

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SYSTEMS

NÁVRH BINÁRNÍCH AMPLITUDOVÝCH HOLOGRAMŮ
PRO OPTICKÉ GENEROVÁNÍ ULTRAZVUKU
AKCELEROVANÝ POMOCÍ GPU

GPU-ACCELERATED DESIGN OF OPTICALLY GENERATED ULTRASOUND
USING BINARY AMPLITUDE HOLOGRAMS

BAKALÁŘSKÁ PRÁCE

BACHELOR‘S THESIS

AUTOR PRÁCE Martin Knotek

AUTHOR

VEDOUCÍ PRÁCE Ing. Jiří Jaroš, Ph.D.

SUPERVISOR

Brno, 2016

Abstrakt

V této pr{ci se zabýv{me možnostmi urychlení vědeckých výpočtů s použitím grafických

výpočetních jednotek. Termínem vědecký výpočet v tomto kontextu rozumíme specifický

algoritmus, který počít{ povrch bin{rních hologramů, jež se používají při generov{ní

ultrazvuku. Zaměříme se na n{vrh hologramu, zvl{ště pak na rychlost, se kterou můžeme

vypočítat povrch takového hologramu. Za tímto účelem použijeme dvě popul{rní platformy

pro paralelní zpracování dat – CUDA a OpenMP. Výsledný povrch hologramu je důležitý,

protože ovlivňuje specifické fyzik{lní vlastnosti hologramu.

Abstract

In this thesis, we deal with the possibilities of the acceleration of scientific computations

using the graphical processing unit. The term scientific computation in this context means

an algorithm, which computes binary holograms that are used to generate ultrasound. We

will concentrate specifically on the design of the hologram, focusing at the speed we can

achieve when computing the surface of the hologram. For this purpose, we will use two

popular parallel data processing platforms – CUDA and OpenMP. The surface design

pattern of the hologram is important due to the fact, that it determines the hologram’s

specific physical characteristics.

Klíčová slova

GPGPU, CUDA, OpenMP, vysoce náročné výpočty, paralelní výpočty, ultrazuk

Keywords

GPGPU, CUDA, OpenMP, high performance computing, parallel computing, ultrasound

KNOTEK, Martin. Návrh binárních amplitudových hologramů pro optické generování ultrazvuku

akcelerovaný pomocí GPU. Brno, 2016. 40 s. Bakalářská práce. Vysoké učení technické v Brně,

Fakulta informačních technologií. Vedoucí práce Jaroš Jiří.

Statement

I claim I have elaborated this thesis on my own under the supervisor Ing. Jiří Jaroš, Ph.D.

I have specified all literal sources and publications I have sourced from.

……………………

Martin Knotek

1.2.2016

Acknowledgement

I would like to thank primarily to the supervisor of my work, Ing. Jiří Jaroš, Ph.D. He was

always nice, always had an idea of how to improve the work. Both his team-leading and

programming skills are much appreciated.

Furthermore, a big thank you belongs to my family, relatives and closest friends. They were

a huge support at all times.

Another appreciation of gratitude is addressed to the whole set of computer equipment that

lasted long enough for me to be able to finish this thesis.

Thank you.

© Martin Knotek, 2016

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních

technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je

nezákonné, s výjimkou zákonem definovaných případů.

 1

Contents

Contents .. 1

1 Introduction... 3

2 Massively parallel computation .. 5

2.1 Graphical processing unit ... 5

2.2 Differences between GPU and CPU ... 5

2.3 Streaming multiprocessor ... 6

2.4 OpenMP .. 6

2.5 CUDA platform .. 6

2.5.1 Grid .. 7

2.5.2 Block... 7

2.5.3 Threads .. 7

2.5.4 Kernel .. 8

2.5.5 Global memory ... 8

2.5.6 Shared memory .. 8

2.5.7 Registers .. 9

2.6 Performance comparison .. 9

2.7 Summary ... 12

3 MATLAB implementation ... 13

3.1 Binary hologram ... 13

3.2 Binary search algorithm .. 14

3.3 Code analysis .. 15

3.4 Performance .. 16

3.5 Summary ... 17

4 Serial C implementation ... 18

4.1 Code analysis .. 18

4.2 Performance .. 18

4.3 Summary ... 20

5 OpenMP implementation .. 21

5.1 Code analysis .. 21

5.2 Performance .. 21

5.3 Summary ... 23

6 CUDA implementation ... 24

6.1 Naive kernel .. 24

6.1.1 Code analysis .. 24

 2

6.1.2 Performance .. 25

6.1.3 Summary ... 26

6.2 Hologram in shared memory .. 27

6.2.1 Code analysis .. 27

6.2.2 Performance .. 28

6.2.3 Summary ... 29

6.3 Reduced integers kernel .. 30

6.3.1 Code analysis .. 30

6.3.2 Performance .. 31

6.3.3 Summary ... 33

7 Overall summary .. 34

8 Conclusions... 35

9 Hologram examples .. 38

10 References... 39

 3

1 Introduction

In computer science, there are many different areas and types of work, algorithms, ideas,

data types, etc. Most computer users are pure consumers; they use the computer to get

along their day and to make their lives easier. There are also people who create programmes

for computers - web pages, databases, games. At last, but not least, there are programmers

and applications that are oriented in speed and overall performance. These applications

execute and implement very difficult scientific or simulation algorithms and are extremely

demanding on hardware/software performance.

In general, there are two ways you can achieve better computing speed – getting a faster,

more powerful hardware or creating an optimised software. Creating a new set of hardware

equipment is expensive and takes a long time, whether it is processor units, graphical units,

or other specialised cards. On the other hand, when one is given a certain equipment and is

supposed to implement a very slow and performance-demanding algorithm on ‚what he’s

got‛, it is a challenge. And all these little challenges change the world.

