
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

INTEGRATION OF THE IBM SOFTLAYER INTO THE
MANAGEIQ FRAMEWORK
INTEGRACE IBM SOFTLAYER DO PROSTŘEDÍ MANAGEIQ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ COUFAL
AUTOR PRÁCE

SUPERVISOR Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
As cloud computing gains its popularity the complexity of offered services is growing. There
exist various different solutions and to manage them effectively is the task for cloud managers.
One of them is a project named ManageIQ. This thesis aims to describe how to integrate a
new provider into this software, what are the required bindings and how to work with the
API of the provider. This thesis describes such a process on an IBM SoftLayer provider
example. The achieved result enables the user to manage his SoftLayer devices via ManageIQ
with ease and also provides him the functionality to provision new appliances.

Abstrakt
Cloudová řešení získávají na popularitě, spolu s tím však roste jejich složitost. Pro jejich
efektivní správu a řízení existují různá řešení. Projekt ManageIQ je jedním z těchto nástrojů.
Tato bakalářská práce se zabývá integrací nového poskytovatele cloudové infrastruktury,
IBM SoftLayeru, do prostředí správce cloudových řešení ManageIQ. Na tomto příkladě je
vysvětleno, jaká rozhraní je třeba použít pro správu poskytovatelů, jak pracovat s cloudovými
API a jaké výzvy je třeba řešit při integraci nového poskytovatele. Výsledkem práce je
funkční prostředí umožnující snadnou práci v IBM SoftLayeru skrze ManageIQ. To uživateli
zprostředkovává sledování a úpravy dostupných zařízení či vytváření a spouštění nových
součástí infrastruktury.

Keywords
cloud computing, ManageIQ, IBM SoftLayer, cloud providers, fog, Ruby

Klíčová slova
cloudové techologie, ManageIQ, IBM SoftLayer, poskytovatelé cloudu, fog, Ruby

Reference
COUFAL, Tomáš. Integration of the IBM SoftLayer into the ManageIQ Framework. Brno,
2016. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Rogalewicz Adam.

Integration of the IBM SoftLayer into the
ManageIQ Framework

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mr. Mgr. Adam Rogalewicz, Ph.D. (FIT BUT) and Mr. Mgr. Martin
Povolný (Red Hat Czech, s.r.o). The supplementary information was provided by members
of the ManageIQ developer team. All the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

. .
Tomáš Coufal
May 17, 2016

Acknowledgements
Firstly, I would like to express my sincere gratitude to my supervisors for the continuous
support in my research, for their motivation, and immense knowledge. My sincere thanks
goes to the ManageIQ developers team, most importantly to Bc. Ladislav Smola. Especially
his guidance helped me throughout the time of research and implementation for this thesis.

© Tomáš Coufal, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty of
Information Technology. The thesis is protected by copyright law and its use without author’s
explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3
1.1 Cloud computing . 3

1.1.1 Transition from traditional computing to the cloud 3
1.1.2 Cloud typology . 5

1.2 IBM Cloud . 7

2 IBM SoftLayer 8
2.1 Components . 8

2.1.1 Regions, Zones and Data centers . 8
2.1.2 Servers . 10
2.1.3 Hardware Flavors . 11
2.1.4 Images, Templates and Snapshots 11
2.1.5 Networking . 12

2.2 API access . 13
2.2.1 Standard REST API . 13
2.2.2 Softlayer API for Ruby . 13
2.2.3 Fog the Ruby cloud service library 15

3 ManageIQ 17
3.1 Providers . 17
3.2 Implemented Interfaces and Models . 18
3.3 Connection Management . 19
3.4 Regions . 19
3.5 Discovery . 20
3.6 Cloud Manager . 20

3.6.1 Cloud Refresh . 21
3.6.2 Availability Zones . 22
3.6.3 Authentication Key Pairs . 22
3.6.4 Flavors . 23
3.6.5 Virtual Machines . 24
3.6.6 Image Templates . 25
3.6.7 Tags . 25
3.6.8 Provision . 26

3.7 Network Manager . 27
3.7.1 Network Refresh . 27
3.7.2 Cloud Networks . 28
3.7.3 Cloud Subnetworks . 29
3.7.4 Network Ports . 29

1

3.7.5 Network Routers . 30
3.8 Register a provider . 31
3.9 Front-end . 31
3.10 Not implemented functionality . 32

4 Conclusion 33

Bibliography 34

Appendices 35

A CD Content 36
A.1 Thesis PDF . 36
A.2 Thesis Source . 36
A.3 ManageIQ with IBM SoftLayer support snapshot 36
A.4 Implementation source code . 36
A.5 Demo video . 36
A.6 Setup guide . 36

2

Chapter 1

Introduction

In the past few years the term of Cloud computing resonates worldwide, and gains its
popularity. There have been plenty of papers and articles written about it, and every
large IT corporation interested in this new market has brought their own solution. Cloud
computing has become a well established business, and ultimate answer for nearly every
demand for IT infrastructure these days. But when it comes to the meaning of these two
words, not everyone knows what exactly to expect. In a nutshell, it means a highly scalable
and accessible platform, reachable through a network connection. The word platform in
this definition stands for a huge variety of software: from virtual machines and specialized
databases to applications like web office suites. In so called Cloud, whole internal corporate
infrastructures are run along with end-user facing products with ease. Rising complexity
and competition between different cloud providers and types of services, creates a demand
for an easier management, providing more efficient yet reliable ways to ensure the same level
of control over offered services.

In this thesis we describe the main challenges that cloud managing tools are facing
while integrating with providers of various capabilities and including different systems and
subsystems. The described process is going to be based on a real example, an implemented
process of IBM SoftLayer cloud service integration into an open-source project, Man-
ageIQ. This work covers how to distinguish and differentiate the same functionality across
naming conventions and service capabilities, how to integrate them into ManageIQ and
how to establish working communication between IBM SoftLayer and the cloud manager.
This thesis also aims to simplify, sort out and sum up the knowledge needed to implement
such integration for future ManageIQ provider integrators.

1.1 Cloud computing
Before we reveal the complexity of Cloud computing and describe the challenges in managing
cloud services across providers, it is worth describing what the word Cloud actually stands
for, why it is a need for huge variety of companies, and how the IT industry invented such
technologies[2].

1.1.1 Transition from traditional computing to the cloud

In history, the general approach to implementing a solid and reliable IT infrastructure has
changed several times. To understand well the thought process behind this evolution, let
me shortly describe the needs and demands of the industry.

3

Traditional way

The historically first and simplest approach for a company to implement and manage their
own service is to use their own machines and servers. To lower the risks of a hardware failure
this solution requires to mirror the application and it’s data over multiple servers or even
into a cluster of serves. This brings a lot of investments and requires a lot of maintenance
on the company’s side.

Servers are considered a base unit that encapsulates all the necessary hardware, operating
systems, storage, and any other utilities necessary. When the application reaches limits of
its dedicated server, some additional hardware has to be provided. Despite the fact that an
application can consume a lot of resources, it’s not happening all the time. As an example,
you can think of a delivery or ordering system. During the year the amount of transactions
are equal but before e.g. Christmas the peak in transactions can be high. Nevertheless the
downside is, once you have the server configured to run one application that can use all its
resources during the peak, you can’t utilize the resources left unused when the application is
idle. Additionally, when the system encounters a failure, the recovery process is complicated.
In the matter of scalability this approach is not functional enough.

Virtualized computing

Because of all the disadvantages listed above, a new approach needs to be invented. To
lower the complexity of hardware scaling, IT industry moved towards an increase in software
difficulty. Unlike hardware maintenance, this can be automated easily and requires less
resources to deploy. Servers are no more considered atomic units. The fact that hardware
itself can be abstract leads to an invention of Virtualized computing. The paradigm of
virtualization presents a virtual machine manager also known as a Hypervisor. This is a
specialized operating system designed to run multiple operating systems as applications.
This manager provides the necessary layer that can encapsulate each environment. The
isolation of hardware from operating systems makes it possible to run multiple services on
one physical machine. Each virtual machine is provided by the resources it demands and
when these are left unused, the hypervisor manages to pass them where they are needed.

