
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

IMPROVED TOOLS FOR HANDLING DELTARPM FILES
VYLEPŠENÍ NÁSTROJŮ PRO PRÁCI SE SOUBORY DELTARPM

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MATĚJ CHALK
AUTOR PRÁCE

SUPERVISOR Prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
RPM packages are used for software installation in Fedora. Every version of software

packaged in this way corresponds to a separate RPM file. Updating software therefore
entails downloading a large RPM file that is actually quite similar to the RPM already
installed. An alternative for software updates is provided by DeltaRPM packages, which are
special patch files that store the difference between two RPM files. An update then consists
of downloading a much smaller file and applying this patch to the older version of the RPM.
The deltarpm project defines the format of DeltaRPM files and supplies command-line tools
for creating and applying them. However, this implementation is unsuitable for use as a
library. The aim of this thesis is to create a new implementation of these tools, which
is backwards compatible and provides a library for C developers that solves some of the
weaknesses of the current implementation.

Abstrakt
Na platformě Fedora se používají balíčky RPM pro instalaci softwaru. Každá verze takto

distribuovaného softwaru odpovídá samostatnému souboru RPM. Aktualizace softwaru pak
odpovídá stáhnutí velkého souboru RPM, který je ve skutečnosti velmi podobný již nain-
stalovnému balíčku. Balíčky DeltaRPM poskytují alternativu pro aktualizaci softwaru.
Jedná se o speciální patch soubory, které uchovávají rozdíl mezi dvěma soubory RPM.
Aktualizace pak spočívá ve stáhnutí daleko menšího souboru a aplikaci tohoto patche na
starší verzi příslušného RPM. Projekt deltarpm definuje formát souborů DeltaRPM a nabízí
nástroje pro příkazovou řádku, které realizují jejich vytváření a aplikaci. Tato implementace
je však nevhodná pro použití jako knihovna. Cíl této práce je vytvořit novou implementaci
nástrojů pro vytváření a aplikaci souborů DeltaRPM, která je zpětně kompatibilní a posky-
tuje knihovnu pro vývojáře v jazyce C, která vyřeší některé slabiny současné implementace.

Keywords
DeltaRPM, RPM, Fedora, Red Hat, C, library, reimplementation, binary patch.

Klíčová slova
DeltaRPM, RPM, Fedora, Red Hat, C, knihovna, reimplementace, binární patch.

Reference
CHALK, Matěj. Improved Tools for Handling deltarpm Files. Brno, 2016. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Vojnar Tomáš.

Rozšířený abstrakt
RPM Package Manager je systém pro řízení balíčků v řadě Linuxových distribucí (tato

práce se zaměřuje na platformu Fedora). Software takto distribuovaný má typicky mnoho
různých verzí, každá z nich si pak vyžaduje zvláštní soubor RPM. Při aktualizaci soft-
waru je tedy nutné stáhnout celý nový soubor RPM, který může mít značnou velikost, ale
přitom nemusí být obsahem příliš odlišný od předešlé verze. Alternativou je použití balíčků
DeltaRPM, které umožňují aktualizaci softwaru realizovat stáhnutím mnohem menšího
souboru, který popisuje rozdíly mezi starou a novou verzí, a následnou aplikací tohoto
rozdílového souboru dosáhnout vytvoření nové verze balíčku.

Současná implementace nástrojů pro použití souborů DeltaRPM, zprostředkována pro-
jektem deltarpm, poskytuje nástroje pro příkazovou řádku, které mimo jiné umožňují
vytváření a aplikaci souborů DeltaRPM. Tato implementace je však nevhodná pro použití
jako knihovna, což vyžaduje projekt createrepo_c. Vznikla tedy potřeba pro novou im-
plementaci, která poskytuje stejnou funkcionalitu vytváření a aplikace souborů DeltaRPM
ve formě knihovny pro jazyk C. Nová implementace musí být také zpětně kompatibilní
s původní implementací.

Cílem této práce, řešenou se společností Red Hat, je navázat na analýzu současné imple-
mentace návrhem a implementací nového aplikačního rozhraní pro jazyk C, které poskytuje
nástroje pro vytváření a aplikaci souborů DeltaRPM. Tohoto cíle bylo dosaženo a nová
implementace prošla testama, které ověřily, že nejenom vede kombinace poskytovaných
nástrojů k přesné rekonstrukci původního souboru RPM, ale zároveň i použité soubory
DeltaRPM se zcela shodují s těmi, které vytváří ekvivalentní nástroje deltarpm při spuštění
se stejnými argumenty, a tím prokázaly zachování zpětné kompatibility. Nová implementace
je nyní dostupná jako knihovna pod názvem drpm na platformě Fedora.

V rámci této práce je nejdříve popsán formát souborů DeltaRPM a jak nástroje realizu-
jící jejich vytváření a aplikaci fungují. Dále je provedena analýza současné implementace
a jejích slabin. Následuje návrh nové implementace. Další část popisuje, jak byla tato im-
plementace testována. Následuje nastínění, jakými dalšími směry se bude práce dál vyvíjet.
Závěr pak vyhodnocuje výsledky, jich bylo dosaženo.

Improved Tools for Handling deltarpm Files

Declaration
I hereby declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Prof. Ing. Tomáš Vojnar, Ph.D. Supplementary information was provided
by Red Hat, Inc. All the relevant sources of information used in the preparation of this
thesis are properly cited and included in the list of references.

. .
Matěj Chalk

May 16, 2016

Acknowledgements
I would like to thank Prof. Ing. Tomáš Vojnar, Ph.D., for his guidance and helpfulness in
preparing this bachelor’s thesis, and Red Hat employees for their support.

c○ Matěj Chalk, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Inner Workings of DeltaRPM Packages 4
2.1 DeltaRPM Usage . 4
2.2 Types of DeltaRPM Packages . 4
2.3 File Format . 5
2.4 Creating DeltaRPM Packages . 7

2.4.1 Parameters . 8
2.4.2 Implementation of DeltaRPM Creation 8
2.4.3 Altering the CPIO Archive of the Old RPM 9
2.4.4 Creating the Binary Patch . 10

2.5 Applying DeltaRPM Packages . 11
2.5.1 Parameters . 12
2.5.2 Implementation of DeltaRPM Application 13
2.5.3 Reconstructing the RPM Package 13

3 Analysis of the Current Implementation 16
3.1 The Documentation . 16
3.2 Code Structure . 17
3.3 Use of External Libraries . 18
3.4 Re-Usability . 18

4 Design of the New Implementation 20
4.1 The Developer Interface . 20
4.2 Code Structure . 22
4.3 Modules . 23

4.3.1 RPM . 23
4.3.2 Compression and Decompression . 24
4.3.3 Blocks . 24

5 Testing the New Implementation 26
5.1 Test Suite . 27

6 Future Development 28

7 Conclusion 30

Bibliography 31

1

Appendices 33
List of Appendices . 34

A API Documentation (Generated by Doxygen) 35

2

Chapter 1

Introduction

RPM is a package management system used in many Linux distributions. Software pack-
aged in such files comes in many different versions, each of which require a different RPM
file. When updating a package, it is therefore necessary to download a whole new file,
which may be of considerable size yet similar in content to the previous version. However,
DeltaRPM packages allow software to be updated by downloading a much smaller file, con-
taining the differences between the old and new versions, and applying those differences to
create the updated version.

The current implementation of DeltaRPM functionality, provided by the deltarpm project,
provides command-line tools for creating and applying DeltaRPM files. This implementa-
tion is not suitable for use as a library, which is needed by the createrepo_c project1. Thus,
there is a need for a new implementation, which provides the same DeltaRPM creation and
application functionality, but as a library for the C language. This implementation must
also retain backwards compatibility with the current implementation.

The aim of this thesis, developed within the Red Hat community, is to follow an analysis
of the current implementation with designing and implementing a new C API for Fedora
that provides the tools for creating and applying DeltaRPMs. This has been accomplished
and the new implementation has been subjected to tests that verify not only that these
tools combine to reconstruct an RPM file exactly as it was originally, but that the created
and applied DeltaRPM files are identical to those created by deltarpm tools when invoked
with the same arguments, and so backwards compatibility has been ensured. The new
implementation is now available as the drpm library in Fedora.

The rest of this thesis is structured as follows. Chapter 2 describes the format of DeltaRPM
files and how they are created and applied, revealing to some degree how the deltarpm
project implements these tools for handling DeltaRPMs. Chapter 3 looks at this imple-
mentation analytically and delves into its weaknesses. The new implementation is proposed
in Chapter 4. Chapter 5 then describes how the implementation was tested. It is followed
by Chapter 6, which discusses further development of the implementation. Finally, Chapter
7 offers a conclusion on the obtained results.

1This is a faster implementation in C of the createrepo project, which creates a format for critical
metadata from RPM packages for dependency resolving and installation [18].

3

Chapter 2

Inner Workings of DeltaRPM
Packages

This chapter describes the format of DeltaRPM package files and how the tools for creating
and applying them work. First, Section 2.1 outlines the motivation for using DeltaRPM
packages. Section 2.2 then briefly describes the two different types of DeltaRPM files.
Section 2.3 moves on to the file format. The tools for creating and applying DeltaRPM
files are described in Sections 2.4 and 2.5, respectively.

2.1 DeltaRPM Usage

The main advantage of DeltaRPMs is that they reduce the amount of data that has to
be downloaded in order to update software. They accomplish this by creating a patch
file, known as a DeltaRPM package, that stores the difference between an older and newer
version of an RPM package, which can then be used to reconstruct the newer version on a
system that has the older version installed. Using DeltaRPMs therefore trades bandwidth
or cost for processing power, making it particularly advantageous for people with a limited
network connection.

DeltaRPM tools are currently implemented in the deltarpm project, which defines the
file format and contains command-line programs for various DeltaRPM-related tasks. The
makedeltarpm and applydeltarpm programs are the focus of this thesis.

2.2 Types of DeltaRPM Packages

There are currently three different versions of DeltaRPM files, with each later version
adding some more information. Version 3 introduces a type of DeltaRPM different from
the standard type, called “rpm-only”. The main difference between the two types is that,
while standard DeltaRPMs can be applied to installed RPM packages, as well as an RPM
file passed explicitly as a parameter, rpm-only DeltaRPMs only work with the latter

4

option. The advantage of rpm-only DeltaRPMs is they are smaller and faster to combine
[24].

2.3 File Format

This section describes the format of a DeltaRPM file, mentioning all the information con-
tained therein. The significance of many of the data structures will become clearer in
Sections 2.4 and 2.5, which describe their creation and application, respectively.

A DeltaRPM package is a binary file, whose format, in the case of a standard DeltaRPM,
is similar to that of RPM files. Integer values are stored as 4 bytes in network byte order
(i.e. big-endian), while variable length data is invariably preceded by a 4-byte integer
representing its length, followed by the data itself. The format is illustrated in Figure 2.1.

The file format differs for different versions of DeltaRPM, with later versions adding several
fields, as well as for the two different types of DeltaRPM files described in Section 2.2, which
differ in the format of the uncompressed part found at the beginning of the file.

∙ All versions support standard DeltaRPMs. These begin in the same format as an
RPM, containing an RPM lead, signature and header [5]. The lead is the same as in
the new RPM. The signature is used as it is in normal RPMs, i.e. it contains the size
and checksum of all subsequent data. The header is an exact copy of the new RPM’s
header, except that the payload format tag now specifies "drpm" instead of "cpio".

∙ Version 3 deltas also support “rpm-only” DeltaRPMs, which do not work with
installed RPMs. Instead of an RPM lead, signature and header, they start with a
magic 4-byte string "drpm", followed by another 4-byte string "DLT3", where the last
character identifies the version of the DeltaRPM (a lower version than 3 would not
be permissible for this delta type). The next 4 bytes specify how many subsequent
bytes are taken up by the NEVR (name-epoch:version-release) string of the target
RPM (standard DeltaRPMs can look it up in the header). The NEVR is followed by
the length and content of the “add block” (which will be elaborated on later in this
chapter).

