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Abstract
This thesis deals with depth estimation using convolutional neural networks. I propose
a three-part model as a solution to this problem. The model contains a global context
network which estimates coarse depth structure of the scene, a gradient network which
estimates depth gradients and a refining network which utilizes the outputs of previous two
networks to produce the final depth map. Additionally, I present a normalized loss function
for training neural networks. Applying normalized loss function results in better estimates
of the scene’s relative depth structure, however it results in a loss of information about the
absolute scale of the scene.

Abstrakt
Táto práca sa zaoberá odhadom hĺbky s použitím konvolučných neurónových sietí. Pre
vyriešenie tohto problému je v práci navrhnutý model skladajúci sa z troch častí. Model
sa skladá zo siete globálneho kontextu, ktorá odhaduje hrubú štruktúru scény, gradientovej
siete, ktorá odhaduje hĺbkové gradienty a zjemňujúcej siete, ktorá na základe výstupov z
predchádzajúcich dvoch sietí odhadne konečnú hĺbkovú mapu. Ďalej v práci navrhujem
normalizovanú chybovú funkciu na trénovanie neuronových sietí. Použitie tejto chybovej
funkcie zlepšuje odhady relatívnej hlbkovej štruktúry scény, za cenu straty informácie o ab-
solutnej hlbke v scéne.
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Chapter 1

Introduction

One of the aims of computer vision is to understand a scene depicted in an image. This
requires the ability to infer the semantics of the scene and the understanding of the geo-
metric structure of the scene from a single image. An important part of solving the latter
part of the problem involves the estimation of the corresponding depth map which can
be subsequently used to infer the three-dimensional structure of the scene. Knowledge of
the scene’s depth map has also been applied to other problems in computer vision such as
semantic labeling [11] or pose estimation [23]. In contrast to depth estimation from multi-
ple images, estimating depth from a single image is not a well studied problem. Solutions
estimating depth from a single image have usually relied on simplifying assumptions about
the geometric structure of the scene, or some external information about the scene such as
semantic labels [14]. Recent approaches remove the need for these assumptions and for the
additional information and instead utilize supervised learning while relying entirely on cues
that can be inferred from the input image.

This thesis focuses on the task of depth map estimation from a single image using
convolutional neural networks. Convolutional neural networks were not used for this task
until recently [5], but approaches utilizing them have quickly achieved state of the art
performance and surpassed prior solutions. Aim of this project is to study different ways
in which convolutional neural networks can be used to help in the task of depth estimation
from a single image, propose an innovative solution to this problem, experiment with it and
evaluate results of these experiments.

Chapter 2 introduces the problem of depth estimation from a single image and present
the existing solutions employing convolutional neural networks. Chapter 3 contains the
description of the proposed model a novel loss function used to improve performance of
the model. Chapter 4 describes the implementation details of the proposed model and
Chapter 5 describes the experiments conducted on the model and their results.
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Chapter 2

Depth Estimation

Depth estimation can be defined as a mapping from an RGB image, or a series of RGB
images to a depth map, or a series of depth maps. Estimated depth maps can then be
used for 3D scene reconstruction. Most existing approaches estimate depth based on stereo
vision [21] or video footage [1]. Given multiple view of the scene and accurate correspon-
dence among images, depth estimation is deterministic. By contrast, estimating depth from
a single image is an ill-posed problem, since the same image could be produced by an in-
finite amount of real world scenes. Considering only realistic ones, there’s still an issue of
scale invariance (see Section 2.1.4). To infer depth map from a single image, a solution has
to rely only on monocular depth cues like perspective and line angles. This limitation has
been avoided by utilizing outside information about the scene or by simplifying assumptions
about the scene’s structure, until recently.

Existing solutions to depth estimation from a single image usually rely on assumptions
regarding the scene’s general structure by fitting box-shaped model to the image [22]. This
simple geometric model cannot predict more detailed depth structure. More recent solutions
propose estimating depth directly for image patches - superpixels, but since these parts of
image don’t contain enough information to infer absolute depth, those approaches usually
utilize other information such as semantic labels [14]. Most recent approaches try to predict
depth from an RGB image without any additional information. These approaches usually
use Markov Random Fields [20] or Conditional Random Fields [16]. Starting with work by
Eigen et al. [5], convolutional neural networks (CNNs) are used for depth estimation and
at the moment, approaches that utilize CNNs achieve state of the art performance.

This chapter serves as a brief introduction to the context of depth estimation from
a single image using CNNs. In the first section I introduce concepts relevant to the task of
depth estimation, like importance of the global context or scale invariance. In the second
section I present commonly used metrics used for benchmarking performance of systems
estimating depth. Third section lists commonly used RGB-D datasets. Fourth section is the
main part of this chapter and presents existing solutions to depth estimation from a single
image which utilize CNNs.

2.1 Important Concepts for Depth Estimation
In this section I introduce and briefly describe useful concepts that provide conceptual
background for existing solutions which I present later in the chapter.
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2.1.1 Logarithmic Space

Depth value 𝑦 in logarithmic space (referred to as log space from now on) is equal to
𝑙𝑜𝑔(𝑦𝑙𝑖𝑛), where 𝑦𝑙𝑖𝑛 is the real world depth in linear space. Logarithmic function used in
this thesis to convert from linear space is 𝑓(𝑥) = 0.179581 * 𝑙𝑛(𝑥) + 1. This function is
designed to be an identity for values 0.0039 ∼ 1/255 and 1. In this thesis, 1 represents
10 meters. For depth values in log space, Euclidean loss does not minimize the difference
between estimated depth 𝑦 and the ground truth 𝑦*, but minimizes the difference between
𝑙𝑜𝑔𝑦 and 𝑙𝑜𝑔𝑦*, which can be rewritten as 𝑙𝑜𝑔 𝑦

𝑦* . This means that loss in the log space
optimizes ratio between 𝑦 and 𝑦* and achieves minimum when the ratio is 1. Experiments
in Chapter 5 show that this achieves better prediction of relative depth structure.

2.1.2 Global Context

Estimating depth from a single image has to rely solely on visual cues which indicate the
scene’s spatial structure such as vanishing points, object locations and room alignment.
These cannot be inferred from individual local patches [5] and require a global view of the
input image as well. Eigen et al. [5] use a convolutional neural network with fully connected
layers that estimates the global structure of the scene. More traditionally, Markov Random
Fields or Conditional Random Fields are used to propagate local information through the
whole scene [20].

2.1.3 Absolute Scale of the Scene and the Relative Structure of the Scene

In the context of depth estimation, absolute scale of the scene represents the size of the
scene in the real world. Depth map which accurately reflects the absolute scale of the
scene contains depth values whose absolute values are similar to the target depth values.
Conversely, depth map which accurately reflects the relative structure of the scene has the
same relationships between the pixels (higher/lower depth) as the target depth map, but
the absolute depth values are different from the target depth values.

2.1.4 Scale Invariance

Estimating depth from a single image has to deal with ambiguity about the scene’s scale
that is caused by the projection from 3D space to the 2D image. Two images that look
identically, can in fact depict different real world scenes - image of a circle with a radius of
5 meters captured from the distance 10 meters will look identically to the image of a circle
with a radius of 5 centimeters captured from the distance of 10 centimeters. Since the
information about the scene’s absolute scale cannot be extracted from the image by means
other than understanding the semantics of the depicted scene, it is reasonable to consider
both cases to be identical. There are multiple approaches to achieve this, for example by
normalizing the training dataset or by using a suitable loss function during the training
convolutional neural network.

Error function that considers scale invariance should output the same error for the
output depths y as for y * 𝑠, ∀𝑠 ∈ R. Eigen et al. [5] use such loss function and achieve
better qualitative results.
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2.1.5 Neighboring Pixels Relationship

When looking at an RGB image, it is intuitive that regions with similar appearance will
have similar depth values in the resulting depth map. This can be incorporated into system
for depth estimation by enforcing similarity between neighboring depth values based on
similarity of the appearance of corresponding regions in the RGB image. This causes the
resulting depth map to have sharper edges and to better align to local structure as seen
in [15].

Liu et al. [15], Li et al. [13] and Wang et al. [25] use Conditional Random Fields
(CRF) with an appropriate pair-wise potential to enforce similarity across homogeneous
image regions (superpixels). Roy et al. [19] predict depth of a pixel as a weighted average
of the neighboring pixels’ depth values with weights being higher for neighboring pixels
similar in appearance.

2.1.6 Utilizing Depth Map Gradients

Horizontal and vertical gradients of the depth map convey information about significant
depth differences in the scene and local structure, which can be used to improve estimated
depth maps.

Roy et al. [19] estimate the gradient of the depth map in addition to estimating global
context depth map. Both are used for a final depth prediction. Eigen et al. [4] use
a loss function that minimizes difference between gradients of the estimated depth map
and gradients of the ground truth and achieve an increase in model’s performance.

2.2 Metrics for Evaluating Performance
Evaluating results quantitatively is important for benchmarking performance and ability
to compare existing solutions. In Table 2.1 I present common metrics used for evaluating
the performance of systems performing depth estimation. 𝑑𝑖 is the predicted depth at pixel
𝑖 and 𝑑*𝑖 is the target depth for the pixel. Table 2.2 at the end of this chapter, compares
performance of existing solutions using these metrics.

Relative error (rel) 1
|𝑁 |

∑︀
𝑖∈𝑁

|𝑑𝑖−𝑑*𝑖 |
𝑑*𝑖

Square relative error (sqr rel) 1
|𝑁 |

∑︀
𝑖∈𝑁

|𝑑𝑖−𝑑*𝑖 |2
𝑑*𝑖

Root mean squared error (rms)
√︁

1
|𝑁 |

∑︀
𝑖∈𝑁 |𝑑𝑖 − 𝑑*𝑖 |2

Root mean squared error log
(rms-log)

√︁
1

|𝑁 |
∑︀

𝑖∈𝑁 | log(𝑑𝑖)− log(𝑑*𝑖 )|2

Log10 error (log10) 1
|𝑁 |

∑︀
𝑖∈𝑁 | log10(𝑑𝑖)− log10(𝑑

*
𝑖 )|

Threshold (𝛿)
% of 𝑑𝑖 s.t. max( 𝑑𝑖𝑑*𝑖

,
𝑑*𝑖
𝑑𝑖
) < 𝑡ℎ𝑟, where

𝑡ℎ𝑟 ∈ {1.25, 1.252, 1.253}

Table 2.1: Metrics used for evaluating performance in depth estimation

For every metric except for the threshold metric, lower values indicate better perfor-
mance. For threshold metric, higher values mean lower error.
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2.3 Datasets
This section describes RGB-D datasets that are commonly used to benchmark the perfor-
mance of a system for depth estimation.

