vue-resource, plugin for interfacing with a RESTful backend. And everything is built with
Webpack build tool.

The base for a front-end of this application is Vue, with connected UXgraph components.
Graphs are generated fully on a client side since dataset and other parameters are set as
Vue properties.

7.5.1 RESTful API for handling dashboards operations

An important feature is that all back-end logic is made and hosted as a separate Node.js
project, which may be accessed through API. Since front-end and back-end are not closely

40

Figure 7.4: Constructing a dashboard page.

Figure 7.5: List of all dashboards.

41

integrated together, it is possible to add or modify backend operations, without influencing
front-end and vice verse.

MongoDB is selected since it works with objects saved as JSON, what makes it easy
to export them later on [12]. Plus, it is possible to save objects from gridstack.js (used
to enable drag-n-drop for widgets construction pane) directly as Mongo JSON objects. All
collaboration with MongoDB is managed with the help of Mongoose. This is a MongoDB
object modeling tool designed to work in an asynchronous environment.

7.5.2 Dynamic props

One of the tasks was to update graphs dynamically, whenever their settings are changed.
For this, another Vue function is used: v-bind. It allows to dynamically bind props to certain
data on a parent. [16] So, when the user selects a new color for a graph, this parameter
dynamically flows down to the child and it is updated on the graph without page reload.
Example usage is:

<input v-model="parentColor">
<sparkline

data="[3,2,1,4]"
v-bind:color="parentColor">

</sparkline>

To redraw graphs when a property is changed without page reload, there were developed
custom watch functions. Every watcher is triggered when a specific property is changed,
and then it calls a method which is responsible for drawing the SVG.

7.5.3 Explanation of application deploying process

Since the application consists of two separate parts – back end and front end – it is needed
to deploy both of them separately. Firstly server side has to be set up. After the repository
is downloaded, there are only several steps to take. The application is using Node.js as a
base for the backend, so all needed packages (libraries) are gathered in the package.json
file. That file also contains minimum required version for each package. They can be all
installed at once with the help of npm (Node Project Manager) install command. This
command also installs all sub-dependencies for every package and takes care of specific OS
requirements. Before starting Node server, it is needed to ensure that MongoDB is installed
and running on the machine. This covers API deployment.

The frontend is built with Quasar Framework, which has two options: development
mode and a build version. While development it supplies its own server, but to deploy live
website it is needed to serve build files to a server.

More detailed instructions can be found in the README files in the GitHub repositories.

42

Chapter 8

User testing and evaluation

All process of this application development was iterative. That means that the phases
«design – test – measure – redesign» were repeated several times. It helps to discover
mistakes at early stages, and fix them immediately [1]. So, there were two kinds of testing:
formative user testing, performed at the prototyping stage, and summative usability testing.

8.1 Primary functionality
Resulting application has all functionality covered in the previous chapters.

∙ Create new dashboard.
As soon as a users are logged in in the application, they see the list of all available
dashboards, and a button allowing to create a new one. This page is build based
on the prototype (Figure 7.5). The new functionality here is a possibility to select a
custom grid (then the user receives blank canvas for designing a new dashboard), or
one of the tree predefined grids. This option makes creating new dashboard faster.
Figure 8.1 shows an example of a predefined dashboard.

∙ Generate several dashboards.
To make dashboards creation process even faster, in the application exists a func-
tionality to generate several dashboards at once. They would all have the same set
of widgets, but generated datasets would be different. To do this, a user just needs
to select amount of dashboards, and write a prefix for the titles. Each title would
then consist of a prefix plus a number. In future, there is a possibility to extend the
application, so that resulting set of dashboards would have more different parameters
(like a color of widgets, for example).

∙ Change grid or widget sizes.
All widgets are draggable and resizable (Figure 8.2). This allows quick manipulation
with their sizes and positions directly on the canvas.

∙ Change chart parameters and dataset.
Every widget has Settings layer (Figure 8.3). Settings are different for each widget,
but for all of them, they are dynamic. This means that changes made in the Settings
layer are displayed on the widget immediately, no need to refresh the page or press
Save. It helps to make the process fast.

43

Figure 8.1: Predefined grid for a new dashboard creation.