One of many areas of high performance computing is laser-generated ultrasound. The

photoacoustic effect occurs when a time varying optical source is incident on an optically

absorbing material. The incident photons are absorbed and converted to heat, which causes

a small temperature rise resulting in local pressure increase which generates an acoustic

pulse. Within the past decade there has been increasing interest in optically generated

ultrasound (OGUS) for biomedical applications due to a steady increase in the acoustic

pressures that can be generated.

For example, nano-composites composed of separate elastomeric and absorbing

components possessing high optical absorption, efficient heat transduction, and high

thermal expansion have been used to generate focused pressures of 50 MPa. OGUS has

several clear advantages compared to piezoelectrics. These include very wide bandwidths of

100 s of MHz, non-contact excitation, and flexible element size. In addition, by controlling

both the optical pulse shape and spatial illumination pattern to a two-dimensional absorber,

it is possible to achieve a high degree of control over the resulting acoustic field in three

dimensions.

A binary amplitude hologram is a 2-D binary pattern designed to control the distribution of

light or sound of a particular wavelength in three dimensions. The pattern of a particular

hologram has to be designed and computed according to a set of target points. The

hologram’s size influences the complexity of its design, meaning larger dimensions of a

hologram mean complex and slow design procedure, which takes a long time.

The design procedure can obviously be accelerated. As it is mentioned above, evolving a

new hardware is expensive, that is why it is a good idea to use the equipment we already

have and exploit its performance. There are many kinds of hardware we can use, though for

our purpose multi-cored processors and graphical processing units are the most interesting.

 4

Those chips are not very easy to program, but they possess a huge performance potential,

which would be rather shame not to use in our advantage. The fundamental question is: can

we transform a piece of code using high performance computing paradigms and create a

faster solution, which will produce the same, if not better results?

 5

2 Massively parallel computation

In the computing field, the term massively parallel refers to the use of a large number of

processors (or cores, computers) to perform a set of coordinated computations in parallel

(simultaneously).

There are several ways we can perform such a parallel computation. For example, we can

connect multiple computers and create a computational grid, or we can use a specialized

chip, that was designed to perform a simultaneous computation.

One kind of those chips is, among others, a graphical processing unit (GPU), which we will

use to run our code.

There are several ways we can approach the parallel concept, in our thesis we will use the

OpenMP library running designed for CPU and the CUDA platform for controlling the

GPU.

2.1 Graphical processing unit

The GPU is a specialized electronic circuit designed to rapidly manipulate and alter memory

to accelerate the creation of images in a frame buffer intended for output to a display. The

first GPUs appeared in the 1970’s to accelerate the drawing of graphics for various arcade

games.

Newest GPUs have many different functions (programmable shaders, techniques to reduce

aliasing, etc.) and can be used not only to produce a graphic output, but to perform a

general algorithm as well. In our work we will profit from this ability and we will use the

GPU as an instrument for our parallel computation.

2.2 Differences between GPU and CPU

CPU is latency based, while GPU is throughput based. Thus, CPU is ideal for sequential

codes, while GPUs are perfect for massively parallel codes.

The CPU contains a low number of cores, today it varies between 4 (desktops) – 16 (servers)

cores. Each of these cores is able to process a small amount of threads at the same time,

typically one or two. Another typical characteristic of a CPU is a large cache memory, hiding

the latency of memory system and the logic of sequential applications, or the out of order

instruction execution. An advantage of the CPU may be a less strict restriction in the

memory size, which in today’s computers reaches from 8GB up to 32GB.

On the other hand, a GPU is composed of a large amount of cores, where each core can

process hundreds of threads, if not thousands at the same time.

 6

This huge number of threads then allows a large acceleration of a specific kind of

applications, depending on the type of algorithm and its optimization. There are codes,

which are very difficult to parallelize, for example traversing through a list or a binary tree,

hash functions, user-interaction functions and others.

The built-in memory size on the GPU reaches from low units of GB, most often 2 – 8 GB.

There are obviously devices that possess a larger amount of memory – 12 or even 16GB

(NVIDIA Pascal card).

The differences between CPU and GPU are summarised in the following table:

Table I: Description of a development platform [2], [3].

 CPU - Intel Core i7-920 GPU - NVIDIA GTX 580

Chip frequency [MHz] 2660 1544

Number of cores 4 16 (SM units)

Number of threads 8 Max. 16 x 1536

Memory size [GB] 12GB 1.5

L2 cache size [KB] 256 786

SIMD Widht 4 32

2.3 Streaming multiprocessor

Streaming multiprocessor (SM) is a basic execution unit, which controls all the

computations. The number of SMs is dependent on the type of the card; however, the SM

architecture is very similar across all card models. SM among others contains load/store

units, floating-point and integer units, registers, shared memory and many others. A GPU is

then composed of several SMs that allow us to run a large amount of threads.

2.4 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that

supports multi-platform shared memory multiprocessing programming in C, C++, and

Fortran, on most platforms, processor architectures and operating systems.

The strong advantage of OpenMP is its simple usage and high productivity. We used this

API on a CPU, thus we could only run smaller amount of threads compared to CUDA.

2.5 CUDA platform

The Compute Unified Device Architecture (CUDA) is an environment that allows us to

program GPUs that are CUDA-compatible. A part of this package is also a compiler

necessary to compile and run our applications on the GPU.

 7

For the proper run of the application, it is necessary to correctly separate the logic of the

programme among threads and blocks. It is also crucial to manage the shared memory in

the correct way, correctly use the indexes that identify threads in blocks etc.

In the upcoming chapter, we will describe a few basic terms from the CUDA context, which

are important to understand when working with CUDA platform.

2.5.1 Grid

Grid identifies the number and organization of blocks. The maximum number of runnable

blocks may vary depending on the device.

Blocks from the grid are assigned to particular SMs, no order of execution is provided. Once

one of the SMs finishes its work on one block, another block is automatically assigned and

the SM can start the computation again.