However, when a physical failure appears, the situation remains unchanged. The service
has to be moved to another device. What differs is the solution. Usually, hypervisors are
run in clusters of physical servers where they can cooperate. When one hypervisor is facing
a hardware failure, the services are smoothly swapped to another physical device managed
by a different hypervisor within the same cluster. This can happen without any outage
of service and without the need for running a parallel fallback machine. This flexibility
also helps the scalability mentioned above. In the case of multiple services running on one
physical device, the resources are assinged dynamically. And in a case when an application
demands more resources than the hypervisor can offer, the less loaded virtual machines are
transitioned to another server within the cluster. This creates an environment where no
virtual machine suffers from a significant lack of resources.

Outsourcing virtualization

The core idea behind virtualization is the same for Cloud Computing as well. A company
using a virtualized solution typically owns the physical servers and maintains them on
their own. This produces much overhead costs. On the other hand in a Cloud Computing
environment, there is no need to insist on keeping and housing the infrastructure by a

4

company. The operational responsibilities are shifted to the cloud provider who is now
responsible for all the hardware and its maintenance. Providers offer remotely controlled
virtual environments, location independent and highly scalable solutions. Advantages of
virtual computing sustain, applications are still run in a virtual environment, scaled on
demand and flexible. The creation of new virtual machines is a matter of minutes or less
and no additional resources are needed[1].

Cloud Computing providers usually implement a pay-as-you-go model where all costs are
based on actual usage and new appliances are purchased when needed. Advantage of this
payment model becomes even more significant when the company has a lot of applications
that need to be run concurrently and their transaction peaks are expected at the same
period of time. Cloud providers dispose with load balancing mechanisms and thanks to size
of their clusters, the availability of the application is always guaranteed. The actual costs
still remain much lower compared to the situation when a company has to provide all the
hardware on their own. When the peaks diminish, all the necessary additional resources can
be reused by the cloud provider for other applications. The same situation in the virtual
computing model would lead to a state where these resources would be left unused on
the company side. The idea of shared resources in huge clusters is one of the strongest
advantages of cloud computing.

1.1.2 Cloud typology

Among all the described advantages of Cloud Computing, not only the scalability has to be
taken into account. There are plenty of fields where the cloud solution excels in. For example
the National Institute of Standards and Technology of the USA defines cloud computing by
these five most essential characteristics[7]:

1. On-demand self-service

2. Broad network access

3. Resource pooling

4. Rapid elasticity

5. Measured service

On-demand self-service stands for a possibility for consumers to provision computing
power (meaning server time, dedicated storage, etc.) as needed and without the necessity
to interact with the service provider in person by any means. This allows the customer to
avoid the risk of not being able to scale his appliances when there is any kind of outage in
the preferred type of communication established between him and the provider.

Broad network access is a term used to describe availability over network via standard
communication channels while not discriminating client devices by type or platform. The
term is mainly used in context of private clouds where this idea goes slightly against the
security principles these clouds are designed for. The main reason to involve broad network
access is to make the infrastructure available also for remote workers and via tablets and
smartphones.

Resource pooling is a criterion considering dynamic assignment and reassignment of
resources to different customers based on their demand in a multi-tenant model of cloud
service. These resources are location independent and the customer is neither in control nor

5

has the knowledge of the exact location of the resources. Nevertheless the location can be
revealed on a higher level of abstraction, on a country or data center scale.

Rapid elasticity presumes the resources are provisioned and released automatically.
These actions are done in a short period of time and from the customer’s point of view
the capabilities available typically appear unlimited and any amount of resources can be
up-scaled at any time.

Measured service is a term used for automatic control over cloud cluster resources in order
to monitor, analyze, control, and optimize the usage. This mechanism provides additional
transparency over the service for both the customer and the provider.

Cloud solutions have many shapes and forms in general[4]. To distinguish and differentiate
between common types of the Cloud, multiple points of view should be mentioned. One of
the discerning criteria to be considered is the availability to purchase a different deployment
model. There exist private and public clouds. Public Cloud means the cloud infrastructure
(not the appliances) is widely accessible by anyone. No matter if an organization or a person,
anyone is able to use the service provided. The Amazon’s AWS EC2 1, OpenShift by Red
Hat 2, OpenStack 3, Microsoft’s Azure 4 or Google Cloud Platform 5 can serve as an example
of this type of cloud service.

When customers are using a Public Cloud, they share the same infrastructure for their
virtual machines. In contrast, there is a second option available. These, so called Private
Clouds, are strictly used by one customer only, and they are based on a special contract
between the cloud service provider and the customer. This provides additional options for
control over the purchased infrastructure and more security advantages as well. Since there
is no other user in that cloud, it minimizes the risk of any vulnerability, in the isolation of
each application, being exploited.

Another option how to differentiate between available cloud solutions is by its level
of abstraction: the service models. According to the service-oriented architecture, cloud
computing providers offer three main types of service. These are (in stacking order)
Infrastructure as a service, Platform as a service and finally Software as a service.

Infrastructure as a service (IaaS)

Firstly, there is the most low-level approach to providing services via cloud, providing base
infrastructure. This reflects the need for customized setups which are trusted by customer.
In this case the term of infrastructure stands for virtual machines or even bare metal ones.
These are usually deployed based on an images built by customers themselves or generic
ones which allow to quickly scale over predefined setups. Integrating a provider of this kind
is the subject of this thesis.

Platform as a service (PaaS)

By utilizing a PaaS, a customer gains an environment that allows him to develop and run
his own applications without the need for building and maintaining a complex infrastructure.
Such customer has access to a solid, stable and reliable platform of his desire and focus solely
on the application he develops and deploys. The described environment offers countless

1http://aws.amazon.com/ec2/
2https://www.openshift.com/
3https://www.openstack.org/
4https://azure.microsoft.com/en-us/
5https://cloud.google.com/compute/

6

http://aws.amazon.com/ec2/
https://www.openshift.com/
https://www.openstack.org/
https://azure.microsoft.com/en-us/
https://cloud.google.com/compute/

setups and frameworks with or without included databases, continuous integration, etc.
This approach brings the advantages of rapid, easy and secure deployment, along with other
benefits of the cloud.

Software as a service (SaaS)

The most advanced and complex level of abstraction in cloud computing. Software as a
service usually provides end-user facing applications accessible on demand. The provider
installs and operates an application software for the customer in their cloud. Typically
SaaS is licensed on a subscription basis offering parametrized environment, along with high
availability insurance. Great examples of such kind of service are Salesforce 6 and web office
suites like Google Docs 7 or Microsoft Office 365 8. The portfolio of services covered by SaaS
is huge and wide beyond imagination. From offering solutions supplying different kinds of
analyses like social networks profiling tools and advertisement, over communication platforms
including video, audio, mailing services etc., to mobile offices like the ones mentioned above.

1.2 IBM Cloud
Among others, the IBM company also offers their own cloud solution, the so called IBM
Cloud. It’s not a standalone project, it’s a summary name for a whole portfolio of products.
It comprises of complementary yet independent platforms and tools covering an extensive
amount of application and use-cases delivering adjustable setups and products to the
customer. When the customer demands IaaS, IBM SoftLayer is the product he’s asking
for. For platform-based requirements, IBM offers a cloud service named Bluemix. There
is also a vast amount of SaaS solutions delivered by the company via their very own IBM
cloud market. Some of them based on the IBM Watson intelligence, some standalone. This
complex tooling allows IBM to deliver in the cloud market environment.

