
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

COMPARISON OF PARALLEL PROGRAMMING APIS
SROVNÁNÍ PARALELNÍHO PROGRAMOVÁNÍ API

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SAMUEL ALFAGEME SAINZ
AUTOR PRÁCE

SUPERVISOR Ing. FILIP ORSÁG, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016



Abstract
Parallel computing is a relevant issue nowadays since virtually every CPU manufactured
is built with multi-core features. The way to introduce parallel code in our applications is
still a long road ahead, but some tools have already proved a high level of maturity. This
thesis aims to be a limited and practical approach to them: it begins briefly describing
the main application programming models in use for parallelism and laying the theoretical
foundations for this topic. In order to illustrate the comparison, the implementation of a
video stabilization algorithm based in plane matching is presented and ported to different
modern APIs, such as OpenMP, CUDA and OpenCL, along with a methodology to com-
pare efficiency and speedup. Also, we introduce some opinionated metrics to evaluate the
developer experience while using these tools.

Abstrakt
Paralelní programování je v současné době moderní technologií, neboť téměř každý proce-
sor bývá vybaven více jádry. Způsoby začlenění paralelního kódu do aplikací zatím nejsou
příliš dokonalé, ale existuje již několik způsobů, které prokázaly svou vyspělost. Tato
práce si klade za cíl představit některé z paralelních přístupů z praktického hlediska počí-
naje stručným popisem hlavních modelů paralelního programování a teoretického úvodu
do problematiky. Jako demonstrační algoritmus ilustrující různé přístupy k paralelnímu
programování je použit algoritmus stabilizace obrazu, který je naprogramován v moderních
rozhraních, jako například OpenMP, CUDA a OpenCL. Dále je představena metodologie
pro porovnání efektivnosti a zrychlení výsledného kódu spolu se subjektivním srovnáním
uživatelské přívětivosti uvedených přístupů k paralelizaci.
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Chapter 1

Introduction

In 1971 the fastest car in the world was the Ferrari Daytona,
capable of 280kph. The world’s tallest buildings were New York’s
twin towers, at 415 meters. In November that year Intel
launched the first commercial microprocessor chip, the 4004,
containing 2.300 transistors, each the size of a red blood cell.
[...] Since then chips have improved in line with the prediction of
Gordon Moore, Intel’s co-founder: processing power doubles
roughly every two years as smaller transistors are packed ever
more tightly onto silicon wafers, boosting performance and
reducing costs. [...] If cars and skyscrapers had improved at such
rates since 1971, the fastest car would now be capable of a tenth
of the speed of light; the tallest building would reach half way to
the Moon.

The future of computing
The Economist — Mar. 12th 2016 issue

1.1 Motivation

Parallelism is a very important topic in computer science and industry today. For almost
20 years the performance of microprocessors increased, on average 50% per year relying
in something called frequency scaling: as transistors evolved, they became smaller and
faster, meaning that users and developers could just wait for the next generation to improve
the speed of their applications. Since 2002, this average has slowed to about 20% because
some physical limits are being met, resulting in a major change in microprocessor design:
by 2005, the major manufacturers realized that the way to increase performance from then
on laid in the direction of parallelism and started putting multiple complete processors on
a single integrated circuit.

But not everything started with the end of frequency scaling. Parallelism has come a
long way since the 1960s, when the first supercomputers were introduced. Therefore, it has
been usually associated with high performance computing. Also, the evolution of technology
has made possible hardware upgrades that got better each passing year. This change has
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1960's 1970's 1980's 1990's 2000's 2010's

2007
Apple introduces the iPhone.

2008
First phone to use Android.

2014
HTC first octa-core smartphone.

2012
LG releades the first 
quad-core smartphone.

2010
LG announces the first smartphone 
with a dual-core chip.

Mobile computing

2006
Intel mainstream dual 
core microprocessors.

2009
Intel i5 with 4 cores.

2010
Intel introduces the HD 
Graphics series.

2014
Intel i7 with 8 cores.

1977
Commodore PET - First successfully 
mass marketed personal computer. 

Mainstream computers

70

50

30

10

Number of 
accelerated 
systems on 
Top500

2007
Nvidia Tesla launched.

GPU with 128 cores.