The rest of the DeltaRPM may be compressed, like a normal RPM, and is the same for
both types. The first 4 bytes contain a string like "DLT3", where the last character may
vary as it denotes the version of the DeltaRPM (this string is therefore present twice in
rpm-only deltas). The source RPM’s NEVR string follows, identifying the old RPM.

The length of the sequence is next, which will be equal to 16 for rpm-only deltas (since no
file system data is used), and may be longer for standard deltas. The sequence consists of
a 16-byte MD5 sum of the contents of the old RPM, followed by a specially compressed
sequence, defining which files were included, and in what order, from the list of files found
in the header of the target RPM. An MD5 sum of the new RPM takes up the next 16 bytes.

If the delta version is 2 or higher, then it contains the following 4-byte integers: the full
size of the complete RPM, the compression type of the target RPM (the algorithm and

5

Figure 2.1: The format of a DeltaRPM file. The first part differs for standard and rpm-only
DeltaRPMs, the rest may be compressed. Some entries are only present in later versions
(V2, V3). The number of bytes taken up by an entry is denoted to its left in bold (x means
the length varies). Variable length data is preceded by a 4-byte integer that is used to
determine its length, the dashed arrows illustrate these relationships.

compression level), and the size and content of a target compression parameter block (which

6

is not actually used or calculated and is therefore expected to be empty).

For version 3 deltas, two more things are included. First is the length of the target header
(zero if it is not included in the bsdiff algorithm, which is the case for standard deltas),
second is the number and list of offset adjustment elements, which store differences in offsets
between the original and remade versions the old RPM’s archive, and are used in combining
DeltaRPMs.

All delta versions then include the length and content of the target RPM’s lead and signature
(which will be simply copied when reconstructing the RPM). Since standard DeltaRPMs
patch the payload format in the header from "drpm" to "cpio", the offset of this string
within the header is then stored, to simplify changing it back (this is redundant for the
rpm-only type).

What follows are two critical data structures for reconstructing data included in the bsdiff
algorithm. They are referred to as internal and external copies. The numbers of both types
of copies are denoted as 4-byte integers, and are followed by the contents of both. Internal
copies are an array of 4-byte integer pairs, whose elements define the number of external
copies to be performed before the next internal copy, and the length of the internal copy,
respectively. External copies have the same structure, except the paired elements differ in
meaning, the first being an offset adjustment value of the external copy, while the second
specifies the length of the external copy.

The next 4 bytes (or 8 bytes since version 3) store the length of external data. This is
the number of bytes included in the bsdiff algorithm from the old RPM. In the case of an
rpm-only DeltaRPM, the header of the old RPM is included. The other part (or only part
for standard deltas) of the old RPM included the bsdiff algorithm is its archive.

After that come the size and content of the “add block”. This is a compressed sequence
of bytes created by the bsdiff algorithm. It stores the results of subtractions of compared
bytes, where the values will tend to repeat and most often will be zero, making it highly
compressible, especially with bzip2 [10]. If the type of delta is rpm-only, the add block
stored here will be empty, as it will have already been included at the start of the file.

Finally, the length of internal data is stored as a 4-byte (or 8-byte since version 3) integer,
followed by the internal data itself. The internal data stores data segments from the new
RPM included in the bsdiff algorithm that are to be copied. As with the old RPM, the
header is included in the bsdiff algorithm for rpm-only deltas (this is because of the header
not being present in the DeltaRPM file as it would be for standard deltas), and the CPIO
archive of the new RPM is included for both types.

2.4 Creating DeltaRPM Packages

The deltarpm project supplies the makedeltarpm command-line program, which performs
the creation of a DeltaRPM package [24].

7

2.4.1 Parameters

Typically, the file names of the old and new RPM must be passed to this program, but it
is also possible to specify a variety of other parameters to customize its behaviour.

∙ -v: Makes makedeltarpm more verbose about its work.

∙ -r: An rpm-only DeltaRPM will be created, rather than the default standard DeltaRPM.

∙ -V <version>: This allows the creation of a different version of DeltaRPM than the
default, which is version 3.

∙ -z <compression>: This can be used to specify a compression method to be used for
compressing the DeltaRPM file (or to disable compression). The default behaviour
is to use the same compression method as used in the target RPM. The compression
method for the add block may also be specified this way. It is also possible to forbid
the creation of an add block.

∙ -s <seqfile>: If this is set then makedeltarpm will write the sequence ID of the
created DeltaRPM to the specified file. The sequence ID is a string concatenation of
the source NEVR and sequence, and can be used to check if reconstruction is possible
(see Section 2.5).

∙ -p <oldrpmprint> <oldpatchrpm>: If patch RPMs are used, this option speci-
fies the rpm-print of the old RPM and the created patch RPM. This option tells
makedeltarpm to exclude the files that were not included in the patch RPM but are
not byteswise identical to the ones in the old RPM.

∙ -u: This switch results in the creation of an “identity” DeltaRPM. In this case only
one RPM need be specified. An identity DeltaRPM can be useful to just replace the
signature of an RPM or reconstruct an RPM’s archive from the file system.

∙ -m <mbytes>: Memory considerations are the reason for this option, as makedeltarpm
needs about three to four times the size of the RPMs’ uncompressed archive. This
option trades memory usage with the size of the created DeltaRPM, specifying the
number of megabytes of memory to be used by a sliding block algorithm.

2.4.2 Implementation of DeltaRPM Creation

This section describes how the creation of a DeltaRPM package is implemented. The
makedeltarpm program starts by parsing the parameters1, before reading the old and new
RPMs. The first few magic bytes of the archive are used to determine which decompression
method to use (if any), and, unless the user requests otherwise, this same method is later
used for compressing the payload of the DeltaRPM. The content of each RPM is used to

1If an rpm-only identity DeltaRPM is requested (i.e. both -r and -u flags are set), then a “no-diff”
DeltaRPM is created. The RPM is read (but the archive is not decompressed) in order to create the MD5
sums and store some basic information about the RPM (NEVR, header size, full size) and that is all.

8

calculate corresponding MD5 checksums. The archive format is looked up in the header
and checked to be CPIO2.

Other information is also looked up in the RPM headers, including the compression level and
the source RPM’s NEVR. The NEVR string identifies an RPM package. It is made up of the
package’s name, version and release number, which are mandatory, and the epoch, which is
optional. This string takes the format name-epoch:version-release (or name-version-release
without the epoch). If an rpm-only DeltaRPM is requested, the target RPM’s NEVR is
also looked up in its header, as rpm-only deltas do not store the target RPM’s header and
must therefore store its NEVR separately.

The old and new byte sequence that will form the input for the bsdiff algorithm are then
prepared. DeltaRPMs of type rpm-only simply concatenate the header and archive for
the old and new RPMs. Standard deltas do not include the RPM headers in the bsdiff
algorithm, but only the CPIO archives, though the archive of the old RPM is altered based
on file information from the RPM header (the details of this are described in Section 2.4.3).

The bsdiff algorithm then takes the two (old and new) byte sequences as its input and sets
up the creation of the DeltaRPM’s internal and external copies, as well as its internal data.
More information on this is to be found in Section 2.4.4.

2.4.3 Altering the CPIO Archive of the Old RPM

A description of how the archive of the old RPM is altered before being fed into the bsdiff
algorithm follows.

All entries in the CPIO archive are iterated over and, unless they are skipped, are repro-
duced to some degree in an altered version of the archive. Such an entry is made up of a
CPIO header3, which contains information about the file, followed by the file name and its
contents.

The RPM header contains information for a list of files containing the following data [6].

∙ The file name.

∙ File flags.

∙ An MD5 string verifying its contents.

∙ A device ID, if the file is character or block special.

∙ The file size.

∙ The file mode.

∙ Verify flags, indicating which types of verification are supported.
2XAR archives introduced in RPM 5.0 are not supported [15].
3In new ASCII format [14].

9

∙ The file name of a linked file in the case of a symbolic link.

∙ The file colour [17].

The file name from the CPIO entry is used to look it up in the header. The file will be
skipped if any of the following conditions are true.

∙ The file cannot be found in the RPM header.

∙ The file is not included in the patch RPM, yet is not bytewise identical to the one in
the old RPM (this check is only performed if patch RPMs are included).

∙ The file mode indicates a regular file and

– the file sizes in the CPIO and RPM headers do not match,
– the file flags denote a configuration file, a file that need not exist on the installed

machine, or a file that is not to be included in the package4,
– verification by MD5 checksum or file size is unchecked5, or
– the file is “coloured” yet not in a multilib directory [17, 11].

If the file is not skipped, a new entry for it is created and is appended to the new altered
archive. If the file mode indicates a symbolic link, the file contents are replaced with the
name of the link’s target. If the mode denotes a character or block special file, device ID
information is included. The pattern of file names is also unified, so that all file names
begin with the prefix "./".

The end of a CPIO archive is defined by a CPIO trailer, which has the same format as any
other entry, except the file name matches the string "TRAILER!!!". As offsets of entries
within the CPIO archive can change during this alteration, DeltaRPMs (since version 3)
will also store a sequence of offset adjustment elements.

It is during this process that the DeltaRPM sequence is constructed6. Its first part is an
MD5 checksum, which is calculated from the newly created CPIO entries, as well as file
modes, sizes, associated device IDs, and, in the case of regular non-empty files, the MD5 or
SHA256 digest for the file contents. The second part is a compressed sequence of indexes
into the list of files in the RPM header, which serves to store the order in which they are
included in the archive, which in turn makes looking them up faster when reconstructing
this information (see Section 2.5).

2.4.4 Creating the Binary Patch

The deltarpm project uses the bsdiff algorithm for storing the difference between the two
byte sequences. This algorithm is very efficient at creating binary patches [20].

4These flags correspond with the RPM macros %config, %config(missingok) and %ghost [7].
5These verify flags correspond with the RPM macros %verify(md5) and %verify(size) [7].
6This is only the case for standard deltas, rpm-only deltas do not alter the old RPM’s archive, so their

sequence is simply an MD5 checksum of the unaltered archive.

10

One small modification in the source code results in changes throughout the resulting
binaries, as locations of pointers change, and so delta algorithms that are tailored for text
files perform poorly in the case of binary files [21]. However, there are some observations
to be made about the way in which executable files change. One is that in regions not
directly affected by a modification, differences will be quite sparse. Another is that the
locality of references will result in a large number of addresses adjusted by the same offset
within one region. This means that, if these regions are matched against each other, the
bytewise difference will be mostly zero, and the non-zero values will often repeat, which
means this sequence of differences will be highly compressible [20]. The bsdiff algorithm
takes advantage of these observations.

Using this algorithm, deltarpm goes about creating a patch in the following way. It creates
an index for the “old” byte sequence, using hashing [26] by default, though makedeltarpm
may be configured to use suffix sort instead [16]. This index is used to move through
the “new” byte sequence and find the next region that matches exactly, but also contains
at least 32 bytes7 that do not match the forward extension of the previous match. The
previous match is then extended forwards and the new match is extended backwards, with
both extensions requiring at least half of the bytes to match (if these extensions result in an
overlap, makedeltarpm finds a good place to split in order to maximize the percentage of
matched bytes). This approximate match will roughly correspond to a block of executable
code derived from an unmodified region of source code [20].

Figure 2.2 shows how the algorithm creates an array of two offset-length pairs, as well as
the add block [10]. The array is used to construct the data structures that will be stored
on disk.

∙ The internal copies are pairs of 4-byte integers, made up of

– the number of external copies that precede this internal copy, and
– the length of this internal copy.

∙ The external copies are also pairs of 4-byte integers, made up of

– the offset adjustment of this external copy (i.e. a number that should be added
to the offset in the external data), and

– the length of this external copy.

∙ The internal data is a copy of all the regions in the “new” byte sequence that did
not match up, and is therefore stored (consecutively) in the DeltaRPM, the boundary
of each region being determined by the lengths of the individual internal copies.