6https://www.salesforce.com/
7https://docs.google.com/
8http://office.microsoft.com/

7

https://www.salesforce.com/
https://docs.google.com/
http://office.microsoft.com/

Chapter 2

IBM SoftLayer

This IaaS cloud service provided by IBM Company is one of the world’s largest cloud
services available. In order to integrate this provider of cloud infrastructure it’s better
to acknowledge and recognize the merit. Exploring and studying its parts and internal
structure helps to understand the way to a successful integration. The very next step is
to identify and describe the ways how the provider can be accessed via APIs and cloud
binding libraries and what are the benefits or drawbacks of each option available. Finally,
by comparing these approaches, it’s necessary to objectify which one is the most suitable
for our needs of integration into ManageIQ.

2.1 Components
Before elaborating on the cloud bindings it is necessary to introduce and describe the main
and most important areas of IaaS clouds, with focus on the IBM SoftLayer. The most
notable parts that are required to understand are listed below. Each user deploying his
machine in cloud needs to decide on the following:

• Where to place the machine?

• How is the virtualization encapsulated?

• What are the resources available for the purchased instance?

• Which software, operating systems are run and how to preserve data?

• How are the machines connected one to another?

Understanding these topics is essential for a customer to be able to successfully and
effectively deploy his appliance.

2.1.1 Regions, Zones and Data centers

One of the most important yet changing parts when setting up the cloud infrastructure is
to distinguish where the appliance is physically run (approximately). This is important in a
case when customer wants to mirror his infrastructure around the globe with purpose to
ensure its accessibility and reliability. It’s a factor that can easily eliminate or at least reduce
the connection issues caused by Internet service providers and exchange points outages. In
other words, the application’s swiftness is as good as it is possible and not dependent on

8

its user’s geographical location and time. Since neither the customer nor cloud provider
is responsible and in control over the connectivity provided to users, placing customer’s
devices as close as possible to its end-user destination makes sense. This is what usually
the Regions are referring to. However, in a cloud environment the specification of the exact
physical location is not dogmatic. The approximate and relative location is sufficient and
the most common way is to refer to a continent or a market. For example the Google
Compute Engine[3] specifies its regions as: Central US, Eastern US, Western Europe,
etc.

On the other hand a complementary entity takes place within each region. These are
called Zones or Availability Zones. Numerous zones are present in each Region. Each one
is independent of another. The reason is to ensure that in a case of outage, scheduled
maintenance or any other kind of issue affecting a zone the others are left untouched and
available. When one zone is failing the others in the same region remain available and
reliable.

By using and specifying proper Regions and Availability Zones, the customer can ensure
and enhance reliability of his services, reduce latency and build a robust system which is
both as close as the customer needs and distributed around the world in the same time. Each
cloud provider has a slightly different philosophy of how they comprehend and implement
these principles. Let’s describe the two most common approaches.

We already mentioned the Google Compute Engine where the understanding of the
area specifications is probably the most fitting the definition. There are Regions which refer
to a continent or a country where the data centers are placed. Also, within each of them
there are a couple of Availability Zones, usually 3 or 4 of them, and these are independent.

As a second example the Microsoft Azure provider can be mentioned. Their under-
standing of this scheme is a bit different. They provide a Region based solution only[6].
These are specified in much greater detail then in Google’s case and there exist more of them
as well. This provider is substituting Zones by making regions smaller so customers can
easily target the end-user (by selecting not just the continent but even a specific country)
and yet keep the backup instance in the closest region. As an example, this is a sample how
the Regions are named and where they are placed in the Azure cloud provider: Central
US in Iowa, North Central US placed in Illinois or Japan West set in Osaka.

Let’s focus on how the scheme ofRegions and Zones works in the IBM SoftLayer cloud
provider. Their model is quite similar to the Microsoft Azure. However, besides other
differences they do not use the term of Region. Instead, the Data Center term is used.
This term truly refers to an exact location (for each center, the exact city is told). The
product pages describe locations where data centers are placed[8], for instance such centers
are: Dallas 01, Dallas 09, Amsterdam 02, Washington, D.C. 01 or just Paris. As you
noticed, there might be some redundancy within a location. When there are multiple data
centers in one city, each affected data center is numbered.

Speaking in the matter of the scheme defined in previous paragraphs, it’s definitely
needed to fit these in. It’s required to find a proper category, because the scheme is reflecting
the principles implemented in ManageIQ.

At first, let’s take a look at how the work flow goes for the IBM SoftLayer. When
the user is provisioning a new appliance he needs to select a Data Center of deployment.
This is the same situation as when deploying into Google Compute Engine, where the
customer has to select the Region.

Another point of view is that when there are multiple data centers within one city (let’s
say in the same Region) the situation is reminiscent to a state when the provider offers

9

multiple Availability Zones for the region. Such behavior is reflected especially by these
essential competences:

1. Data centers are in the same Region.

2. Each one is independent on another.

This view can evoke in us the idea that IBM SoftLayer provider is actually offering
Availability Zones as well, and it is mixing them with Regions and calls them Data Centers.

On the other hand, each Data Center is selectable. In other words, it is required to
pick one of them and deploy the appliance there. But this view goes strictly against the
presumed policy that zones are managed internally by the provider and the user is usually
not able to select and specify which zone is being used for his device. And there’s also
another reason why the comparison of zones and data centers within the same location is
not accurate. There’s no internal connection (besides the name) to link a Data Center to
the others within the same city. The missing relation (via API or network, etc.) is finally
the reason why to model every data center as a separate Region and do not bother the user
with a new layer, new construct, the Availability Zones.

2.1.2 Servers

Once the user figures out where he can run his appliances, it’s worth discovering what is
being provisioned and run. In the clouds of the IaaS type, it is usually some kind of Server.
Previously it’s been mentioned 1.1.1 that the most common type of device is a Virtual
Server, but this is not the only commodity available. For numerous security reasons, some
cloud providers offer the possibility to run such a virtual server in three types of environment.
IBM SoftLayer provides all of them.

Shared hardware

To run a Virtual Server on shared hardware is the cheapest variant. It is also suitable for
most of the customer needs. When a customer does not demand any special treatment
like enhanced security features or a specific type of hardware, this is the way to go. The
provisioned virtual server is placed on a server within the Data Center and under a
Hypervisor. This hypervisor also manages other appliances and does not differentiate
between the customers, the owners of the virtual machines. Shared hardware means a shared
environment in a sense of a communal hypervisor and a shared physical layer between users.

Dedicated hardware

The opposite option is to reserve dedicated hardware. It’s more expensive, but on the other
hand more secure. By using a dedicated machine for appliances owned by one user only, it
provides another layer to secure the data. Also, some providers can offer an option to let the
user be responsible over the Hypervisor too. In addition, running appliances on dedicated
hardware makes the customer in complete control over the leased infrastructure.

Bare metal servers

There’s also an option, offered only by a minority of companies, to use the cloud to provide
so called bare metal servers. This means a completely different approach than cloud is

10

usually known for. If a user wants to keep his data super secure and isolated yet in a stable,
reliable and affordable environment it’s possible to order a specific physical rack and run
the customer’s server there. Basically, this approach resembles a kind of server housing with
the benefits of the cloud.

2.1.3 Hardware Flavors

Once the customer knows where the virtual machine should be run and what kind of
virtualization the deployed setup requires, it’s worth choosing the hardware resources (no
matter if virtual or physical). This specification involves aspects like the processor cores
count and frequency, amount of memory available for the device, or how data are being
stored (if they are stored on a local hard drive or available via network, what type of hard
drive it should be, how many of them are attached, what should be their capacity etc.). All
these properties can be specified manually and in special cases they are. However, the more
common work flow is to store the favorite setups as Flavors. Each cloud provider also offers
some default ones. For example the Table 2.1 below describes the default Flavors used in
the IBM SoftLayer cloud.

