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Abstrakt 

V této pr{ci se zabýv{me možnostmi urychlení vědeckých výpočtů s použitím grafických 

výpočetních jednotek. Termínem vědecký výpočet v tomto kontextu rozumíme specifický 

algoritmus, který počít{ povrch bin{rních hologramů, jež se používají při generov{ní 

ultrazvuku. Zaměříme se na n{vrh hologramu, zvl{ště pak na rychlost, se kterou můžeme 

vypočítat povrch takového hologramu. Za tímto účelem použijeme dvě popul{rní platformy 

pro paralelní zpracování dat – CUDA a OpenMP. Výsledný povrch hologramu je důležitý, 

protože ovlivňuje specifické fyzik{lní vlastnosti hologramu.  

Abstract 

In this thesis, we deal with the possibilities of the acceleration of scientific computations 

using the graphical processing unit. The term scientific computation in this context means 

an algorithm, which computes binary holograms that are used to generate ultrasound. We 

will concentrate specifically on the design of the hologram, focusing at the speed we can 

achieve when computing the surface of the hologram. For this purpose, we will use two 

popular parallel data processing platforms – CUDA and OpenMP. The surface design 

pattern of the hologram is important due to the fact, that it determines the hologram’s 

specific physical characteristics.  
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1 Introduction 

In computer science, there are many different areas and types of work, algorithms, ideas, 

data types, etc. Most computer users are pure consumers; they use the computer to get 

along their day and to make their lives easier. There are also people who create programmes 

for computers - web pages, databases, games. At last, but not least, there are programmers 

and applications that are oriented in speed and overall performance. These applications 

execute and implement very difficult scientific or simulation algorithms and are extremely 

demanding on hardware/software performance.  

In general, there are two ways you can achieve better computing speed – getting a faster, 

more powerful hardware or creating an optimised software. Creating a new set of hardware 

equipment is expensive and takes a long time, whether it is processor units, graphical units, 

or other specialised cards. On the other hand, when one is given a certain equipment and is 

supposed to implement a very slow and performance-demanding algorithm on ‚what he’s 

got‛, it is a challenge. And all these little challenges change the world. 

One of many areas of high performance computing is laser-generated ultrasound. The 

photoacoustic effect occurs when a time varying optical source is incident on an optically 

absorbing material. The incident photons are absorbed and converted to heat, which causes 

a small temperature rise resulting in local pressure increase which generates an acoustic 

pulse. Within the past decade there has been increasing interest in optically generated 

ultrasound (OGUS) for biomedical applications due to a steady increase in the acoustic 

pressures that can be generated. 

For example, nano-composites composed of separate elastomeric and absorbing 

components possessing high optical absorption, efficient heat transduction, and high 

thermal expansion have been used to generate focused pressures of 50 MPa. OGUS has 

several clear advantages compared to piezoelectrics. These include very wide bandwidths of 

100 s of MHz, non-contact excitation, and flexible element size. In addition, by controlling 

both the optical pulse shape and spatial illumination pattern to a two-dimensional absorber, 

it is possible to achieve a high degree of control over the resulting acoustic field in three 

dimensions. 

A binary amplitude hologram is a 2-D binary pattern designed to control the distribution of 

light or sound of a particular wavelength in three dimensions. The pattern of a particular 

hologram has to be designed and computed according to a set of target points. The 

hologram’s size influences the complexity of its design, meaning larger dimensions of a 

hologram mean complex and slow design procedure, which takes a long time. 

The design procedure can obviously be accelerated. As it is mentioned above, evolving a 

new hardware is expensive, that is why it is a good idea to use the equipment we already 

have and exploit its performance. There are many kinds of hardware we can use, though for 

our purpose multi-cored processors and graphical processing units are the most interesting. 
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Those chips are not very easy to program, but they possess a huge performance potential, 

which would be rather shame not to use in our advantage. The fundamental question is: can 

we transform a piece of code using high performance computing paradigms and create a 

faster solution, which will produce the same, if not better results? 
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2 Massively parallel computation 

In the computing field, the term massively parallel refers to the use of a large number of 

processors (or cores, computers) to perform a set of coordinated computations in parallel 

(simultaneously). 

There are several ways we can perform such a parallel computation. For example, we can 

connect multiple computers and create a computational grid, or we can use a specialized 

chip, that was designed to perform a simultaneous computation.  

One kind of those chips is, among others, a graphical processing unit (GPU), which we will 

use to run our code. 

There are several ways we can approach the parallel concept, in our thesis we will use the 

OpenMP library running designed for CPU and the CUDA platform for controlling the 

GPU. 