NYU Depth v2 [18] is comprised of video sequences of 464 indoor scenes recorded
with Microsoft Kinect. The dataset contains two components, the labeled dataset with
1449 (795 in the training set, 654 in the test set) aligned RGB and depth images with
a resolution of 640x480 and semantic labels for each object. The second component contains
raw outputs from camera and Microsoft Kinect. This results in 407,024 unlabeled images
total. The dataset also provides toolbox with MATLAB scripts that can be used to process
the provided raw data and obtain synced, aligned and complete depth maps. Depth values
for both components are in the range 0-10 meters.

Make3D [20] is a dataset of 534 outdoor images. 400 images are used for training, 134
are used for testing. Depth information is gathered using laser and resulting RGB images
have a resolution of 2272x1704. Depth maps have a 55x305 resolution with depth ranging
from 0 to 80 meters.

KITTI [7] consists of video sequences taken from a driving vehicle with depths captured
by LIDAR. Provided RGB images have a resolution of 1392x512 and depth maps have to
be extracted from LIDAR point cloud data. These point are provided only for the bottom
portion of the image. Dataset consists of 56 scenes, and contains around 20,000 images
overall.

2.4 Solutions Using Convolutional Neural Networks
This section presents existing solutions to the depth estimation task that employ convolu-
tional neural networks.

2.4.1 Solutions Using Only Convolutional Neural Networks

Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network

Eigen et al. [5] were first to propose a solution to depth estimation that uses convolutional
neural networks. They use two-scale architecture consisting of the coarse-scale network
and the fine-scale network. Coarse-scale network is a convolutional neural network that
identifies the global scene context. This is accomplished by using two fully connected layers
that have a full view of the input image. Output of the coarse-scale network is a low
resolution depth map. This depth map, along with the original input image is then fed
to the fine-scale network. Fine-scale network is a fully convolutional network consisting of
three convolutional layers and is used to refine the coarse prediction it receives. The whole
model architecture can be seen in detail in the Figure 2.1.

In addition, Eigen et al. consider the issue of scale invariance. They use a scale-
invariant error for performance evaluation and a scale-invariant loss function 𝐿(𝑦, 𝑦*) for
the training:

𝐿(𝑦, 𝑦*) =
1

𝑛

∑︁
𝑖

(log 𝑦𝑖 − log 𝑦*𝑖 +
1

𝑛

∑︁
𝑗

(log 𝑦*𝑗 − log 𝑦𝑗))
2. (2.1)

𝑦𝑖 denotes the predicted depth value for the pixel 𝑖, 𝑦*𝑖 is the ground truth value for the
pixel. The scale invariance is accomplished by the inner sum, which represents the mean
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Figure 2.1: Multiscale architecture of Eigen et al. [5]

log difference between predicted and ground truth depth values. Why this results in scale
invariance, can be seen if the equation is rewritten as

𝐿(𝑦, 𝑦*) =
1

𝑛

∑︁
𝑖

((log 𝑦𝑖 −
1

𝑛

∑︁
𝑗

(log 𝑦𝑗))− (log 𝑦*𝑖 −
1

𝑛

∑︁
𝑗

(log 𝑦*𝑗 )))
2

=
1

𝑛

∑︁
𝑖

((log 𝑦𝑖 − 𝑦𝑚)− (log 𝑦*𝑖 − 𝑦*𝑚))2

=
1

𝑛

∑︁
𝑖

(log
𝑦𝑖
𝑦𝑚

− log
𝑦*𝑖
𝑦*𝑚

)2,

(2.2)

where 𝑦𝑚 is the mean predicted log depth and 𝑦*𝑚 is the mean ground truth log depth. It
is clear from the last line of the equation 2.2 that the error will be the same for all scalar
multiples of predicted depth values 𝑦𝑖, hence the scale invariance. Eigen et al. use another
form of the equation 2.2,

𝐿(𝑦, 𝑦*) =
1

𝑛

∑︁
𝑖

(log 𝑦𝑖 − log 𝑦*𝑖 )
2 − 𝜆

𝑛2
(
∑︁
𝑖

log 𝑦𝑖 − log 𝑦*𝑖 )
2, (2.3)

which can be computed in linear time. 𝜆 controls the effect of scale invariant term.
When 𝜆 = 0, the equation is reduced to an Euclidean loss. When 𝜆 = 1, equation is
equivalent to scale invariant loss as defined in Equation 2.2. They find that using 𝜆 = 0.5
produces good absolute-scale predictions and still benefits from scale invariance.

They train and evaluate the network using NYU Depth v2 dataset (full raw data) [18]
and KITTI dataset [7]. To increase training data variability, they augment training set
on-line by using these random transformations (taken directly from [5]):

∙ Scale: Input and target images are scaled by 𝑠 ∈ [1, 1.5], and the depths are divided
by 𝑠.
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∙ Rotation: Input and target are rotated by 𝑟 ∈ [−5, 5] degrees.

∙ Translation: Input and target are randomly cropped to the input size of the network.

∙ Color : Input values are multiplied globally by a random RGB value 𝑐 ∈ [0.8, 1.2]3.

∙ Flips: Input and target are horizontally flipped with 0.5 probability.

During training process, they train the coarse-scale network for 2M steps, after that
they fix the coarse-scale network and train the fine-scale network for 1.5M steps.

Results show that at the time of writing the paper, the model used in this network
achieves on average 35% performance increase compared to the runner-up (who is not
using convolutional neural networks) on the NYU Depth v2 dataset and on average 31%
performance increase on the KITTI dataset.

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-
Scale Convolutional Architecture

In [4], Eigen et al. build on their previous work and introduce a three-scale architecture
for tasks of depth estimation, surface normals prediction and semantic labeling. The archi-
tecture is the same for each of the three tasks, but there are differences in datasets, losses
and evaluation. I present only the information and results relevant to the depth estimation
task.

Proposed three-scale architecture improves the architecture proposed in [5]. First-scale
network is a network similar to one in [5]. Difference is that it is deeper, using more
convolutional layers and its output is not a depth estimate but multichannel feature maps.
Eigen et al. tried different sizes for this network, one based on AlexNet [10] and one based
on VGG [24]. The second-scale network takes as input the original input image as well
as feature maps from the first-scale network. Second-scale network is a fully convolutional
network with 5 layers and its output is a depth estimate in a half the final resolution. This
estimate is then fed to the third-scale network, along with the original input image and is
refined to produce the final depth estimate. Third-scale network is also a fully convolutional
network, with 4 layers. See Figure 2.2 for more detailed description of used architecture.
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Figure 2.2: Three-scale architecture of Eigen et al. [4]

For training, a similar loss function is used as the one used in [5]:

𝐿(𝑦, 𝑦*) =
1

2𝑛

∑︁
𝑖

(log 𝑦𝑖− log 𝑦*𝑖 +
1

𝑛

∑︁
𝑗

(log 𝑦*𝑗 − log 𝑦𝑗))
2+

1

𝑛

∑︁
𝑖

[(∇𝑥𝑑𝑖)
2+(∇𝑦𝑑𝑖)

2]. (2.4)

∇𝑥𝑑𝑖 and ∇𝑦𝑑𝑖 are the horizontal and the vertical gradient of the difference between log
depths, 𝑑𝑖 being log 𝑦𝑖 − log 𝑦*𝑖 . This gradient term encourages estimates to have a similar
local structure to target depth maps and Eigen et al. state, that including this term
produces better results.

Networks are trained on NYU Depth v2 dataset (raw data), with data augmentation
similar to [5]. First, the coarse-scale network and the second-scale network are trained
jointly. After that their parameters are fixed and the third network is trained.

Results show that VGG based network significantly outperforms smaller, AlexNet based
model, probably due to larger model size. In comparison to other solutions, VGG based
network achieves the best performance in all metrics, qualitatively achieving results with
better local structure than [5], but still not achieving transitions as sharp as solutions using
Conditional Random Fields. The VGG based network is, at the time of writing this thesis,
the state of the art in depth estimation from a single image.

2.4.2 Conditional Random Fields Combined with Convolutional Neural
Networks

Learning Depth from Single Monocular Images Using Deep Convolutional Neu-
ral Fields

While in [5] and [4], the depth map is regressed directly from the input image using con-
volutional neural networks, Liu et al. [15] use Deep Convolutional Neural Fields (see

9



Figure 2.3) to explicitly model the relationship between neighboring parts of the depth map
using Conditional Random Fields (CRFs). They use neural network to optimize parame-
ters of the probability density function modeled by the CRF. CRF nodes are homogeneous
regions of the input image called superpixels. The probability density function modeled by
CRF is

𝑃𝑟(y|x) = exp(−𝐸(y,x))
𝑍(x) . (2.5)

x is the input image and y is the vector of depth values corresponding to all the superpixels
of the input image. 𝐸(y,x) is the energy function whose value is being minimized and
𝑍(x) is the normalizing term used to ensure that 𝑃𝑟(y|x) is a probability density function.
Energy function is then defined as

𝐸(y,x) =
∑︁
𝑝∈𝒩

𝑈(𝑦𝑝,x) +
∑︁

(𝑝,𝑞)∈𝒮

𝑉 (𝑦𝑝, 𝑦𝑞,x), (2.6)

where 𝒩 is the set of superpixels, 𝒮 is the set of edges (𝑝, 𝑞) connecting superpixels 𝑝
and 𝑞 and 𝑦𝑝 is the predicted depth value for superpixel 𝑝. 𝑈 is the unary potential that
aims to regress depth values of individual superpixels and 𝑉 is the pairwise potential that
encourages neighboring superpixels with similar appearance to take on similar depth values.
The proposed network then consist of two parts. The unary part, which is a convolutional
neural network that optimizes the unary potential and the pairwise part, which is a fully
connected neural network that optimizes pairwise potential. Input image is segmented into
superpixels and an image patch centered around superpixel is then fed to the unary network
for each superpixel separately. The unary network has a convolutional part and four fully
connected layers following it. Convolutional part was originally taken from AlexNet [10],
but later replaced with VGG-16 [24]. Its output is a regressed depth for the superpixel.
The unary potential is defined as

𝑈(𝑦𝑝,x; 𝜃) = (𝑦𝑝 − 𝑧𝑝(𝜃))
2, (2.7)

where 𝜃 are the parameters of the unary convolutional neural network and 𝑧𝑝(𝜃) is the
regressed depth for the superpixel 𝑝 using parameters 𝜃. Pairwise part of the model contains
a network with one fully connected layer containing a single neuron. This network optimizes
the pairwise potential 𝑉 defined as

𝑉 (𝑦𝑝, 𝑦𝑞,x;𝛽) =
1

2
𝑅𝑝𝑞(𝛽)(𝑦𝑝 − 𝑦𝑞)

2, (2.8)

where 𝛽 are the pairwise network’s parameters and 𝑅𝑝𝑞(𝛽) is a network’s output, a single
number. Input to the pairwise network is a vector of 3 similarity observations for each pair
of neighboring superpixels. Similarity observations used are the colour difference, colour
histogram difference and texture disparity in terms of local binary patterns.