2.5 Applying DeltaRPM Packages

DeltaRPM packages can be applied, i.e. used to reconstruct the newer version of the RPM
package, via the applydeltarpm program [23]. As an alternative to using the old RPM

7The bsdiff program differs in that it requires mismatches in only 8 bytes.

11

Figure 2.2: A new match has been found and has been extended backwards , while
the previous match has been extended forwards . The offset and length of the forward
extension of the previous match in the old sequence, and the offset and length of the bytes
between the extensions in the new sequence, are both stored and later used to construct the
internal and external copies and internal data, that end up being written to the DeltaRPM.
The bytewise subtractions of the previous match’s forward extensions are added to the add
block (in this case 00 00 0C F3 would be appended).

to perform the reconstruction, on-disk data may be used if the old RPM is installed. The
applydeltarpm program may also be used to check that the reconstruction is possible, or
to print information contained within the DeltaRPM.

2.5.1 Parameters

The basic use case of applydeltarpm is to reconstruct the new RPM. The name of the
DeltaRPM file, as well as the file name the new RPM will take, are mandatory in this
case. The -r parameter enables passing the name of the old RPM file explicitly. If this
parameter is not present, then the old RPM that was used to construct the DeltaRPM must
have been installed, and data from the file system is used in the reconstruction instead.
The command-line program may also be verbose about its work or print the percentage of
completion of the reconstruction while performing it, if the -v or -p options are set.

Another mode of usage is to check that the reconstruction is possible, without actually
performing it. This is done by checking file information contained in the header of the old
RPM. The user specifies whether it is sufficient to check that the file sizes have not changed
(option -C), or a (slower) full check that the contents of the files have not changed should be
performed (option -c). Either way, this checking may be done by supplying the DeltaRPM
(in this case the -r option cannot be present, as the files must be present on disk in order
to be checked), or by merely supplying the sequence ID of the DeltaRPM instead, which
contains all the information that is needed to perform reconstruction checking (this is done
by passing an -s option followed by the sequence ID).

Finally, setting the -i flag makes applydeltarpm simply read the DeltaRPM file and print
information that it contains.

12

2.5.2 Implementation of DeltaRPM Application

First, applydeltarpm parses the command line arguments. Unless only a sequence ID check
is requested, the DeltaRPM is read and its data structures and additional information
extracted (if the information flag is set, applydeltarpm will then simply print out the
extracted information and exit).

If the old RPM is passed explicitly, then its entire contents are read. The MD5 checksum
contained in its signature is used to verify that its contents match the old RPM used to
create the delta, by comparing it with the checksum found in the DeltaRPM sequence.

If the old RPM is not passed explicitly, it is assumed that it has been installed and so data
from the file system should be used in the reconstruction. The RPM database is queried,
and if an installed RPM with a matching name, epoch (if specified), version and release is
found, its header is extracted from the database. If the old RPM is not installed, an error
is returned. An error is also returned if the DeltaRPM is of type rpm-only, or the target
header stored in the standard delta indicates a source RPM, as neither of these variants
work with file system data.

Both options end up yielding the header of the old RPM, and the NEVR tag contained
therein is checked, to see that it matches the source NEVR stored in the DeltaRPM.

In the case of a standard delta, the header’s file list and file order (stored in the second
part of the DeltaRPM sequence) are used to construct an index of the files contained in
the CPIO archive, marking the order, length of the CPIO header (including the file name),
length of the file content and the offset within the archive for each file.

If applydeltarpm is run in check mode, then during this expansion of the file data, each
file is checked to match the file originally used to create the DeltaRPM. Depending on
the input parameter, either only the file size is checked, or the file contents are used to
construct an MD5 or SHA256 hash (depending on what the file digest algorithm specifies
in the RPM header), that is then compared against the one stored in the RPM header, to
see that the contents are identical8. Any mismatches are reported, and the program run in
check mode will now exit, as what follows is the reconstruction itself, which is described in
Section 2.5.3.

2.5.3 Reconstructing the RPM Package

The target RPM is to be reconstructed exactly, including all its parts, i.e. the lead, signa-
ture, header and archive.

The lead and signature of the target RPM are stored in the DeltaRPM, so their reconstruc-
tion is trivial.

The reconstruction of the header differs for different types of DeltaRPMs. The file format
8If the file size has increased, applydeltarpm will check if it is an ELF library modified by prelink [12].

If so, it has prelink write the original binary to a temporary file in order to be able to perform the check.

13

of the standard delta actually includes a copy of the target RPM’s header, with the only
difference being that the contents of the payload format tag are rewritten from "cpio" to
"drpm". All that is needed, therefore, is to patch the payload format back and an exact
copy of the header is done. On the other hand, rpm-only DeltaRPMs do not contain an
RPM header as part of the file format, and it is for this reason that the old and new
headers are included in the bsdiff algorithm by makedeltarpm. In this case, therefore, the
reconstruction of the header is part of the reconstruction algorithm (see Listing 2.1). The
only difference is that the header is not compressed before being written to the file, which
can be accomplished by only starting to compress outputted data after the amount exceeds
the size of the target header (which is stored in rpm-only deltas).

If present, the add block is decompressed and is applied (i.e. bytewise added) to all external
data. This external data has to be fetched from somewhere (only its size is stored in the
delta), and the methods for doing this vary in the following ways.

∙ If file system data is used, then (constructed) CPIO entries for each file in the order
specified in the file index are gradually concatenated to form the external data9.

∙ If the old RPM is used, then the method of fetching data differs for the two delta
types.

– Standard DeltaRPMs read the CPIO archive of the old RPM one entry at a time
and alter the entries in the same way makedeltarpm does (see 2.4.3), in order to
produce data identical to that which formed the input for the bsdiff algorithm.

– Since no such alteration is done for rpm-only deltas, the external data is simply
made up of an exact copy of the CPIO archive in this case.

In order to abstract the fetching of external data from the reconstruction algorithm, applydeltarpm
uses a list of equally large blocks which are gradually filled by these various methods, with
a new block being created or an older block being reused when the current block has been
filled up.

The reconstruction is done by using the information from the DeltaRPMs internal and
external copies to write appropriate amounts of external and internal data at a time. The
algorithm follows directly from the information that the copies contain (described in Section
2.3).

The Python code shown in Listing 2.1 illustrates how the reconstruction is done. The
external and internal data are represented by the variables ext_data and int_data, which
for the sake of simplicity are here assumed to be lists of bytes already filled with the
necessary data. The copies represented by int_copies and ext_copies are presented here
as lists of objects with two named attributes each (while in fact the DeltaRPM stores them
as 4-byte integer arrays), in order to better reflect the semantics of the values they hold.
It may also be useful to clarify that the [off:][:len] notation repeatedly used represents
Python list slicing, meaning that len elements are read from the list starting at index
off. Finally, new_rpm is assumed to be an object that defines the compr_write method,

9The possibility of an ELF library modified by prelink [12] is taken into account, and in that case the
original is restored into a temporary file and its contents are read from there.

14

which compresses and then writes the supplied bytes to the new RPM file (it should also be
assumed that this method only starts compressing after the size of the target RPM header
has been reached in the case of an rpm-only delta).

aoff = 0 # add block offset
ioff = 0 # internal copies offset
eoff = 0 # external copies offset
edone = 0 # number of completed external copies

for icopy in int_copies :

perform specified number of external copies
for ecopy in ext_copies [edone :][: icopy.todo]:

eoff += ecopy. offadj # adjust external data offset
buf = ext_data [eoff :][: ecopy. length]

patch external data with add block
if add_block :

for i in range(ecopy. length):
buf[i] += add_block [aoff+i]

aoff += ecopy. length

new_rpm . compr_write (buf)
edone += icopy.todo

perform internal copy
new_rpm . compr_write (int_data [ioff :][: icopy. length])
ioff += icopy. length

Listing 2.1: The Reconstruction Algorithm

After this algorithm is complete and all the data has been written to the new RPM file,
a final check is performed. An MD5 checksum of all the written data is constructed and
compared with the target MD5 contained in the DeltaRPM10. A match confirms that
applydeltarpm has succeeded in reconstructing an exact copy of the new RPM package.

10If the target MD5 is empty, then the MD5 checksum from the new RPM’s signature is compared instead.

15

Chapter 3

Analysis of the Current
Implementation

This chapter analyses the current implementation of DeltaRPMs, i.e. the deltarpm project
(implemented in C), and focuses on its weaknesses. Specifically, Section 3.1 covers the
documentation for the project, Section 3.2 then analyses the code structure, Section 3.3
describes where the implementation makes use of external libraries, before Section 3.4
focuses on its most important weakness, namely that it is unsuited to be reused as a library
for developers.

3.1 The Documentation

The documentation for this project is generally lacking, especially regarding how deltarpm
actually works.

The format of DeltaRPM files is described in good detail in the README provided. The
exact structure of the binary file is well laid out. It also from here that one can get a small
insight into the significance of most the data structures contained inside a DeltaRPM.

Other documentation can be found in the manual pages for the programs distributed by the
project (e.g. makedeltarpm and applydeltarpm). The various options all get a concise user-
oriented explanation, and obsolete options are handled by being left quietly undocumented1.

The source code is mostly uncommented, though those comments that are occasionally
included are very useful (in particular some unusually detailed comments in the bsdiff
section, even including one illustration of the significance of critical variables’ values in
relation to the compared byte sequences). On the whole, however, the source code is

1From the man page of makedeltarpm in an older deltarpm version: “Specifying -l file, one can give a
file with a list of files needed to be excluded from the delta process. Nowadays it is relayed on all of those
files be either marked as %config or as %verify(nomd5) in spec files. Thus, this option is obsolete.” The
usage message printed by makedeltarpm when run with invalid arguments still contains this option, however,
while leaving most other options out.

16

badly suited to trying to understand how the whole process works. In addition to the lack
comments, variable names rarely give a good indication of their significance and are mostly
very short, with one- to three-character long variable names being the norm. Function
names are mostly an improvement in this regard.

The principles of the BSD licensed bsdiff code that deltarpm uses (and slightly modifies)
are documented elsewhere by its original author [20, 21]. However, the general lack of
documentation for the rest means that, in order to acquire a decent understanding of how
deltarpm works, one is left slowly piecing it together from the code itself (which, only
taking source files relevant to makedeltarpm and applydeltarpm into account, contains
over eight thousand lines of code).

3.2 Code Structure

The main functions that implement makedeltarpm and applydeltarpm are both rather
lengthy, averaging around eight hundred lines of code. This is partly due to the fact that
deltarpm for the most part only uses functions to avoid repetitions of larger parts of the
code, not to deconstruct the work flow into logical segments.

Both programs can run in a variety of modes, which overlap with each other to varying
degrees. An effort has been made for the code of all these modes to intertwine in the main
function, instead of delegating particularly disparate modes to different function calls and
putting common code segments in functions. One unfortunate result of this is that there
are several examples of code being executed in a mode that has no use for it2.

The scope of variables is mostly well defined, and several structures are implemented that
group related variables. This discipline seems to have dwindled with later additions to the
code, however, as the source code of both programs now contains a large amount of global
variables. These are often not grouped together in a data structure even when the logic of
the program indicates that they should be. Sometimes these variables are only used by one
function, and so the reasons for them being global disappear entirely. Global variables are
mainly used for makedeltarpm’s sliding block algorithm in memory usage limiting mode3

and applydeltarpm’s external data blocks4.

On the other hand, the implementation does separate some of the code into several useful
and fairly well encapsulated modules.

As deltarpm has to do a lot of work with compressed data, a structure called cfile
2For example, applydeltarpm -i, which only needs to read the DeltaRPM and print out information

about it, will also needlessly set up blocks that only modes that actually perform a reconstruction make use
of. This happens when run in one of the check modes too, and they will also create an index of entry offsets
and lengths within the CPIO archive, which, again, is only used when reconstructing.

Another example is that makedeltarpm creates an array of offset adjustment elements for the CPIO archive
whatever the version, despite the fact that only version 3 deltas include this information in the DeltaRPM
file.

3Admittedly, this latest addition to the code would have otherwise warranted a more significant code
restructure, and is accompanied with the comment: “hack: global for now”.