2.1 Graphical processing unit 

The GPU is a specialized electronic circuit designed to rapidly manipulate and alter memory 

to accelerate the creation of images in a frame buffer intended for output to a display. The 

first GPUs appeared in the 1970’s to accelerate the drawing of graphics for various arcade 

games. 

Newest GPUs have many different functions (programmable shaders, techniques to reduce 

aliasing, etc.) and can be used not only to produce a graphic output, but to perform a 

general algorithm as well. In our work we will profit from this ability and we will use the 

GPU as an instrument for our parallel computation.  

2.2 Differences between GPU and CPU 

CPU is latency based, while GPU is throughput based. Thus, CPU is ideal for sequential 

codes, while GPUs are perfect for massively parallel codes. 

The CPU contains a low number of cores, today it varies between 4 (desktops) – 16 (servers) 

cores. Each of these cores is able to process a small amount of threads at the same time, 

typically one or two. Another typical characteristic of a CPU is a large cache memory, hiding 

the latency of memory system and the logic of sequential applications, or the out of order 

instruction execution. An advantage of the CPU may be a less strict restriction in the 

memory size, which in today’s computers reaches from 8GB up to 32GB.  

On the other hand, a GPU is composed of a large amount of cores, where each core can 

process hundreds of threads, if not thousands at the same time.  



 6 

This huge number of threads then allows a large acceleration of a specific kind of 

applications, depending on the type of algorithm and its optimization. There are codes, 

which are very difficult to parallelize, for example traversing through a list or a binary tree, 

hash functions, user-interaction functions and others. 

The built-in memory size on the GPU reaches from low units of GB, most often 2 – 8 GB. 

There are obviously devices that possess a larger amount of memory – 12 or even 16GB 

(NVIDIA Pascal card). 

The differences between CPU and GPU are summarised in the following table: 

Table I: Description of a development platform [2], [3].  

 CPU - Intel Core i7-920 GPU - NVIDIA GTX 580 

Chip frequency [MHz] 2660 1544 

Number of cores 4 16 (SM units) 

Number of threads 8 Max. 16 x 1536 

Memory size [GB] 12GB 1.5 

L2 cache size [KB] 256 786 

SIMD Widht 4 32 

2.3 Streaming multiprocessor 

Streaming multiprocessor (SM) is a basic execution unit, which controls all the 

computations. The number of SMs is dependent on the type of the card; however, the SM 

architecture is very similar across all card models. SM among others contains load/store 

units, floating-point and integer units, registers, shared memory and many others. A GPU is 

then composed of several SMs that allow us to run a large amount of threads. 

2.4 OpenMP 

OpenMP (Open Multi-Processing) is an application programming interface (API) that 

supports multi-platform shared memory multiprocessing programming in C, C++, and 

Fortran, on most platforms, processor architectures and operating systems. 

The strong advantage of OpenMP is its simple usage and high productivity. We used this 

API on a CPU, thus we could only run smaller amount of threads compared to CUDA. 

 

2.5 CUDA platform 

The Compute Unified Device Architecture (CUDA) is an environment that allows us to 

program GPUs that are CUDA-compatible. A part of this package is also a compiler 

necessary to compile and run our applications on the GPU. 
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For the proper run of the application, it is necessary to correctly separate the logic of the 

programme among threads and blocks. It is also crucial to manage the shared memory in 

the correct way, correctly use the indexes that identify threads in blocks etc. 

In the upcoming chapter, we will describe a few basic terms from the CUDA context, which 

are important to understand when working with CUDA platform. 

2.5.1 Grid 

Grid identifies the number and organization of blocks. The maximum number of runnable 

blocks may vary depending on the device. 

Blocks from the grid are assigned to particular SMs, no order of execution is provided. Once 

one of the SMs finishes its work on one block, another block is automatically assigned and 

the SM can start the computation again. 

2.5.2 Block 

Block is an abstract unit of threads decomposition. Its purpose is a more simple orientation 

in threads and their less difficult understanding when programming. In addition, it allows 

thread cooperation (shared memory to hide memory latency). Threads in a block can be 

organized into a 1D, 2D or 3D structure. The maximum amount of threads in one block 

varies depending on the device; usually you can run up to 512 or 1024 threads. 

2.5.3 Threads 

Once a kernel is launched, it is executed as a grid of parallel (simultaneously running) 

threads. One kernel launch can spawn even thousands of threads. 

A thread is the most basic element of execution on the GPU. Threads and blocks can be 

organized into a 1D, 2D or 3D structure. The order in which the threads are executed is not 

guaranteed, so it is a programmer’s task to create kernels that are independent on the order 

of execution.  
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Figure 1. Threads and block organization. 

Source: http://3dgep.com/wp-content/uploads/2011/11/grid-of-thread-blocks.png 

 

In Fig. 1 we can see a kernel launch (a grid), that has the following configuration: 

Six blocks in a grid, each block held 12 threads. 