2010
Nvidia Fermi launched.

GPU with 448 cores.

2012
Intel released Xeon Phi.
Nvidia Kepler launched.

GPU with 1536 cores.

2014
Nvidia Maxwell launched
GPU with 2688 cores.

Accelerators

1 teraflops

10 teraflops

100 teraflops

1 petaflops

10 petaflops

100 gigaflops

Exascale

Top500 
perfomance 
development

1963
CDC 6600 - the world’s 
first supercomputer, 
capable of 9 megaflops.

1976
Cray-1 - with a speed 
of 170 megaflops.

1985
Cray-2 - with 4 processors, 

brokes the gigaflop barrier.

1997
ASCI Red - First supercomputer 
to break the teraflob barrier. It 

had 9298 processors.

2008
IBM's  Roadrunner - It reaches the 

petaflops mark with its 116,640 cores.

2013
Tianhe-2 - With 3,120,000 cores 
and a speed of 33.86 petaflops.

Supercomputers

1993
Top500 project creation 

with the first Linpack 
performance list.

Parallel Computing
Timeline about the development of

Figure 1.1: Parallel computing timeline.[11]

been recorded by the Top500 project[21], which ranks the 500 most powerful computers in
the world: since the the project started in 1993, the performance of the top system in the
list has always shown a steadily grown and current supercomputers are massive parallel
machines with millions of processing units. Some important events for parallelism can be
seen in fig.1.1.

This project aims to be a practical approach to modern parallel programming frame-
works and prove its value by implementing and improving the performance of a consumer
algorithm such as a video-stabilization method.

The document is structured as it follows: this first chapter reviews the main parallel
models and gives details on some popular implementations of them in use nowadays. Chap-
ter 2 gives some insight into the theory that supports the parallelism itself and present some
broad terms to help the reader understand the rest of the document. In Chapter 3 we de-
scribe the GC-BPM, the video stabilization algorithm selected to enlighten the frameworks
comparison as well as the computer vision work environment required to start working on
its implementation, which is later described in detail in Chapter 4 along with its equivalent
in the different tools selected: OpenMP, CUDA and OpenCL. Chapter 5 would present the
experiments that have to be carried out to test the improvement achieved by executing the
algorithm in multiple processing elements and how this can be translated to numbers. And
to conclude, the last chapter would summarize all the work made by the author in this
Thesis and describe some feasible lines for future work.
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1.2 Parallel Programming Models and APIs

Models exist as an abstraction above hardware and memory architectures to simplify its
comprehension and offer a version of the underlying system, in this sense, we have to talk
about programming models to refer the style of programming where execution is invoked by
making what appears to be encapsulated library calls. What distinguishes a programming
model from a normal library is that the behavior of the call cannot be understood in terms
of the language the program is written in.

In parallel computing, the execution model usually exposes features of the hardware to
achieve high performance. The large amount of variation in hardware causes a need for
numerous parallel execution models and because it is not practical to make a new language
for each it is common practice to invoke parallel execution model behaviors, like the creation
of a thread or the launch of a kernel, via an API.

1.2.1 Shared Memory

This is the most rudimentary form of parallelism, and it’s often used in combination with
some others. Processes share a common address space, which they read and write asyn-
chronously using mechanisms such as locks and semaphores to prevent data races and
deadlocks.

Shared memory machines, OS, compilers and hardware support this form of program-
ming. Some examples are:

∙ POSIX standard shared memory APIs.

∙ UNIX shared memory segments (shmget, shmat, shmctl, ...).

1.2.2 Threads

They are an extension of the shared memory techniques, introduced by E.W. Dijkstra in his
paper Cooperating sequential processes where he proposed a model for concurrent operating
systems based on “heavy” process with multiple lightweight concurrent execution paths,
which after were renown as threads. Since then, many implementations have been created
to exploit the multi-threading model:

∙ Pthreads (POSIX Threads) - consist in both an execution model and API, and are
available as standard in most mainstream OS. It offers a low level interface to control
everything regarding threads: from their management to synchronization, etc.