2.5.2 Block

Block is an abstract unit of threads decomposition. Its purpose is a more simple orientation

in threads and their less difficult understanding when programming. In addition, it allows

thread cooperation (shared memory to hide memory latency). Threads in a block can be

organized into a 1D, 2D or 3D structure. The maximum amount of threads in one block

varies depending on the device; usually you can run up to 512 or 1024 threads.

2.5.3 Threads

Once a kernel is launched, it is executed as a grid of parallel (simultaneously running)

threads. One kernel launch can spawn even thousands of threads.

A thread is the most basic element of execution on the GPU. Threads and blocks can be

organized into a 1D, 2D or 3D structure. The order in which the threads are executed is not

guaranteed, so it is a programmer’s task to create kernels that are independent on the order

of execution.

 8

Figure 1. Threads and block organization.

Source: http://3dgep.com/wp-content/uploads/2011/11/grid-of-thread-blocks.png

In Fig. 1 we can see a kernel launch (a grid), that has the following configuration:

Six blocks in a grid, each block held 12 threads.

2.5.4 Kernel

This term means a piece of code of the programme that is supposed to be run on the GPU. It

is labelled with the __global__ keyword that identifies a function that can be launched from

the CPU and is executed on the GPU. When running a kernel, we have to specify a launch

configuration in which the computation is meant to be executed.

2.5.5 Global memory

This type of memory is the largest, but accesses to it are relatively expensive (take a long

time). It is a place where threads can share data. The data stored in this memory are

persistent between kernel launches.

That is why it is suitable to use the shared memory, in which we can store frequently used

data and save the time, it takes to repetitively load data from one specific area of the global

memory.

All threads can access the global memory.

2.5.6 Shared memory

Shared memory’s size only counts in tens of KB, but access to it is very fast. This memory is

assigned and reserved for one block only. This means each thread in one particular block

 9

can load and store data from the shared memory that has been assigned to that block.

Sharing data between two or more blocks using the shared memory is not possible.

2.5.7 Registers

Each SM has its own set of registers, into which threads store their own local variables.

Accesses to the registers are the fastest compared to other types of GPU memory. Each

thread can access only the registers that have been assigned to the thread.

2.6 Performance comparison

To test the GPU abilities and to compare them with CPU, we have implemented a few

microbenchmarks based on matrix-matrix multiplication and measured the time it takes to

compute the product as well as the number of floating-point operations per second

(GFLOPS).

Each GPU kernel represents one concept of CUDA code optimization to see which factors

actually make an impact on the performance.

CPU implementation was accelerated using the OpenMP platform to employ multiple

treads and exploit SIMD vector units.

In the following chapters, we will show graphs with GFLOPS values we achieved while

running different types of kernels. These kernels will now be briefly introduced.

Figure 2. Kernel times comparison.

In Fig. 2, we can see the kernels execution time comparison. The CPU code and some CUDA

kernels were not launched for sizes larger than 1024x1024 elements due to an extensive

 10

execution time, or because of the impossibility to run a particular kernel (restricted by

maximum number of threads we can run in a block).

The horizontal axis MATRIX SIZE identifies the matrix size of a square matrix that means

each matrix contained MATRIX SIZE² elements.

Kernel description:

Kernel naive – the simplest possible implementation of matrix multiplication. No shared

memory is used, the grid contains as many blocks as there are rows in the result matrix.

That means one row of the matrix is assigned to one block. Each block contains MATRIX

SIZE threads. Each thread then computes one element of the result matrix by multiplying all

elements in the specific row and column.

Kernel SM reduction – shared memory is used, the grid contains the same amount of blocks

as the number of elements in the matrix, number of threads per block corresponds to the

matrix size. Threads cooperatively load the product of one particular element from the row

and one element from the column of the source matrices into the shared memory. Once the

products are stored in the shared memory, threads cooperatively perform a summing

reduction and the result of this reduction is the final value of one element of the result

matrix.

Kernel noSM tile basic – this kernel does not use the shared memory. It uses the tile

principle instead, each block processes one tile (a part of the result matrix).

Kernel SM basic tile – shared memory is used in this kernel. This kernel runs in phases, in

each phase the threads cooperate on loading two tiles from two source matrices into the

shared memory.

This shared memory data is then used to compute the result – each thread in the tile

computes one element of the tile. In each phase threads keep their own progressive value of

the product, which represents the summed product of the elements that were processed in

the past phases.

Once all phases are done, each thread in one tile then stores the final product in the global

memory.

Kernel tile unroll – same idea as the SM basic tile with the difference in unrolled loops – the

loop calculating the dot product is hand unrolled.

Kernel tile pref – same idea as SM basic tile, this time with the use of the prefetch technique,

when the kernel is accessing some data from the global memory while is computing the

result with some other data at the same time.

With this technique, we can utilize both arithmetic logic and load/store units, which means

less time is spent when threads are waiting to get data from the global memory.

Kernel tile pref MW – same principle as tile pref. Now however, not only one tile is

processed by one block, but two (MW = More Workload).

 11

CPU and CPU OMP then stand for a single threaded CPU code and the multithreaded

OpenMP code. The OpenMP CPU code is performing the standard naive matrix

multiplication loop with a parallel reduction.

Figure 3. Absolute values of kernel performance.

 12

Figure 4. Detailed graph showing CPU and reduction kernel performance.

In the Figure 3 we can see the peak performance values of our kernels. The best results were

achieved with the tile pref MW kernel, with the value of 343 GFLOPS. We can also see the

performance differences in the particular implementations using different approaches and

optimizations.

The theoretical peak performance of the CPU we used for the test is 47 GFLOPS [2]. We

achieved only around 1 GFLOPS because we did not use any particular optimization.

As of the GPU, the peak performance of the GTX580 is 1581 GFLOPS. We managed to

achieve 343 GFLOPS with our best kernel, which is 21% of the possible performance.

2.7 Summary

We were able to find and implement several versions of the matrix-matrix multiplication

kernels, each of which with a slightly different approach and optimisation level (prefetch,

more workload for one block). We were also able to determine techniques that are better to

avoid in some cases (reduction).