Figure 8.2: Demonstration of drag-n-drop possibility. Grid cells available for a widget
location are highlighted, and snap-to-grid functionality is enabled, which leads to a clean
grid structure.

Figure 8.3: Sparklines settings layer.

44

∙ Save dashboard, export to XML, export to PNG
Buttons for manipulation with dashboards in the database are located in the right
sidebar, and always visible to a user. There are the following possibilities: Save,
Delete, Export XML, Export PNG.
Export to XML is developed specifically for this project, and resulting XML satisfies
requirements needed for future analysis. An example of the XML is as follows:

<dashboard>
<height>260</height>
<width>1193</width>
<title>Dashboard title</title>
<graphicalElement>

<height>260</height>
<width>596</width>
<y>0</y>
<x>298</x>
<type>linegraph</type>
<style>

<color>#990</color>
<label>line2 linecharts</label>
<dataset>[...]</dataset>
<x>1</x>
<y>0</y>
<width>2</width>
<height>3</height>

</style>
</graphicalElement>
<graphicalElement>

<height>80</height>
<width>298</width>
<y>0</y>
<x>0</x>
<type>sparklines</type>
<style>

<label>spark1 label</label>
<redDot>true</redDot>
<dataset>
[...]
</dataset>
<color>#009900</color>
<x>0</x>
<y>0</y>
<width>1</width>
<height>1</height>

</style>
</graphicalElement>

</dashboard>

45

This example shows XML created for a dashboard containing two widgets only:
Sparklines and Line Chart. Important feature is that every widget is saved as
<graphicalElement>, and a set of the primary root settings (height, width, x and y
coordinates, type) is the same for every widget type. Then settings which are differ-
ent are gathered within the <style> part. This helps to use the same scripts for the
analysis later on. The structure of the resulting XML may be easily adjusted. Since
the application works with MongoDG all objects are saved as JSON, which is easily
translated to any XML structure.
An example of the generated PNG file is shown on the Figure 8.4. PNG files are being
generated using the library for Node.js, which takes specified DOM elements for the
future image. This helps not to display in the PNG sidebar and settings icons.

Figure 8.4: PNG file generated for the custom dashboard.

8.2 Formative usability testing
Formative usability testing should be performed at early design stages, or even better –
at the prototype stage. It is aimed to show what parts of the interface aren’t usable, or
aren’t intuitive enough . So it can take the role of a support tool for decision making [1]. In
order to perform Formative usability testing, three users were selected. They were invited
to interact with interactive application prototype build with Axure tools. They weren’t
given any specific tasks and had just to figure out how the application works, trying to
press all buttons and menu items. Then they were asked to write down their observations,
suggestions, and difficulties.

User 1: female, engineer, 50 years old

∙ Reaction: first reaction was a question «In what language F.A.Q. section is written?
I can’t understand it», referring to Lorem Ipsum text 1 usage in the answers. But in
general she liked everything, everything was clear and comfortable.

1http://www.lipsum.com

46

http://www.lipsum.com

∙ Suggestions: make it more clear how to delete the graphs; open generated image in a
new tab, rather then in the same one.

∙ Difficulties: haven’t discovered drag-n-drop possibility, so because of that didn’t find
a way to delete a widget from a dashboard.

User 2: male, psychology student, 23 years old

∙ Reaction: «I cannot find how to save a dashboard or exit the settings screen!»

∙ Suggestions: make some clear explanation about what each icon should do; create
obvious navigation when already at the editing a dashboard screen, make buttons for
saving or exporting always visible; make inputs the same width as checkboxes on the
Add a dashboard modal window.

∙ Difficulties: the user couldn’t find how to save the dashboards.

User 3: female, web developer, 30 years old

∙ Reaction: «It all looks good, I understand that at this stage graphs are not dynamic
because it is difficult to achieve at the prototyping stage, but I’d really like to see
how they change their settings when already live. Also, why does «select a template»
label looks like a text input? This shouldn’t happen in the live application»

∙ Suggestions: add more settings, not only color but also a label, title and etc.

∙ Difficulties: no difficulties found, the user knew general idea that this is only a pro-
totype, and having a solid web development experience guessed all functionality out
of it.