∙ OpenMP - High-level extension for C/C++. It allows many programs to be paral-
lelized with relative ease and a few compiler directives. It appeared in 1997 as the
joint effort of a consortium of manufacturers to simplify the parallelization of some
constructions such as static loops (where the number of iterations is fixed) like the
ones that can be found in numerical computations with matrices.
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1.2.3 Message Passing

This model is oriented and best suited for distributed memory machines but it can be
translated to any kind of machine as it is an abstraction for complex systems, at expense
of the communication and synchronization steps falling into the hands of the programmer.
Implementations are usually presented as a library of functions, directly called from the
source code.

MPI - Message Passing Interface

Message passing libraries have been around since the 1980s, when their relevance increased
to the point of creating a forum to standardize a implementation, resulting on the MPI
specification, “de facto” standard for message passing nowadays.

Using MPI has many advantages. It can be used to solve a wider range of problems than
thread libraries and, as said before, the programs can run on either shared- or distributed-
memory architectures. On the other hand, creating a parallel application with MPI can
be complex, because the programmer has to determine the data dependencies, divide the
algorithm into tasks, and then implement the message passing and synchronization.

1.2.4 General-Purpose Computing on GPUs

The GPUs (Graphics Processing Unit) were designed initially just for graphics and ren-
dering images by computer, but as manufacturing became cheaper and they proved to be
deeply programmable and accurate with a very low costs (power consumption compared
to regular purpose CPUs is only a fraction) they started to make appearance in supercom-
puters while beating in some aspects the performance of traditional CPUs as can be seen
in figure 1.2.

Since NVIDIA launched its model Tesla GPU card in 2007, the use of such coprocessors
along with the general-purpose processors has become a big trend. Many of the latest
supercomputers are based on accelerators that have specialized hardware making them
suitable for particular types of computation. Classified as hybrid manycore systems, they
include lots specific-purpose processors packed with their own instruction set and multilevel
hierarchy of memory.

In the framework of accelerating computational codes by parallel computing on graphics
processing units (GPUs), the data to be processed must be transferred from system memory
to the graphics card’s memory, and the results retrieved from the graphics memory into
system memory. In a computational code accelerated by general-purpose GPUs (GPGPUs),
such transactions can occur many times and may affect the overall performance, so that
the problem of carrying out those transfers in the fastest way arises. We can sum up what
happens in a GPUs as it follows:

1. Setup inputs on the host (CPU memory)
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Figure 1.2: Comparison of annual theoretical peak GFLOP/sec in single precision.
Higher is better.[18]

2. Memory allocations:

(a) Inputs on the GPU

(b) Outputs on the host

(c) Outputs on the GPU

3. Copy inputs from host to GPU

4. Start GPU kernel

5. Transfer the output from GPU to the host

CUDA

The CUDA platform is just a software layer that gives the programmer direct access to
the GPU’s virtual instruction set and parallel computational elements. To put it in plain
words, CUDA extends the GPU functionality to general purpose computing. It abstracts
the parallelism details relying in the concept of kernels, which are just plain C functions
that, when called, are executed in parallel by N different CUDA threads. [7]
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1.2.5 Hybrid

They combine more than one of the previously described models to suit the combination of
architectures they run in and they are currently the most popular model exploited on clus-
ters of multicore machines. Some examples in use we can mention are made combining some
of the already described frameworks such as OpenMP + MPI or MPI + GPGPUs.
It requires to mix several tools with different programming models. Moreover, the appear-
ance of accelerators has added an additional layer of complexity: A programmer must be
proficient in MPI, OpenMP, and CUDA (or equivalent) to be able to take advantage of the
current generation of parallel systems.[11]

OpenCL

As happened with OpenMP, when hybrid parallelism mixing CPUs and GPUs started to
gain popularity, a consortium was formed by the main hardware and software manufacturers
to develop a framework for supporting heterogeneous computing.

The main advantage of using OpenCL is that is the first open, royalty-free standard for
cross-platform processors and GPUs allowing high level of portability while keeping the
abstraction layer relatively close to the hardware, minimizing the overhead. As CUDA, it
uses kernels as execution model, which in this case, can speak with many different devices.
But all this advantages don’t come without a price, and this one is that is not an easy
framework to learn [19]: it comprises some unique data structures and functions and a
particular way of doing as we will discuss later.