2.5.4 Kernel 

This term means a piece of code of the programme that is supposed to be run on the GPU. It 

is labelled with the __global__ keyword that identifies a function that can be launched from 

the CPU and is executed on the GPU. When running a kernel, we have to specify a launch 

configuration in which the computation is meant to be executed. 

2.5.5 Global memory 

This type of memory is the largest, but accesses to it are relatively expensive (take a long 

time). It is a place where threads can share data. The data stored in this memory are 

persistent between kernel launches.  

That is why it is suitable to use the shared memory, in which we can store frequently used 

data and save the time, it takes to repetitively load data from one specific area of the global 

memory. 

All threads can access the global memory. 

2.5.6 Shared memory 

Shared memory’s size only counts in tens of KB, but access to it is very fast. This memory is 

assigned and reserved for one block only. This means each thread in one particular block 
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can load and store data from the shared memory that has been assigned to that block. 

Sharing data between two or more blocks using the shared memory is not possible. 

2.5.7 Registers 

Each SM has its own set of registers, into which threads store their own local variables. 

Accesses to the registers are the fastest compared to other types of GPU memory. Each 

thread can access only the registers that have been assigned to the thread. 

2.6 Performance comparison 

To test the GPU abilities and to compare them with CPU, we have implemented a few 

microbenchmarks based on matrix-matrix multiplication and measured the time it takes to 

compute the product as well as the number of floating-point operations per second 

(GFLOPS). 

Each GPU kernel represents one concept of CUDA code optimization to see which factors 

actually make an impact on the performance. 

CPU implementation was accelerated using the OpenMP platform to employ multiple 

treads and exploit SIMD vector units. 

In the following chapters, we will show graphs with GFLOPS values we achieved while 

running different types of kernels. These kernels will now be briefly introduced. 

 

 

Figure 2. Kernel times comparison. 

In Fig. 2, we can see the kernels execution time comparison. The CPU code and some CUDA 

kernels were not launched for sizes larger than 1024x1024 elements due to an extensive 



 10 

execution time, or because of the impossibility to run a particular kernel (restricted by 

maximum number of threads we can run in a block). 

The horizontal axis MATRIX SIZE identifies the matrix size of a square matrix that means 

each matrix contained MATRIX SIZE² elements. 

Kernel description: 

Kernel naive – the simplest possible implementation of matrix multiplication. No shared 

memory is used, the grid contains as many blocks as there are rows in the result matrix. 

That means one row of the matrix is assigned to one block. Each block contains MATRIX 

SIZE threads. Each thread then computes one element of the result matrix by multiplying all 

elements in the specific row and column. 

Kernel SM reduction – shared memory is used, the grid contains the same amount of blocks 

as the number of elements in the matrix, number of threads per block corresponds to the 

matrix size. Threads cooperatively load the product of one particular element from the row 

and one element from the column of the source matrices into the shared memory. Once the 

products are stored in the shared memory, threads cooperatively perform a summing 

reduction and the result of this reduction is the final value of one element of the result 

matrix. 

Kernel noSM tile basic – this kernel does not use the shared memory. It uses the tile 

principle instead, each block processes one tile (a part of the result matrix). 

Kernel SM basic tile – shared memory is used in this kernel. This kernel runs in phases, in 

each phase the threads cooperate on loading two tiles from two source matrices into the 

shared memory.  

This shared memory data is then used to compute the result – each thread in the tile 

computes one element of the tile. In each phase threads keep their own progressive value of 

the product, which represents the summed product of the elements that were processed in 

the past phases. 

Once all phases are done, each thread in one tile then stores the final product in the global 

memory. 

Kernel tile unroll – same idea as the SM basic tile with the difference in unrolled loops –  the 

loop calculating the dot product is hand unrolled. 

Kernel tile pref – same idea as SM basic tile, this time with the use of the prefetch technique, 

when the kernel is accessing some data from the global memory while is computing the 

result with some other data at the same time.  

With this technique, we can utilize both arithmetic logic and load/store units, which means 

less time is spent when threads are waiting to get data from the global memory. 

Kernel tile pref MW – same principle as tile pref. Now however, not only one tile is 

processed by one block, but two (MW = More Workload). 
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CPU and CPU OMP then stand for a single threaded CPU code and the multithreaded 

OpenMP code. The OpenMP CPU code is performing the standard naive matrix 

multiplication loop with a parallel reduction. 

 

 

 

Figure 3. Absolute values of kernel performance. 
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Figure 4. Detailed graph showing CPU and reduction kernel performance. 

In the Figure 3 we can see the peak performance values of our kernels. The best results were 

achieved with the tile pref MW kernel, with the value of 343 GFLOPS. We can also see the 

performance differences in the particular implementations using different approaches and 

optimizations. 