Unfortunately, we were not able to achieve the maximum peak performance of the

processor and the GPU, as explained above. Nevertheless, we have proofed that some codes

are very easy to parallelize and with these codes, we can clearly see that the parallel

approach is beneficial.

 13

3 MATLAB implementation

3.1 Binary hologram

A binary amplitude hologram is a 2-D binary pattern designed to control the distribution of

light or sound of a particular wavelength in three dimensions. Pixels (elements) that are

‚on‛ in the pattern transmit waves which constructively interfere at the design points.

Pixels that are ‚off‛ do not transmit [1].

This hologram is then printed on an actual piece of material and used to generate

ultrasound of specific characteristic, e.g. high acoustic pressure at certain points, very high

frequency, specific shape of the focus, etc.

There are two ways we can generate the binary hologram.

First, one may use the ray tracing method, which is designed to generate a single acoustic

focus. For each hologram, a target point, aperture size (i.e., hologram size), pixel size (i.e.,

the size of a hologram element), and design wavelength are defined. The pressure on the

surface of the 2-D hologram is then calculated by approximating the focal point as a mono-

chromatic point source oscillating at the design frequency. The calculated 2-D pressure on

the hologram surface is then thresholded with positive values of pressure set to 1 and

negative values set to 0 to produce a binary hologram. We can see an example of a plotted

hologram on Fig. 5.

Figure 5. A binary hologram example.

It turned out however, that a hologram generated by the ray-tracing method shows large

variations in pressure generated at the target points.

As a result, an optimization approach was developed for the calculation of holograms with

multiple foci – a binary search algorithm. We will describe this algorithm in the following

chapter.

 14

In addition, we have to establish a mechanism that will allow us to compare one hologram

to another and which will measure the total ‘quality’ of the created hologram. This

mechanism will in the upcoming text be denoted as ‚the cost‛.

The cost associated with a state of a hologram is evaluated using a cost function first used

by Clark in the design of binary optical phase holograms [8]. This is given by

C=−|p¯|+ασ,

where |p¯| is the average magnitude of the complex pressure at the target points, σ is the

standard deviation of the pressure over the target points, and α is a factor weighting the two

terms. Empirically a value between 1 and 2 for α was found to provide a good balance

between maximizing the pressure at each target point and minimizing the variation.

3.2 Binary search algorithm

The hologram is initialized in a randomized binary state and the cost associated with this

state is computed using a cost function. The idea of the optimization is the following:

The states of single pixels are flipped, new cost is evaluated and the new state is kept if it

decreased. Pixels are chosen randomly, with each pixel on the hologram being explored

once before repeat tests. This continues for as long as the number of changes in the iteration

is less than 0.01% of the total number of pixels.

The random-exhaustive approach to pixel selection was found to converge more rapidly

than ordered or non-exhaustive selection. The random initialization and ordering of the

pixel selection means the algorithm converges to different holograms between model runs

and from different initial states.

The algorithm is summarised in Fig. 6.

The initial implementation in MATLAB takes a very long time when bigger holograms are

created (e.g. size of 64x64 elements and bigger). This means the time complexity is one of the

factors that we will try to improve, as well as keeping the quality of generated holograms on

par with MATLAB.

 15

Figure 6. Binary search algorithm flowchart [1].

3.3 Code analysis

The starting point of our work was a piece of code written in MATLAB based on an article

by Michael Brown at al [1]. We analysed this code, determined the bottlenecks and tried to

eliminate them.

The actual code then consists of two loops. The first, outer loop, determines the precision in

which the computation is. There is very little we can do about this loop since it is a control

loop.

The second loop, however, is the one we can improve. This inner loop traverses through all

the elements of the hologram. The whole hologram can be stored in the memory as an array

of numbers (integers, doubles). What the serial (MATLAB, C) implementation does, is it

goes through all the elements sequentially one after another. Here is the point where the

 16

possible optimization comes to play – we can process and evaluate several elements of such

an array at the same time. This can be achieved using threads, when each thread evaluates a

smaller part of the entire hologram resulting in faster calculation.

The elements for evaluation are chosen randomly, based on a randomized array of indexes.

This array is randomly permutated after each iteration of the outer loop.

When evaluating one element, its value is flipped, the new cost of this state is computed and

if it is lower than the previously lowest cost, the new state is accepted.

The problems identified in the MATLAB implementation are following:

(1) Matlab uses Just In Time (JIT) compiler to translate a script to the machine code (use

another programming language – C/C++ in our case, could improve performance)

(2) Memory in Matlab is dynamically allocated and freed (use one chunk of memory

throughout the whole computation)

 (3) Work only on one hologram at a time – might not find the best possible solution because

the techniques gets stuck in a local optima

(4) The whole hologram is processed sequentially; we will use threads to simultaneously

perform the computation

There are a couple of special MATLAB functions in the code, that we will have to rewrite,

e.g. randperm(), ind2sub() [4, 5] etc. However, these are only auxiliary functions and the C

language code will be very similar to the MATLAB code.

3.4 Performance

We measured the MATLAB code performance to set a reference point, which we could

compare our work to when improving the algorithm.

Figure 7. MATLAB execution time.

1

4

16

64

256

1024

32 64 96 128 160 192 256

Ti
m

e
 (

se
c)

Hologram size

MATLAB execution times

 17

As you can see from Fig. 7, the results are quite poor; hologram size of 128x128 takes over

200 seconds (!) to compute.

However, the raw time value is a little bit out of context, 200 seconds might be a reasonable

value if the time it takes to print the hologram takes two days.

On the other hand, if we wanted to change the focus of the target points in real time, this

particular latency value is unbearable.

3.5 Summary

The background, use and importance of our project were explained.

We have also determined the bottlenecks of the MATLAB implementation and suggested a

solution to each of them.

The algorithm we presented is intrinsically parallelizable; we want to focus on creating and

evaluating multiple holograms at the same time to find the best possible solution.