8



Chapter 2

Theoretical Foundations

2.1 General Aspects of Parallelism

When someone explains what is an algorithm to a broad public, usually starts by making
a real-world analogy with a food recipe: a computation is just a problem broken into a
discrete series of instructions, which traditionally were executed sequentially, that is in
the order they were written, one by one by a single processor. This could fit pretty much
as the definition for traditional serial computing.

2.1.1 Concurrent versus Parallel

At its simplest, parallel computing is the simultaneous use of multiple compute resources
to solve a problem. When stepping into parallelism for the first time, one can be confused
with concurrency concepts because the illusion of multiple tasks running at once. But a
difference should be pointed: concurrent programming is just a form of computing in which
several computations are executing during overlapping time periods, while parallel has
some special characteristics:

∙ More than one simultaneous processes are running at the same time physically.

∙ There’s a need for communication and/or synchronization systems to put together
the results of these processes.

2.1.2 What Can Be Achieved With Parallelism?

Many computing problems are so huge that they cannot be solved sequentially in a rea-
sonable time. In the natural world, many complex, interrelated events happen at the same
time, yet within a temporal sequence. Compared to serial computing, parallel computing
is much better suited for modeling, simulating and understanding complex, real
world phenomena [5]. And something to take into account is that computer modeling is
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a never-ending run so every advance in performance just makes the models more detailed.

How is the improvement of the parallelism measured

Generally, we measure the performance of computer programs based on how much time do
they need to run, this usually turns out to be directly related to the size of the input data
set the program works with. If we translate this to the parallel world, and as squeezing more
cores in an integrated circuit or rewriting an application to take advantage of parallelism
is not cheap, we have some results to take into account before considering these options.

∙ Speedup: is used to measure the parallelism efficiency. For a given data set of size
𝑛, it is described as the ratio:

𝑆 =
𝑡(𝑛)

𝑡(𝑛, 𝑝)
(2.1)

– 𝑡(𝑛) the reference sequential algorithm run time.

– 𝑡(𝑛, 𝑝) the parallel run time when using 𝑝 processors.

∙ Scalability: is the property to keep the speedup growing constantly as the number
of processors increase.

What cannot be achieved with parallelism: Amdahl’s law

To some inexperienced eye, parallelism could look like the holly grail of computing: just
add more processors and divide the time it takes to programs to run. Far from reality;
Gene Amdahl noted[2] that the potential program speedup is defined by the fraction of
code (𝑡𝑝) that can be parallelized, which could not be as high as 100% as communications,
synchronization or I/O must be carried out in a sequential fashion. We can realize from
these notes that there are some limits to the scalability of parallelism.

If we decompose the run times in both members of the speedup fraction 2.1 based on
how much of the program cannot be parallelized (𝑡𝑠) we have the following equation.

lim
𝑝→∞

𝑆 = lim
𝑝→∞

𝑡𝑠 + 𝑡𝑝

𝑡𝑠 +
𝑡𝑝
𝑝

= 1 +
𝑡𝑝
𝑡𝑠

(2.2)

As the number of processing elements tend to be infinite, the speedup reaches its asymp-
totic limit as can be seen in graphic 2.1. Meaning that, after a finite number of processors
adding more just results in the same speedup, which can be translated in same run time
for the same problem size.

In 1988 J.L. Gustafson [12] made some notes about Amdahl’s law limitations, because
it was only based in a fixed workload size, the sequential fraction of the program does
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Figure 2.1: Speedup as processing units increase for different portions of parallelizable
code. Source: https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg

not change while increasing the resources. Instead, Gustafson proposed to set the size
of problems to fully exploit the computing power that becomes available as the resources
improve. Under this vision, as equipment becomes faster, larger problems can be solved
within the same time.

2.1.3 Parallel Architectures: Flynn’s Taxonomy

In order to organize parallel machines, we can rely on Flynn’s taxonomy[9], it distinguishes
multi-processor computer architectures according on to how they can be classified along
the two independent dimensions of Instruction and Data stream (sequences).