The theoretical peak performance of the CPU we used for the test is 47 GFLOPS [2]. We 

achieved only around 1 GFLOPS because we did not use any particular optimization. 

As of the GPU, the peak performance of the GTX580 is 1581 GFLOPS. We managed to 

achieve 343 GFLOPS with our best kernel, which is 21% of the possible performance. 

2.7 Summary 

We were able to find and implement several versions of the matrix-matrix multiplication 

kernels, each of which with a slightly different approach and optimisation level (prefetch, 

more workload for one block). We were also able to determine techniques that are better to 

avoid in some cases (reduction). 

Unfortunately, we were not able to achieve the maximum peak performance of the 

processor and the GPU, as explained above. Nevertheless, we have proofed that some codes 

are very easy to parallelize and with these codes, we can clearly see that the parallel 

approach is beneficial.  
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3 MATLAB implementation 

3.1 Binary hologram 

A binary amplitude hologram is a 2-D binary pattern designed to control the distribution of 

light or sound of a particular wavelength in three dimensions. Pixels (elements) that are 

‚on‛ in the pattern transmit waves which constructively interfere at the design points. 

Pixels that are ‚off‛ do not transmit [1]. 

This hologram is then printed on an actual piece of material and used to generate 

ultrasound of specific characteristic, e.g. high acoustic pressure at certain points, very high 

frequency, specific shape of the focus, etc. 

There are two ways we can generate the binary hologram. 

First, one may use the ray tracing method, which is designed to generate a single acoustic 

focus. For each hologram, a target point, aperture size (i.e., hologram size), pixel size (i.e., 

the size of a hologram element), and design wavelength are defined. The pressure on the 

surface of the 2-D hologram is then calculated by approximating the focal point as a mono-

chromatic point source oscillating at the design frequency. The calculated 2-D pressure on 

the hologram surface is then thresholded with positive values of pressure set to 1 and 

negative values set to 0 to produce a binary hologram. We can see an example of a plotted 

hologram on Fig. 5. 

 

Figure 5. A binary hologram example. 

 

It turned out however, that a hologram generated by the ray-tracing method shows large 

variations in pressure generated at the target points. 

As a result, an optimization approach was developed for the calculation of holograms with 

multiple foci – a binary search algorithm. We will describe this algorithm in the following 

chapter. 
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In addition, we have to establish a mechanism that will allow us to compare one hologram 

to another and which will measure the total ‘quality’ of the created hologram. This 

mechanism will in the upcoming text be denoted as ‚the cost‛. 

The cost associated with a state of a hologram is evaluated using a cost function first used 

by Clark in the design of binary optical phase holograms [8]. This is given by  

C=−|p¯|+ασ, 

where |p¯| is the average magnitude of the complex pressure at the target points, σ is the 

standard deviation of the pressure over the target points, and α is a factor weighting the two 

terms. Empirically a value between 1 and 2 for α was found to provide a good balance 

between maximizing the pressure at each target point and minimizing the variation. 

3.2 Binary search algorithm 

The hologram is initialized in a randomized binary state and the cost associated with this 

state is computed using a cost function. The idea of the optimization is the following: 

The states of single pixels are flipped, new cost is evaluated and the new state is kept if it 

decreased. Pixels are chosen randomly, with each pixel on the hologram being explored 

once before repeat tests. This continues for as long as the number of changes in the iteration 

is less than 0.01% of the total number of pixels.  

The random-exhaustive approach to pixel selection was found to converge more rapidly 

than ordered or non-exhaustive selection. The random initialization and ordering of the 

pixel selection means the algorithm converges to different holograms between model runs 

and from different initial states. 

The algorithm is summarised in Fig. 6. 

The initial implementation in MATLAB takes a very long time when bigger holograms are 

created (e.g. size of 64x64 elements and bigger). This means the time complexity is one of the 

factors that we will try to improve, as well as keeping the quality of generated holograms on 

par with MATLAB. 
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Figure 6. Binary search algorithm flowchart [1]. 

3.3 Code analysis 

The starting point of our work was a piece of code written in MATLAB based on an article 

by Michael Brown at al [1]. We analysed this code, determined the bottlenecks and tried to 

eliminate them. 

The actual code then consists of two loops. The first, outer loop, determines the precision in 

which the computation is. There is very little we can do about this loop since it is a control 

loop. 

The second loop, however, is the one we can improve. This inner loop traverses through all 

the elements of the hologram. The whole hologram can be stored in the memory as an array 

of numbers (integers, doubles). What the serial (MATLAB, C) implementation does, is it 

goes through all the elements sequentially one after another. Here is the point where the 
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possible optimization comes to play – we can process and evaluate several elements of such 

an array at the same time. This can be achieved using threads, when each thread evaluates a 

smaller part of the entire hologram resulting in faster calculation. 