Furthermore, we want each hologram to be evaluated and processed by multiple threads

simultaneously.

We approach this algorithm as a scientific computation and partially as a simulation. We

want to minimize the time it takes to compute the hologram.

The performance of MATLAB implementation was measured and we will use this as a

comparison to our future work on the project. We need some kind of feedback to see

whether we are headed in the right direction.

 18

4 Serial C implementation

4.1 Code analysis

There were a couple of specific MATLAB functions in the script that we had to rewrite in C.

The purpose of these functions is among others: compute the standard deviation, compute

magnitude, compute cost, create random permutation, etc.

As explained in chapter 3.3, there are two loops performing the whole computation. We are

maintaining this concept in our serial C implementation; one loop evaluates the precision

while the other goes through all elements of the hologram.

We can see the basic idea of the algorithm in the following pseudo-code:

while (precision not reached){
 create random index array()

for (all elements in the hologram){
 take one index from the index array
 take one element at the index from the hologram
 compute the new state depending on this element

if (cost of the new state is lower than the previous cost){

 accept the change at the element
 accept the new state and cost
 }
 }
}

We want to investigate the difference between the JIT compiled MATLAB script and the

compiled C code.

The serial C implementation solved two of our initial issues:

 C is a compiled language

 We are using one piece of memory during the whole computation.

After rewriting the original MATLAB script to C language, it has shown that the

performance difference between the two solutions is huge (see Fig. 8).

4.2 Performance

 19

Figure 8. Execution of the sequential code written in C.

From Fig. 8, we can clearly see that the time necessary to create a hologram is significantly

lower compared to the MATLAB version, no matter of the size.

Figure 9: MATLAB to C implementation comparison

0,00

0,00

0,00

0,00

0,01

0,02

0,03

0,06

0,13

0,25

0,50

1,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

C implementation times

0,00

0,00

0,01

0,03

0,13

0,50

2,00

8,00

32,00

128,00

512,00

2 048,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

MATLAB to C comparsion

matlab

plain C

 20

Figure 7 shows the difference between MATLAB and C implementations in execution times.

Both vertical and horizontal axises are in logarithmic scale because the differences are

enormous, reaching three orders of magnitude

4.3 Summary

Rewriting the original MATLAB version to the C language proved to make a huge

performance difference in terms of execution time. By using C, we have solved issues 1 and

2 mentioned in chapter 3.3.

The C code also uses a random number generator, which does not make a big difference in

performance and increases the quality of the final hologram.

However, this version of our code is still only working on one particular hologram at a time.

By using multithreaded approach, we can run several threads or blocks and start the binary

search from different initial states, which might end up with creating better cost evaluated

holograms. This is the area we want to focus on and put our CUDA knowledge in practice.

 21

5 OpenMP implementation

5.1 Code analysis

In our OpenMP implementation, we will focus on working simultaneously on multiple

holograms at once, as mentioned in chapter 3.3. OpenMP works with threads, just like

CUDA. These threads run on CPU, so there is no need to move data between CPU and GPU

memory.

We chose to run one thread per one hologram we want to create. For example, we want the

CPU to work on eight holograms at once. Then the number of threads we will run for the

computation will be eight. One thread processes one hologram in its own separated

memory space. This is the idea of how to start the binary search from different initial states,

which should lead to creating better-evaluated holograms.

The algorithm each thread is performing is the exact same algorithm as the serial C

implementation and was described in chapter 4.1.

5.2 Performance

Figure 9. OpenMP execution times.

0,02

0,03

0,06

0,13

0,25

0,50

1,00

2,00

4,00

8,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

OpenMP implementation times

 22

Figure 10. OpenMP compared to C version.

Figure 11. MATLAB, C and OpenMP version comaprison, logarithmic scale.

The number in brackets () means the number of holograms that were processed

simultaneously.

From Figures 9 – 11, we can see the execution time of the OpenMP version sits right

between the C and MATLAB versions, being just slightly slower than C, but still many times

faster than MATLAB.

0,00

5,00

10,00

15,00

20,00

25,00

32 64 128 256

Ti
m

e
 (

se
c)

Hologram size

OpenMP to C comparison

openMP(16)

openMP(8)

openMP(4)

plain C

0,00
0,00
0,00
0,00
0,01
0,02
0,03
0,06
0,13
0,25
0,50
1,00
2,00
4,00
8,00

16,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

OpenMP to C comparsion

openMP(16)

openMP(8)

openMP(4)

plain C

 23

However, this is not an entirely fair comparison; the MATLAB and the serial C

implementation are only processing one hologram, while the OpenMP version is

performing computation on multiple holograms at the same time. A more detailed

description will be presented in the chapter 8.

5.3 Summary

The OpenMP brought us into parallel hologram processing. We are still benefiting from C as

a compiled language, we are still using one and only piece of memory for the whole

calculation. The difference is, with the OpenMP version we are working on multiple

holograms at the same time.

We can observe performance drop when increasing the amount of holograms that are

processed at one time. We will try to eliminate this effect in the following kernels running

od CUDA compatible GPUs.

 24

6 CUDA implementation

As I have already mentioned, there are several ways how to implement the algorithm. We

have created three kernels, each with a little different approach and performance.

I will describe all of our kernels in the following text, as well as the differences between

particular versions and their performance.

6.1 Naive kernel

6.1.1 Code analysis

This is the first kernel we have implemented and is based entirely on the OpenMP version.

That is one thread per one hologram. This solution is very straight forward, and easy to

implement.