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

Table 2.1: Matrix defining the 4 architectures in Flynn’s taxonomy

∙ SISD: Represents traditional serial (non-parallel) computer.

∙ SIMD: Single instruction, meaning processing units execute the same instruction at
any given clock cycle, but each one can operate on a different data element (because
of this, it’s well suited for specialized problems with a high degree of regularity, such
as graphics processing). Two subgroups of this category can be distinguished:

11
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– Processor Arrays: e.g. Streaming Multiprocessors (SM) located in some mod-
ern GPUs.

– Vector Processors: like the very first parallel computers, which introduced
vector registers to allow operating with several data at once, still present in
most of today’s commercial CPUs.

∙ MISD: Separate instruction streams in contrast to a single data stream that feeds
the processing units. Few examples ever existed, but some conceivable uses could be
those requiring redundancy or multiple filters feed by the same data.

∙ MIMD: The most complex and common form of parallelism: every processor may be
executing a different instruction stream with a different data stream than the others,
so execution can be synchronous or asynchronous, deterministic or non-deterministic.
Many MIMD architectures also include SIMD. Too broad to be useful on its own; is
typically decomposed according to memory organization. We will review that in next
section.

2.1.4 How Do We Write Parallel Programs

As it’s neither trivial nor easy to write translators that convert sequential programs to
parallel, we do need to actually rewrite our programs using a parallel approach and to do
so we depend on the basic idea of partitioning and distributing the work to be done among
the processing elements. When these can work independently, writing a parallel program
could be much the same as the serial version, but problems appear when the data and
the results are dependent on each other, like finding a matrix minimal or sorting a list of
numbers.

There are two broad, but not closed, classes used when talking about parallel algorithm
design:

∙ Data parallelism – where parallelism translates into performing the same opera-
tion to different data at the same time.

∙ Task parallelism – in which parallelism is the result of different computations at
the same time. A fundamental form of task parallelism is pipelining, the technique
exploited in the already mentioned vector processors.

As rule of thumb, we can say PCAM (also known as Foster’s) Methodology [10] proposed
by Ian Foster is a comprehensive summary on which steps should be taken to transform a
sequential algorithm in its parallel variant. It comprises 4 stages, which initials give the
methodology its name.

∙ Partition: split both the computation and the data into a large number of small tasks.

∙ Communication: identify the necessary communication between the tasks to perform
the computation.

∙ Agglomeration: required to achieve data locality and good performance as fine-
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grained partitioning is usually not an efficient parallel design. They can be combined
into tasks of larger size.

∙ Mapping: the final step is just to distribute the tasks between the processors available,
following some guidelines:

– Tasks that can execute concurrently map to different processors.

– Tasks that communicate frequently map to the same processor.

2.2 Parallel Memory Architectures

Computer memory architectures describe the way data is stored for the processor to access.
As this is a fairly complex problem, again, we usually employ abstractions or models to
simplify its understanding and isolate unnecessary details. Since the early era of computing,
one model has remained as virtually all computers have followed, it is von Neumann archi-
tecture or “stored program computer”. It comprises four main components: Input/Output,
memory, a control unit and an arithmetic-logic unit. Both the program instructions and the
data are stored in the memory, fetched by the control unit and then executed. This model
is relevant for our purpose as parallel computers still follow this design, just multiplied in
units.

As mentioned before, MIMD machines are too broad for most of the approaches as they
comprise the majority of parallel implementations. There is a mainstream basic classifica-
tion of them according to 2 criteria:

∙ How the data in memory is accessed.

∙ What kind of synchronization and communication mechanisms they use.

2.2.1 Shared Memory

Generally, these machines have in common the ability for all processors to access all the
available memory as a global address space. According on how the memory access and the
processors are, they’re classified in:

∙ Uniform Memory Access (UMA) - represented by Symmetric Multiprocessor ma-
chines (SMPs, like the ones found in graphic cards), with many identical processors
(SMs), resulting in equal access and access time to shared memory and cache co-
herence at hardware level, because of this there is no need to distribute data among
processors. These do not scale well so they are limited to a small number of processors.