4Twenty three global variables, only three which are data structures.

17

is defined. This structure functions much like a class (its components include function
pointers as simulations of methods), and is used for compressing or decompressing data
(usually to or from a file, though buffers in memory can also be used). It can be instructed
to update an MD5 context with outputted data, and keeps track of its size. The supported
compression algorithms are gzip, bzip2, lzma and xz. These do not include lzip, which may
also be used in RPM packages [2].

A structure called rpmhead is used for reading an RPM header structure (both the signature
and header are in this format [5]). This module then contains several functions for extracting
information of various data types from the header structure, using a tag number used by
RPM as an argument. The data is stored in a raw format, as only the number of index
entries, the size of the store and a pointer to where the store starts are separated from the
binary representation of the header.

There also modules for initializing, updating and finalizing checksums, both for MD5 and
SHA256. These modules are made up of code from public domain implementations of these
algorithms.

3.3 Use of External Libraries

The modules for RPM header structures and digest algorithms do not use existing libraries
that specialize in these things. This poses a potential problem for RPM headers particularly,
as a change in format would necessitate a reimplementation in order to avoid errors5.

The cfile module does, however, use the appropriate libraries for compressing and de-
compressing. These are zlib (gzip) [4], libbzip2 (bzip2) [25] and liblzma (lzma and xz)
[8].

Although rpmlib’s RPM Header API [3] is not used by deltarpm, this library is used for
fetching the header of an installed RPM from the database6.

3.4 Re-Usability

The deltarpm project offers DeltaRPM creation and application functionality only as com-
mand line programs. However, a C API is more suited to projects like createrepo_c [18].

5"1. The file format is subject to change. 2. If a package file is to be manipulated somehow, you are
strongly urged to use the appropriate rpmlib routines to access the package file. Why? See point number
1!" [5]

6The implementation of this is particularly curious, however. A tool named rpmdumpheader is also
distributed with the deltarpm project. It accepts an RPM’s NEVR string as an argument and, if the RPM
database succeeds in retrieving it, prints the header in its binary format to the standard output. The way
applydeltarpm makes use of this tool is to create a child process, pipe its output to the input of the parent
process and have it execute rpmdumpheader (supplying the NEVR string) before exiting, while the parent
process uses the rpmhead module to read it.

This technique is perplexing, as rpmdumpheader and applydeltarpm code are both part of the same
repository, so it makes no sense not to retrieve this header with a simple “internal” function call instead.

18

The problem is that the current implementation is not well suited to be used as such.

One of the chief reasons for this is error management. Every time an error is discovered,
it is followed by printing an error message to the standard error output and an exit(1)
call (or occasionally abort()). The result of this is that most functions do not return error
indicators. A library, on the other hand, needs a mechanism for errors to surface from
nested function calls to the called API function. Another result of the exit calls is that
deltarpm relies on it to free all resources (allocated memory, open file descriptors). Again,
this is not possible with a library, which cannot terminate the program and must therefore
ensure all resources are freed “manually”.

19

Chapter 4

Design of the New Implementation

This chapter describes the design and implementation of the new library for handling
DeltaRPM packages, called drpm. While many of the algorithms are essentially the same
is those used in deltarpm’s implementation, since there are no reasons to change them and
major alterations would present unnecessary complications in trying to reproduce the same
data structures stored in the DeltaRPM, an effort has been made to make the code more
readable and more adaptable to changes.

Section 4.1 presents the new interface provided by drpm. Section 4.2 then describes changes
in code structure in comparison to the original implementation. Finally, Section 4.3 focuses
on helpful modules created as part of the implementation.

4.1 The Developer Interface

Redistributing command-line tool functionality as a C library means a change of interface
by definition. Instead of executable programs modifiable by command-line options, the new
implementation provides a header file (drpm.h) declaring a set of functions, and a shared
library (libdrpm.so) for the linker.

The program makedeltarpm, whose CLI is described in Section 2.4.1, is therefore replaced
with a function called drpm_make. This function accepts four arguments. The first three
are strings representing the file names of the old and new RPM packages, as well as the
DeltaRPM package that is the main result of this call1. The last argument is a pointer
to a structure defined as drpm_make_options in the API, and is used to specify various
options in order to customize the DeltaRPM creation process. The reason a structure is
necessary for this, instead of e.g. an integer with options passed by a bitwise OR of macros,
is that several of the additional options necessarily take the form of strings (file names for
writing out the sequence ID or adding RPM patches) or integers (e.g. version, compression
level). The API contains a set of functions for adding options to this structure, as well as a

1The drpm_make function may also be used to create an identity DeltaRPM, which only uses one RPM
file (see makedeltarpm’s -u flag in Section 2.4.1). This may be done by passing a NULL pointer instead of
one of the RPM file names.

20

function to initialize it and another to destroy it. In order to simplify creating a DeltaRPM
with the default options, one may invoke drpm_make while passing a NULL pointer as the
fourth argument, and ignore the drpm_make_options suite. This shortens the basic use
case to one function call.

Unlike makedeltarpm, where, despite the multitude of options, the type of output is
the same (i.e. whatever the options, the result will be the creation of a DeltaRPM),
applydeltarpm can be used for a variety of different tasks. As described in Section 2.5.1,
while the basic usage is to (re)construct an RPM file using a DeltaRPM file (with the older
version of the RPM provided either implicitly or explicitly), applydeltarpm may also be
used to merely check that the reconstruction is possible (based on the DeltaRPM or its
sequence ID) or print out information about the DeltaRPM2. These behaviours, despite
having some code in common, are quite disparate, and while that is not unusual for a CLI,
capturing this interface in a single C function does not lend itself to intuitive or elegant
usage. The drpm project therefore splits these modes of usage into separate functions.

∙ drpm_apply: This function performs the reconstruction of an RPM. It takes three
arguments, all of them being file names. The first is the name of the old RPM (if
installed data is to be used, this should be NULL), the second is the name of the
DeltaRPM file, and the third is the file name that the resulting RPM will take.

∙ drpm_check: This is used to check that the reconstruction is possible based on the
provided DeltaRPM (its file name is the first argument of this function). This is only
possible if the old RPM is installed. There are two modes in which to check that
the files installed by the RPM have not changed since the DeltaRPM was created.
One only verifies that file sizes have not changed, while the other also checks the
contents of the files. The second parameter (an integer expecting the value of one
of the DRPM_CHECK_FILESIZES or DRPM_CHECK_FULL macros) serves to specify which
mode is required (corresponding to applydeltarpm’s -c and -C flags, as described in
Section 2.5.1).

∙ drpm_check_sequence: This function is used for the same purpose as drpm_check,
except that a sequence ID is provided instead of a DeltaRPM, which is reflected in
the corresponding parameter. Since the implementation of deltarpm allows for it, it
is also possible to specify the name of the old RPM (a parameter is added for this) or
not request a file check (a DRPM_CHECK_NONE macro is used for this). In these cases,
the check performed by this function will be a lot less thorough.

All of the described functions return an integer representing an error value3. The types of
errors that are defined by drpm are

∙ DRPM_ERR_OK (no error occurred),
2The first distributed version of drpm provided a small library for fetching information from DeltaRPM

files. The library has now been extended significantly (to enable the creation and application of DeltaRPMs,
as described in this thesis), but the DeltaRPM reading interface remains the same, though the implemen-
tation of drpm_read has been modified for the purpose of having the code for reading DeltaRPM files be
reused by drpm_apply and drpm_check, which also need to read DeltaRPMs.

3A function called drpm_strerror may be used to get the string representation of an error value.

21

∙ DRPM_ERR_MEMORY (memory allocation error),

∙ DRPM_ERR_ARGS (bad user arguments),

∙ DRPM_ERR_IO (I/O error – probably caused by trying to read a non existent file),

∙ DRPM_ERR_FORMAT (wrong file format – probably of an RPM or DeltaRPM),

∙ DRPM_ERR_CONFIG (misconfigured external library),

∙ DRPM_ERR_OTHER (an unspecified error),

∙ DRPM_ERR_OVERFLOW (file too large – specifically the uncompressed RPM archive),

∙ DRPM_ERR_PROG (internal programming error),

∙ DRPM_ERR_MISMATCH (file changed – detected by drpm_check, drpm_check_sequence
or drpm_apply),

∙ DRPM_ERR_NOINSTALL (old RPM not installed).

4.2 Code Structure

The new implementation’s code structure seeks to amend many of the weaknesses of
deltarpm’s code structure, which is described in Section 3.2. At the level of implementing
the functions provided in the API, parts of the code that form logical segments have been
divided into separate functions. This not only makes for better readability, as the top level
functions work on a higher level of abstraction and are much shorter, but also solves a
potential problem caused by splitting applydeltarpm into several functions. Many of their
tasks overlap, but as these tasks are isolated and delegated to functions, reoccurrences of
larger stretches of code are prevented. Instead, the overlapping of a task presents itself
merely as a call to the same function, and slight differences within that task are resolved
by passing different arguments.

Global variables are avoided and a greater effort has been made to group related variables
into data structures. When these data structures also lend themselves to an object-like
usage, i.e. they need an initializing function and a function that frees resources, and oper-
ations performed on them may be encapsulated, they are also separated out into modules,
which are described in Section 4.3. When available, external libraries are used for tasks that
they specialize in (e.g. openssl’s cryptographic functions are used to calculate MD5 and
SHA256 checksums [19], and RPM related tasks are performed to a much greater extent
with the aid of rpmlib APIs, as described in Section 4.3.1).

Memory management, which deltarpm leaves to exit, is done in a consistent style, with
most functions having a cleanup label, that may be prematurely jumped to on error, where
all resources used by the function are freed. Error detection also works very differently.
Since a library function cannot terminate the program and is not expected to print messages,
a mechanism for enabling errors to surface from a stack of function calls is necessary. It
is realized by most functions returning an error value. If it indicates an error, the calling
function will perform a clean-up and return the same error, and this behaviour will be

22

replicated all the way back down to the library function, ensuring the user may detect the
error and no memory leaks are caused. It may be noted that, while this change in error
and memory management was necessary in order to reuse code for deltarpm’s command-
line programs for a library, the library’s implementation does allow for its extension into
a command-line tool, as one need only parse some command-line arguments and then call
one of the API functions.

Finally, an effort has been made for the code to be more readable, including descriptive vari-
able and function names and accompanying comments. Parametrized macros are utilized
to more clearly express what a calculation does, especially if it often reoccurs4.

4.3 Modules

This section describes some of the modules contained in the drpm implementation. Most
of them are designed like classes, coming with “constructor” and “destructor” functions,
which must be called explicitly, however, as they are confined by the limits imposed by
C not being an object oriented language. These modules encapsulate their data, which is
realized in C by only allowing a pointer to the data structure to be used outside the module
(the initializing function must therefore also allocate memory for the structure itself).

It should be noted that there are also data structures whose contents are not encapsulated.
Most notably this is true of struct deltarpm, which contains all the DeltaRPM data
and has functions dedicated to writing and reading it. Its data encapsulation would be
impractical as it is so central to the whole implementation.

4.3.1 RPM

DeltaRPMs by definition deal very closely with the inner structure of RPM files. One of
the tasks often required is to extract information from an RPM header structure, which is
the format of both the signature5 and header. As noted in Section 3.3, deltarpm traverses
this format directly, despite the fact that rpmlib provides a Header API for these kinds of
tasks, which ensures they will be performed compatibly with the current RPM format [3].

The rpm module serves to read an RPM and store it in a data structure that separates the
lead, signature, header and archive. The signature and header are stored using the Header
data type provided by rpmlib’s Header API, and all operations on these structures are
performed using the functions provided with it6. The archive may be read along with the

4E.g. RPM signatures and CPIO header entries are followed by padding bytes, their amount is calculated
with the macro PADDING(offset, align).

5A more tricky case of manipulating an RPM header structure comes when constructing a standard
DeltaRPM, where it is also necessary to remake the RPM signature, so that it validates the content of the
DeltaRPM. The implementation of deltarpm does this by writing out the individual bytes directly, while
drpm uses the appropriate rpmlib routines.