The downsides of this solution are:

 Memory requirements

 Not processing the hologram itself in a parallel manner

The two issues mentioned above are connected in a way – in this version, we use one thread

to calculate one hologram, which means each thread has to have its own memory space,

where the whole hologram and a few other data is stored. This implies huge memory

requirements if we were to calculate a very large hologram, when it might not fit in the

memory. For example, calculating a hologram of size 256x256 elements, using 1024 threads

in 128 blocks would require the following memory space:

Hologram size integer(4B) num. of threads num. of blocks

256x256 x 4 x 1024 x 128 > 30GB

This is over 30GB of memory, which will not fit in the GPU. A simple solution to this

problem is reducing the number of blocks to 4, which will fit in the GPU with total size of

1024 MB. The total number of holograms (256x256 elements) we can process using this

kernel is 1024*4 = 4096 holograms (aka. the number of initial states from which we start the

binary search). The number of holograms that can fit in the GPU memory is dependent on

the hologram size.

The number of blocks and threads that perform the computation can be altered, resulting in

different values and their combinations, but the idea of the restriction remains the same.

We can exploit the GPU memory and chip performance, because we can run more blocks

and threads, increasing the chance of finding a better evaluated hologram. This will be

described in the chapter 8.

 25

In the Naive kernel, each thread is performing a sequential calculation, which is resulting in

low performance and will be improved in the future kernels described in the following

chapters.

6.1.2 Performance

This kernel was launched in the following configuration:

 64 blocks,

 32 threads in one block,

That is 64x32 = 2048 holograms processed at the same time.

Figure 12. Execution times of the Naïve kernel.

1,00

2,00

4,00

8,00

16,00

32,00

64,00

128,00

256,00

32 64 96 128 160 192 256

Ti
m

e
 (

se
c)

Hologram size

Naive kernel times

 26

Figure 13. Naive kernel compared to other versions.

From the Fig. 13, we can see the Naive kernel performance compared to other versions of

the algorithm. We can tell that the Naive kernel is much slower than the OpenMP (C)

versions; actually, it is very close to MATLABS’s performance.

As it is already mentioned in the text, the comparison on the graph is slightly out of context

because MATLAB and serial C implementation only work on one hologram. Other versions

compute several holograms at the same time (OpenMP processes up to 16 holograms while

the Naive kernel can process 2048+ holograms, depending on their size).

6.1.3 Summary

For the sake of simplicity, we have ‘ported’ the OpenMP version of our algorithm to the

GPU - CUDA and tried it out to see what sort of results we can achieve.

It turned out the results were poor – much slower than C versions, and just a tiny bit faster

than the MATLAB version.

This kernel showed us the importance of organizing threads and blocks properly and using

them in the right way to achieve the best results.

0,00
0,00
0,00
0,00
0,01
0,02
0,03
0,06
0,13
0,25
0,50
1,00
2,00
4,00
8,00

16,00
32,00
64,00

128,00
256,00
512,00

1 024,00
2 048,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

Execution times in context

matlab

naive
kernel(64*32)

openMP(8)

openMP(4)

plain C

 27

In the following kernels, we will try to evolve the Naive kernel, using slightly different

approaches and techniques to demonstrate a proper usage of the GPUs. We will concentrate

on parallel processing of several holograms at once with the use of blocks and threads.

6.2 Hologram in shared memory

6.2.1 Code analysis

As it is obvious from the name of this kernel, we have moved the whole hologram into the

shared memory. Since the shared memory is accessible to all threads in a block, we now

have one hologram per CUDA block.

The major advantage of this distribution is a much efficient use of CUDA threads. Threads

now cooperatively load the hologram into the shared memory and then the whole hologram

is divided equally among all threads and each thread does its own computation on its own

data.

Because the shared memory is in use in this kernel, we have to ensure the threads will safely

load/store data from/to the shared memory, we also have to use barriers to prevent threads

using invalid data.

In addition, we do not use the random generator. We do not need to, because in this

implementation we are starting the binary search at a large number of different, randomized

holograms. The serial CPU version only randomly searches in a small surrounding of the

possible solution; while on the GPU we can start searching from many (even thousands)

initial holograms, increasing the chance of finding a better hologram. All those different

holograms are then calculated in a slightly different way; their surfaces are slightly

different. These nuances in the surfaces then make the difference between the final costs.

They also make the difference in the hologram’s ability to fulfil the required physical

characteristics. From all the holograms we created, we can then choose the one that has the

best cost.

All threads in one block are working on one hologram at the same time. Each thread is

computing the cost of one element after another and once one element’s cost is computed,

all threads perform a reduction to determine, which thread computed the best fitting cost.

Once the reduction is finished, the corresponding change in the hologram is made and the

best cost is stored into the shared memory. The change and store is only made by one

thread, the one that computed the best cost. The rest of threads wait for the one to perform

the changes and then all threads copy the new best cost in order to continue their

computation with valid data.

Let us demonstrate the algorithm on the following pseudo code:

 28

Cooperatively load hologram into shared memory

while (precision not reached){

for (all elements belonging into thread’s compute space){
 take one element from the hologram (each thread takes a different element)
 compute the new state and cost depending on this element
 save the new cost into an array of costs (shared memory)
 perform a parallel reduction on this array to find the best cost

if (thread’s local cost equals the best cost from the array){
if (cost of the new state is lower than the previous cost){

 accept the change at the element
 accept the new state and cost
 }
 }
 }
}

Cooperatively store computed hologram into the global memory

After the whole loop has finished and the hologram has been calculated, the threads again

cooperate on storing the hologram into the global memory, so that we can later retrieve the

best hologram.

The major disadvantage of this kernel is the memory requirement. More specifically, the

shared memory limitations. Modern GPUs have 64kB of shared memory, which is enough

to store a hologram of the dimensions 96x96 elements. One element is an integer that takes 4

bytes of memory, 96x96x4 = 36864. A hologram of the dimension 128x128x4 would also fit in

the shared memory all by itself, but we are using the shared memory for some other

variables as well, so this is not possible.

6.2.2 Performance

This kernel was launched in the following configuration:

 64 blocks,

 32 threads in one block.

That is 64 holograms processed at the same time.

The influence of the number of holograms on the cost of the final state that is computed by

the algorithm will be investigated in the chapter 8.

 29

Figure 14. Hologram in SM kernel in context.