So, in general, all of them were satisfied with the suggested prototype. Some sugges-
tions they made are covered in the design (like adding more settings, or making deleting
functionality more obvious). Others are prototype limitations only. Some users also had
troubles with understanding a dataset concept, but they are not in the target group and
didn’t have an experience of working with dashboards before. So since the aim was to
satisfy needs of a primary persona in the first order, such issues wouldn’t be addressed.

8.3 Summative usability evaluation
Summative usability evaluation should be performed when the design is almost finished, and
main application functionality is ready. It tells you how convenient interface is, measured
by values like time to complete the task, satisfaction score, etc. In other words, summative
usability evaluation is a Quality Assurance (QA) type of tests.

Summative usability evaluation was performed on the already deployed website. For this
task, users were given direct instructions and a questionnaire aimed to guide them through
the main tasks. They were then asked to write down their suggestions and difficulties, also
to describe how easily discoverable each functionality was.

Main tasks which user had to perform are basically the same guidelines, which were
described in Section 7.2. All tasks are grouped within three parts: general application
features, single widget related features and dashboards features. After finishing each of the
sections, users were asked how satisfied in general they are with the interface. Results for
each group are on the Figure 8.5, Figure 8.6 and Figure 8.7 respectively.

47

Figure 8.5: Usability evaluation results for actions realted with user account and login
functionality.

Figure 8.6: Usability evaluation results for manipulating a single widget.

Figure 8.7: Usability evaluation results for general tasks related with dashboarts (editing,
saving, exporting in different formats).

48

Obtained results show that usability of the application is quite high and that all primary
tasks can be done without any efforts. Some of the users had difficulties with minor things,
like finding account-related parts of the application. To make it easier, Configuration menu
tab was renamed to Account.

While performing usability evaluation, it is important to keep in mind users context
[1]. When the user knows that somebody is watching him, or that he may be recorded, his
behavior may change. To avoid this, Google Form2 was created and sent to all participants,
asking to take a test in some calm environment.

To get the idea of users behavior on every page, Yandex Metrika Webwisor3 tool was
used. It creates different kinds of reports about website visits, including: clicks heatmaps,
link maps, scrolling maps, recording of a user’s screen during the visit, etc. For needs of
this evaluation, clicks heatmaps were the most important. From them it is visible if a lot
of users tried to make some actions which were not specified in the questionnaire. If this
were the case, that would mean that the tasks are not obvious, or particular functionality is
hidden in the interface. And from videos created with the help of Webvisor it is possible to
understand the exact order of website navigation. These videos may also be used to estimate
a time which was needed for a user to perform each task. Of course, such estimations are not
exact ones, but they are still precise enough to compare the time needed to finish different
sections.

The first analyzed heatmap is the page for editing a dashboard. It is selected since on
this page it is possible to do almost all tasks, which were specified as the most important
ones for the primary persona. From Figure 8.8 it is visible that main functionality is easily
discoverable, since all clicks are gathered in correct places, and there weren’t a lot of clicks
on application parts without any functionality.

Figure 8.8: Heatmap generated for Marketing template dashboard.

Heatmap for a page with a list of all dashboards (Figure 8.9) though shows that to edit
a dashboard some users tried to click on its title in a table. Indeed, icons are less usable

2https://goo.gl/forms/fn5oPGyKHIxVygBp2
3https://metrica.yandex.com/promo/webvisor/

49

https://goo.gl/forms/fn5oPGyKHIxVygBp2
https://metrica.yandex.com/promo/webvisor/

elements, and more efforts are needed to discover them. So, to improve this dashboards
title are made clickable too.

Full listing of a questionnaire together with the rest of the generated heatmaps may be
found in the Appendix C.

Figure 8.9: Heatmap generated for the index page.

50

Chapter 9

Conclusion

This paper describes a development process of a new application for the dashboards cre-
ation. Firstly, it was shown that there is a need for such a tool since none of the existing ones
satisfy all requirements. Among main requirements are: make dashboards easily readable,
follow UX practices based on how human brain works, allow creating dashboards quickly
and with minimum input needed, create custom XML structure for the export and allow
PNG export in order to achieve better results in the dashboard usability analysis. Based
on all requirements which were developed throughout the paper application prototype was
designed. To achieve described design quality, new JavaScript library – UXgraph was de-
veloped, containing reusable components for building the graphs. At its current stage, it is
a Vue.js extension which uses D3.js for data visualization. The library was published as an
npm module, and though it has only several types of graphs, and functionality is limited,
it already had more than 900 downloads. This shows high demand on such a library.