6The one exception is the storing of the payload format offset stored in the DeltaRPM (see Section
2.3), since this is not possible using rpmlib, as it breaks encapsulation. Since drpm uses rpmlib routines
for patching the payload format, this offset is not actually used, but it is calculated nonetheless in order

23

rest of the RPM, and the rpm module provides functions for iteratively fetching its data.
The module also contains a function that fetches the header of an installed RPM from the
database using rpmlib routines (improving on deltarpm’s rpmdumpheader usage described
in a footnote in Section 3.3).

4.3.2 Compression and Decompression

As mentioned in Section 3.2, deltarpm contains a module for dealing with compression and
decompression. The new implementation is similar in this regard, though it has separate
modules for compression (compstrm) and decompression (decompstrm), as there is no reason
for them to overlap. Furthermore, drpm tries to implement the data structures in a more
semantic way, e.g. preferring the use of C unions instead of having different types of data
stored in the same variable (of type void *) depending on the context.

The data is also encapsulated, not allowing for direct manipulation outside of the mod-
ule, unlike deltarpm, which takes care of making sure the header is not compressed in
applydeltarpm by temporarily changing function pointers. This is realized with a small
wrapper module in drpm.

Both implementations use the same libraries for performing the (de)compressions (these are
mentioned in Section 3.3). In addition, drpm implements lzip compression using the lzlib
library [9]. The reason for this is that newer versions of RPM also support lzip compression7

[2].

4.3.3 Blocks

This module is used for buffering external data when reconstructing the RPM (see Section
2.5.3). Blocks of a fixed size are gradually filled with the external data using different
methods.

∙ If an old RPM is passed explicitly and the DeltaRPM is a standard delta, then the
RPM’s CPIO archive is read and its entries are altered in the same way as in the
creation of the DeltaRPM (see Section 2.4.3).

∙ If an old RPM is passed explicitly and the DeltaRPM is an rpm-only delta, then the
archive is read without any alterations, but only after the header of the old RPM has
been prepended (once again, this corresponds to what forms the input to the bsdiff
algorithm when creating the delta).

∙ If no old RPM is passed explicitly, and therefore its files have been installed and are
present in the file system, these files are read in the order in which they appear in the
RPM header (this is why the file order is stored in the delta’s sequence).

to create identical DeltaRPM files to those created by makedeltarpm, which simplifies verification of their
equivalence.

7This is only the case for OpenSUSE, however, and so lzip compression is only available to be used on
that platform.

24

This technique is used in the same way that it is used by deltarpm, the difference is that
drpm encapsulates all this in a module instead of having a large amount global variables
scattered throughout the code base. Since the different methods of filling the blocks require
storing different variables, the blocks data structure uses unions to store them effectively
and semantically.

25

Chapter 5

Testing the New Implementation

This chapter describes the tests performed on the new implementation of DeltaRPM tools
to verify its success. Since the new implementation seeks to offer the same functionality as
the current implementation, but with a different interface, the aim of the tests is to verify
that both implementations are equivalent in functionality, i.e. the same inputs to drpm’s
tools (the functions drpm_make, drpm_apply and so on) result in the same outputs as they
do with deltarpm’s tools (makedeltarpm and applydeltarpm).

As far as creating DeltaRPM packages is concerned, the method used to test the functional
equivalence is to create DeltaRPM files using both tools, specifying the same arguments
(adjusted to their different interfaces, of course), and check that the files are identical1.

The method of testing the application of DeltaRPM packages follows directly from what
this process is meant to achieve, that is to reconstruct the RPM exactly. The RPM packages
constructed by drpm_apply are checked to be identical to the original target RPM packages
that were used to create the used DeltaRPM. In this case, there is no need to run the
corresponding deltarpm tool to compare the functionality.

These methods were used to test the new implementation, and were instrumental in de-
tecting many bugs. The drpm project comes with a test suite that uses these methods to
check whether the code works correctly. Its implementation is described in Section 5.1. One
functionality that is not tested in this suite is checking and reconstructing using file system
data as opposed to an RPM file. The reason for this is that these tests are designed to run
automatically during the process of installing the drpm library. A prepared RPM package
would have to be installed on the user’s system before running tests, and it is dubious
that the user would be willing to grant privileges for this. This functionality, i.e. that of
drpm_apply, drpm_check and drpm_check_sequence using an installed RPM package, has
therefore been tested separately on Fedora 20 running on x86_64 architecture.

1It is not strictly speaking necessary that the DeltaRPMs be entirely identical in order to both be used
equivalently in reconstructing the RPM. However, the permissible differences are few and unimportant (e.g.
an rpm-only delta’s payload format offset is not actually used, and so could contain any value), so in the
interest of simplifying the equivalence test to checking that the files are identical, drpm makes sure these few
cases also match deltarpm’s behaviour.

26

5.1 Test Suite

The new implementation comes with a set of automated tests that are run during the
installation process. These tests come with two pairs of RPM packages (an old and new
version for each) and consist of three parts.

∙ A program implemented in C uses the framework provided by the cmocka library to
run groups of tests on drpm’s API functions [22]. The first group tests drpm_make,
running it several times with different parameters to produce DeltaRPM packages
that will be used by later tests. The second group uses drpm API functions to ex-
tract information from the created DeltaRPMs, and checks these various pieces of
information to see that they reflect the parameters used to create the deltas (e.g.
the specified compression was used, the stored size of the target RPM matches the
actual file size) and also meet certain logical requirements for a DeltaRPM in general
(e.g. MD5 checksums take up the defined number of bytes, the length of the header
will be zero or non-zero depending on the type of delta). The third group only runs
drpm_check_sequence, providing it with the old RPM file, to check that it verifies
it successfully. The fourth group then uses the DeltaRPMs created by the first to
reconstruct the new RPMs by running drpm_apply.

∙ A script written in Bash is executed after the C program finishes. Its role is to
use the sha256sum program to check whether files are identical (files are compared
indirectly by generating a SHA256 hash for each and comparing the hashes) [13].
It runs makedeltarpm with equivalent parameter combinations to those used in the
C program, and the DeltaRPM files that it generates are checked to be identical to
those created by the C program2. The parameters of one the tests of DeltaRPM
creation specifies writing out the DeltaRPM’s sequence ID to a file, and these files
are also compared to see that they are identical for both invocations. The RPM files
reconstructed by drpm_apply are then compared with corresponding original target
RPMs, again using sha256sum.

∙ The last test reruns the C program through the valgrind tool, if it is available, in
order to detect any memory leaks that may be caused by drpm functions.

These tests were run in scratch builds of the drpm package on Fedora3, using the Koji build
system [1]. They succeed on all architectures tested with Koji, which include x86_64, i686
(Intel), armv7hl (ARM), ppc64, ppc64le (PowerPC) and s390x (IBM).

2If makedeltarpm is not installed, drpm has the SHA256 sums of files created by the same makedeltarpm
executions prepared in a text file, and uses these to perform the comparison instead.

3Koji builds on the release currently in development, which is the future Fedora 25 at the time writing.

27

Chapter 6

Future Development

This chapter concerns itself with the current state of the new implementation and how it
may be built upon in the future. There is still one aspect of makedeltarpm not captured by
drpm_make, which is the memory usage limiting mode (see Section 2.4.1). The reason for
this is that this mode was not fully understood when designing the implementation, which
had much to do with how loosely it is integrated in deltarpm’s implementation (partly due
to the fact that it was a late addition in deltarpm), and so the design failed to take it into
account. The main problem that needs to be addressed in making room for this mode, is
that drpm’s RPM and (de)compression modules, are implemented in a way that they store
large amounts of data in memory, which goes against the whole principle of this mode. It is
therefore necessary to change this approach for both modules. The rpm module can do this
by keeping the RPM file open for interrupted reads until it is no longer needed instead of
reading its whole contents at the first opportunity. The compstrm and decompstrm modules
then need to reuse parts of their internal buffers that have already been outputted. This
change is one for the near future.

As for longer term developments, Red Hat employees from the RPM team are considering
having DeltaRPMs use parallel compression, which has been introduced to RPMs. An
argument has also been made that it would be more practical if DeltaRPMs were used to,
instead of reconstructing the RPM file exactly as it was and compressing its payload in the
process, rather reconstruct the same RPM but leave its payload uncompressed. The reason-
ing is that in the typical use case the RPM’s reconstruction would be immediately followed
by its installation, and it would be a waste of processing power to compress the payload in
the reconstruction before decompressing it again in the installation, while missing the main
advantage of a reduced file size because the file would not need to be transferred in between.
The problem that would need to be solved in making this change is that this would disrupt
the way DeltaRPMs are used to verify that the resulting RPM is correct, which is to com-
pare its MD5 checksum to the one stored in the DeltaRPM. These checksums are calculated
using compressed data. In order to verify the successful reconstruction of the RPM without
compressing, it would be necessary to calculate checksums of uncompressed data. These
checksums could be easily calculated during the creation of DeltaRPMs, since this already
entails decompressing the RPM’s payload, but storing them in the DeltaRPM while pre-
serving backwards compatibility would necessitate extending the file format and labelling

28

it as a version 4 DeltaRPM. Another option would be to add an option to DeltaRPM cre-
ation that would result in writing a checksum of uncompressed RPM data to a separate
file (similarly to how the sequence ID may be generated), which could then supplied as an
argument to the reconstruction, signalling that this RPM should not be compressed and
the provided checksum should be used to verify its legitimacy instead.

An issue that would surely arise with these extensions is whether it would not make sense to
extend the deltarpm tools1 in the same way as drpm. And ultimately, it may well make the
most sense to merge these two implementations into one that provides both the command-
line and C API interfaces. The structure of the new implementation allows for a simple
extension into a command line interface, as one would merely have to add a command line
argument parser before calling a drpm function.

1The code base for deltarpm is now administered by the RPM team, though it has not made any changes
to it so far.

29

Chapter 7

Conclusion

This thesis describes the aim and the realization of a new implementation for handling
DeltaRPM packages, which solves the main weakness of the original implementation, which
is that it cannot be used as a library. The new implementation comes in the form of a C
API, and it makes an effort to be more readable and better documented. It is also well
suited to be extended into a command line program, with a view to the plausible future
need of merging the two DeltaRPM handling suites.

At the same time, backwards compatibility with the original implementation is maintained.
This is proved by tests which verify that the created DeltaRPM packages are identical for
both tools when invoked with the same arguments. The tests also prove that RPM packages
reconstructed with the new tools match their corresponding original RPM packages exactly,
which is a prerequisite for a successful implementation of tools that apply DeltaRPM pack-
ages.

The new implementation has been accepted by other Red Hat employees, and is ready to
go through the Fedora package update process, after which the createrepo_c project can
starts making use of its new functions.

30

Bibliography

[1] Koji [online], 2008 [cit. 2016-05-14]. https://fedoraproject.org/wiki/Koji.

[2] Add lzip support [online], 2011 [cit. 2016-05-03]. http://rpm.org/ticket/839.

[3] Header API [online], 2014 [cit. 2016-05-03].
http://rpm.org/api/4.12.0.1/group__header.html.

[4] Mark Adler and Jean-loup Gailly. zlib 1.2.8 Manual [online], 2013.
http://www.zlib.net/manual.html.

[5] Edward C. Bailey. Maximum RPM, chapter RPM File Format. Red Hat Inc., 2000.
ISBN 1-888172-78-9.

[6] Edward C. Bailey. Maximum RPM. Red Hat Inc., 2000. ISBN 1-888172-78-9.

[7] Edward C. Bailey. Maximum RPM, chapter Directives for the %files list. Red Hat
Inc., 2000. ISBN 1-888172-78-9.

[8] Lasse Collin. XZ Utils [online], 2016 [cit. 2016-05-03]. http://tukaani.org/xz/.

[9] Antonio Diaz Diaz. Lzlib Manual [online], 2009 [cit. 2016-05-14].
http://www.nongnu.org/lzip/manual/lzlib_manual.html.