The elements for evaluation are chosen randomly, based on a randomized array of indexes. 

This array is randomly permutated after each iteration of the outer loop. 

When evaluating one element, its value is flipped, the new cost of this state is computed and 

if it is lower than the previously lowest cost, the new state is accepted. 

The problems identified in the MATLAB implementation are following: 

(1) Matlab uses Just In Time (JIT) compiler to translate a script to the machine code (use 

another programming language – C/C++ in our case, could improve performance) 

(2) Memory in Matlab is dynamically allocated and freed (use one chunk of memory 

throughout the whole computation) 

 (3) Work only on one hologram at a time – might not find the best possible solution because 

the techniques gets stuck in a local optima 

(4) The whole hologram is processed sequentially; we will use threads to simultaneously 

perform the computation 

There are a couple of special MATLAB functions in the code, that we will have to rewrite, 

e.g. randperm(), ind2sub() [4, 5] etc. However, these are only auxiliary functions and the C 

language code will be very similar to the MATLAB code. 

3.4 Performance 

We measured the MATLAB code performance to set a reference point, which we could 

compare our work to when improving the algorithm. 

 

Figure 7. MATLAB execution time. 

1

4

16

64

256

1024

32 64 96 128 160 192 256

Ti
m

e
 (

se
c)

 

Hologram size 

MATLAB execution times 



 17 

 

As you can see from Fig. 7, the results are quite poor; hologram size of 128x128 takes over 

200 seconds (!) to compute.  

However, the raw time value is a little bit out of context, 200 seconds might be a reasonable 

value if the time it takes to print the hologram takes two days. 

On the other hand, if we wanted to change the focus of the target points in real time, this 

particular latency value is unbearable. 

3.5 Summary 

The background, use and importance of our project were explained. 

We have also determined the bottlenecks of the MATLAB implementation and suggested a 

solution to each of them. 

The algorithm we presented is intrinsically parallelizable; we want to focus on creating and 

evaluating multiple holograms at the same time to find the best possible solution. 

Furthermore, we want each hologram to be evaluated and processed by multiple threads 

simultaneously. 

We approach this algorithm as a scientific computation and partially as a simulation. We 

want to minimize the time it takes to compute the hologram.  

The performance of MATLAB implementation was measured and we will use this as a 

comparison to our future work on the project. We need some kind of feedback to see 

whether we are headed in the right direction. 
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4 Serial C implementation 

4.1 Code analysis 

There were a couple of specific MATLAB functions in the script that we had to rewrite in C. 

The purpose of these functions is among others: compute the standard deviation, compute 

magnitude, compute cost, create random permutation, etc. 

As explained in chapter 3.3, there are two loops performing the whole computation. We are 

maintaining this concept in our serial C implementation; one loop evaluates the precision 

while the other goes through all elements of the hologram. 

We can see the basic idea of the algorithm in the following pseudo-code: 

while ( precision not reached ){ 
  create random index array() 
   

for ( all elements in the hologram ){ 
   take one index from the index array 
   take one element at the index from the hologram 
   compute the new state depending on this element    

 
if ( cost of the new state is lower than the previous cost ){ 

    accept the change at the element 
    accept the new state and cost 
   } 
  }  
} 
 

We want to investigate the difference between the JIT compiled MATLAB script and the 

compiled C code. 

The serial C implementation solved two of our initial issues:  

 C is a compiled language 

 We are using one piece of memory during the whole computation. 

After rewriting the original MATLAB script to C language, it has shown that the 

performance difference between the two solutions is huge (see Fig. 8). 

 

4.2 Performance 
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Figure 8. Execution of the sequential code written in C. 

 

From Fig. 8, we can clearly see that the time necessary to create a hologram is significantly 

lower compared to the MATLAB version, no matter of the size. 

 

Figure 9: MATLAB to C implementation comparison 

 

0,00

0,00

0,00

0,00

0,01

0,02

0,03

0,06

0,13

0,25

0,50

1,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

 

Hologram size 

C implementation times 

0,00

0,00

0,01

0,03

0,13

0,50

2,00

8,00

32,00

128,00

512,00

2 048,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

 

Hologram size 

MATLAB to C comparsion 

matlab

plain C



 20 

Figure 7 shows the difference between MATLAB and C implementations in execution times. 

Both vertical and horizontal axises are in logarithmic scale because the differences are 

enormous, reaching three orders of magnitude 

4.3 Summary 

Rewriting the original MATLAB version to the C language proved to make a huge 

performance difference in terms of execution time. By using C, we have solved issues 1 and 

2 mentioned in chapter 3.3. 