The next phase described in the thesis was development and deployment of specified
web application. It is developed using RESTful API as a backend for handling dash-
boards operations, so that client and server sides may be changed separately when needed,
without influencing each other. Front-end part covers all tasks specified for the primary
persona. Dashboards created with the developed application satisfy all ergonomic princi-
ples described in this thesis (Figure 9.1). The process of a dashboard creation is fast and
easy.

Both back-and and front-end parts were deployed to DigitalOcean server12. To ensure
that it satisfies all requirements, user testing and evaluation were performed. For this, five
users from different target groups, including the target group of a primary persona, were
asked to take part in a survey. The survey covered questions about the general application
functionality. After the results of the testing were gathered and analyzed, several changed
have been made to the application interface, in order to improve the interaction process.
To increase application usability, it has an F.A.Q. section, covering primary interaction
processes, comments in the code, and also a README file in its GitHub repository. So
does UXgraph library as well.3

In the future, the application may be extended to allow more functionality (such as
auto-generating of dashboards for testing purposes based on some generic algorithm), to
support more graphs types or be converted to a hybrid mobile application (using Cordova

1Deployed application public IP: http://46.101.183.148/
2Deployed application domain name: http://uxdash.ml
3UXgraph source files: https://github.com/lirael/vuejs-d3-uxgraph

51

http://46.101.183.148/
http://uxdash.ml
https://github.com/lirael/vuejs-d3-uxgraph

Figure 9.1: Example of a dashboard created with the developed application.

wrapper, for example). The application was developed keeping these possible extensions in
mind, so as a result, it is easily scalable and well documented.

52

Bibliography

[1] Benyon, D.: Designing Interactive Systems: People, Activities, Contexts,
Technologies. Addison Wesley. 2005. ISBN 0321116291.

[2] Cairo, A.: The Truthful Art: Data, Charts, and Maps for Communication. New
Riders. 2016.

[3] Camões, J.: Data at Work. New Riders. 2016. ISBN 0134268636.

[4] Cleveland, W. S.; McGill, R.: Graphical Perception: Theory, Experimentation, and
Application to the Development of Graphical Methods. Journal of the American
Statistical Association. 1984.

[5] Cooper: Sams - Pearson Education. Indianapolis. 2004. ISBN 0672326140.

[6] Eckerson, W. W.: Performance Dashboards: Measuring, Monitoring, and Managing
Your Business. Wiley. 2010. ISBN 0470589833.

[7] Few, S.: Dashboard Confusion. Intelligent Enterprise. 2004.

[8] Few, S.: Information Dashboard Design: The Effective Visual Communication of
Data. O’Reilly Media. 2006. ISBN 0596100167.

[9] Few, S.: Data Art vs. Data Visualization: Why Does a Distinction Matter? A blog
by Stephen Few. May 2012. [Online; visited 12.12.2016].
Retrieved from: http://www.perceptualedge.com/blog/?p=1245

[10] Gartner: IT Glossary. [Online; visited 10.12.2016].
Retrieved from: http://www.gartner.com/it-glossary/

[11] Healy, P. M.; Palepu, K. G.: The Fall of Enron. Journal of Economic Perspectives.
2003.

[12] Holmes, S.: Getting MEAN with Mongo, Express, Angular, and Node. New Riders.
2010. ISBN 0321683684.

[13] Iliinsky, N.: Four pillars of visualization. A presentation by Noah Iliinsky. [Online;
visited 10.12.2016].
Retrieved from: http://www.slideshare.net/CindyXiao/four-pillars-of-
visualization-by-noah-iliinsky

[14] Johnson, J.: Designing with the Mind in Mind, Second Edition: Simple Guide to
Understanding User Interface Design Guidelines. Morgan Kaufmann. 2014. ISBN
0124079148.

53

http://www.perceptualedge.com/blog/?p=1245
http://www.gartner.com/it-glossary/
http://www.slideshare.net/CindyXiao/four-pillars-of-visualization-by-noah-iliinsky
http://www.slideshare.net/CindyXiao/four-pillars-of-visualization-by-noah-iliinsky

[15] Moere, A. V.; Purchase, H.: On the role of design in information visualization.
Information Visualization. 2011.