Outputs of unary and pairwise networks are then passed to the CRF loss layer that
minimizes the negative log-likelihood of the probability distribution function 𝑃𝑟. Predicting
depth values of each superpixel means finding the depth values with the maximum posterior
probability:

y* = argmax
𝜃
𝑃𝑟(y|x). (2.9)

Note that predicted depth values are in logarithmic space.
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Figure 2.3: Deep Convolutional Neural Fields [15]

Training and evaluation is done on NYU Depth v2 [18], KITTI [7] and Make3D [20]
datasets. Both networks are trained jointly with CRF using Stochastic Gradient Descent
(SGD) to minimize the energy function 𝐸. Quantitative results are compared directly to
the results of Eigen et al. [5] on NYU Depth v2 and KITTI datasets and proposed model
achieves better performance in all metrics. They achieve better performance even though
they train the model only on the labeled dataset containing 795 images, compared to the full
raw dataset containing 100 000+ pictures used by Eigen et al. This is possibly due to more
complicated model used by Liu et al.. Qualitatively, results are visually better then results
in [5], with sharper transitions and are aligned to local structures. This can be attributed
to the pairwise potential, causing parts of the input image with similar appearance to have
similar depth values. More recent work done by Eigen et al. [4] achieves better results in
all metrics, but this can be attributed to the larger architecture. Note that Liu et al. don’t
consider the issue of scale invariance.

Depth and Surface Normal Estimation from Monocular Images Using Regres-
sion on Deep Features and Hierarchical CRFs

Li et al. [13] use a combination of a convolutional neural network and Conditional Random
Field to estimate depth on the pixel level. They also use the same architecture to estimate
the surface normals. Convolutional neural network (Figure 2.4) estimates depth on the
superpixel level, after that a hierarchical CRF is used to refine depth values to the pixel
level. First, the input image is segmented into superpixels. Afterwards, for each superpixel,
multiple patches centered around the superpixel are extracted from the input image, at
different scales. In the final solution, patches of size 55x55, 121x121, 271x271, 407x407
are extracted and resized to a fixed size 227x227 pixels. These patches are each separately
processed by a fixed, pre-trained convolutional neural network based on AlexNet [10] (all
layers, except for the last fully connected layer are initialized using AlexNet). Outputs of
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Figure 2.4: Convolutional neural network used to regress depth of superpixel from multi-
scale patches [13]

the fully connected layer for each superpixel are then concatenated and fed to two fully
connected layers with learned weights. Output of the network is the regressed depth value
in the log space for the superpixel.

After depth of each superpixel is regressed, CRF is used to refine the estimate at the
pixel level. Energy function for the CRF is specified as

𝐸(𝑑) =
∑︁
𝑖∈𝒮

𝜑𝑖(𝑑𝑖) +
∑︁

(𝑖,𝑗)∈ℰ𝑠

𝜑𝑖𝑗(𝑑𝑖, 𝑑𝑗) +
∑︁
𝒞∈𝒫

𝜑𝒞(d𝒞). (2.10)

𝒮 is the set of superpixels, ℰ𝑠 is the set of pairs of neighboring superpixels and 𝒫 is the
set of pixel level patches. 𝑑𝑖 denotes the predicted depth value for the superpixel 𝑖 and
d𝒞 are predicted depth values for pixels in patch 𝒞. First two terms capture constrains on
predictions on the superpixel level, the third term on the pixel level. The first term measures
a distance of predicted depth from the depth regressed by the convolutional neural network.

𝜑𝑖(𝑑𝑖) = (𝑑𝑖 − 𝑑*𝑖 )
2, (2.11)

where 𝑑*𝑖 is the regressed depth. The second term is the pairwise potential and it serves a
similar purpose as the pairwise potential in [15]:

𝜑𝑖𝑗(𝑑𝑖, 𝑑𝑗) = 𝑤1(
𝑑𝑖 − 𝑑𝑗
𝜆𝑖𝑗

)2. (2.12)

𝜆𝑖𝑗 is the color difference between connected superpixels in the CIELUV color space [6] and
it is used to weight the difference between depths of superpixels, enforcing that superpixels
with similar colors have a similar depth values. 𝑤1 specifies the weight of the term in
the energy function. The third term is an auto-regression model, which is based on the
assumption that the depth value of the pixel can be estimated from depth values of its
neighbors. The auto-regression term is

𝜑𝒞(d𝒞) = 𝑤2 * (𝑑𝑢 −
∑︁
𝑟∈𝒩

𝛼𝑟𝑢𝑑𝑟)
2, ∀𝑑𝑢 ∈ d𝒞 , (2.13)
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Figure 2.5: Architecture for joint inference of semantic labels and depths using CNN and
CRF. [25]

where 𝒩 is a set of pixels in a patch 𝒞 and 𝛼𝑟𝑢 is a coefficient for an auto-regression model
for the pixel 𝑟 in the neighborhood of pixel 𝑢. 𝛼𝑟𝑢 is set to exp(− (𝑔𝑢−𝑔𝑟)2

2𝜎2
𝑢

) with the condition∑︀
𝑟∈𝒩 𝛼𝑟𝑢 = 1. 𝑔𝑖 is the intensity of the pixel 𝑖 and 𝜎𝑢 is the variance of intensities in the

local patch around 𝑢. Parameter 𝑤2 specifies the weight of the term in the energy function
and along with parameter 𝑤1, is specified by hand.

The model was trained and evaluated on NYU Depth v2 [18] and Make3D [20] datasets.
CRF parameters were estimated by cross-validation, networks were trained using Euclidean
loss. Results are compared to results of Eigen et al. [5] and achieve better results in five
from six metrics. However compared to Liu et al. [15] they achieve worse performance in
all metrics. Qualitatively, the resulting depth maps contain sharper edges and better fit
local structure than the results of [5], which can be attributed to the pairwise potential.
Li et al. suggest that using multi-scale patches improves performance and it is critical
to use sufficiently large pixels, emphasizing the importance of large-scale context in depth
estimation. Similarly to Liu et al. [15], they don’t consider the issue of scale invariance.

Towards Unified Depth and Semantic Prediction From a Single Image

Wang et al. [25] combine approaches used by Liu et al. [15] and Eigen et al. [5] and use
a global context CNN for estimating the scene layout, regional CNN for estimating the
local depth structure and the results of these networks are combined in a hierarchical CRF
(Figure 2.5). Additionally, they try to improve the performance by jointly training the
network for the task of depth estimation and semantic labeling.

Global context network has the same structure as the one in [5], with the exception of
accommodating the last layer for semantic label prediction. The output of this network is
a depth estimate in log space and a semantic label for each pixel. The loss for this networks
is a sum of the Euclidean loss for the depth estimation part and the Softmax loss for the
semantic prediction part.

Regional CNN estimates depth and semantic label for each region of the image sepa-
rately. These regions are extracted from the image using over-segmentation [17]. Regional
CNN has the same architecture as the global CNN, in fact it is just a fine-tuned version of
it. The output of the network is a semantic label 𝑙𝑠 for the segment 𝑠 and affinities to local
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Figure 2.6: Examples of local region depth templates used in [25]

depth templates. These templates represent typical local structures in the depth map, such
as corners, edges, planes, etc. and are pre-generated using ground truth. See Figure 2.6
for examples. Output of the network is thus an affinity to each template from the set of
templates 𝑇 and is defined during training as:

𝑎(𝑠, 𝑇𝑗) = 1{𝑙𝑇𝑗 }
(𝑙𝑠)

exp(−‖d𝑠 − d𝑇𝑗‖)
max𝑘 exp(−‖d𝑠 − d𝑇𝑘

‖)
, (2.14)

where 1 is the indicator function enforcing that the affinity is zero if the predicted label
and the template label are not the same, ds are depths of pixels inside the segment and
dTj

are depths of pixels inside the template 𝑇𝑗 . The loss for this network is a sum of
cross-entropy loss over affinities. Since the absolute depth cannot be estimated only from
the local segment, relative depth values are predicted. Conversion from absolute to relative
depths for the ground truth targets is done by subtracting the absolute value of the pixel at
the center of the segment and rescaling to range < 0, 1 >. Relative values can be converted
to absolute values by multiplication by scale 𝑠𝑖 and adding mean 𝑑𝑖. 𝑠𝑖 and 𝑑𝑖 are inferred
by CRF.

Hierarchical CRF is used to infer depth and semantic label for each pixel from the
outputs of the global and the regional CNN. The energy function 𝐸 being minimized by
CRF is

𝐸 =
∑︁
𝑖∈ℐ

𝜓𝑝𝑢(𝑑𝑖, 𝑙𝑖) + 𝜆𝑝𝑒
∑︁
𝑖,𝑗∈ℐ

𝜓𝑝𝑒(𝑑𝑖, 𝑙𝑖, 𝑑𝑗 , 𝑙𝑗) + 𝜆𝑦(
∑︁
𝑠∈𝒮

𝜓𝑐(𝜒𝑠,y𝑠) + 𝜆𝑠𝑒
∑︁
𝑠,𝑡∈𝒮

𝜓𝑠𝑒(y𝑠,y𝑡)),

(2.15)
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where 𝜓𝑝𝑢 is the unary potential on the pixel level, 𝜓𝑝𝑒 is the pairwise potential on the pixel
level, 𝜓𝑐 is the cross level potential that relates predictions y𝑠 for segment 𝑠 to pixels from
the global context that are inside this segment 𝜒𝑠. 𝜓𝑠𝑒 is a pairwise potential on the segment
level. 𝜆𝑦 is a balancing parameter specifying the weight of the segment level potentials and
is estimated using maximum likelihood on ground truth. 𝜆𝑝𝑒 and 𝜆𝑠𝑒 are balancing weights
for the pairwise potentials and are learned through cross validation. Explaining in detail
all the potentials is beyond the scope of this work.