The C code also uses a random number generator, which does not make a big difference in 

performance and increases the quality of the final hologram.  

However, this version of our code is still only working on one particular hologram at a time. 

By using multithreaded approach, we can run several threads or blocks and start the binary 

search from different initial states, which might end up with creating better cost evaluated 

holograms. This is the area we want to focus on and put our CUDA knowledge in practice. 
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5 OpenMP implementation 

5.1 Code analysis 

In our OpenMP implementation, we will focus on working simultaneously on multiple 

holograms at once, as mentioned in chapter 3.3. OpenMP works with threads, just like 

CUDA. These threads run on CPU, so there is no need to move data between CPU and GPU 

memory. 

We chose to run one thread per one hologram we want to create. For example, we want the 

CPU to work on eight holograms at once. Then the number of threads we will run for the 

computation will be eight. One thread processes one hologram in its own separated 

memory space. This is the idea of how to start the binary search from different initial states, 

which should lead to creating better-evaluated holograms. 

The algorithm each thread is performing is the exact same algorithm as the serial C 

implementation and was described in chapter 4.1. 

5.2 Performance 

 

Figure 9. OpenMP execution times. 
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Figure 10. OpenMP compared to C version. 

 

 

Figure 11. MATLAB, C and OpenMP version comaprison, logarithmic scale. 
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However, this is not an entirely fair comparison; the MATLAB and the serial C 

implementation are only processing one hologram, while the OpenMP version is 

performing computation on multiple holograms at the same time. A more detailed 

description will be presented in the chapter 8. 

5.3 Summary 

The OpenMP brought us into parallel hologram processing. We are still benefiting from C as 

a compiled language, we are still using one and only piece of memory for the whole 

calculation. The difference is, with the OpenMP version we are working on multiple 

holograms at the same time.  

We can observe performance drop when increasing the amount of holograms that are 

processed at one time. We will try to eliminate this effect in the following kernels running 

od CUDA compatible GPUs.  



 24 

6 CUDA implementation 

As I have already mentioned, there are several ways how to implement the algorithm. We 

have created three kernels, each with a little different approach and performance.  

I will describe all of our kernels in the following text, as well as the differences between 

particular versions and their performance. 

6.1 Naive kernel 

6.1.1 Code analysis 

This is the first kernel we have implemented and is based entirely on the OpenMP version. 

That is one thread per one hologram. This solution is very straight forward, and easy to 

implement. 

The downsides of this solution are: 

 Memory requirements 

 Not processing the hologram itself in a parallel manner 

The two issues mentioned above are connected in a way – in this version, we use one thread 

to calculate one hologram, which means each thread has to have its own memory space, 

where the whole hologram and a few other data is stored. This implies huge memory 

requirements if we were to calculate a very large hologram, when it might not fit in the 

memory. For example, calculating a hologram of size 256x256 elements, using 1024 threads 

in 128 blocks would require the following memory space: 

Hologram size  integer(4B) num. of threads  num. of blocks 

256x256 x 4 x 1024  x 128   > 30GB 

 

This is over 30GB of memory, which will not fit in the GPU. A simple solution to this 

problem is reducing the number of blocks to 4, which will fit in the GPU with total size of 

1024 MB. The total number of holograms (256x256 elements) we can process using this 

kernel is 1024*4 = 4096 holograms (aka. the number of initial states from which we start the 

binary search). The number of holograms that can fit in the GPU memory is dependent on 

the hologram size. 

The number of blocks and threads that perform the computation can be altered, resulting in 

different values and their combinations, but the idea of the restriction remains the same. 

We can exploit the GPU memory and chip performance, because we can run more blocks 

and threads, increasing the chance of finding a better evaluated hologram. This will be 

described in the chapter 8. 
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In the Naive kernel, each thread is performing a sequential calculation, which is resulting in 

low performance and will be improved in the future kernels described in the following 

chapters. 

6.1.2 Performance 

This kernel was launched in the following configuration: 

 64 blocks, 

 32 threads in one block, 

That is 64x32 = 2048 holograms processed at the same time. 

 

 

Figure 12. Execution times of the Naïve kernel. 
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Figure 13. Naive kernel compared to other versions. 
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In the following kernels, we will try to evolve the Naive kernel, using slightly different 

approaches and techniques to demonstrate a proper usage of the GPUs. We will concentrate 

on parallel processing of several holograms at once with the use of blocks and threads. 

6.2 Hologram in shared memory 

6.2.1 Code analysis 

As it is obvious from the name of this kernel, we have moved the whole hologram into the 

shared memory. Since the shared memory is accessible to all threads in a block, we now 

have one hologram per CUDA block. 