Unfortunately, due to the limitations mentioned in the previous chapter, we cannot

compare this kernel performance on larger holograms. However, it is right between the

naive kernel and the OpenMP implementation, which is exactly the spot one would expect it

to take due to the facts mentioned in the previous text.

6.2.3 Summary

The Hologram in SM kernel is a good starting point to better parallel hologram calculation,

thanks to its more efficient use of threads and blocks. By implementing this kernel we have

also learned how to correctly load and store data from/to shared memory cooperatively and

how to separate the work load among all the threads.

The work load separation is also the reason we can only use this kernel when the hologram

size is not too large – with sizes that are square and are a power of 2 we can very easily

manage thread’s workload.

If we take a look back to chapter 3.3 we can see we have solved all the problems mentioned

there – we are using a compiled language, we are using pieces of memory that have only

been allocated once, we are working on multiple holograms at once and these holograms are

processed in a parallel manner.

0,00
0,00
0,00
0,00
0,01
0,02
0,03
0,06
0,13
0,25
0,50
1,00
2,00
4,00
8,00

16,00
32,00
64,00

128,00
256,00
512,00

1 024,00
2 048,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

Execution times in context

matlab

naive
kernel(64*3
2)
Holo in
SM(64)

openMP(8)

openMP(4)

plain C

 30

The goal now is to come up with a kernel that is more efficient and more practical; we will

describe this kernel in the following chapter.

6.3 Reduced integers kernel

6.3.1 Code analysis

The main issue with the kernel described in the previous chapter was its memory demand.

The new version of that kernel, called Reduced integers kernel, has lowered memory

requirements by reducing 32 integer elements into one element.

We have used the following idea:

An integer data type has 32 bits. The holograms we are creating are binary, which means

their element’s values can be either ones or zeros. To store a one or a zero you need exactly

one bit. Knowing those facts, we can store 32 of the original elements (integers) into just one

reduced element (integer), while the actual data semantics and hologram semantics is

observed. See the picture below:

Figure 15. Reduced hologram kernel visualization.

The original hologram is the one that is created first in the function. This hologram is

created in a usual way using an array of integers.

After the original hologram is created, we then reduce it following the principle mentioned

above – we compact 32 original integer elements into one reduced element (a bit array).

 31

Once the reduction is complete, the reduced holograms are then copied to the GPU global

memory and from this memory, the threads cooperate on loading the reduced hologram

into the shared memory.

Using this approach, we can store a hologram up the size of 384x384 original elements,

which is a massive improvement to the previous kernel (only 96x96). We can of course store

larger holograms, but the size 384x384 is the largest that was proofed to be calculated

correctly.

The principle used to compute the hologram is the same as in the Hologram in shared memory

kernel – each hologram is distributed over one block, threads in one block then cooperate on

computing this hologram.

6.3.2 Performance

This kernel was launched in the following configuration:

 64 blocks, that is 64 holograms processed at the same time.

 Number of threads in one block was chosen as high as possible to reach the best

possible performance. The best possible configuration is summarised in Table II:

Table II: threads per block in the Reduced integers kernel

Hologram

size

32 64 96 128 160 192 256 384

Threads

in block

32 128 32 128 32 128 128 128

The value of 32 threads per block is then a universal configuration that works with all

hologram sizes.

The number of blocks depends on how many holograms we want to process at the same

time; the best compromise is 64 blocks. This number of blocks ensures great performance

while keeping the final cost of the hologram higher then any serial version’s cost (see

chapter 7.3 for more details).

Furthermore, the Nvidia Tesla K20 GPU [9], that our binary search algorithm was executed

on, can run 13 (SMs) x 2048 (threads per SM) = 26624 threads simultaneously. This implies

that we can run up to 128 blocks at the same time, each with 128 threads when computing

hologram of size 256x256 without losing computing performance (128 threads in 128 blocks

makes a total of 128*128 = 16384 threads, using 128 threads in 256 blocks would make

128*256 = 32768 threads, which would not ‚fit‛ in the GPU, resulting in performance loss).

 32

Figure. 16. Reduced integer kernel execution times.

Figure 17. Reduced integer kernel execution times in context.

0,03125

0,0625

0,125

0,25

0,5

1

2

4

8

16

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

Reduced integers kernel exec. times

0,00
0,00
0,00
0,00
0,01
0,02
0,03
0,06
0,13
0,25
0,50
1,00
2,00
4,00
8,00

16,00
32,00
64,00

128,00
256,00
512,00

1 024,00
2 048,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

Execution times in context

matlab

naive
kernel(64*32)

reduced ints(64)

openMP(8)

openMP(4)

plain C

 33

From the Fig. 17 we can see that our Reduced integers kernel is comparable to the OpenMP 16

threaded version. However, in the OpenMP version, the amount of holograms being

processed at the same time (the number of threads stated in the brackets) is many times

lower than the number of hologram we can process using the Reduced integer kernel.

6.3.3 Summary

The Reduced integer kernel finally brought us into the CPU/C/OpenMP territory. While

being slightly slower than the OpenMP version, we can compute multiple holograms at

once without a reason to worry about the execution time.

On the other hand, there is still a minor disadvantage – memory requirements. Even with

this advanced kernel, we are still limited by the size of the shared memory per block. To

overcome this limitation we would have to use a different approach. For example, not using

the shared memory at all and loading/storing data in a different way, dividing the hologram

calculation into several phases, randomly choosing a part of the hologram from the global

memory, etc.

 34

7 Overall summary

Looking back to chapter 3.3, we managed to solve all of our issues with the original

MATLAB script:

 We used the C programming language to avoid JIT compiling

 Allocating the required memory area once, before the computation started, has also

been accomplished

 In our best implementations, we are working on multiple (even thousands) of

holograms at the same time, which leads to creating better holograms (see chapter 8)

 In the Reduced integer kernel, each hologram is also processed by several threads

simultaneously

All those points led to creating an application, whose performance was significantly faster

than our starting point – the MATLAB script.