Table 2.1: IBM SoftLayer default Flavors
Identifier Name CPU cores Memory (RAM) Hard drives (HDD)
m1.tiny Tiny Instance 1 1 GB 1 × 25 GB
m1.small Small Instance 2 2 GB 1 × 100 GB
m1.medium Medium Instance 4 4 GB 1 × 500 GB
m1.large Large Instance 8 8 GB 1 × 750 GB
m1.xlarge Extra Large Instance 16 16 GB 1 × 1 000 GB

2.1.4 Images, Templates and Snapshots

Purposes of Images are to replicate a virtual server running in cloud, store setups or deploy
preconfigured systems. Some cloud providers and managers use a term Template instead.
They can be created in two possible ways.

The provider can produce some basic images with operating systems based on the default
installation setups adjusted to reflect the cloud specific features, configurations, etc. Such
images can also provide preconfigured application setups or platforms. As has been said,
these templates are usually prepared by the provider to facilitate initial setups for the
customer. Of course a user can deploy such images on his own too. But since this type of
templates contains a default configuration, it’s much more convenient for the customer to
be provided with them.

There’s also a second way how to create an image. There’s a possibility to create a
Snapshot of a running virtual machine. It is a pretty essential feature for each cloud to
prepare a setup and save it as a template for backup and redeployment purposes. The
user usually wants to scale his infrastructure and distribute it around the world in different
regions or providers. By producing snapshots of his running virtual machines or uploading
his own preconfigured ones it’s easy to preserve state, data and environment and deploy,
copy the instance, elsewhere. These Images and Snapshots created by a customer can be
flagged as private and available for his own use only, or there’s also a possibility to make
such Template publicly available for other users of that cloud.

11

2.1.5 Networking

Finally, the last of the remarkable areas of IaaS clouds — networking of the appliances.
While a customer is provisioning a virtual machine, this machine is normally a part of a
greater infrastructure. Inside that complex system, its components need to be connected
and linked with others. In order to achieve that, clouds and virtualized computing brings
mechanisms of Virtual networks. These networks are modeled to behave and to offer the
same functionality as their physical equivalents. There are couple of essential network
infrastructure components. A list of the ones provided by IBM SoftLayer follows.

Network Port

Each virtual server is provided with some network interfaces with their own name, MAC
address, etc. They are usually called Metwork Ports. They point to the network interface
properties of the virtual machine but they are also propagated outside to the managing API
and provider’s service applications. Thanks to this propagation they can be dynamically
modified via API or the tooling provided by the cloud provider.

Cloud Networks and Subents

Each port can be connected to a virtual Cloud Network or a Cloud Subnet while they work
the same as in the world of regular computer networks. They are provided by IP address
ranges (so the device can be connected, receive a mapping to one of them), speed limits, etc.
They can also be controlled by Firewalls. However, the understanding of cloud networks
and subnets is also different across providers.

For example, let’s describe the meaning of cloud networks and how they work in IBM
SoftLayer. Each virtual server is given access to the two default networks for the data
center. It is a Private Cloud Network and the Public Cloud Network. They take place of a
gate to different points of interest.

Private Cloud Network connects the device to internal appliances within the data center.
For instance, such device can mean network storage volumes or databases, etc. On the
other hand, the Public Cloud Network is a gateway to the outer world, outside the data
center and the cloud. To be precise the cloud networks in this sense do not offer any routing
capabilities, they work just as a label of the range of interests available (reachable resources)
for the device. Inside these networks, Cloud Subnets can be set up. The subnets behave like
the real networks or subnets. A customer can specify IP ranges and all other parameters
he needs. The amount of subnets in the same network is not strictly limited for this cloud
provider.

Network Router

Apart from the attached devices and addresses each network needs its Network Router. This
router is not a physical device either. For each subnetwork (as they are defined in the IBM
SoftLayer) exists exactly one such router. Usually they are given a name and IP address
and the only use for them is to build a proper illusion of the real network. Each router
can service multiple subnets as it is known from regular computer networking. Within
each cloud network there can be multiple routers. However, the architecture used in IBM
SoftLayer does not provide more complex hierarchy, more levels of subnetworks. On the
contrary, any advanced networking is not very common for cloud infrastructures currently
deployed and this flat approach is sufficient enough.

12

2.2 API access
For managing purposes each cloud provider has it’s own web interface. Such a tool usually
contains all needed functionality: visualization of leased devices and machines, networking
adjustments, provisioning of new appliances, creating snapshots, viewing spendings and
other billing information.

On the other hand, an API is needed once more advanced users want to automate their
work flows or create scripts to handle some common tasks. There are numerous different
libraries allowing a user to connect to the provider. In this case it is essential to focus on
the IBM SoftLayer provider with respect to the needs and capabilities of ManageIQ.

2.2.1 Standard REST API

The standard way offered by provider is to use the IBM SoftLayer’s REST API [9]. This
extensive API offers a complete access to nearly all features of the cloud infrastructure. It
is a low level standard defining how to communicate with the cloud, how to format requests
and what responses should be expected etc. The major advantages of the API is in its
complexity and independence on a programming language.

User authentication

When a user is managing the cloud services via web interface, the normal and most common
way to identify himself is to use username and password. While using APIs, the situation is
a bit different. Each cloud defines the way on their own. Google Compute Engine, for
instance, requires to specify the project name, user email and then uses a special Google
JSON key which is basically a project specific certificate for the user. The Amazon Web
Services EC2 cloud uses a generated pair of Access key ID and a Secret Access key. Finally,
when it comes to the IBM SoftLayer, there are two factors used for authentication. It
involves the normal User ID (a customer specific ID) and a specially generated Secret API
key for each of the customer’s administrator.

Language bindings

The described API is pretty basic and low level in the aspect of connection handling and
abstract operations. For better integration of this API into user projects the derived libraries
have been built upon it to offer bindings and object based interface for different programing
languages. Since ManageIQ is written in Ruby we should focus and elaborate on the
libraries created for this programming language.

2.2.2 Softlayer API for Ruby

First of them is a SoftLayer API brought by the SoftLayer developers[10]. This library
provides a Ruby Gem package named softlayer_api. However, because of the lack of
proper structure and disorganized code, it is not easy to follow for beginners. All provided
activities are available via one service and the naming conventions abide by the IBM
Softlayer standards. This makes it a bit complicated in the matter of maintenance while
the provider is being integrated with others. By using this library, each developer willing to
maintain the code has to understand internal IBM Softlayer work flows. The example
Code 2.1 describes the basic usage of this library.

13

Code 2.1: Example code for the softlayer_api
require "softlayer_api"

Specify the provider and credentials
SoftLayer::Client.default_client = SoftLayer::Client.new(
:username => "<username>",
:api_key => "<api_key>"

)
Connect
account = SoftLayer::Account.account_for_client()

Lookup all provisioned servers
account.servers

=> [<SoftLayer::VirtualServer:0x00000002090ec8
@softlayer_client=

<SoftLayer::Client:0x00000002124ce0
client details like used credentials, API, etc.
>

@softlayer_hash=
{ "domain"=>"example.com",
"fullyQualifiedDomainName"=>"centos.example.com",
"hostname"=>"centos",
"id"=>17784479,
"maxCpu"=>1,
"maxMemory"=>1024,
etc.

}
]

Get the first server and check its state
server = SoftLayer::VirtualServer.server_with_id(17784479)
server[:powerState]

=> 'Running'

14

2.2.3 Fog the Ruby cloud service library

There’s also a fog-softlayer gem, a Fog library for this provider[11]. Fog is a cloud service
library for Ruby available for many different providers across market. This makes the
Gem easily understandable and compatible with other providers. It is also much simpler
to maintain the structure and follow a pattern of other providers already available in
the ManageIQ which are also implemented via Fog. This library also offers extensive
documentation (for Fog in general) and example code for the fog-softlayer covering the
desired functionality.