The major advantage of this distribution is a much efficient use of CUDA threads. Threads 

now cooperatively load the hologram into the shared memory and then the whole hologram 

is divided equally among all threads and each thread does its own computation on its own 

data. 

Because the shared memory is in use in this kernel, we have to ensure the threads will safely 

load/store data from/to the shared memory, we also have to use barriers to prevent threads 

using invalid data. 

In addition, we do not use the random generator. We do not need to, because in this 

implementation we are starting the binary search at a large number of different, randomized 

holograms. The serial CPU version only randomly searches in a small surrounding of the 

possible solution; while on the GPU we can start searching from many (even thousands) 

initial holograms, increasing the chance of finding a better hologram. All those different 

holograms are then calculated in a slightly different way; their surfaces are slightly 

different. These nuances in the surfaces then make the difference between the final costs. 

They also make the difference in the hologram’s ability to fulfil the required physical 

characteristics. From all the holograms we created, we can then choose the one that has the 

best cost. 

All threads in one block are working on one hologram at the same time. Each thread is 

computing the cost of one element after another and once one element’s cost is computed, 

all threads perform a reduction to determine, which thread computed the best fitting cost. 

Once the reduction is finished, the corresponding change in the hologram is made and the 

best cost is stored into the shared memory. The change and store is only made by one 

thread, the one that computed the best cost. The rest of threads wait for the one to perform 

the changes and then all threads copy the new best cost in order to continue their 

computation with valid data. 

Let us demonstrate the algorithm on the following pseudo code: 
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Cooperatively load hologram into shared memory 
 
while ( precision not reached ){ 
   

for ( all elements belonging into thread’s compute space ){ 
   take one element from the hologram (each thread takes a different element) 
   compute the new state and cost depending on this element 
   save the new cost into an array of costs (shared memory) 
   perform a parallel reduction on this array to find the best cost 
      

if ( thread’s local cost equals the best cost from the array){ 
if ( cost of the new state is lower than the previous cost ){ 

     accept the change at the element 
     accept the new state and cost 
    } 
   } 
  }  
} 
 
Cooperatively store computed hologram into the global memory 

 

After the whole loop has finished and the hologram has been calculated, the threads again 

cooperate on storing the hologram into the global memory, so that we can later retrieve the 

best hologram. 

The major disadvantage of this kernel is the memory requirement. More specifically, the 

shared memory limitations. Modern GPUs have 64kB of shared memory, which is enough 

to store a hologram of the dimensions 96x96 elements. One element is an integer that takes 4 

bytes of memory, 96x96x4 = 36864. A hologram of the dimension 128x128x4 would also fit in 

the shared memory all by itself, but we are using the shared memory for some other 

variables as well, so this is not possible. 

6.2.2 Performance 

This kernel was launched in the following configuration: 

 64 blocks, 

 32 threads in one block. 

That is 64 holograms processed at the same time. 

The influence of the number of holograms on the cost of the final state that is computed by 

the algorithm will be investigated in the chapter 8. 
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Figure 14. Hologram in SM kernel in context. 
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The goal now is to come up with a kernel that is more efficient and more practical; we will 

describe this kernel in the following chapter. 

6.3 Reduced integers kernel  

6.3.1 Code analysis 

The main issue with the kernel described in the previous chapter was its memory demand. 

The new version of that kernel, called Reduced integers kernel, has lowered memory 

requirements by reducing 32 integer elements into one element. 

We have used the following idea: 

An integer data type has 32 bits. The holograms we are creating are binary, which means 

their element’s values can be either ones or zeros. To store a one or a zero you need exactly 

one bit. Knowing those facts, we can store 32 of the original elements (integers) into just one 

reduced element (integer), while the actual data semantics and hologram semantics is 

observed. See the picture below: 

 

 

Figure 15. Reduced hologram kernel visualization. 

 

The original hologram is the one that is created first in the function. This hologram is 

created in a usual way using an array of integers. 

After the original hologram is created, we then reduce it following the principle mentioned 

above – we compact 32 original integer elements into one reduced element (a bit array). 
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Once the reduction is complete, the reduced holograms are then copied to the GPU global 

memory and from this memory, the threads cooperate on loading the reduced hologram 

into the shared memory. 

Using this approach, we can store a hologram up the size of 384x384 original elements, 

which is a massive improvement to the previous kernel (only 96x96). We can of course store 

larger holograms, but the size 384x384 is the largest that was proofed to be calculated 

correctly. 

The principle used to compute the hologram is the same as in the Hologram in shared memory 

kernel – each hologram is distributed over one block, threads in one block then cooperate on 

computing this hologram. 

6.3.2 Performance 

This kernel was launched in the following configuration: 

 64 blocks, that is 64 holograms processed at the same time. 