We came up with a few versions of the binary search algorithm, each presenting a slight

performance improvement. The absolute fastest implementation is the serial C. This for

example, can compute a hologram of the size 256x256 in 0.661153 seconds, compared to

MATLAB’s 1279 (!) seconds.

The serial versions however, are not processing the hologram in a parallel manner and they

are not working on multiple holograms at once. That is why we used the CUDA platform, to

explore the possibilities of parallel computation and apply them to our problem.

Using CUDA, we were able to compute the hologram of size 256x256 in 6.29 seconds, which

is slower than serial C, but still many times faster than the original MATLAB script. On the

other hand, our CUDA versions compute hundreds, even thousands of holograms at once,

which leads to superior final hologram. If we were to compute even 64 holograms and reach

a comparable cost of the hologram with the serial C version, it would take approximately

0.66 x 64 = 42 seconds. The kernel that processes the same amount of holograms on CUDA

takes 6.29 seconds.

Since the Reduced integer kernel, as we called it, can compute many holograms

simultaneously and those holograms are also randomly initialized, it does also achieve a

better cost of the final hologram (described in chapter 8). It is up to the user’s choice to

decide between the quality and speed.

 35

8 Conclusions

Figure 18. Particular solutions in comparison.

In this chapter we will discuss one particularly important aspect of our work – the cost

(quality) of the final holograms. Since our primary task was to run the algorithm on a GPU,

we will mainly discuss differences connected with the best kernel compared to the

MATLAB or the serial C version.

If we take a look at the Fig. 20, we can clearly see that the serial C implementation was the

fastest. However, there is an aspect, which might make you use some other solution but the

serial C – it is the hologram’s final cost.

The final costs depend on multiple factors:

 Hologram’s target points

 Random initial hologram state

 Number of holograms computed at the same time

0,00
0,00
0,00
0,00
0,01
0,02
0,03
0,06
0,13
0,25
0,50
1,00
2,00
4,00
8,00

16,00
32,00
64,00

128,00
256,00
512,00

1 024,00
2 048,00

32 64 96 128 160 192 256 384

Ti
m

e
 (

se
c)

Hologram size

Execution times in context

matlab

naive
kernel(64*32)

reduced ints(64)

openMP(8)

openMP(4)

plain C

 36

When measuring the solutions, we set the target points to be the same for all versions. In

each experiment the hologram was initialized randomly, that is why we performed several

experiments and then averaged the results. The last factor, the influence of the number of

blocks computed at the same time will be discussed later in this chapter.

The cost itself is an important metric that defines how well the hologram fits the target

points. The better the cost, the better the physical characteristics of the hologram will be.

Figure 19. Hologram’s final costs comparison.

In the Fig. 21 we can see the final costs (maximum cost from 10 experiments) comparison of

the best implementations. Even though the serial C was the fastest approach, it did not

produce quite the best hologram.

Our versions make a total difference about 1% - 2%, which does not seem significant, but in

real world applications even a slight improvement in hologram quality can have a huge

impact on the focus quality, especially when the hologram is used in an elastic medium

(bones for example).

In general, if we are interested in the fastest approach, we shall use the serial C version. If on

the other hand, we want to create a very accurate hologram and we are not in the need of

saving as much time as we possibly can, we shall use the Reduced integer kernel, which will

produce a superior hologram.

1000000

1010000

1020000

1030000

1040000

1050000

1060000

1070000

1080000

C
o

st

Maximum cost comparison, size 256x256

matlab

plain C

openMP(4)

openMP(8)

openMP(16)

reduced ints(64)

 37

Figure 20. Reduced integer kernel best costs compared to serial C.

In the Fig. 21 we can see the influence of using more blocks to compute more holograms at

the same time. It is a comparison of the Reduced integer kernel to the serial C. We can see the

number of blocks launched (the number of holograms computed) on the horizontal axis. On

the vertical axis, there is the value of

 .

This value defines the multiple of kernel’s cost over the serial C cost. Higher is better. It is

also an average value of 10 performed experiments, both for the serial C and the Reduced

kernel implementations. There is a clear patter in the graph – the more blocks we run, the

higher chance there is we will compute a better cost-evaluated hologram.

0,995

1

1,005

1,01

1,015

1,02

1,025

64 128 256 512 1024 2048 4096

In
cr

ea
se

Number of blocks

Percentual increase in maximal cost over
the serial C version

128

256

 38

9 Hologram examples

Figure 21. Naïve kernel generated 256x256 hologram example. Defects visible.

Figure 22. Reduced integers kernel generated 384x384 hologram. No defects.

 39

10 References

[1] BROWN Michael D., JAROS Jiri, COX Ben T. and TREEBY Bradley E. Control of

Broadband Optically Generated Ultrasound Pulses Using Binary Amplitude Holograms. The

Journal of the Acoustical Society of America. 2016, vol. 139, no. 4, pp. 1637-1647. ISSN 1520-8524.

[2] CUDA Device Query example, run on pcjaros-gpu.fit.vutbr.cz

[3] Program ‘lscpu’ run on pcjaros-gpu.fit.vutbr.cz

[4] Randperm function, http://www.mathworks.com/help/matlab/ref/randperm.html

[5] Ind2Sub function, http://www.mathworks.com/help/matlab/ref/ind2sub.html

[6] OpenMP documentation, http://openmp.org/openmp-faq.html#OMPAPI

[7] Sanders, Jason, and Edward Kandrot. CUDA by Example: An Introduction to General-

purpose GPU Programming. Upper Saddle River, NJ: Addison-Wesley, 2011. Print.

[8] M. Clark, ‚A direct search method for the computer design of holograms,‛ Ph.D. thesis,

Imperial College, London, UK, 1997.

[9] Nvidia Tesla K20 specifications, https://www.microway.com/hpc-tech-tips/nvidia-tesla-

k20-gpu-accelerator-kepler-gk110-up-close/