To contrast the fog-softlayer with softlayer_api, the services and objects are more
structured here. They also offer standardized cloud naming conventions which make it easier
to follow and maintain. Its structure corresponds with every other provider in Fog. It is
kept and managed via 5 basic services which can operate separately.

• Fog::Account accessing customer account’s organization if it is grouped with others

• Fog::Compute is the most important service allowing the user to control servers
(monitoring, provisioning, deployment, creating snapshots and more)

• Fog::Network offers bindings to manage cloud networks, subnets, routers, etc.

• Fog::DNS for managing DNS records

• Fog::Storage provides connection to Bluemix storage service

Each of the services has its own purpose, but the most important in a sense of cloud
management are the Fog::Compute and Fog::Network. By using just these two, the user
can easily manage his running appliances and deploy new ones. The code sample 2.2 shows
the basic work flow for listing running servers and how to provision a new one.

15

Code 2.2: Example work flow for Fog SoftLayer
require "fog/softlayer"

Specify the provider and credentials
options = {
:provider => "softlayer",
:softlayer_username => "<username>",
:softlayer_api_key => "<api_key>"

}

Connect to the Compute and Network service
compute = ::Fog::Compute.new(options)
network = ::Fog::Network.new(options)

Lookup all provisioned servers
compute.servers.all

=> <Fog::Compute::Softlayer::Servers
[<Fog::Compute::Softlayer::Server

id=17784479,
name="centos",
domain="example.com",
fqdn="centos.example.com",
cpu=1,
ram=1024,
etc.

>,
other servers

] >

Get the first server and check its state
server = compute.servers.get(17784479)
server.state

=> 'Running'

Provision a new instance from image
provison_options = {

:flavor_id => "m1.small",
:image_id => "1394bf94-e4e5-43bf-90ec-5eedbdcc420d",
:name => "ubuntu",
:domain => "example.com",
:datacenter => "ams01"

}
new_instance = compute.servers.create(provision_options)
new_instance.id

=> 17784894

16

Chapter 3

ManageIQ

A project named ManageIQ is an open-source technology developed by a community
supported and sponsored by the Red Hat company. This project aims to provide an easy
management over cloud solutions across providers by offering comfortable import, appliances
management, network links visualization allowing modifications, and infrastructure provi-
sioning capabilities[5]. Expectations are high since all integrated technologies are different
considering functionality and capability. To cover those variations, ManageIQ provides
abstract internal bindings that should suit most of the needs.

3.1 Providers

Figure 3.1: Providers in ManageIQ

The Developer’s guide[12] defines available bindings for each provider. Each provider is
represented by a so called External Management System. The reason for such name is mainly

17

historic, today each provider offers a complex functionality which needs to be broken into
smaller, separate managers. A Figure 3.1 categorize the providers into the ManageIQ’s
architecture. This reveals the overall picture how these managers are related with other
parts of the framework. In the case of IBM SoftLayer these are the Cloud Manager and
the Network Manager. Each of them is given it’s namespace and can be derived from a base
manager of that type. These managers cover, or try to cover these areas:

• Inventory for listing and tracking all the cloud properties

• Event Collection and Handling for event driven work flows and dynamic system

• Metric Collection and Handling for analysis over inventory objects, utilization etc.

• Provisioning and Orchestration is adding features to dynamically deploy new setups
in the provider

• Lifecycle for managing the already deployed ones

• SmartState Analysis is a low-level analysis tool for Virtual Machines and Images

Currently, due to missing features in the API for implemented provider we are able to
cover just the Inventory, Provisioning and Orchestration, and Lifecycle features.

In general, there exist three ways how to collect data about the provider:

• Refresh Worker

• Event Worker

• Metric Worker

Because of the reasons described above, we are currently able to implement and use just
the first one of them, the Refresh Worker. The properties imported by the refresh are listed
and described below.

3.2 Implemented Interfaces and Models
ManageIQ uses a hierarchical scheme of models. While adding a new provider it is a
ManageIQ::Providers which has to be implemented. For IBM SoftLayer as a cloud
provider there are 3 main parts, classes required:

• "ManageIQ::Providers::Softlayer::CloudManager" for the appliances manage-
ment

• "ManageIQ::Providers::Softlayer::NetworkManager" for networking

• "ManageIQ::Providers::Regions" enlisting all available Regions

Both of the managers inherit from their Base Manager, for example, for the Cloud
Manager it is "ManageIQ::Providers::CloudManager". These managers implement the
behavioral principles for Cloud Refresh or event driven management purposes. In order to
store connection bindings, which are common for both, there is a special Manager Mixin.

18

These models are places in the app/models/manageiq/providers/<provider> folder
where <provider> address the implemented provider. As this thesis describes the imple-
mentation of IBM SoftLayer, let’s consider as a <provider_root> the folder
app/models/manageiq/providers/softlayer.

In the app/models/manageiq/providers/softlayer/ folder there can be found (the
main components):

• regions.rb as a Regions storage

• manager_mixin.rb for the Manager Mixin

• cloud_manager.rb defining the Cloud Manager behavior

• cloud_manager folder containing all components required by the cloud manager

• network_manager.rb containing the Network Manager

• network_manager folder with content required by the required by the network manager

The following sections describe each one of them.

3.3 Connection Management
The connection is a common feature and requirement for both of the implemented managers.
This connection handler is kept separated from them for easier maintenance. The class
for that is called Manager Mixin. This mixin also contains the basic Discovery work flow
which is described bellow in the Section 3.5. But the main purpose of the mixin remains in
establishing the connection via Fog, verifying credentials and providing the manager with
proper service. How to connect via Fog to the IBM SoftLayer is described in the Code 2.2.

3.4 Regions
What Regions are has already been described. However, for the integration purposes it’s
needed to understand how they are treated in the ManageIQ.

When a user is adding a new provider he has to specify the Region. Basically, he is
adding a Region specific provider. This is a policy intended to keep the UI and the overall
environment clean for the user. Imagine a situation where such a user has his devices
deployed in many providers. In the case when all Regions of each provider are added, his
interface can be flooded by them. The other approach is to add one Region per provider.
And once the user needs to attach another one, he adds a new provider.

It is also required to list all available regions before a user connects to the provider.
The application uses one step form for adding a provider, so he has to be able to specify
the Region before his credentials are proceed. And since every API client requires to
authenticate before any actions can be done, it is required to list all regions statically in a
file <provider_root>regions.rb.

19

3.5 Discovery
The work flow described above can be slightly inconvenient when the user already has
devices deployed in many different Regions. For such situations, there is a Discovery process.
There, the user just specifies his credentials and the process does the work for him. The
application places his discovery into a tasks queue and when the discovery proceeds, it
iterates over every Region. While there are Virtual machines present in that region, it is
registered as a new provider and its Refresh is scheduled. This work flow is specified in the
ManagerMixin class.

3.6 Cloud Manager
Cloud Manager is a class specified for each provider and inherits from a base CloudManager.
In this case it is specified as ManageIQ::Providers::Softlayer::CloudManager. It pro-
vides an interface over the cloud devices. The main purpose of this class is to cover all
functionality needed to refresh and manage Virtual Servers and every other aspect needed in
order to provision and access them. All the links between devices are discovered separately
and this class does not care about the internal representation of network components.
Nevertheless, this manager maps the networking identificators of discovered devices into an
internal database and once the networks are discovered, the system links them together.

All the entities and submodules described in this manager are populated by the Cloud
Refresh. There are also implemented relations and delegations for networking properties
into the Network Manager.