[16] Pastushenko, O.: UXgraph - Vue.js library with predefined D3 graphs. [Online; visited
10.05.2017].
Retrieved from: http://excel.fit.vutbr.cz/submissions/2017/059/59.pdf

[17] Rosenberg, D.; Grafton, A.: Cartographies of Time: A History of the Timeline.
Princeton Architectural Press. 2012. ISBN 1616890584.

[18] Tufte, E. R.: The Visual Display of Quantitative Information. Graphics Press. 2001.
ISBN 1616890584.

[19] Tufte, E. R.: Beautiful Evidence. Graphics Press. 2006. ISBN 1930824165.

54

http://excel.fit.vutbr.cz/submissions/2017/059/59.pdf

Appendices

55

List of Appendices

A Attached CD content 57

B Application screenshots 58

C Summative usability evaluation materials 61

56

Appendix A

Attached CD content

On the attached CD there are following files and folders:

\theory
\src

<LaTeX source code>
xpastu01.pdf // Thesis text in PDF format

\dashboard-api
<backend-end source code>

\dashboard-app
<front-end source code>
\build

<front-end build files>
README // Technical information about the application, deployment process
content.txt // CD content explanation
manual.pdf // User manual from the interaction with the deployed application

57

Appendix B

Application screenshots

Figure B.1: Page listing all dashboards

58

Figure B.2: Create new dashboard form

Figure B.3: Generate several dashboards form

59

Figure B.4: Account configurations page

Figure B.5: Edit a dahboard page

60

Appendix C

Summative usability evaluation
materials

Listing of the questionnaire:

This usability testing is aimed to evaluate the usability of a software
for working with dashboards, developed as my Thesis project.
Please, follow instructions below and write down all your suggestions
and difficulties during the interaction with the app in the text field before.
Every your idea or emotion is valuable! :)
All evaluation shouldn’t take more then 10 minutes of your time!
Thanks

Section 1

1. Your age
2. Your sex
3. Your occupation

Section 2

1. Go to url: http://46.101.183.148
2. Create new account
3. Log in to the application with your new account
4. Find out how to see your profile and change a password
5. Find and have a look at the instructions about the software usage
6. How easy and pleasant was this part?

Section 3

1. Create a new dashboard with a custom template
2. Edit the title of a dashboard
3. Try adding new widgets of different types
4. Delete a widget from a dashboard
5. Add a sparkline widget to the dashboard
6. Change a color on a sparkline widget you’ve just added

61

7. Change size of a sparkline widget you’ve just added
8. Save a dashboard
9. How easy and pleasant was this part?

Section 4

1. Try to export a dashboard as an XML
2. Try to export a dashboard as a PNG
3. Go to the list of all dashboards. Try to edit another dashboard
4. Delete any dashboard
5. Create a new dashboard using some template
6. How easy and pleasant was this part?

Section 5

Thanks!

1. Let me know if you have some general comments about the application

Figure C.1: One of the resulting heatmaps

62

	Introduction
	Analysis of existing tools and methods for representing data on one screen
	Data visualization history
	Types of data visualization

	Dashboards
	Business intelligence
	Dashboards taxonomies with examples
	Motivation for creating dashboards
	Review of the existing software for dashboard creation

	Principles of dashboards design
	Ergonomics of the iteration
	Dashboard display media chosen for the application
	Graphs
	Icons
	Text

	Best user experience practices applied to dashboards
	Bad design examples
	Analysis of Information Dashboards Usability

	Analysis of available web technologies
	Existing technologies review
	Mobile usability

	UXgraph library
	UXgraph implementation
	Vue reusable components
	Passing data between components

	Web application for information dashboard design
	User and Task Analysis
	Context
	Design guidelines
	Primary persona

	Features
	Technology stack
	Application prototype
	Application architecture
	RESTful API for handling dashboards operations
	Dynamic props
	Explanation of application deploying process

	User testing and evaluation
	Primary functionality
	Formative usability testing
	Summative usability evaluation

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Attached CD content
	Application screenshots
	Summative usability evaluation materials