∙ Non-Uniform Memory Access (NUMA) - made by linking 2 o more SMPs, slowing
down memory access across the links. To mitigate this effect, each processor has a
cache storing the memory contents of some others, along with a protocol to keep the
cache contents coherent.
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2.2.2 Distributed Memory

As opposed as what happened in shared memory architectures, in these machines each
processor has its own local memory and there’s no such thing as global address space and
to share the data among processors, they require a communication network. So when a
processor needs access to data in another, it is the programmer responsibility to define
the communications. Usually the inter-processor communication is achieved by message-
passing. Also, as the compute nodes are not strictly connected, the need to synchronize
appears and also becomes responsibility of the programmer.

Based on topology and technology used for interconnection, communication speed can
range from almost as fast as shared memory to orders of magnitude slower. Two computer
architectures fall in this category:

∙ Clusters (in Linux environments called Beowulf) which are the most popular and
common form of distributed systems for parallelism. A cluster comprises a collection
of independent nodes collaborating to achieve a common goal.

∙ Massive Parallel Processors (MPP) where processor and network infrastructure are
tightly coupled physically.

2.2.3 Hybrid and Heterogeneous architectures

These machines use both shared and distributed memory architectures to increase the
scalability at program complexity cost.

2.3 Benchmarking Techniques

As mentioned in section 2.1.2 a very important aspect when working developing parallel
algorithms is to measure the time they need to execute and the speedup achieved by these
techniques, first of all, to know if we are doing it right, and second, to explore the limits of
what can be done with it.

Based on the specifics of the framework chosen, there are different approaches to measure
the run time as they imply different models and behaviors. Here are some examples that
have been taken from Gerassimos Barlas’s book [4].

OpenMP

This case is pretty straightforward, as in every program using this API, there is an explicit
point where the program launches the different threads, this marks when we can start mea-
suring the time taken for the parallel fraction of the program. This can be achieved using
some functions like omp_get_wtime().

14



double timeStart , timeEnd ;
timeStart = omp_get_wtime ();

// Portion of the program to be measured
timeEnd = omp_get_wtime ();

printf ("Total time spent: %f\n", timeEnd - timeStart );

Kernel-based models: CUDA and OpenCL

As there’s many more details to take into account, these differ from the thread model, but
as the platforms have evolved, the framework have as well, including some workarounds in
the form of primitives and global variables. As example, in CUDA environments, the host
can measure the timing of events (like kernel launches, memory transfers, etc.) on the GPU
by inserting cudaEvent_t object in the streams.

// initialize the two events
cudaEventCreate (& startT );
cudaEventCreate (& endT);

// enclose kernel launch between startT and endT events
cudaEventRecord (startT , str);
doSomething <<<grid , block , 0, str > > >(...); // launch request has to be

placed in a stream .
cudaEventRecord (endT , str);

// wait for endT event to take place
cudaEventSynchronize (endT);

// calculate elapsed time
cudaEventElapsedTime (& duration , startT , endT);
printf (" Kernel executed for %f\n", duration );

Simplified Approach

After developing some of the different solutions, we realized that including the previous
techniques was increasing hugely the complexity of the whole code, since they are more
suited for a single-framework program rather than our three legged implementation. The
final function used in the code was proposed and developed by Javier Fresno, a member of
Trasgo Group of the University of Valladolid [22].

inline double cp_Wtime (){
struct timeval tv;
gettimeofday (&tv , (void *) 0);
return tv. tv_sec + 1.0e-6 * tv. tv_usec ;

}
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Chapter 3

Algorithm

3.1 Overview

As video recording is mostly an error-prone process as it usually relies in the manipulation
of some device by a human operator, the need to develop video post processing systems
to avoid this kind of problems makes this an interesting field of study. Historically, many
methods for image stabilization have been considered [20] and evolved hand in hand with
hardware.

∙ Naive approach: One point track — locks the focus on a bright object in the back-
ground and keeps it in the exact same place, no matter how much the camera moves.