20

3.6.1 Cloud Refresh

To run a discovery service or refresh of the provider, the Cloud Refresh namespace has to
be defined. This is the most important class for each manager. It covers the import and
mapping of every supported entity which is watched by the manager. The Refresh procedure
itself is defined and proceed in three separate phases:

• :Refresher

• :RefreshWorker and :Runner

• :RefreshParser

This Refresh is the base and most important back-end part of a new provider. It’s
main role is to fill the internal database with all inventory needed for further usage. The
scheme that defines which attributes and inventory models are available is prescribed in
the Developer’s guide and documentation[12] in the Providers database architecture and
Provider Overview guides.

Refresher

The :Refresher specifies the work flow of the refresh. It tells the ManageIQ what refresh
should be run, how to store all discovered appliances and which database schemes and
tables should be affected. The major issue which this class takes care of is to identify which
provider the devices belongs to. This refresher, when initiated, also queues a refresh of the
providers Network Manager.

Refresh Worker

The worker is a specification of the way an import is handled. Normally, no modification
to the standard process is required. It’s the same for this provider. Each provider needs a
:RefreshWorker in order to register the run of refresh. The naming conventions and scheme
of ManageIQ require also the :Runner sub-class to be defined. Both of them inherit all
the functionality from the base cloud manager’s refresh worker.

Refresh Parser

This class is the most important part of the refresh process. It defines which devices are
added and where these should be registered in ManageIQ. Here, it is specified how the
mapping of each of the following entities is done between the provider client library (in the
case of IBM SoftLayer it is fog-softlayer) and the internal structure. The mapping
(whether the device is Virtual Server or Flavor etc. and its properties) where to store these
information is specified as well.

21

3.6.2 Availability Zones

As we elaborated in the Subsection 2.1.1, there are no sufficient Availability Zones present
in IBM SoftLayer. On the other hand, each cloud manager requires a Zone to be defined.
To satisfy this need, a new default zone has been created. It does not affect any operation
over the provider, although for the internal needs of the data hierarchy inside ManageIQ’s
database it is present.

To preserve the naming conventions of ManageIQ even in this case, it is required to
use two separate mapping functions. The first one, normally used to fetch data from the
provider, now creates a list containing one element, the default zone. Then, it lets to parse
it via the second function and store it into the designated place. The model for the zone
uses a modified instance of Fog::Model as the default zone 3.1. This approach has been
used instead of defining a special class for the zone because there is no need to have such a
class available in the namespace. There is always going to be only one instance present in
total and only during the refresh.

Code 3.1: Declaration of the default Availability Zone
Create new fog model
default_zone = ::Fog::Model.new

Inject methods for :name and :id to return default values for provider
{:name => @ems.name, :id => 'default'}.each do |method, value|
default_zone.define_singleton_method(method) { value }

end

a_zones = [default_zone]

Table 3.1: Availability Zone attributes mapping
Attribute Corresponding value
ID availability_zone.id.downcase
:type ManageIQ::Providers::Softlayer::CloudManager::AvailabilityZone.name
:ems_ref availability_zone.id.downcase
:name availability_zone.name

3.6.3 Authentication Key Pairs

Since ManageIQ aims to completely manage over different providers, besides monitoring
purposes, it is essential to provide user with the possibility to connect to the machine.
While there are any Authentication Key Pairs attached to the device this is the class which
takes care of them. Each key pair, when created, contains a name and a fingerprint. This
provider specifies the key pair with a label as a name and a certificate as a fingerprint.
Fetching Authentication Key Pairs from the provider is easily done via Fog by a simple run
of compute.key_pairs.all command.

22

Table 3.2: Authentication Key Pair attributes mapping
Attribute Corresponding value
ID key_pair.id
:type ManageIQ::Providers::Softlayer::CloudManager::AuthKeyPair.name
:name key_pair.label
:fingerprint key_pair.key

3.6.4 Flavors

What Flavors are was already discussed in Flavors ??. Fog allows to list all available Flavors
via compute.flavors.all command. The Code 3.2. All data available about the flavor are
listed in plain format except the disk sizes. The total size has to be counted for each Flavor
separately by summing the sizes of all available disks.

Code 3.2: Sample of Flavors data
Fetch Flavors from SoftLayer
compute.flavors.first
=> <Fog::Compute::Softlayer::Flavor

id="m1.tiny",
cpu=1,
disk=[{"device"=>0, "diskImage"=>{"capacity"=>25}}],
name="Tiny␣Instance",
ram=1024

>

Table 3.3: Flavor attributes mapping
Attribute Corresponding value
ID flavor.id
:type ManageIQ::Providers::Softlayer::CloudManager::Flavor.name
:ems_ref flavor.id
:name flavor.id
:description flavor.name
:cpus flavor.cpu
:cpu_cores flavor.cpu
:memory flavor.ram * 1.megabyte
:root_disk_size Counted separately, data taken from flavor.disk

23

3.6.5 Virtual Machines

This is the most important commodity that has been imported and discovered. Each Virtual
Machine carries information about its name, domain, hardware configuration and even
Flavor, Image which it is based upon or Authentication key pairs attached. The attribute
mapping is described in Table 3.4. Every attribute listed is successfully mapped except the
Disks discovery. The Softlayer API described in the Subsection 2.2.1 provides every piece
of information needed, except the effective disk size. Currently it’s been decided to wait
until the support for this value is in place. For now, no disks are mapped for any Virtual
Machine in this provider but the functionality is prepared so once these data are available,
it can be easily updated.

Each Virtual Machine, once mapped into the ManageIQ, offers an interface for its
power management. This management also has to be binded to propagate the requests into
the provider. This is done via the sub-class :VM and its management modules
:Operations::Power and :Operations::Guest. IBM Softlayer and fog-softlayer
allows to:

• Switch off the instance via instace.stop

• Turn back on using instance.start

• Reboot the appliance by instance.reboot

• And finally terminate it by invoking the instance.destroy command

Unfortunately IBM SoftLayer does not offer to Suspend, Pause or Hibernate the
instance.

Table 3.4: Virtual Machine attributes mapping
Attribute Corresponding value
ID instance.id.to_s
:type ManageIQ::Providers::Softlayer::CloudManager::VM.name
:uid_ems instance.id.to_s
:ems_ref instance.id.to_s
:name "#{instance.name}.#{instance.domain}"
:vendor "softlayer"
:raw_power_state instance.state
:flavor instance.flavor_id
:operating_system {:product_name => instance.os_code}
:availability_zone Fetched the defaulf Availability Zone from data storage
:key_pairs Fetched from data storage
Hash for :hardware information
:cpu_sockets instance.cpu
:cpu_total_cores instance.cpu
:cpu_cores_per_socket 1
:memory_mb instance.ram
:disks Not effectively populated

24

3.6.6 Image Templates

In each Region, there are specific Images available. There are Public Images created by
other users or made publicly available by the cloud provider. Also, there are Private Images
created just for the needs of the customer. While importing them, we need to distinguish
which images belong to what category. Also, there are other aspects that would be great
to categorize. Unfortunately, this is not available via staging APIs. For example we would
like to be able to categorize an image by operating system or designated and required disk
space. It would also be helpful to differentiate which images are available for purchase and
which are already old and their base operating system image is already missing. Currently,
none of this functionality is available via API and just the basic data is accessible. Because
of the defect mentioned above, the additional features have not been implemented. The
mapping used for images can be seen below.

Table 3.5: Image attributes mapping
Attribute Corresponding value
ID image.id
:type ManageIQ::Providers::Softlayer::CloudManager::Template.name
:uid_ems image.id
:ems_ref image.id
:name image.name
:vendor "softlayer"
:tempalte true
:publicly_available image.public?