Model is trained on NYU Depth v2 [18]. Since data for the task of semantic labeling
are limited compared to data for depth estimation, the model is first trained to predict
only the depth values on the full raw NYU Depth v2 dataset and after that the model is
fine-tuned for semantic labeling on the labeled part of the dataset.

Quantitative results show better performance than [5] except on the threshold metric.
Performance is better than [15] on the absolute relative difference and the RMSE metrics.
For the global network used for this model, predicting jointly semantic labels and depth
values show increase in quantitative performance compared to predicting only depth val-
ues. Enforcing both local and global consistency by using CRF shows slight quantitative
improvement from using only the global network, but qualitatively shows visible difference,
with edges of the predicted depth map being much sharper and better aligned to local
details. Wang et al. speculate that the worse performance on threshold metric than [5] is
due to not considering scale invariance.

Unified Depth Prediction and Intrinsic Image Decomposition from a Single
Image via Joint Convolutional Neural Fields

Two scene properties which are important for understanding the structure of the scene are
3D geometry and a lighting. These two are of course not independent, since geometric struc-
ture determines the illumination and shading of the scene and lighting conveys information
about scene’s 3D structure. Kim et al. [9] aims to improve the task of predicting depth
and image intrinsic (albedo and shading) by jointly predicting both. They introduce Joint
Convolutional Neural Field (JCNF) which couples convolutional neural networks with
Conditional Random Fields to predict depth and image intrinsics both. Proposed archi-
tecture (Figure 2.7) contains four important parts - Depth prediction network, Intrinsic
prediction network, Gradient scale network and Joint Conditional Random Field. Addi-
tionally, they perform learning in gradient domain, where there are stronger correlations
between depth and intrinsic images.

Depth prediction network consist of global depth network and depth gradient network.
Global depth network takes an input image and its output is an estimate of overall scene’s
depth map. It is a convolutional network based on AlexNet [10] and with pre-trained
weights. It contains five convolutional and two fully connected layers. The depth gradient
network is a fully convolutional network, consisting of five convolutional layers, first one
being identical to the first layer of AlexNet. Its input is an input image and the output of the
first convolutional layer is concatenated with the output of the global depth network, thus
considering global scene context in gradient prediction. Furthermore, output of the second
convolutional layer of the intrinsic prediction network is concatenated with the output of
the second convolutional layer of depth gradient network.

Intrinsic prediction network has a similar structure to the depth gradient network. Its
input is an input image and it outputs the albedo gradient and shading gradient for the
input image. Since both task rely on similar properties, first three convolutional layers are
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Figure 2.7: Joint Convolutional Neural Field [9]

shared for both tasks and only last two are separate. To take advantage of jointly infering
depth and intrinsic gradient, output of the second convolutional layer is concatenated with
the output of second convolutional layer of the depth gradient network.

To help reduce the influence of potential errors in depth and intrinsic gradient predic-
tions, gradient scale network is used. Its inputs are the predicted gradients for depths,
albedo and shading and its output is a confidence in each estimated gradient. During train-
ing it finds consistencies between different types of gradients and uses this information to
estimate the confidence in a gradient based on input RGB image gradient and other two
predicted gradients (e.g., for the depth gradient, confidence is estimated based on an input
image, albedo and shading gradients). It contains three convolutional layers and its output
is an image with the same resolution as predicted gradients, with confidence weights as
values for each pixel.

Previously introduced networks are learned jointly by minimizing the energy function
𝐸 of the Joint Conditional Random Field.

E(𝐷,𝐴, 𝑆) = E𝑢(𝐷) +E𝑢(𝐴,𝑆)

+ 𝜆𝐷E𝑠(𝐷|𝐴,𝑆) + 𝜆𝐴E𝑠(𝐴|𝐷,𝑆) + 𝜆𝑆E𝑠(𝑆|𝐷,𝐴),
(2.16)

where 𝐷,𝐴, 𝑆 are the predicted depth, albedo and shading map respectively. 𝐼 is the input
image, E𝑢 are unary potentials, E𝑠 are pairwise potentials and 𝜆𝐷, 𝜆𝐴, 𝜆𝑆 are weights for
the pairwise potentials. The unary potential for depth E𝑢(𝐷|𝐼) is defined as

E𝑢(𝐷) =
∑︁
𝑝

(𝐷𝑝 − 𝐹𝑑𝑝)
2, (2.17)

where 𝐷𝑝 is the predicted depth at pixel 𝑝 and 𝐹𝑑𝑝 is the depth estimated by global depth
network for that pixel. Unary potential for intrinsical images E𝑢(𝐴,𝑆) is specified as

E𝑢(𝐴,𝑆) =
∑︁
𝑝

(𝐿𝑝(𝐼𝑝 −𝐴𝑝 − 𝑆𝑝))
2, (2.18)

where 𝐿𝑝(𝐼) is a luminance of 𝐼, 𝐴𝑝, 𝑆𝑝 are the values of pixel 𝑝 of predicted albedo and
shading maps respectively. The unary potential is based on the image formation equation
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𝐼 = 𝐴+ 𝑆. Note that this term does not depend on any parameters learned by any of the
networks.

Pairwise potential enforces the similarity between gradients predicted by CRF and
the gradients estimated by the depth gradient network and intrinsic prediction networks,
weighted by confidence in estimations:

E𝑠(𝐷|𝐴,𝑆) =
∑︁
𝑝

‖∇𝐷𝑝 − 𝒢𝑝(∇𝐼𝑝,∇𝐴𝑝,∇𝑆𝑝) *𝐺𝑑𝑝‖2, (2.19)

where ∇𝐼𝑝,∇𝐷𝑝,∇𝐴𝑝,∇𝑆𝑝 are the gradients of the image and predicted depth, albedo and
shadow map respectively at the pixel 𝑝 by CRF. 𝐺𝑑𝑝 is the depth gradient estimated by the
depth gradient network for the pixel 𝑝 and 𝒢𝑝 is the confidence in the estimated gradient
at pixel 𝑝. Potentials E𝑠(𝐴|𝐷,𝑆) and E𝑠(𝑆|𝐷,𝐴) are defined in the same manner.

Model is trained on NYU Depth v2 [18] and Make3D [20] datasets. First, the depth
prediction network and the intrinsic prediction networks are trained with the gradient scale
network fixed. Global depth network is trained using Euclidean loss, gradient depth, albedo
and shading networks are trained using Euclidean loss defined identically to corresponding
pairwise potentials. After training the depth and the intrinsic prediction networks, their
weights are fixed and the gradient scale network is trained using Euclidean loss similar to
the gradient prediction networks. This process is repeated until convergence. Kim et al.
use only the labeled part of the NYU dataset for training, but used data augmentation to
decrease overfitting. They achieve better performance on all metrics than [5] and [15], but
worse performance than [4]. Qualitatively, as it is with other approaches using Conditional
Random Fields, the estimated depth maps contain sharp transitions and are well aligned
to local structures.

Kim et al. embed a prior knowledge into the system by considering global scene context
using global depth network and local structure using gradients instead of the absolute value
images. Additionally they improve the prediction by jointly training their model on image
intrinsics prediction as they show in their results. However, they do not deal with the scale
invariance.

2.4.3 Convolutional Neural Networks in Decision Trees

Monocular Depth Estimation Using Neural Regression Forest

Roy et al. [19] propose a decision tree based model that utilizes convolutional neural
networks. Neural Regression Forrest (Figure 2.8) is a combination of convolutional
neural networks and random regression forest with binary regression trees. When predicting
the depth for a pixel 𝑝, image window with the pixel 𝑝 at the center is processed by
a convolutional neural network at the root tree node. Features from the last convolutional
layers of the network at the node are used as an input to the child nodes. Since used CNNs
contain pooling layers, they decrease the resolution of features as they progress down the
tree. This results in multi-scale view of the input (nodes at different depth of the tree see
different scale). The same process is repeated for each split node. CNN at each node also
contains fully connected layers that output a probability of passing the output to the left
or right child node. Note that features are passed to both child nodes, but result predicted
by taking each path is weighted by the probability of taking that path. Leaf nodes don’t
contain a CNN, rather they contain parameters of a Gaussian distribution (mean 𝜇 and
standard deviation 𝜎). Probability distribution over depths estimated by tree 𝜏 is defined
as
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Figure 2.8: Neural Regression Forest [19]

𝑝𝜏 (𝑑|𝑥) =
∑︁
𝑙∈𝐿𝜏

𝑝(𝑑; 𝜃𝑙)𝑃 (𝑙|𝑥;𝒲𝜏 ), (2.20)

where 𝐿𝜏 is the set of all leaf nodes, 𝜃𝑙 are the parameters of the Gaussian distribution for the
leaf node 𝑙 and 𝒲𝜏 are the parameters of all CNNs in the forest. 𝑝(𝑑; 𝜃𝑙) is the probability
distribution over depths given parameters 𝜃 in the leaf node 𝑙. 𝑃 (𝑙;𝒲𝜏 ) is a probability
of reaching the leaf node 𝑙 from the root and is computed as a product of probabilities of
taking the path to the leaf node computed at each split node by its CNN. Additionally, to
enforce smoothness in depth predictions, the probability distribution predicted by the tree
for pixel 𝑝 is modified to consider probability distributions predicted by the tree for pixels
in a neighborhood of 𝑝 by bilateral filtering:

𝑝𝜏 (𝑑|𝑥𝑖) =
∑︁

𝑗∈𝑁(𝑖)

𝜅𝑖𝑗𝑝𝜏 (𝑑|𝑥𝑗). (2.21)