[10] Jonathan Dieter. On binary delta algorithms. In: The Cedar and the Thistle [online],
2009-11-06 [cit. 2016-04-24]. https:
//cedarandthistle.wordpress.com/2009/11/06/on-binary-delta-algorithms/.

[11] Jonathan Dieter. Deltarpm problems (Part I). In: The Cedar and the Thistle [online],
2009-11-16 [cit. 2016-05-15]. https:
//cedarandthistle.wordpress.com/2009/11/16/deltarpm-problems-part-i/.

[12] Ulrich Drepper. GNU C Library Version 2.3. Red Hat, Inc., 2002.

[13] Ulrich Drepper, Scott Miller, and David Madore. sha256sum(1) – Linux man page
[online], 2010 [cit. 2016-05-14]. http://linux.die.net/man/1/sha256sum.

[14] FreeBSD File Formats Manual. cpio – format of cpio archive files [online].
https://people.freebsd.org/~kientzle/libarchive/man/cpio.5.txt.

[15] Jeff Johnson. RPM Project Roadmap [online], 2007. http://rpm5.org/roadmap.php.

31

https://fedoraproject.org/wiki/Koji
http://rpm.org/ticket/839
http://rpm.org/api/4.12.0.1/group__header.html
http://www.zlib.net/manual.html
http://tukaani.org/xz/
http://www.nongnu.org/lzip/manual/lzlib_manual.html
https://cedarandthistle.wordpress.com/2009/11/06/on-binary-delta-algorithms/
https://cedarandthistle.wordpress.com/2009/11/06/on-binary-delta-algorithms/
https://cedarandthistle.wordpress.com/2009/11/16/deltarpm-problems-part-i/
https://cedarandthistle.wordpress.com/2009/11/16/deltarpm-problems-part-i/
http://linux.die.net/man/1/sha256sum
https://people.freebsd.org/~kientzle/libarchive/man/cpio.5.txt
http://rpm5.org/roadmap.php

[16] N. Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. Theoretical
Computer Science. 2007, 387(3), 258–272.

[17] Dusty Mabe. RPM File Colors. In: A Random Walk Down Tech Street [online],
2013-08-25 [cit. 2016-04-24].
http://dustymabe.com/2013/08/25/rpm-file-colors/.

[18] Tomáš Mlčoch. createrepo_c [online], 2013 [cit. 2016-04-24].
https://fedorahosted.org/createrepo_c/.

[19] OpenSSL Software Foundation. crypto library. In: OpenSSL: Cryptography and
SSL/TLS Toolkit [online], 2015 [cit. 2016-05-14].
https://www.openssl.org/docs/manmaster/crypto/.

[20] Colin Percival. Naïve Differences of Executable Code. 2003.

[21] Colin Percival. Matching with Mismatches and Assorted Applications. PhD thesis,
Oxford University, 2006.

[22] Andreas Schneider. cmocka [online], 2013 [cit. 2016-05-14]. https://cmocka.org/.

[23] Michael Schroeder. applydeltarpm(8) - Linux man page [online], 2005 [cit.
2016-05-14]. http://linux.die.net/man/8/applydeltarpm.

[24] Michael Schroeder. makedeltarpm(8) - Linux man page [online], 2010 [cit.
2016-05-14]. http://linux.die.net/man/8/makedeltarpm.

[25] Julian Seward. bzip2 and libbzip2 [online], 2007.
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html.

[26] Robert C. Uzgalis. General Hash Functions. Technical report, The University of
Hong Kong, 1993.

32

http://dustymabe.com/2013/08/25/rpm-file-colors/
https://fedorahosted.org/createrepo_c/
https://www.openssl.org/docs/manmaster/crypto/
https://cmocka.org/
http://linux.die.net/man/8/applydeltarpm
http://linux.die.net/man/8/makedeltarpm
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html

Appendices

33

List of Appendices

A API Documentation (Generated by Doxygen) 35

34

Appendix A

API Documentation (Generated
by Doxygen)

35

drpm

Generated by Doxygen 1.8.6

Thu May 12 2016 15:31:25

CONTENTS 1

Contents

1 Module Index 1

1.1 Modules . 1

2 File Index 2

2.1 File List . 2

3 Module Documentation 2

3.1 DRPM Make . 2

3.1.1 Detailed Description . 2

3.1.2 Function Documentation . 2

3.2 DRPM Make Options . 4

3.2.1 Detailed Description . 4

3.2.2 Function Documentation . 4

3.3 DRPM Apply . 9

3.3.1 Detailed Description . 9

3.3.2 Function Documentation . 9

3.4 DRPM Check . 10

3.4.1 Detailed Description . 10

3.4.2 Function Documentation . 10

3.5 DRPM Read . 11

3.5.1 Detailed Description . 11

3.5.2 Function Documentation . 11

4 File Documentation 17

4.1 drpm.h File Reference . 17

4.1.1 Detailed Description . 20

4.1.2 Function Documentation . 20

Index 21

1 Module Index

1.1 Modules

Here is a list of all modules:

DRPM Make 2

DRPM Make Options 4

DRPM Apply 9

DRPM Check 10

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

2 CONTENTS

DRPM Read 11

2 File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

drpm.h 17

3 Module Documentation

3.1 DRPM Make

Tools for creating a DeltaRPM file from two RPM files, providing the same functionality as makedeltarpm(8).

Modules

• DRPM Make Options

Tools for customizing DeltaRPM creation.

Functions

• int drpm_make (const char ∗oldrpm, const char ∗newrpm, const char ∗deltarpm, const drpm_make_options
∗opts)

Creates a DeltaRPM from two RPMs.

3.1.1 Detailed Description

Tools for creating a DeltaRPM file from two RPM files, providing the same functionality as makedeltarpm(8).

3.1.2 Function Documentation

3.1.2.1 int drpm_make (const char ∗ oldrpm, const char ∗ newrpm, const char ∗ deltarpm, const drpm_make_options ∗
opts)

Creates a DeltaRPM from two RPMs.

The DeltaRPM can later be used to recreate the new RPM from either filesystem data or the old RPM.

Does the same thing as the makedeltarpm(8) command-line utility.

Examples of function calls (without error handling):

// makedeltarpm foo.rpm goo.rpm fg.drpm
drpm_make("foo.rpm", "goo.rpm", "fg.drpm", NULL);

// makedeltarpm -r -z xz.6 -s seqfile.txt foo.rpm goo.rpm fg.drpm

drpm_make_options *opts;

drpm_make_options_init(&opts);
drpm_make_options_set_type(opts, DRPM_TYPE_RPMONLY);
drpm_make_options_set_seqfile(opts, "seqfile.txt");
drpm_make_options_set_delta_comp(opts,

DRPM_COMP_XZ, 6);

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.1 DRPM Make 3

drpm_make("foo.rpm", "goo.rpm", "fg.drpm", &opts);

drpm_make_options_destroy(&opts);

// makedeltarpm -V 2 -z gzip,off -p foo-print.rpml foo-patch.rpml foo.rpm goo.rpm fg.drpm

drpm_make_options *opts;

drpm_make_options_init(&opts);
drpm_make_options_set_version(opts, 2);
drpm_make_options_set_delta_comp(opts,

DRPM_COMP_GZIP, DRPM_COMP_LEVEL_DEFAULT);
drpm_make_options_forbid_addblk(opts);
drpm_make_options_add_patches(opts, "foo-print.rpml", "foo-patch.rpml");

drpm_make("foo.rpm", "goo.rpm", "fg.drpm", &opts);

drpm_make_options_destroy(&opts);

// makedeltarpm -z uncompressed,bzip2.9 foo.rpm goo.rpm fg.drpm

drpm_make_options *opts;

drpm_make_options_init(&opts);
drpm_make_options_set_delta_comp(opts,

DRPM_COMP_NONE, 0);
drpm_make_options_set_addblk_comp(opts,

DRPM_COMP_BZIP2, 9);

drpm_make("foo.rpm", "goo.rpm", "fg.drpm", &opts);

drpm_make_options_destroy(&opts);

// makedeltarpm -u foo.rpm foo.drpm
drpm_make("foo.rpm", NULL, "foo.drpm", NULL);

Parameters

in oldrpm Name of old RPM file.
in newrpm Name of new RPM file.
in deltarpm Name of DeltaRPM file to be created.
in opts Options (if NULL, defaults used).

Returns

Error code.

Note

If either old_rpm or new_rpm is NULL, an "identity" deltarpm is created (may be useful to just replace the
signature of an RPM or to reconstruct an RPM from the filesystem).

Warning

If not NULL, opts should have been initialized with drpm_make_options_init(), otherwise behaviour is unde-
fined.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

4 CONTENTS

3.2 DRPM Make Options

Tools for customizing DeltaRPM creation.

Typedefs

• typedef struct drpm_make_options drpm_make_options

Options for drpm_make()

Functions

• int drpm_make_options_add_patches (drpm_make_options ∗opts, const char ∗oldrpmprint, const char
∗oldpatchrpm)

Requests incorporation of RPM patch files for the old RPM.

• int drpm_make_options_copy (drpm_make_options ∗dst, const drpm_make_options ∗src)

Copies drpm_make_options.

• int drpm_make_options_defaults (drpm_make_options ∗opts)

Resets options to default values.

• int drpm_make_options_destroy (drpm_make_options ∗∗opts)

Frees drpm_make_options.

• int drpm_make_options_forbid_addblk (drpm_make_options ∗opts)

Forbids add block creation.

• int drpm_make_options_get_delta_comp_from_rpm (drpm_make_options ∗opts)

DeltaRPM compression method is the same as used in the new RPM.

• int drpm_make_options_init (drpm_make_options ∗∗opts)

Initializes drpm_make_options with default options.

• int drpm_make_options_set_addblk_comp (drpm_make_options ∗opts, unsigned short comp, unsigned short
level)

Sets add block compression type and level.

• int drpm_make_options_set_delta_comp (drpm_make_options ∗opts, unsigned short comp, unsigned short
level)

Sets DeltaRPM compression type and level.

• int drpm_make_options_set_seqfile (drpm_make_options ∗opts, const char ∗seqfile)

Specifies file to which to write DeltaRPM sequence ID.

• int drpm_make_options_set_type (drpm_make_options ∗opts, unsigned short type)

Sets DeltaRPM type.

• int drpm_make_options_set_version (drpm_make_options ∗opts, unsigned short version)

Sets DeltaRPM version.

3.2.1 Detailed Description

Tools for customizing DeltaRPM creation.

3.2.2 Function Documentation

3.2.2.1 int drpm_make_options_init (drpm_make_options ∗∗ opts)

Initializes drpm_make_options with default options.

Passing ∗opts to drpm_make() immediately after would have the same effect as passing NULL instead.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.2 DRPM Make Options 5

Parameters

out opts Address of options structure pointer.

Returns

Error code.

See Also

drpm_make()

3.2.2.2 int drpm_make_options_destroy (drpm_make_options ∗∗ opts)

Frees drpm_make_options.

Parameters

out opts Address of options structure pointer.

Returns

Error code.

See Also

drpm_make()

3.2.2.3 int drpm_make_options_defaults (drpm_make_options ∗ opts)

Resets options to default values.

Passing opts to drpm_make() immediately after would have the same effect as passing NULL instead.

Parameters

out opts Structure specifying options for drpm_make().

Returns

Error code.

See Also

drpm_make()

3.2.2.4 int drpm_make_options_copy (drpm_make_options ∗ dst, const drpm_make_options ∗ src)

Copies drpm_make_options.

Copies data from src to dst.

Parameters

out dst Destination options.
in src Source options.

Returns

Error code.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

6 CONTENTS

Warning

dst should have also been initialized with drpm_make_options_init() previously, otherwise behaviour is un-
defined.

See Also

drpm_make()

3.2.2.5 int drpm_make_options_set_type (drpm_make_options ∗ opts, unsigned short type)

Sets DeltaRPM type.

There are two types of DeltaRPMs: standard and "rpm-only". The latter was introduced in version 3. It does not
work with filesystem data but is smaller and faster to combine.