3.6.7 Tags

One of the most important aspects of ManageIQ is the capability to Tag user’s devices
across providers and types. IBM SoftLayer also offers tagging capabilities. Each virtual
machine can be tagged and labeled, and multiple labels can be applied on the device. The
same can be said about the ManageIQ. However, this provider offers such functionality just
for provisioned appliances, but not for other types of devices like Cloud Networks, Network
Routers or Images. This makes the import of tags from provider less efficient. There’s also
another problem that blocks the correct usage of tags in the cloud manager.

The issue is that ManageIQ currently does not offer a way to propagate tag changes
into the provider. So, in a situation when a user modifies tags of a server in the cloud
manager and then wants to refresh the provider, old Tags are imported again and his changes
are overwritten. Due to this fact, the tags are currently being ignored and skipped during
refresh and discovery.

25

3.6.8 Provision

The default provision model used in ManageIQ is Cloning. But it does not refer to cloning
in a sense of replicating an already available instance. It is used for the Image deployment
into a new Virtal Machine. The work flow basically follows the standard form used by the
fog-softlayer seen in the Code 2.2. The user selects the desired Image, specifies Flavor,
Cloud Subnetworks via web UI and declares the name and domain to use for the newly
created device.

The code in the back-end then processes user input and based on his selection, prepares
a cloning_options hash. The source code bellow describes a function to prepare such data
for IBM Softlayer.

Code 3.3: Prepare cloning options
def prepare_for_clone_task
clone_options = super
ems = source.try(:ext_management_system)
vlan_id = get_option(:cloud_network)
NOTE: Private vlan is represented in the provisioning form
as a :cloud_subnet (rendered as a same type so there's no
need for a new specialized field)
private_vlan_id = get_option(:cloud_subnet)

NOTE: Cloning might fail for some images due to missing base
OS (in the image). This information is not available via API,
it's safe to use own images though.
additional_options = {
:flavor_id => instance_type.name,
:image_id => source.uid_ems,
:name => dest_name,
:domain => get_option(:vm_domain),
:datacenter => ems.provider_region,
:vlan => find_cloud_network_in_vmdb(vlan_id),
:private_vlan => find_cloud_network_in_vmdb(private_vlan_id),

}

clone_options.merge(additional_options)
end

26

3.7 Network Manager
In order to connect and visualize relations of discovered devices, ManageIQ brings the
class NetworkManager. A separate Network Manager is currently a new feature included
in ManageIQ. The IBM Softlayer is one of the first providers adapting this structure.
The current implementation uses the Cloud Manager as default for delegating some of the
workload onto this manager. This manager has it’s own refresh capabilities and the refresh
and discovery is it’s main purpose. Today, neither ManageIQ, nor fog-softlayer is
capable of manipulating networks. This layer is static for display and monitoring purposes.

The main change in the process of connecting to the provider’s API is using the
Fog::Network service instead of the Fog::Compute. The connection to this service is made
analogically as for the compute service so the following text is referring to the network
variable described at Code 2.2.

3.7.1 Network Refresh

In the core, the purpose of Network Refresh is the same as for the Cloud Refresh. And
the work flow is also the same: this refresh requires the same steps to be implemented
(:Refresher, :RefreshWorker, :Runner and :RefreshParser). They provide the same
role as has already been explained.

The :RefreshParser is capable of exploration over:

• Cloud Networks and Cloud Subetworks

• Network Ports

• Network Routers

Each component’s discovery is initiated via a call to a corresponding function. In network
discovery, these functions are registered: get_cloud_network, get_network_ports,
get_cloud_subnets\,(cloud_network) and get_network_routers.

27

3.7.2 Cloud Networks

It’s already been described how IBM Softlayer treats Cloud Networks. They are used as
labels without networking attributes, yet defining the connection and subnetwork purposes.
There exist two types of such networks and a specific sub-class has been created for each of
them:

• :CloudNetwork::Public for public networks that interface the Internet and outer
connections outside of the data center.

• :CloudNetwork::Private which purpose is to connect devices with each other and
with network storage or any other internal service within the data center

Table 3.6: Cloud Network attributes mapping
Attribute Corresponding value
ID cloud_network.id.to_s
:type "ManageIQ::Providers::Softlayer::NetworkManager::CloudNetwork"

+ suffix ("::Private" or "::Public")
:ems_ref cloud_network.id.to_s
:name cloud_network.name if present or a custom string

"Public" (or "Public") + "VLAN on <hostname>"
:status "active"
:cidr nil
:enabled true
:cloud_subnets Initiated discovery and fetched the data from local storage
:network_router cloud_network.router

28

3.7.3 Cloud Subnetworks

In case of Cloud Subnets the situation is a bit more difficult. These networks are not directly
displayed via Fog like the other network components. However, both entities using and
interfacing these subnetworks contain desired data. These two entities are Cloud Networks
and Network Ports. Each of them provides enough data to register a subnet. It is considered
a better practice while describing components to start from the greater picture to smaller
parts. The Cloud Network can be considered a bigger and more important component
because it can contain more Network Ports and represents a parent for each Cloud Subnet.

While running a discovery over a Cloud Network, all related subnetworks are discovered
as well. This behavior is ensured by calling get_cloud_subnets(cloud_network) during
parsing action for each network. When all subnets are found, they are parsed, registered and
stored in ManageIQ’s local storage. Later, when the refresh process reaches the Network
Ports discovery, their identificators are found and they can be located in the database and
linked to the port.

Table 3.7: Cloud Subnetwork attributes mapping
Attribute Corresponding value
ID cloud_subnet.id.to_s
:type "ManageIQ::Providers::Softlayer::NetworkManager::CloudSubnet"
:ems_ref cloud_subnet.id.to_s
:name cloud_network_name
:cidr "#{cloud_subnet.network_id}/#{subnet.cidr}"
:ip_version cloud_subnet.ip_version
:network_protocol "ipv#{cloud_subnet.ip_version}"
:gateway cloud_subnet.gateway_ip
:availability_zoneFetch the default Availability Zone

3.7.4 Network Ports

Running the Network Ports refresh process is the next step in order to complete whole
network discovery. Network Ports are used as a virtual replacement of physical network
interfaces. Their data are available via querying each Virtual Machine. To successfully
access it, the refresh process of the corresponding Cloud Manager has to be run before the
Network Manager.

Since the Network Subnets were already discovered using the networks, now it only
remains to map them to maintain and register the relation inside ManageIQ. This is done
by a special mapping function. When specifying a mapping key
:cloud_subnet_network_ports in the stored data hash, the value is internally converted
into opposite relation before saving and correctly mapped onto relevant Network Subnets.
This is due to ManageIQ’s internal mapping and database scheme where the information
for each Network Port to Cloud Subnet relation is stored inside the Cloud Subnet. This
is due to the fact that some providers are capable of mapping one Network Port on more
subnets.

29

Code 3.4: Network port to Cloud subnet mapping
Using a converter for a relation in opposite direction
network_port[:cloud_subnet_network_ports] = [{
:address => network_port.primary_ip_address,
:cloud_subnet => @data_index.fetch_path(:cloud_subnets, subnet_id)

}]

Table 3.8: Network Port attributes mapping
Attribute Corresponding value
ID network_port.id.to_s
:type "ManageIQ::Providers::Softlayer::NetworkManager::NetworkPort"
:ems_ref network_port.id.to_s
:name "#{network_port.name}#{network_port.port}" if provided

network_port.mac_address otherwise
:status network_port.status.downcase
:mac_address network_port.mac_address
:device_ref device_ref
:device parent_manager_fetch_path(:vms, device_ref)
:fixed_ips network_port.primary_ip_address

:cloud_subnet_network_ports — see the Code 3.4

3.7.5 Network Routers

The only remaining network component to import is a Network Router. Routers are used to
manage Cloud Subnets and each router can handle more than one subnet. New routers are
created only on purpose when a user requests a new subnet, but he does not list it under
any present router. Despite the API does not provide much information for this entity, they
are a necessary link between other elements in the network.