𝑁(𝑖) is the neighborhood of pixel 𝑖 and 𝜅𝑖𝑗 is the weight of bilateral filter that is
estimated based on Euclidean distance between locations of pixels 𝑖 and 𝑗 and Euclidean
distance of the HSV histograms of windows with pixels 𝑖 and 𝑗 at the center. Bilateral
filtering in this case means that only neighboring windows with similar appearance have an
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rel sqr rel rms rms-log log10 𝛿 <
1.25

𝛿 <
1.252

𝛿 <
1.253

[5] 0.215 0.212 0.907 0.285 - 0.611 0.887 0.971

[4] 0.158 0.121 0.641 0.214 - 0.769 0.950 0.988

[15] 0.213 - 0.759 - 0.087 0.650 0.906 0.976

[13] 0.232 - 0.821 - 0.094 0.621 0.886 0.968

[25] 0.220 0.210 0.745 0.262 0.094 0.605 0.890 0.970

[9] 0.201 - 0.711 0.212 0.077 0.690 0.910 0.979

[19] 0.187 - 0.744 - 0.078 - - -

Table 2.2: Comparison of existing solutions (best in each metric in bold)

influence over depth prediction. The overall probability distribution over depths predicted
by the forest is specified as

𝑝ℱ (𝑑|𝑥) =
1

|ℱ|
∑︁
𝜏∈ℱ

𝑝𝜏 (𝑑|𝑥), (2.22)

where ℱ is the set of all trees. Convolutional neural networks used at individual split nodes
have a different number of layers depending on the vertical position in the tree. Top third
of nodes from the root have 2 convolutional and 2 fully connected layers, middle third of
nodes have 2 convolutional and 1 fully connected layer and the last third of nodes contains
only 1 convolutional and 1 fully connected layer.

For training, negative log-likelihood function 𝐿 is used to regress parameters 𝒲 for all
CNNs on all trees and parameters for all the leaf nodes Θ.

𝐿(𝒲,Θ;𝑥, 𝑑) = − log 𝑝ℱ (𝑑|𝑥) (2.23)

Training process starts with fixing 𝒲 and optimizing for Θ. In the second step, Θ is fixed
and 𝒲 is optimized. These steps are alternated until convergence. During experiments,
forest contains 100 trees, each with a depth 10.

Model is trained on NYU Depth v2 [18] and Make3D [20] datasets. For the NYU
Depth v2 dataset, model is trained only on the labeled part of the dataset. Quantitative
measurements show better performance than [5] and [15], but Neural Regression Forest
performs worse than [4]. Metrics also show that enforcing smoothness of depth values over
neighboring pixels with similar appearance has a positive impact on the performance. Roy
et al. do not utilize global context of the scene or consider scale invariance.
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Chapter 3

Proposed Model for Depth
Estimation

This chapter describes a model I propose for the task of depth estimation from a single im-
age. I follow the work done by Eigen et al. [5] and use a solution utilizing only convolutional
neural networks. Similarly to Eigen et al., I utilize global context of the scene and improve
training using a loss function that is scale invariant. In addition, I explicitly incorporate
information about gradients of the depth map to the process of depth estimation.

Input to the model is an RGB image, its output is a corresponding depth map estimated
by the model. Proposed model consists of three parts: global context network that
estimates the rough global depth map from an input RGB image, gradient network
which estimates horizontal and vertical gradients of the global depth map from an input
RGB image and refining network that uses estimates from previous networks, along with
an input RGB image and refines depth map locally to produce a more detailed depth map.
Figure 3.1 shows a general architecture of the model. Additionally, all parts are trained
using normalized loss function to accomplish scale and translation invariance.

In the first section I introduce a normalized loss function that is scale and translation
invariant and compare it to the loss function used in [5]. In the remaining sections I
describe in detail architectures of the global context network, gradient network, their joint
architecture and the architecture of the refining network.

3.1 Normalized Loss Function
As explained in Section 2.1.4, it is suitable to consider scale invariance when training model
for depth estimation. Inspired by Eigen et al. [5], I propose a modified loss function which
considers scale invariance.

Scale invariant loss function used by Eigen et al. is defined as

𝐿𝑠𝑐−𝑖𝑛𝑣(𝑦, 𝑦
*) =

1

2𝑛

∑︁
𝑖

(log 𝑦𝑖 − log 𝑦*𝑖 +
1

𝑛

∑︁
𝑗

(log 𝑦*𝑗 − log 𝑦𝑗))
2, (3.1)

which amounts to subtracting mean value from estimated depth map 𝑦 and ground truth 𝑦*
in log space. In linear space this means dividing both the ground truth and the estimated
depth map by their respective maximum values. The loss stays the same for every scalar
multiple of estimated depth 𝑦. This loss function is valid in a sense that it produces the
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Figure 3.1: Architecture of the proposed model

same loss only in those cases where the input RGB image is the same, but underlying scene
scale is different.

In this work I try to show that if we relax requirements for the loss function and allow
it to produce the same loss even when the input RGB image is not identical but depicts
the same real world structure viewed from different distance, we gain better estimates of
the scene’s depth structure. To achieve this I propose normalized loss function 𝐿:

𝐿(𝑦, 𝑦*) =
1

𝑁

∑︁
𝑖

(
𝑦𝑖 − 𝑦𝑚√

𝑦𝑣
− 𝑦*𝑖 − 𝑦*𝑚√

𝑦*𝑣
)2, (3.2)

where 𝑦 is the estimated depth map, 𝑦* is the ground truth, 𝑦𝑚 and 𝑦*𝑚 denotes mean values
of respective depth maps and 𝑦𝑣 and 𝑦*𝑣 denotes respective variances of these depth maps.
𝐿 computes difference between mean-variance normalized output depth and the ground
truth, meaning that for every 𝑠, 𝑡, 𝑦, the value 𝐿(𝑦𝑠, 𝑦*) for 𝑦𝑠 = 𝑠 * 𝑦 + 𝑡 is the same as
𝐿(𝑦, 𝑦*). This achieves scale and translation invariance.

Problem with using this function is that estimated depth values 𝑦 are not required to
be in any absolute range and therefore it is difficult to compare output of neural network
using loss 𝐿 with the ground truth in terms of absolute values. To be able to reasonably
measure performance of models using loss 𝐿, I propose normalized error function 𝐸(𝑦, 𝑦*)
that is defined identically to 𝐿. This error function evaluates how well the model predicts
the structure of the scene irrespective of scale and translation.

In case there is no need to obtain accurate absolute values, mean-variance normalized
output of the network can be used, as is the case for the global context network. If absolute
values are required to be correct, it is possible to train the network using modified loss

21



conv1 pool1 conv2 conv3 conv4 conv5 pool2 fc1 fc2
size 11x11 3x3 5x5 3x3 3x3 3x3 3x3 - -

channels 96 - 256 384 384 256 - 1024 999
stride 4 2 1 1 1 1 2 - -
pad 0 0 2 1 1 1 0 - -

resolution 72x52 36x26 36x26 36x26 36x26 36x26 18x13 - -
rel. lr 0.02 - 0.02 0.02 0.02 0.02 - 1 0.2

Figure 3.2: Architecture of the global context network

𝐿𝑎(𝑦, 𝑦
*) = 𝐿(𝑦, 𝑦*) + 𝜆

1

𝑁

∑︁
𝑖

(𝑦𝑖 − 𝑦*𝑖 )
2, (3.3)

which additionally minimizes the difference between absolute values. Influence of the ab-
solute value term can be fine-tuned using parameter 𝜆. Another possible approach is
to jointly estimate the normalized depth map, corresponding mean 𝑚 and variance 𝑣.
Mean and variance obtained in this way can then be utilized to produce the final estimate
𝑦𝑓 = 𝑦 *

√︀
(𝑣) +𝑚.

In Chapter 5, I compare the performance of a model using the normalized loss function
with that of a model using Euclidean distance loss and a model using scale-invariant loss
function proposed by Eigen et al..

3.2 Global Context Network
As explained in Section 2.1.2, depth estimation can benefit from having a knowledge of the
global structure of the scene depicted on the input image. To take advantage of having this
knowledge I take an approach similar to Eigen et al. [5] and my model contains global
context network. Global context network estimates the rough depth map of the whole
scene from the input RGB image. It takes advantage of fully connected layers that have
a full field of view to estimate the scene’s global context. Input to this network is an RGB
image with a resolution of 298x218 pixels. Its output is a depth map with a resolution of
37x27. Raw input has a range of values [0,255], but before being fed to the network, value
127 is subtracted from the input. Raw ground truth depth maps also have a range [0,255],
but are scaled to be in range [0,1]. During training, normalized loss function was used.

Network structure is derived from AlexNet [10]. It contains five convolutional layers
with Rectified Linear Units (ReLUs) used for activation units. First two layers convolutional
layers are followed by Local Response Normalization (LRN) layer which divides input values
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conv1 pool1 conv2 conv3 conv4 conv5
size 11x11 4x4 5x5 5x5 5x5 5x5

channels 96 - 256 384 384 256
stride 4 2 1 1 1 1
pad 0 0 2 2 2 2

resolution 72x52 35x25 35x25 35x25 35x25 35x25
rel. lr 0.001 - 1 1 1 0.1

Figure 3.3: Architecture of the gradient network

by (1+(𝛼/𝑛
∑︀

𝑖 𝑥
2
𝑖 )

𝛽), where 𝑛 is the size of the local region that the sum is being evaluated
over. These local regions extend across channels. In this and both gradient and refining
networks, parameters for LRN layers are 𝛼 = 0.0001, 𝛽 = 0.75 and 𝑛 = 5. Max pooling
layers are placed after the first and the last convolutional layer. Original AlexNet model
contains one more max pooling layer placed after the second convolutional layer, but I
removed it, to obtain feature maps with higher resolution from the last convolutional layer.
These convolutional layers have weights initialized by Imagenet [3] pre-trained AlexNet and
have a relative learning rate set to 0.02.

Convolutional layers are followed by two fully connected layers. The first layer contains
1024 neurons and has a ReLU activation unit. It is initialized using Xavier initializer in
Caffe [8] and has a relative learning rate 1. To increase network’s capability to generalize,
first fully connected layer is followed by a dropout unit with a dropout ratio 0.5. The second
fully connected layer is an output layer and it contains 999 neurons, which is the same as
the pixel count of the output depth map. Output layer is initialized using Gaussian noise
with a mean of 0.5 and a standard deviation of 0.001. Its relative learning rate is 0.2. See
Figure 3.2 for detailed structure of the global context network with numbers of channels
and kernel sizes of convolutional layers.