Parameters

out opts Structure specifying options for drpm_make().
in type Type of deltarpm.

Returns

Error code.

See Also

drpm_make()
DRPM_TYPE_STANDARD, DRPM_TYPE_RPMONLY

3.2.2.6 int drpm_make_options_set_version (drpm_make_options ∗ opts, unsigned short version)

Sets DeltaRPM version.

The default DeltaRPM format is V3, but an older version may also be specified.

Parameters

out opts Structure specifying options for drpm_make().
in version Version (1-3).

Returns

Error code.

See Also

drpm_make()

3.2.2.7 int drpm_make_options_set_delta_comp (drpm_make_options ∗ opts, unsigned short comp, unsigned short level
)

Sets DeltaRPM compression type and level.

By default, the compression method is the same as used in the new RPM.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.2 DRPM Make Options 7

Parameters

out opts Structure specifying options for drpm_make().
in comp Compression type.
in level Compression level (1-9 or default).

Returns

Error code.

See Also

drpm_make()
DRPM_COMP_NONE, DRPM_COMP_GZIP, DRPM_COMP_BZIP2, DRPM_COMP_LZMA, DRPM_COMP-
_XZ
DRPM_COMP_LEVEL_DEFAULT

3.2.2.8 int drpm_make_options_get_delta_comp_from_rpm (drpm_make_options ∗ opts)

DeltaRPM compression method is the same as used in the new RPM.

May be used to reset DeltaRPM compression option after previously calling drpm_make_options_delta_comp().

Parameters

out opts Structure specifying options for drpm_make().

Returns

Error code.

See Also

drpm_make()

3.2.2.9 int drpm_make_options_forbid_addblk (drpm_make_options ∗ opts)

Forbids add block creation.

An "add block" is a highly compressible block used to store bytewise subtractions of segments where less than half
the bytes have changed. It is used in re-creating the new RPM with drpm_apply(), unless this functions is called to
tell drpm_make() not to create an add block.

Parameters

out opts Structure specifying options for drpm_make().

Returns

Error code.

See Also

drpm_make()

3.2.2.10 int drpm_make_options_set_addblk_comp (drpm_make_options ∗ opts, unsigned short comp, unsigned short
level)

Sets add block compression type and level.

The default add block compression type is bzip2, which gives the best results.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

8 CONTENTS

Parameters

out opts Structure specifying options for drpm_make().
in comp Compression type.
in level Compression level (1-9 or default).

Returns

Error code.

See Also

drpm_make()
DRPM_COMP_NONE, DRPM_COMP_GZIP, DRPM_COMP_BZIP2, DRPM_COMP_LZMA, DRPM_COMP-
_XZ
DRPM_COMP_LEVEL_DEFAULT

3.2.2.11 int drpm_make_options_set_seqfile (drpm_make_options ∗ opts, const char ∗ seqfile)

Specifies file to which to write DeltaRPM sequence ID.

If a valid file name is given, drpm_make() will write out the sequence ID to the file seqfile.

Parameters

out opts Structure specifying options for drpm_make().
in seqfile Name of file to which to write out sequence.

Returns

Error code.

Note

If seqfile is NULL, sequence ID shall not be written.

See Also

drpm_make()

3.2.2.12 int drpm_make_options_add_patches (drpm_make_options ∗ opts, const char ∗ oldrpmprint, const char ∗
oldpatchrpm)

Requests incorporation of RPM patch files for the old RPM.

This option enables the usage of patch RPMs, telling drpm_make() to exclude all files that were not included in the
patch RPM but are not bytewise identical to the ones in the old RPM.

Parameters

out opts Structure specifying options for drpm_make().
in oldrpmprint The rpm-print of the old RPM.
in oldpatchrpm The created patch RPM.

Returns

Error code.

See Also

drpm_make()

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.3 DRPM Apply 9

3.3 DRPM Apply

Tools for applying a DeltaRPM file to re-create a new RPM file (from an old RPM file or from filesystem data),
providing the same functionality as applydeltarpm(8).

Modules

• DRPM Check

Tools for checking if the reconstruction is possible (like applydeltarpm { -c | -C }).

Functions

• int drpm_apply (const char ∗oldrpm, const char ∗deltarpm, const char ∗newrpm)

Applies a DeltaRPM to an old RPM or on-disk data to re-create a new RPM.

3.3.1 Detailed Description

Tools for applying a DeltaRPM file to re-create a new RPM file (from an old RPM file or from filesystem data),
providing the same functionality as applydeltarpm(8).

3.3.2 Function Documentation

3.3.2.1 int drpm_apply (const char ∗ oldrpm, const char ∗ deltarpm, const char ∗ newrpm)

Applies a DeltaRPM to an old RPM or on-disk data to re-create a new RPM.

Parameters

in oldrpm Name of old RPM file (if NULL, filesystem data is used).
in deltarpm Name of DeltaRPM file.
in newrpm Name of new RPM file to be (re-)created.

Returns

Error code.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

10 CONTENTS

3.4 DRPM Check

Tools for checking if the reconstruction is possible (like applydeltarpm { -c | -C }).

Functions

• int drpm_check (const char ∗deltarpm, int checkmode)

Checks if the reconstruction is possible based on DeltaRPM file.

• int drpm_check_sequence (const char ∗oldrpm, const char ∗sequence, int checkmode)

Checks if the reconstruction is possible based on sequence ID.

3.4.1 Detailed Description

Tools for checking if the reconstruction is possible (like applydeltarpm { -c | -C }).

3.4.2 Function Documentation

3.4.2.1 int drpm_check (const char ∗ deltarpm, int checkmode)

Checks if the reconstruction is possible based on DeltaRPM file.

Parameters

in deltarpm Name of DeltaRPM file.
in checkmode Full check or filesize changes only.

Returns

Error code.

See Also

DRPM_CHECK_FULL, DRPM_CHECK_FILESIZES

3.4.2.2 int drpm_check_sequence (const char ∗ oldrpm, const char ∗ sequence, int checkmode)

Checks if the reconstruction is possible based on sequence ID.

Parameters

in oldrpm Name of old RPM file (if NULL, filesystem data is used).
in sequence Sequence ID of the DeltaRPM.
in checkmode Full check or filesize changes only.

Returns

Error code.

See Also

DRPM_CHECK_FULL, DRPM_CHECK_FILESIZES

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.5 DRPM Read 11

3.5 DRPM Read

Tools for extracting information from DeltaRPM files.

Typedefs

• typedef struct drpm drpm

DeltaRPM package info.

Functions

• int drpm_destroy (drpm ∗∗delta)

Frees memory allocated by drpm_read().

• int drpm_get_string (drpm ∗delta, int tag, char ∗∗target)

Fetches information representable as a string.

• int drpm_get_uint (drpm ∗delta, int tag, unsigned ∗target)

Fetches information representable as an unsigned integer.

• int drpm_get_ullong (drpm ∗delta, int tag, unsigned long long ∗target)

Fetches information representable as an unsigned long long integer.

• int drpm_get_ulong (drpm ∗delta, int tag, unsigned long ∗target)

Fetches information representable as an unsigned long integer.

• int drpm_get_ulong_array (drpm ∗delta, int tag, unsigned long ∗∗target, unsigned long ∗size)

Fetches information representable as an array of unsigned long integers.

• int drpm_read (drpm ∗∗delta, const char ∗filename)

Reads information from a DeltaRPM.

3.5.1 Detailed Description

Tools for extracting information from DeltaRPM files. Limits memory usage.

As drpm_make() normally needs about three to four times the size of the rpm’s uncompressed payload, this option
may be used to enable a sliding block algorithm that needs mbytes megabytes of memory. This trades memory
usage with the size of the created DeltaRPM.

Parameters

out opts Structure specifying options for drpm_make().
in mbytes Permitted memory usage in megabytes.

Returns

Error code.

See Also

drpm_make()

3.5.2 Function Documentation

3.5.2.1 int drpm_read (drpm ∗∗ delta, const char ∗ filename)

Reads information from a DeltaRPM.

Reads information from DeltaRPM package filename into ∗delta. Example of usage:

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

12 CONTENTS

drpm *delta = NULL;

int error = drpm_read(&delta, "foo.drpm");

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

Parameters

out delta DeltaRPM to be filled with info.
in filename Name of DeltaRPM file whose data is to be read.

Returns

Error code.

Note

Memory allocated by calling drpm_read() should later be freed by calling drpm_destroy().

3.5.2.2 int drpm_get_uint (drpm ∗ delta, int tag, unsigned ∗ target)

Fetches information representable as an unsigned integer.

Fetches information identified by tag from delta and copies it to address pointed to by target.

Example of usage:

unsigned type;

int error = drpm_get_uint(delta, DRPM_TAG_TYPE, &type);

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

printf("This is a %s deltarpm\n", (type == DRPM_TYPE_STANDARD) ? "standard" : "rpm-only")
;

Parameters

in delta DeltaRPM containing required info.
in tag Identifies which info is required.
out target Tagged info will be copied here.

Returns

error number

Warning

delta should have been previously initialized with drpm_read(), otherwise behaviour is undefined.

See Also

DRPM_TAG_VERSION
DRPM_TAG_TYPE
DRPM_TAG_COMP
DRPM_TAG_TGTCOMP

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.5 DRPM Read 13

3.5.2.3 int drpm_get_ulong (drpm ∗ delta, int tag, unsigned long ∗ target)

Fetches information representable as an unsigned long integer.

Fetches information identified by tag from delta and copies it to address pointed to by target.

Example of usage:

unsigned long tgt_size;

int error = drpm_get_ulong(delta, DRPM_TAG_TGTSIZE, &tgt_size);

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

printf("Size of new RPM: %lu\n", tgt_size);

Parameters

in delta Deltarpm containing required info.
in tag Identifies which info is required.
out target Tagged info will be copied here.

Returns

Error code.

Warning

delta should have been previously initialized with drpm_read(), otherwise behaviour is undefined.

See Also

DRPM_TAG_TGTSIZE
DRPM_TAG_TGTHEADERLEN
DRPM_TAG_PAYLOADFMTOFF

3.5.2.4 int drpm_get_ullong (drpm ∗ delta, int tag, unsigned long long ∗ target)

Fetches information representable as an unsigned long long integer.

Fetches information identified by tag from delta and copies it to address pointed to by target.

Example of usage:

unsigned long long int_data_len;

int error = drpm_get_ullong(delta, DRPM_TAG_INTDATALEN, &int_data_len);

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

printf("Length of internal data: %llu\n", int_data_len);

Parameters

in delta Deltarpm containing required info.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

14 CONTENTS

in tag Identifies which info is required.
out target Tagged info will be copied here.

Returns

Error code.

Warning

delta should have been previously initialized with drpm_read(), otherwise behaviour is undefined.

See Also

DRPM_TAG_EXTDATALEN
DRPM_TAG_INTDATALEN

3.5.2.5 int drpm_get_string (drpm ∗ delta, int tag, char ∗∗ target)

Fetches information representable as a string.

Fetches string-type information identified by tag from delta, copies it to space previously allocated by the function
itself and saves the address to ∗target.

Example of usage:

char *tgt_nevr;

int error = drpm_get_string(delta, DRPM_TAG_TGTNEVR, &tgt_nevr);

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

printf("Target NEVR: %s\n", tgt_nevr);

free(tgt_nevr);

Parameters

in delta Deltarpm containing required info.
in tag Identifies which info is required.
out target Tagged info will be copied here.

Returns

Error code.

Note

∗target should be freed manually by the user when no longer needed.

Warning

delta should have been previously initialized with drpm_read(), otherwise behaviour is undefined.

See Also

DRPM_TAG_FILENAME
DRPM_TAG_SEQUENCE
DRPM_TAG_SRCNEVR
DRPM_TAG_TGTNEVR
DRPM_TAG_TGTMD5
DRPM_TAG_TGTCOMPPARAM
DRPM_TAG_TGTLEAD

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

3.5 DRPM Read 15

3.5.2.6 int drpm_get_ulong_array (drpm ∗ delta, int tag, unsigned long ∗∗ target, unsigned long ∗ size)

Fetches information representable as an array of unsigned long integers.