Table 3.9: Network Router attributes mapping
Attribute Corresponding value
ID network_router["id"].to_s
:type "ManageIQ::Providers::Softlayer::NetworkManager::NetworkRouter"
:ems_ref network_router["id"].to_s
:name network_router["hostname"]

30

3.8 Register a provider
Properly registering the implemented provider is required. Otherwise the ManageIQ’s
sub-systems wouldn’t recognize any of the added functionality. There are two important
steps to properly entitling and enabling the provider.

1. Register the managers for displaying, monitoring and refreshing purposes

2. Enable to provision via this provider

The first step is done by enlisting the provider in the main controllers for the ManageIQ
workers. The files, where to mention the brand new Cloud Manager and Network Manager
are:

• Register a new vendor type:
app/models/vm_or_template.rb

• Define the setup and teardown order for the provider:
app/models/miq_server/worker_management/monitor/class_names.rb

Then, it is necessary to enable the provision automation engine. Without this, the
provider would be still functional for monitoring purposes but the user would not have any
option to provision a Virtual Server there. Desired behavior can be achieved by adding and
registering the vendor here:

• Register the vendor as eligible for provisioning for front-end:
app/models/manageiq/providers/cloud_manager/template.rb

• Do the same for the back-end:
app/models/miq_provision.rb

• Bind the managed properties with provisioning automation engine in folder:
lib/miq_automation_engine/service_models/

3.9 Front-end
Now, once the provider is properly listed in the back-end of the ManageIQ system, it
necessary to create and enable the user to access the new functionality. Various templates
have to be adjusted, some others newly created. These are the main ones modified and
created for the IBM SoftLayer:

• Enable the form for adding a provider in:
app/views/shared/views/ems_common/angular/_form.html.haml
app/controllers/ems_common.rb
app/assets/javascripts/controllers/ems_common/ems_common_form_controller.js

• Register the discovery template:
app/views/ems_cloud/discover.html.haml

• Define what credential fields to show in:
app/views/layouts/angular/_multi_auth_credentials.html.haml

• Add provision template into folder:
product/dialogs/miq_dialogs/

31

• Adjust the data evaluation to pass proper values to the back-end:
app/controllers/application_controller/ci_processing.rb

• Add and register the provider icon:
app/services/network_topology_service.rb
app/assets/images/svg/vendor-softlayer.svg

3.10 Not implemented functionality
Unfortunately, there are some areas left not implemented into ManageIQ. The lack of this
functionality is caused by lack of proper API bindings. There are none yet available. The
features that API for IBM SoftLayer currently does not contain are:

• It does not list disk capacities for provisioned Virtual Machines.

• Missing Event driven monitoring.

• Lack of any advanced analysis available via API.

Once these features are available, they would be implemented.

32

Chapter 4

Conclusion

This thesis managed to describe how Cloud Computing and Cloud Providers work, how
complex and diverse systems they can be, and what are the main challenges when a project
like ManageIQ tries to integrate one of them. The main focus was on the process of
integration of a new provider, the IBM SoftLayer. This provider is a cloud vendor of the
IaaS type and offers Virtual Machines and Bare metal Servers.

The process of integration was described by using the main ManageIQ bindings. They
were elaborated on in detail and used with connection of the Fog Ruby cloud library. Each
of the parts needed was described and the mapping of the provider’s namespace into the
ManageIQ was presented.

Currently, the result code is under a review process 1 by upstream community. Eventually,
the code will be merged into the upstream and will stand as a standard way for the
communication between ManageIQ and IBM SoftLayer. To see this solution in work,
do not hesitate to use the enclosed appliance and deploy it. Or you can watch a demo
demonstrating the functionality as well.

1https://github.com/ManageIQ/manageiq/pull/8324

33

https://github.com/ManageIQ/manageiq/pull/8324

Bibliography

[1] Amazon Web Services, Inc.: What is Cloud Computing? [online]. 2016. [accessed
28 November, 2015].
Retrieved from: http://aws.amazon.com/what-is-cloud-computing/

[2] Cervone, H.F: An overview of virtual and cloud computing. OCLC Systems & Services:
International digital library perspectives. vol. 26, no. 3. 2010: pp. 162–165.

[3] Google, Inc.: Google Compute Engine: Regions and Zones. [online]. 2016. [accessed
20 April, 2016].
Retrieved from:
https://cloud.google.com/compute/docs/regions-zones/regions-zones

[4] Hassan, Q.F: Demystifying Cloud Computing. The Journal of Defense Software
Engineering. vol. 24, no. 1. 2011: pp. 16–21.

[5] Jansen, G.: Managing heterogeneous environments with ManageIQ. [online]. 16 March,
2016. [accessed 29 April, 2016].
Retrieved from: https://lwn.net/Articles/680060/

[6] Microsoft Corporation: Azure Regions. [online]. 2016. [accessed 21 April, 2016].
Retrieved from: https://azure.microsoft.com/en-us/regions/

[7] Shuijing, H: Data Security: the Challenges of Cloud Computing. Sixth International
Conference on Measuring Technology and Mechatronics Automation. 2014: pp. 203–206.

[8] SoftLayer Technologies, Inc.: Our Platform: Data Centers. [online]. 2016. [accessed
22 April, 2016].
Retrieved from: http://www.softlayer.com/data-centers

[9] SoftLayer Technologies, Inc.: SoftLayer API Overview. [online]. 2016. [accessed
28 April, 2016].
Retrieved from: http://sldn.softlayer.com/article/Softlayer-API-Overview

[10] SoftLayer Technologies, Inc.: The softlayer_api Gem. [online]. 2016. [accessed 29 April,
2016].
Retrieved from: http://softlayer.github.io/softlayer-ruby/

[11] fog-softlayer—SoftLayer module for fog. [online]. 2016. [accessed 17 February, 2016].
Retrieved from: https://github.com/fog/fog-softlayer

[12] ManageIQ Developer Documentation. [online]. 2016. [accessed 12 November, 2016].
Retrieved from: http://manageiq.org/documentation/development/

34

http://aws.amazon.com/what-is-cloud-computing/
https://cloud.google.com/compute/docs/regions-zones/regions-zones
https://lwn.net/Articles/680060/
https://azure.microsoft.com/en-us/regions/
http://www.softlayer.com/data-centers
http://sldn.softlayer.com/article/Softlayer-API-Overview
http://softlayer.github.io/softlayer-ruby/
https://github.com/fog/fog-softlayer
http://manageiq.org/documentation/development/

Appendices

35

Appendix A

CD Content

A.1 Thesis PDF

A.2 Thesis Source

A.3 ManageIQ with IBM SoftLayer support snapshot

A.4 Implementation source code

A.5 Demo video

A.6 Setup guide

36

	Introduction
	Cloud computing
	Transition from traditional computing to the cloud
	Cloud typology

	IBM Cloud

	IBM SoftLayer
	Components
	Regions, Zones and Data centers
	Servers
	Hardware Flavors
	Images, Templates and Snapshots
	Networking

	API access
	Standard REST API
	Softlayer API for Ruby
	Fog the Ruby cloud service library

	ManageIQ
	Providers
	Implemented Interfaces and Models
	Connection Management
	Regions
	Discovery
	Cloud Manager
	Cloud Refresh
	Availability Zones
	Authentication Key Pairs
	Flavors
	Virtual Machines
	Image Templates
	Tags
	Provision

	Network Manager
	Network Refresh
	Cloud Networks
	Cloud Subnetworks
	Network Ports
	Network Routers

	Register a provider
	Front-end
	Not implemented functionality

	Conclusion
	Bibliography
	Appendices
	CD Content
	Thesis PDF
	Thesis Source
	ManageIQ with IBM SoftLayer support snapshot
	Implementation source code
	Demo video
	Setup guide