3.3 Gradient Network
Proposed model incorporates explicitly information about significant changes of depth in
the scene. This is accomplished by using the gradient network that estimates horizontal
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Figure 3.4: Architecture A for a joint training of the global context network and the gradient
network

and vertical gradients of the depth map globally, for the whole RGB image. Input for the
gradient network is the same as for the global context network - an RGB image with a
resolution of 298x218. Gradient network outputs two depth map gradients, one horizon-
tal and one vertical, both with resolution of 35x25. Similarly to global context network,
normalized loss was used for training, input is converted into range [-127,128] and ground
truth is scaled to range [0,1].

Gradient network is a fully convolutional network with five convolutional layers that
are based on the convolutional part of AlexNet with a few differences. Max pooling and
LRN layers after the second convolutional layer are removed and convolutional layers 3,4
and 5 have an increased kernel size 5x5. To prevent overfitting, dropout unit is placed
between last two layers with a dropout ratio 0.5. First convolutional layer is initialized using
AlexNet model pre-trained on ImageNet with a relative learning rate 0.001. Convolutional
layers 2, 3, 4 are initialized using Xavier initializer and have a relative learning rate 1.
Last convolutional layer is the output layer and it is initialized using Gaussian noise with a
mean of 0.0 and a standard deviation of 0.1. Its relative learning rate is 0.1. Since randomly
initialized output of the network returns on average estimates that are two orders higher
than values of the ground truth, the output of the network is multiplied by 0.01. This
prevents exploding gradients at the beginning of the training. See Figure 3.3 for more
detail on the network structure.

3.4 Joint Global Context Network and Gradient Network
Architecture

Training network for multiple tasks can improve performance for all tasks [2] and since
estimating depth map and corresponding gradients of the depth map are related tasks, I
tried to jointly train the global context network and gradient network. I tried two different
architectures.

In the architecture A (see Figure 3.4), global context network and gradient network stay
structurally the same, but the outputs of third convolutional layers from both networks are
concatenated and after that passed to fourth convolutional layers of each network. This
accomplishes transfer of information between networks. There is a slight difference in the
Global context network - since fourth convolutional layer has more channels on its input, it
cannot be easily initialized with weights from pre-trained AlexNet model. Xavier initializer
is used for this layer.
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Figure 3.5: Architecture B for a joint training of the global context network and the gradient
network

In the second architecture B (see Figure 3.5), I join first three convolutional layer from
both networks. The network is then split and the output of the third convolutional layer is
passed to remaining parts of global context network and gradient network that are struc-
tured as described in Section 3.2 and Section 3.3. First three convolutional layers are
initialized in the same way as in the global context network, using pre-trained AlexNet
model.

When trained separately, the global context network uses learning rate twice as high as
learning rate for gradient network. This is reflected in the joint model by dividing relative
learning rates of all layers that are part of the gradient network by half.

3.5 Refining Network
Since Global context network provides only a rough estimate of the depth map, I use
refining network. Refining network improves the rough estimate from the global context
network, utilizing gradients estimated by the gradient network and an input RGB image.
Input to the network is thus an RGB image with a resolution of 298x218 and mean-variance
normalized outputs of the global context network and the gradient network, upsampled
using bilinear sampling to 74x54 resolution. Output is a depth map with a resolution of
74x54. As used in both previous networks, input is in range [-127,128] and ground truth is
in range [0,1]. Loss function is 𝐿𝑎 defined in Equation 3.3 with 𝜆 = 1.

Refining network is a fully convolutional network and similarly to the other parts of
the model, it is also based on AlexNet and thus contains five convolutional layers. First
convolutional layer processes an input RGB image, uses ReLU as an activation unit and is
followed by LRN layer and max pooling layer that outputs features maps with a resolution
74x54. These feature maps are concatenated with outputs of the global context network
and the gradient network and are fed to remaining four convolutional layers. All layers use
ReLU as an activation unit and the second layer is followed by max pooling which does
not downsample feature maps. All layers except the last, output layer are initialized using
Xavier initializer. The last layer is initialized using Gaussian noise with a mean of 0.5 and
a standard deviation of 0.01. The first and the last layers have a relative learning rate 0.1,
layers 2-4 have a relative learning rate set to 1. See Figure 3.6 for more detail.
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conv1 pool1 conv2 conv3 conv4 conv5
size 11x11 2x2 5x5 5x5 5x5 3x3

channels 96 - 64 64 64 64
stride 2 2 1 1 1 1
pad 2 1 2 2 2 2

resolution 146x106 74x54 74x54 74x54 74x54 74x54
rel. lr 0.001 - 1 1 1 0.01

Figure 3.6: Architecture of the refining network
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Chapter 4

Implementation of the Proposed
Model

In this chapter, I describe the implementation details of the model introduced in Chapter 3.
First section briefly describes Caffe framework. Second section covers NYU Depth v2
dataset that was used for training and testing. In this section I also describe how I processed
data and how I used data augmentation to increase the size of the dataset. In the next
section, I describe a training procedure I used and the last section covers how I implemented
various loss functions that were used in experiments.

4.1 Caffe
I used Caffe [8] framework for training and testing convolutional neural networks. Caffe is an
open source deep learning framework developed by Berkeley Vision and Learning Center.
It is written in C++, with CUDA used for GPU acceleration and contains bindings to
Python and MATLAB. Commonly used network models are available to use with Caffe
with pre-trained weights and network definition files.

Caffe uses prototxt (plaintext protocol buffer schema) file format to define network and
hyper-parameters used for training. Networks are defined by specifying network layers and
their parameters in the network definition file. Caffe contains most of commonly used layers
and custom layers can be implemented and added without difficulty. Images are provided
to Caffe from either HDF5 files, or LMDB/LevelDB databases.

Caffe also provides various tools to help with setting up a network for training e.g.,
a script for converting images to LMDB/LevelDB databases and a script to visualize net-
work from a network definition file.

4.2 Dataset
As presented in Section 2.3, there are multiple datasets used for training and evaluating
performance of systems performing depth estimation. For this thesis, I chose to use NYU
Depth v2 [18] dataset.

I used the component of dataset that contains raw Kinect data and raw RGB output
from camera, both in 640x480 resolution, as my training set. I used toolbox provided with
the dataset containing MATLAB scripts to prepare data for usage. I first selected only
image from scenes that are part of the training set. Then, for each depth map, RGB image
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that was captured at the similar time moment had to be selected. Since data comes from
a video footage with 20-30 FPS, consequent frames are similar. For this reason I used only
every fifth frame, to save time needed to process images. After obtaining the synchronized
RGB images and depth maps, each depth map was projected onto a corresponding RGB
image to obtain depth values in meters. Missing values from the depth map were filled in
using Levin’s et al. colorization method [12]. Finally, both the RGB image and the depth
map were cropped to a rectangle in the depth map that contains projected depth signal. By
this process I obtained 47575 pairs of RGB and depth images, with a resolution of 561x427.
Resulting depth maps were stored as 8-bit images, where value 255 denotes distance 10
meters.

To increase the size and variability of the training set, I use data augmentation with
following transformations:

∙ Scale: Input and target images are scaled by 𝑠 from the interval 𝑖𝑠𝑐, and depths are
divided by 𝑠.

∙ Rotation: Input and target are rotated by 𝜃 degrees, where 𝜃 is sampled from a Gaus-
sian distribution with a mean of 0 and a standard deviation 𝜎.

∙ Translation: Random parts of the input and target images of size 420x320 were
cropped. (Note that when rotation is used, the image is cropped at the center to
prevent corners of rotated image containing area outside of the original image).

∙ Flips: Input and target are horizontally flipped. Both the flipped and original image
are used.

∙ HSV shift: Hue, saturation and value of the input image is shifted by a random
amounts from intervals 𝑖ℎ, 𝑖𝑠, 𝑖𝑣.

∙ Change of contrast: Values of the input image are scaled to be in range [0,𝑐] where 𝑐
is from interval 𝑖𝑐, middle value is subtracted and resulting values are cropped to the
range [0,255].

Each original pair of images is augmented separately five times and flipped horizontally,
so each pair is used to create 10 augmented pairs. I created three versions of dataset,
Data0, Data1, Data2, with different transformation parameters, to test the effects of data
augmentation and magnitude of transformations on performance. Data0 represents original
dataset with no transformations. Since NYU Depth v2 dataset contains only indoor scenes,
general composition of scenes is very similar across dataset. Using only parts of images
changes this composition on average, so to ensure that images in all version depict roughly
the same compositions of the scene, parts of input and target images of size 420x320 are
cropped from the center in Data0 version. Data1 contains images with mild transforma-
tions, Data2 with greater transformations. Table 4.1 shows parameters for all versions of
dataset. Comparison of the performance when training with each dataset is presented in
Section 5.3.

For testing, I used 654 images from the labeled part of dataset. I did not augment the
testing set, the only preprocessing I used was cropping 420x320 pixels large parts from the
center to obtain images with similar composition as in the training set.

Finally, each dataset was converted into LMDB database and resized to fit the network
input (298x218) or network output (37x27 for the global context network and the gradient
network and 75x54 for the refining network).
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Data0 Data1 Data2

Scale (𝑖𝑠𝑐) [1,1] [0.875,1.25] [0.75, 1.25]

Rotation (𝜎) 0 2.5 5.0

Flips No Yes Yes

Hue shift (𝑖ℎ) [0,0] [-0.06, 0.06] [-0.1, 0.1]

Saturation shift (𝑖𝑠) [0,0] [-0.06, 0.06] [-0.1, 0.1]

Value shift (𝑖𝑖) [0,0] [-0.06, 0.06] [-0.1, 0.1]

Contrast change (𝑖𝑐) [255,255] [205,305] [175,335]

Table 4.1: Parameters used for data augmentation used to obtain different versions of the
dataset

4.3 Training
In this section, I describe the process of training proposed model. First, I train global
context network and gradient network, either separately in parallel or jointly. After that, I
fix the weights in these networks and train refining network.