Fetches information identified by tag from delta, copies it to space previously allocated by the function itself,
saves the address to ∗target and stores size in ∗size.

Example of usage:

unsigned long *ext_copies;
unsigned long ext_copies_size;

int error = drpm_get_ulong_array(delta, DRPM_TAG_EXTCOPIES, &
ext_copies, &ext_copies_size);

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

for (unsigned long i = 1; i < ext_copies_size; i += 2)
printf("External copy: offset adjustment = %lu, length = %lu\n", ext_copies[i-1], ext_copies[i]);

free(ext_copies);

Parameters

in delta Deltarpm containing required info.
in tag Identifies which info is required.
out target Tagged info will be copied here.
out size Size of array will be copied here.

Returns

Error code.

Note

∗target should be freed manually by the user when no longer needed.

Warning

delta should have been previously initialized with drpm_read(), otherwise behaviour is undefined.

See Also

DRPM_TAG_ADJELEMS
DRPM_TAG_INTCOPIES
DRPM_TAG_EXTCOPIES

3.5.2.7 int drpm_destroy (drpm ∗∗ delta)

Frees memory allocated by drpm_read().

Frees memory pointed to by ∗delta and sets ∗delta to NULL.

Example of usage:

int error = drpm_destroy(&delta);

if (error != DRPM_ERR_OK) {
fprintf(stderr, "drpm error: %s\n", drpm_strerror(error));
return;

}

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

16 CONTENTS

Parameters

out delta Deltarpm that is to be freed.

Returns

Error code.

Warning

delta should have been previously initialized with drpm_read(), otherwise behaviour is undefined.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

4 File Documentation 17

4 File Documentation

4.1 drpm.h File Reference

Macros

Errors / Return values

• #define DRPM_ERR_OK 0
no error

• #define DRPM_ERR_MEMORY 1
memory allocation error

• #define DRPM_ERR_ARGS 2
bad arguments

• #define DRPM_ERR_IO 3
I/O error.

• #define DRPM_ERR_FORMAT 4
wrong file format

• #define DRPM_ERR_CONFIG 5
misconfigured external library

• #define DRPM_ERR_OTHER 6
unspecified/unknown error

• #define DRPM_ERR_OVERFLOW 7
file too large

• #define DRPM_ERR_PROG 8
internal programming error

• #define DRPM_ERR_MISMATCH 9
file changed

• #define DRPM_ERR_NOINSTALL 10
old RPM not installed

Delta Types

• #define DRPM_TYPE_STANDARD 0
standard deltarpm

• #define DRPM_TYPE_RPMONLY 1
rpm-only deltarpm

Compression Types

• #define DRPM_COMP_NONE 0
no compression

• #define DRPM_COMP_GZIP 1
gzip

• #define DRPM_COMP_BZIP2 2
bzip2

• #define DRPM_COMP_LZMA 3
lzma

• #define DRPM_COMP_XZ 4
xz

• #define DRPM_COMP_LZIP 5
lzip

Info Tags

• #define DRPM_TAG_FILENAME 0

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

18 CONTENTS

file name
• #define DRPM_TAG_VERSION 1

version
• #define DRPM_TAG_TYPE 2

delta type
• #define DRPM_TAG_COMP 3

compression type
• #define DRPM_TAG_SEQUENCE 4

sequence
• #define DRPM_TAG_SRCNEVR 5

source NEVR (name-epoch:version-release)
• #define DRPM_TAG_TGTNEVR 6

target NEVR (name-epoch:version-release)
• #define DRPM_TAG_TGTSIZE 7

target size
• #define DRPM_TAG_TGTMD5 8

target MD5
• #define DRPM_TAG_TGTCOMP 9

target compression type
• #define DRPM_TAG_TGTCOMPPARAM 10

target compression parameter block
• #define DRPM_TAG_TGTHEADERLEN 11

target header length
• #define DRPM_TAG_ADJELEMS 12

offset adjustment elements
• #define DRPM_TAG_TGTLEAD 13

lead/signatures of the new rpm
• #define DRPM_TAG_PAYLOADFMTOFF 14

payload format offset
• #define DRPM_TAG_INTCOPIES 15

copies from internal data (number of external copies to do before internal copy & length of internal copy)
• #define DRPM_TAG_EXTCOPIES 16

copies from external data (offset adjustment of external copy & length of external copy)
• #define DRPM_TAG_EXTDATALEN 17

length of external data
• #define DRPM_TAG_INTDATALEN 18

length of internal data

Compression Levels

• #define DRPM_COMP_LEVEL_DEFAULT 0
default compression level for given compression type

Check Modes

• #define DRPM_CHECK_NONE 0
no file checking

• #define DRPM_CHECK_FULL 1
full (i.e. slow) on-disk checking

• #define DRPM_CHECK_FILESIZES 2
only checking if filesizes have changed

Typedefs

• typedef struct drpm drpm

DeltaRPM package info.
• typedef struct drpm_make_options drpm_make_options

Options for drpm_make()

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

4.1 drpm.h File Reference 19

Functions

• int drpm_apply (const char ∗oldrpm, const char ∗deltarpm, const char ∗newrpm)

Applies a DeltaRPM to an old RPM or on-disk data to re-create a new RPM.
• int drpm_check (const char ∗deltarpm, int checkmode)

Checks if the reconstruction is possible based on DeltaRPM file.
• int drpm_check_sequence (const char ∗oldrpm, const char ∗sequence, int checkmode)

Checks if the reconstruction is possible based on sequence ID.
• int drpm_destroy (drpm ∗∗delta)

Frees memory allocated by drpm_read().
• int drpm_get_string (drpm ∗delta, int tag, char ∗∗target)

Fetches information representable as a string.
• int drpm_get_uint (drpm ∗delta, int tag, unsigned ∗target)

Fetches information representable as an unsigned integer.
• int drpm_get_ullong (drpm ∗delta, int tag, unsigned long long ∗target)

Fetches information representable as an unsigned long long integer.
• int drpm_get_ulong (drpm ∗delta, int tag, unsigned long ∗target)

Fetches information representable as an unsigned long integer.
• int drpm_get_ulong_array (drpm ∗delta, int tag, unsigned long ∗∗target, unsigned long ∗size)

Fetches information representable as an array of unsigned long integers.
• int drpm_make (const char ∗oldrpm, const char ∗newrpm, const char ∗deltarpm, const drpm_make_options
∗opts)

Creates a DeltaRPM from two RPMs.
• int drpm_make_options_add_patches (drpm_make_options ∗opts, const char ∗oldrpmprint, const char
∗oldpatchrpm)

Requests incorporation of RPM patch files for the old RPM.
• int drpm_make_options_copy (drpm_make_options ∗dst, const drpm_make_options ∗src)

Copies drpm_make_options.
• int drpm_make_options_defaults (drpm_make_options ∗opts)

Resets options to default values.
• int drpm_make_options_destroy (drpm_make_options ∗∗opts)

Frees drpm_make_options.
• int drpm_make_options_forbid_addblk (drpm_make_options ∗opts)

Forbids add block creation.
• int drpm_make_options_get_delta_comp_from_rpm (drpm_make_options ∗opts)

DeltaRPM compression method is the same as used in the new RPM.
• int drpm_make_options_init (drpm_make_options ∗∗opts)

Initializes drpm_make_options with default options.
• int drpm_make_options_set_addblk_comp (drpm_make_options ∗opts, unsigned short comp, unsigned short

level)

Sets add block compression type and level.
• int drpm_make_options_set_delta_comp (drpm_make_options ∗opts, unsigned short comp, unsigned short

level)

Sets DeltaRPM compression type and level.
• int drpm_make_options_set_seqfile (drpm_make_options ∗opts, const char ∗seqfile)

Specifies file to which to write DeltaRPM sequence ID.
• int drpm_make_options_set_type (drpm_make_options ∗opts, unsigned short type)

Sets DeltaRPM type.
• int drpm_make_options_set_version (drpm_make_options ∗opts, unsigned short version)

Sets DeltaRPM version.
• int drpm_read (drpm ∗∗delta, const char ∗filename)

Reads information from a DeltaRPM.
• const char ∗ drpm_strerror (int error)

Returns description of error code as a string.

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

20 CONTENTS

4.1.1 Detailed Description

Author

Pavel Tobias ptobias@redhat.com
Matej Chalk mchalk@redhat.com

Date

2014-2016

Copyright

Copyright © 2014 Red Hat, Inc. This project is released under the GNU Lesser Public License.

4.1.2 Function Documentation

4.1.2.1 const char∗ drpm_strerror (int error)

Returns description of error code as a string.

Works very similarly to strerror(3).

Parameters

in error error code

Returns

error description

Generated on Thu May 12 2016 15:31:25 for drpm by Doxygen

Index

DRPM Apply, 9
drpm_apply, 9

DRPM Check, 10
drpm_check, 10
drpm_check_sequence, 10

DRPM Make, 2
drpm_make, 2

DRPM Make Options, 4
drpm_make_options_add_patches, 8
drpm_make_options_copy, 5
drpm_make_options_defaults, 5
drpm_make_options_destroy, 5
drpm_make_options_forbid_addblk, 7
drpm_make_options_get_delta_comp_from_rpm,

7
drpm_make_options_init, 4
drpm_make_options_set_addblk_comp, 7
drpm_make_options_set_delta_comp, 6
drpm_make_options_set_seqfile, 8
drpm_make_options_set_type, 6
drpm_make_options_set_version, 6

DRPM Read, 11
drpm_destroy, 15
drpm_get_string, 14
drpm_get_uint, 12
drpm_get_ullong, 13
drpm_get_ulong, 12
drpm_get_ulong_array, 14
drpm_read, 11

drpm.h, 17
drpm_strerror, 20

drpm_apply
DRPM Apply, 9

drpm_check
DRPM Check, 10

drpm_check_sequence
DRPM Check, 10

drpm_destroy
DRPM Read, 15

drpm_get_string
DRPM Read, 14

drpm_get_uint
DRPM Read, 12

drpm_get_ullong
DRPM Read, 13

drpm_get_ulong
DRPM Read, 12

drpm_get_ulong_array
DRPM Read, 14

drpm_make
DRPM Make, 2

drpm_make_options_add_patches
DRPM Make Options, 8

drpm_make_options_copy
DRPM Make Options, 5

drpm_make_options_defaults
DRPM Make Options, 5

drpm_make_options_destroy
DRPM Make Options, 5

drpm_make_options_forbid_addblk
DRPM Make Options, 7

drpm_make_options_get_delta_comp_from_rpm
DRPM Make Options, 7

drpm_make_options_init
DRPM Make Options, 4

drpm_make_options_set_addblk_comp
DRPM Make Options, 7

drpm_make_options_set_delta_comp
DRPM Make Options, 6

drpm_make_options_set_seqfile
DRPM Make Options, 8

drpm_make_options_set_type
DRPM Make Options, 6

drpm_make_options_set_version
DRPM Make Options, 6

drpm_read
DRPM Read, 11

drpm_strerror
drpm.h, 20

	Introduction
	Inner Workings of DeltaRPM Packages
	DeltaRPM Usage
	Types of DeltaRPM Packages
	File Format
	Creating DeltaRPM Packages
	Parameters
	Implementation of DeltaRPM Creation
	Altering the CPIO Archive of the Old RPM
	Creating the Binary Patch

	Applying DeltaRPM Packages
	Parameters
	Implementation of DeltaRPM Application
	Reconstructing the RPM Package

	Analysis of the Current Implementation
	The Documentation
	Code Structure
	Use of External Libraries
	Re-Usability

	Design of the New Implementation
	The Developer Interface
	Code Structure
	Modules
	RPM
	Compression and Decompression
	Blocks

	Testing the New Implementation
	Test Suite

	Future Development
	Conclusion
	Bibliography
	Appendices
	List of Appendices

	API Documentation (Generated by Doxygen)