 Number of threads in one block was chosen as high as possible to reach the best 

possible performance. The best possible configuration is summarised in Table II: 

Table II: threads per block in the Reduced integers kernel 

Hologram 

size 

32 64 96 128 160 192 256 384 

Threads 

in block 

32 128 32 128 32 128 128 128 

 

The value of 32 threads per block is then a universal configuration that works with all 

hologram sizes. 

The number of blocks depends on how many holograms we want to process at the same 

time; the best compromise is 64 blocks. This number of blocks ensures great performance 

while keeping the final cost of the hologram higher then any serial version’s cost (see 

chapter 7.3 for more details). 

Furthermore, the Nvidia Tesla K20 GPU [9], that our binary search algorithm was executed 

on, can run 13 (SMs) x 2048 (threads per SM) = 26624 threads simultaneously. This implies 

that we can run up to 128 blocks at the same time, each with 128 threads when computing 

hologram of size 256x256 without losing computing performance (128 threads in 128 blocks 

makes a total of 128*128 = 16384 threads, using 128 threads in 256 blocks would make 

128*256 = 32768 threads, which would not ‚fit‛ in the GPU, resulting in performance loss). 
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Figure. 16. Reduced integer kernel execution times. 

 

 

Figure 17. Reduced integer kernel execution times in context. 
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From the Fig. 17 we can see that our Reduced integers kernel is comparable to the OpenMP 16 

threaded version. However, in the OpenMP version, the amount of holograms being 

processed at the same time (the number of threads stated in the brackets) is many times 

lower than the number of hologram we can process using the Reduced integer kernel. 

6.3.3 Summary 

The Reduced integer kernel finally brought us into the CPU/C/OpenMP territory. While 

being slightly slower than the OpenMP version, we can compute multiple holograms at 

once without a reason to worry about the execution time. 

On the other hand, there is still a minor disadvantage – memory requirements. Even with 

this advanced kernel, we are still limited by the size of the shared memory per block. To 

overcome this limitation we would have to use a different approach. For example, not using 

the shared memory at all and loading/storing data in a different way, dividing the hologram 

calculation into several phases, randomly choosing a part of the hologram from the global 

memory, etc. 
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7 Overall summary 

Looking back to chapter 3.3, we managed to solve all of our issues with the original 

MATLAB script: 

 We used the C programming language to avoid JIT compiling 

 Allocating the required memory area once, before the computation started, has also 

been accomplished 

 In our best implementations, we are working on multiple (even thousands) of 

holograms at the same time, which leads to creating better holograms (see chapter 8) 

 In the Reduced integer kernel, each hologram is also processed by several threads 

simultaneously 

All those points led to creating an application, whose performance was significantly faster 

than our starting point – the MATLAB script. 

We came up with a few versions of the binary search algorithm, each presenting a slight 

performance improvement. The absolute fastest implementation is the serial C. This for 

example, can compute a hologram of the size 256x256 in 0.661153 seconds, compared to 

MATLAB’s 1279 (!) seconds. 

The serial versions however, are not processing the hologram in a parallel manner and they 

are not working on multiple holograms at once. That is why we used the CUDA platform, to 

explore the possibilities of parallel computation and apply them to our problem. 

Using CUDA, we were able to compute the hologram of size 256x256 in 6.29 seconds, which 

is slower than serial C, but still many times faster than the original MATLAB script. On the 

other hand, our CUDA versions compute hundreds, even thousands of holograms at once, 

which leads to superior final hologram. If we were to compute even 64 holograms and reach 

a comparable cost of the hologram with the serial C version, it would take approximately 

0.66 x 64 = 42 seconds. The kernel that processes the same amount of holograms on CUDA 

takes 6.29 seconds. 

Since the Reduced integer kernel, as we called it, can compute many holograms 

simultaneously and those holograms are also randomly initialized, it does also achieve a 

better cost of the final hologram (described in chapter 8). It is up to the user’s choice to 

decide between the quality and speed. 
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8 Conclusions 

 

Figure 18. Particular solutions in comparison. 
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When measuring the solutions, we set the target points to be the same for all versions. In 

each experiment the hologram was initialized randomly, that is why we performed several 

experiments and then averaged the results. The last factor, the influence of the number of 

blocks computed at the same time will be discussed later in this chapter.  

The cost itself is an important metric that defines how well the hologram fits the target 

points. The better the cost, the better the physical characteristics of the hologram will be. 

 

 

Figure 19. Hologram’s final costs comparison. 
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Figure 20. Reduced integer kernel best costs compared to serial C. 
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9 Hologram examples 

 

Figure 21. Naïve kernel generated 256x256 hologram example. Defects visible. 

 

 

Figure 22. Reduced integers kernel generated 384x384 hologram. No defects. 
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