I used Stochastic Gradient Descent (SGD) with a momentum for training, with a mo-
mentum weight 0.9. To reduce overfitting, I complemented dropout with a weight decay.
Decay weight is set to 0.005. Learning rate was set to be as high as possible for each
training. Base learning rate is different for each part of the model. During training of the
global context network, base learning rate 0.0005 was used, for the gradient network, base
learning rate 0.00025 was used and for training the refining network, I used base learning
rage 0.000025. Base learning rate is fixed for the whole duration of the training. Batch size
also differs by part of the model trained. It is 32 for the global context network and the
gradient network and 16 for the refining network.

4.4 Implementation of Various Loss Functions
To compare performance of using normalized loss function with performance of other loss
functions that are commonly used, I needed to train the model with different loss functions.
In this section, I describe how I implemented them using Caffe.

For absolute value loss, the Euclidean loss layer provided by Caffe is used.
Absolute value loss in log space requires ground truth to be converted into log

space. I used function 𝑓(𝑥) = 0.179581 * 𝑙𝑛(𝑥) + 1 as presented in section 2.1.1. 𝑓(𝑥) is
implemented by first applying Log layer in Caffe to the ground truth. After that, Power
layer is applied with scale 0.179581 and shift 1.0.

To implement scale-invariant loss function from [5], I first use the same conversion
of ground truth to the log space as described in paragraph above. After that Caffe’s MVN
layer is used with variance normalization parameter set to false to process both the output
of the network and the ground truth in the log space.

Normalized loss function is implemented by running both the ground truth in linear
space and output of the network through Caffe’s MVN layer with the variance normalization
turned on. Loss function used for refining net is implemented as two loss layers, one is
normalized loss and the other Euclidean distance in the linear space, each with a weight 0.5.
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Figure 4.1: Vertical and horizontal gradient filters

To obtain ground truth for the gradient network from the ground truth depth maps,
I use a convolutional layer with 2 filters and kernel size 3x3. I set the weights of this
layer at the start of the training manually, so it performs convolution with kernels that are
shown in Figure 4.1. Learning rate for this layer is set to 0. When ground truth depth
map is fed to this layer, it outputs two maps, one containing horizontal gradient and one
containing vertical gradient. Resolution of these gradient maps is smaller by 2 in each
direction compared to the ground truth, due to filtering without zero padding.
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Chapter 5

Experiments and Results

To investigate effects of various parts and configurations of the proposed model on the
resulting performance, I experimented with multiple setups of the model. In this chapter, I
describe individual experiments I conducted and results arising from them. All experiments
were conducted on NYU Depth v2 dataset, processed as described in Section 4.2. I evaluated
results of each experiment quantitatively, as described in the first section and qualitatively,
by visualizing the output depth map or output depth gradients.

Particularly important for this thesis is the experiment testing the performance of the
normalized loss function for the refining network, because this loss function is a novel
contribution to the problem of depth estimation. Equally important is the experiment
which tests the effect of utilizing horizontal and vertical gradients as inputs to the refining
network.

First two sections describe how I evaluated performance of each model and how I visu-
alized output depth maps and gradients. Following sections address individual experiments
and their results.

5.1 Evaluating Performance
To have a quantitative measure of the performance of different setups, I used metrics
presented in Chapter 2, scale-invariant error proposed by Eigen et al. [5]

𝐸(𝑦, 𝑦*) =
1

2𝑛

∑︁
𝑖

(log 𝑦𝑖 − log 𝑦*𝑖 +
1

𝑛

∑︁
𝑗

(log 𝑦*𝑗 − log 𝑦𝑗))
2, (5.1)

(denoted sc-inv in the tables of results) and normalized error described in Chapter 3 (de-
noted norm. in the tables of results). When evaluating performance, I had to either compare
estimated depth maps with ground truth depth maps, or estimated gradients with ground
truth gradients. In case of output being depth map, both output and ground truth are
converted into meters before comparison by multiplying by 10. In case of output in the log
space, the output is converted into linear space using function 𝑔(𝑦) = 𝑒(𝑦−1)/0.179581 where 𝑦
is the estimated depth, before being converted into meters. As explained in Section 4.2, the
testing set contains images with a resolution of 420x320. I upscale the output of networks
to this resolution before evaluating.

For evaluating the gradient network, only root mean square error and normalized error
metrics were used.
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5.2 Visualizing the Network’s Outputs
When visualizing depth maps, I used two approaches. In experiments with the refining
network, where the absolute scale of the depth map is important, I visualize the raw output
of the network. In experiments with the global context network, the absolute scale of the
output depth map is not important, because it is processed inside the model. Normalized
loss produces depth values that can be orders of magnitude different than the ground
truth depth values, or it can even prodcue negative depths. To be able to visualize these
output depth maps, I fit the estimated depth map to the ground truth by first performing
mean-variance normalization (subtracting mean and dividing by standard deviation) and
afterwards multiplying by the standard deviation of the ground truth and adding the mean
of the ground truth. Additionally, before visualization, depths are converted from linear
space to log space using function 𝑓(𝑥) = 0.359162 * 𝑙𝑛(𝑥) + 1. This produces images with
better distribution of depth values and resulting depth maps are easier to understand.

Gradient visualization is done only during experiments with the gradient network, where
there is no need for accurate absolute scale. I take similar approach as I used for visualizing
depth map produced by the global context network, and fit the predicted gradient to the
ground truth. Since the ground truth can contain negative values, I first convert ground
truth to range [0, 1] by subtracting minimum value and dividing by the difference between
maximum and minimum values. After that, I fit the predicted gradients to the ground
truth as described in the paragraph above.

5.3 Influence of Data Augmentation on the Performance of
the Global Context Network

To test the effects of data augmentation on network’s performance, I trained the global
context network using normalized loss with each of the three versions of dataset mentioned
in Section 4.2. Network was trained for 100,000 iterations each experiment. Table 5.1
shows a quantitative comparison of results achieved with each version of the dataset and
Figure 5.1 shows a qualitative comparison of the output in each case.

Data0 Data1 Data2

norm. 0.74621 0.70947 0.68924

Table 5.1: Performance of the global context network trained with different versions of the
dataset

From Table 5.1 it is clear that data augmentation has a positive impact on the per-
formance of the model. This is not unexpected, as data augmentation is a common prac-
tice. This experiment also shows that stronger transformations improve performance of the
model more than mild transformations. It can be expected that increasing range of values
for parameters of transformation does not improve performance indefinitely, and there is a
certain point after which increasing the range of transformations introduce too much noise
into data and performance will decline. Further experiments could find this point. Quali-
tative results in Figure 5.1 also confirm that data augmentation has a positive impact on
performance. In this case however, it is not evident that stronger transformations result
in visibly more accurate depth maps. Since quantitative results favor Data2 version of the
dataset, that is the version I used for training in the rest of the experiments.
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Figure 5.1: Qualitative comparison of depth maps estimated by a model trained using
different versions of dataset. From left to right: input image, output of the network trained
using Data0 version, Data1 version, Data2 version, the ground truth

5.4 Comparing Different Loss Functions of the Global Con-
text Network

In this experiment, I compared a performance achieved by using normalized loss function
and other commonly used loss functions. I trained the global context network for 100,000
iterations using Data2 version of the dataset, in each instance with a different loss function.
Loss functions I used besides normalized loss, were scale-invariant loss (used by [4]), absolute
depth difference (Euclidean distance) for baseline comparison and absolute depth difference
in log space (used by [13]). Since neither normalized loss nor scale-invariant loss enforce
output absolute values of estimated depths to be in an actual scale of the scene, it is
suitable to compare their performance using metrics that are scale invariant. I also did
comparison on absolute metric RSME to have an idea about the absolute scale of output
depths. Quantitative results are presented in Table 5.2 and qualitative comparison in Figure
5.2
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abs loss abs log loss sc-inv loss norm. loss
RMSE 0.84530 0.89869 2.43889 109.62362
sc-inv 0.17056 0.16944 0.16336 39.17647

normalized 0.73565 0.72686 0.71856 0.68924

Table 5.2: Performance of the global context network trained with different loss functions
(best in each metric in bold)

As expected, absolute depth values estimated by the networks trained using scale in-
variant loss and normalized loss are at different scale then the ground truth depth. Output
from the network trained using normalized loss produces large scale invariant error, which
suggests that depths produced by the network are not just scaled, but also translated com-
pared to the ground truth. Qualitative results show that the global context network trained
using normalized loss visibly performs better in estimating rough structure of the depth
map irrespective of scale and translation.

Figure 5.2: Qualitative comparison of depth maps estimated by models trained using dif-
ferent loss functions. From left to right: input image, output of the network trained using
abs loss, log abs loss, scale-invariant loss, normalized loss, the ground truth
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5.5 Effect of the Normalized Loss Function on the Perfor-
mance of the Gradient Network

Similarly to experiment described in previous section, in this experiment I compare perfor-
mance of normalized loss function, this time used during training of the gradient network.
Training lasted 100,000 iterations and Data2 version of the dataset was used. I compared
normalized loss function to the Euclidean loss. Table 5.3 shows quantitative results and
Figure 5.3 presents qualitative comparison.

eucl. loss norm. loss
rms 0.06274 13.44908

norm. 1.31700 1.30201

Table 5.3: Performance of the gradient network trained with different loss functions (best
in each metric in bold)

Performance on root mean square metric shows that network trained with normalized
loss outputs values that are on different scale than desired values. When comparison is
made using normalized error, this network achieves better performance, however not with
a significant lead. This is confirmed by qualitative comparison, where there is only a slight
difference between different loss functions and there is no clearly better model.

5.6 Influence of Joint Training on the Global Context Net-
work and the Gradient Network

As described in Section 3.4, I tried to jointly train the global context network and the gra-
dient network with the aim of improving performance of both networks. I tested both joint
architectures specified in Section 3.4 (architecture A is referred to as jointA and the archi-
tecture B is referred to as jointB in the tables containing comparison of the performance)
and compared their results among themselves and with the results obtained by training each
network separately. Training ran for 100,000 iterations using Data2 version of dataset. Loss
function in joint and separate training was normalized loss for both networks. Table 5.4
compares performance of jointly trained global context network to performance of sepa-
rately trained global context network, Table 5.5 compares performance of jointly trained
gradient network to performance of separately trained gradient network and Figures 5.4
and 5.5 show qualitative comparison for depth map and gradient estimation respectively.

jointA jointB separate
norm. 0.70286 0.69712 0.68924

Table 5.4: Comparison of the performance of the global context network trained separately
and jointly

Joint configuration performs better than separate configuration in the task of depth
gradients estimation and worse in the task of depth estimation, according to normalized
error metric from Tables 5.4 and 5.5. This may suggest that depth estimation task does
not benefit from features that are used to estimate depth gradients, but for depth gradient
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Figure 5.3: Qualitative comparison of horizontal and vertical gradients estimated by the
gradient network trained using different loss functions. From left to right: input image,
output of network trained using abs loss, normalized loss, the ground truth
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joint1 joint2 separate
rms 473.22585 1734.33860 13.44908

norm. 1.29819 1.30028 1.30201

Table 5.5: Comparison of the performance of the gradient network trained separately and
jointly (best in each metric in bold)

estimation it is advantageous to utilize features used in depth estimation. It is interesting
to note that architecture A, which contains less convolutional layers, performs better on
depth gradient estimation than architecture B, which uses the same first three convolutional
layers for both tasks, but the reverse is true for depth estimation.

Qualitatively, there are no significant differences between any of the configurations in
either task.

5.7 Comparing Loss Functions of the Refining Network
This experiment investigates how the performance of the model changes with respect to loss
function used for training the refining network. Separately trained global context network
and gradient network utilizing normalized loss are used to produce rough estimates that are
fed to the refining network. Loss functions tested in this experiments where absolute depth
difference, absolute depth difference in log space, modified loss function 𝐿𝑎 from Equation
3.3 and scale-invariant loss as defined in Equation 2.3 with 𝜆 = 0.5. Training ran for 60,000
iterations using Data2 version of the dataset. Table 5.6 shows quantitative results and
Figure 5.6 presents the qualitative comparison.

abs abs log sc-inv + abs norm. + abs
rel 0.35222 0.34202 0.32031 0.36544

sqr rel 0.50497 0.48068 0.44049 0.53726
rms 1.11718 1.15023 1.11758 1.17232

rms-log 0.68412 0.71098 0.67993 0.99812
log10 0.13747 0.14521 0.13967 0.18163
sc-inv 0.31390 0.31734 0.25939 0.81123
norm. 1.00571 1.06343 0.92391 0.68475
𝛿 < 1.25 0.43280 0.40845 0.41681 0.38253
𝛿 < 1.252 0.74504 0.71034 0.73548 0.67506
𝛿 < 1.253 0.90485 0.88887 0.90379 0.84161

Table 5.6: Comparison of the performance of different loss function used for training of the
refining network (best in each metric in bold)

From qualitative evaluation, it is clear that the network trained using normalized loss
produces depth estimates that are significantly sharper than the rest of the networks. Pro-
duced depth maps are on the level of depth maps produced by the state of the art approaches
in terms of sharpness and alignment to local details. From Figure 5.6, it can be also inferred,
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Figure 5.4: Qualitative comparison of the outputs of the global context network trained
jointly with the gradient network and separately. From left to right: input image, output
of network architecture A, architecture B, global context network trained separately, the
ground truth

that the model using normalized loss too strongly correlates change in color in the input im-
age with the change in depth in the resulting depth map. As quantitative evaluation shows
that the network using normalized function performs worse than the other networks in all
metrics except for the normalized error metric. This is caused by the network’s inability to
accurately predict absolute scale of depth values, as I shown in the Section 5.9.

It is possible that the low quality of depth maps produced by models utilizing other
loss functions than normalized loss is caused by the short training procedure. Running
the training longer would probably improve the results, but this was not possible for this
thesis, due to time constrains. Nonetheless, it can be concluded, that the model that uses
normalized loss learned faster to produce higher quality depth maps with a more detail.
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Figure 5.5: Qualitative comparison of the outputs of the gradient network trained jointly
with the global context network and separately. From left to right: input image, output
of network architecture A, architecture B, gradient network trained separately, the ground
truth
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Figure 5.6: Qualitative comparison of the outputs of the refining network trained with
different loss functions. From left to right: input image, output of the network trained
using abs loss, abs log loss, sc-inv + abs loss, norm. + abs loss, the ground truth

5.8 Influence of the Estimated Gradients on the Refining
Network

Refining network refines the coarse estimate from the global context network based on
an input RGB image and depth gradients estimated by the gradient network. In this
experiment I test the effects of the additional information about depth gradients on the
performance of the refining network. I train the refining network in two setups, in both I
use identical global context network trained separately from the gradient network and using
normalized loss. First setup also contains the gradient network trained separately and using
normalized loss, the second setup does not contain this network. Both the gradient network
and the global context network are fixed in this experiment and only the refining network
is trained. Normalized loss with absolute depth difference is used and the training runs
for 60,000 iterations on Data2 dataset. Quantitative comparison is shown in Table 5.7 and
qualitative comparison of the results is in Figure 5.7.

Results from Table 5.7 and Figure 5.7 indicate that utilizing depth map gradients has
a positive impact on the performance of the refining network, since the network utilizing
these gradients performs better in every metric and produces depth maps that are smoother
and better aligned to local details.
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Figure 5.7: From left to right: input image, output of the refining network not utilizing
depth gradients, output of the refining network utilizing depth gradients, the ground truth
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without gradient network with gradient network
rel 0.38051 0.36544

sqr rel 0.57399 0.53726
rms 1.23184 1.17232

rms-log 1.18986 0.99812
log10 0.21422 0.18163
sc-inv 1.13405 0.81123

normalized 0.68597 0.68475
𝛿 < 1.25 0.34782 0.38253
𝛿 < 1.252 0.61948 0.67506
𝛿 < 1.253 0.79368 0.84161

Table 5.7: Influence of the estimated gradients on the performance of the refining network
(best in each metric in bold)

5.9 Comparison to the Existing Approaches
In this section, I compare the proposed model to the existing solutions for depth estimation
from a single image that utilize convolutional neural networks. I compare the proposed
model to the model by Eigen et al. [5] that is similar in structure and size to the proposed
model. Additionally, to assess the extend to which the errors of the proposed model are
caused by the incorrect absolute scale of the estimated depths, I present a model with an
oracle. This model is the same as the proposed model, with an exception that it already
knows the true mean and variance of the target depth map and output depth map is
modified to fit this value. This is done by subtracting the mean of the estimated depth
map, dividing by the standard deviation of the estimated depth map, multiplying by the
standard deviation of the target depth map and adding the mean of the target depth map.
The proposed model was trained for 100,000 iterations. Table 5.8 presents performance
comparison and Figure 5.8 contains outputs produced by the proposed model and the
model in [5].

model from [5] proposed model
proposed model

w/ an oracle

rel 0.215 0.38088 0.16802
sqr rel 0.212 0.58348 0.15862

rms 0.907 1.16903 0.56936
𝛿 < 1.25 0.611 0.40682 0.76497
𝛿 < 1.252 0.887 0.70939 0.93206
𝛿 < 1.253 0.971 0.87478 0.97525

Table 5.8: Comparison to the existing model by Eigen et al. [5] (best in each metric in
bold)

Quantitative evaluation shows that the proposed model is inferior to the existing so-
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lutions, considering that model by Eigen et al. that was used for comparison is the first
model utilizing convolutional neural networks and all other existing approaches utilizing
CNNs achieve better performance. Low performance of the proposed model can be at-
tributed to the incorrect prediction of the absolute depth values. This can be seen from the
results of the model with an oracle. For this model, the absolute scale is substituted from
the ground truth and the model with an oracle achieves better performance than the model
by Eigen et al. in every metric and even achieves better results than the current state of
the art model in root mean squared error metric. This confirms that the model predicts
the relative structure very well but lacks in estimating the absolute scale. Additionally,
all parts of the proposed model were trained for 100,000 iterations, while the individual
networks used in the model by Eigen et al. were trained for 1,500,000 iterations and more.
This can also contribute to the lower performance.
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Figure 5.8: From left to right: input image, produced by model by Eigen et al. [5], output
of the proposed model, the ground truth
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Chapter 6

Conclusion

This thesis dealt with a problem of depth estimation from a single image by convolutional
neural networks. To that end, I proposed a three-part model that is derived from the
work by Eigen et al. [5]. This model explicitly utilizes vertical and horizontal gradients
of the depth map. Furthermore I proposed a novel normalized loss function for training
convolutional neural networks that considers scale invariance problem that arises when
estimating depth from a single image.

Results of the experiments show that utilizing vertical and horizontal gradients improves
the performance of the network. This is evident in the quantitative evaluation of the
performance of the performance of the model (Table 5.7) and in the qualitative assessment
of the output depth maps (Figure 5.7).

Furthermore, results show that the normalized loss function improves the model’s ability
to estimate the relative depth structure of the scene compared to the other commonly used
loss functions. Disadvantage of the normalized loss is that it does not force depth values to
represent the true absolute scale of the scene. This can be partly compensated for by using
a combined loss function that contains additional term that minimizes the absolute depth
difference. More specifically, results show that the model utilizing normalized loss function
produces much sharper depth maps with better alignment to local details than models
utilizing other loss functions (Figure 5.6). Depth maps are qualitatively comparable to
depth maps estimated by the state of the art approaches. However, the proposed model
does not estimate the correct absolute scale of the scene very well, even when using the
combined loss function. Quantitative comparison reflects this fact and the proposed model
achieves worse performance than models utilizing other loss functions in every metric except
for the normalized error, which evaluates correctness of the depth structure of the estimated
depth map irrespective of the scale and translation (Table 5.6). The same is true for the
comparison to the existing approaches. In case of substituting the true absolute scale of
the scene into the resulting depth maps, the model achieves performance on par with the
state of the art approaches and even achieves better results in the root mean squared error
metric (Table 5.8). This shows that the model is able to estimate relative depth structure
of the scene well, even with its training time being more than 10 times shorter than that
of the comparable existing approaches. It also confirms that the weak point of the model
is the estimation of the absolute scale of the scene.

Improvements in the model can possibly be made by using a larger architecture, e.g.,
using VGG network instead of AlexNet, or running the training process longer. This was
not possible for this thesis because of the time constrains.

Since the weak point of the model is the estimation of the absolute scale of the scene,
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future work should address this deficiency. One way to address this is to jointly estimate
the mean and the variance of the depth map in addition to estimating the relative depth
structure by normalized loss. Further, another network at the third level could be designed
to refine estimates of the refining network. Depth estimate from this network could then
be redirected to its input and it could iteratively refine its estimates until convergence.
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