∙ Multiple point track: as we include more tracking points into account, we make
possible to correct rotation or scaling in the original image, considering it only behaves
well with static (meaning without motion) shots.

∙ Block Matching Algorithms: that use a post-process approach, where multiple video
frames are used to determine the direction of the movement of the whole sequence.

∙ Advanced image post-processing: relies in filters that take into account many data and
transformations. Some examples are the Deshaker algorithm included in VirtualDub
or the Warp Stabilizer that comes with Adobe After Effects.

∙ Approaches based on metadata captured by extra elements integrated in modern video
capture devices like gyroscopes, rolling shutters, etc.

To give some practical insight to this project we’re going to focus in creating a parallel
implementation of the Gray-Coded Bit-Plane Matching or GC-BPM algorithm pro-
posed in[17]. This solution (which, as its name suggests, could fall in the Block Matching
category) is an approach fairly straightforward with quite good results for non-rotating
video sequences.

The main goal of this stabilization procedure is to calculate the “global” motion vector
(GMV) of each video frame relative to the previous one. This vector tries to represent
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roughly the hand movement of the camera operator. With this information, we can deter-
mine whether the video sequence is displacing naturally or shaking unwittingly, and use it
in a post process stage to generate a stabilized video sequence.

We can start by transforming each frame of the video into a grayscale image in which
each pixel with coordinates (𝑥, 𝑦) will be coded with 8 bits (𝐾 = 8) as it follows:

𝑓 𝑡(𝑥, 𝑦) = 𝑎𝐾−12
𝐾−1 + 𝑎𝐾−22

𝐾−2 + . . .+ 𝑎12
1 + 𝑎02

0 (3.1)

After obtaining these 8 bit planes, we can use them to compute their gray-code equiv-
alent. The gray-coding step is quite relevant for this algorithm because it allows the next
block to estimate the motion, even using a single bit-plane, by encoding most of the useful
image information into a few of the planes. With the gray code, small changes in gray
level yield a small, uniform change in the binary digits representing the intensity, meaning
motion between frames. We could calculate this planes as:

𝑔𝐾−1 = 𝑎𝐾−1 (3.2)
𝑔𝑘 = 𝑎𝑘 ⊕ 𝑎𝑘+1, 0 ≤ 𝑘 ≤ 𝐾 − 2 (3.3)

At each coordinate (𝑚,𝑛) within the search subimage, the matching method calculates
𝐶𝑗 : a correlation matrix that represents the number of displaced pixels from the previous
frame 𝑔𝑡−1

𝑘 , as:

𝐶𝑗(𝑚,𝑛) =
1

𝑀𝑁

𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝑔𝑡𝑘(𝑥, 𝑦)⊕ 𝑔𝑡−1
𝑘 (𝑥+𝑚, 𝑦 + 𝑛), −𝑝 ≤ 𝑚,𝑛 ≤ 𝑝 (3.4)

From there, we can obtain the 4 different local motion vectors 𝑉𝑗 as the one pointing to
the coordinate where this correlation is minimum for each subimage:

𝑉𝑗 = 𝑎𝑟𝑔 min {𝐶𝑗(𝑚,𝑛),−𝑝 ≤ 𝑚,𝑛 ≤ 𝑝} ∀𝑗 = {1..4} (3.5)

At this point, we could carry on with the proposed on the paper [17] 3 Steps Search
(3SS) to determine the motion vector using different bit-planes refining the search and
reducing the computational complexity, but this doesn’t contribute at the main purpose of
our work, so we will use just the 6th bitplane as one of the tree mentioned with relevant
information for our work. This been said, to estimate our final result we only need to
apply a median filter; this is, to calculate the median for each component of the vectors
involved, just to select the most representing vector as global. For this operation we would
to take into account 𝑉 𝑡−1

𝑔 , which is the global motion vector obtained by the algorithm in
the immediately preceding frame, to feedback the filter:

𝑉𝑔 = median{𝑉 𝑡
1 , 𝑉

𝑡
2 , 𝑉

𝑡
3 , 𝑉

𝑡
4 , 𝑉

𝑡−1
𝑔 } (3.6)
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Figure 3.1: Estimation of local motion vectors from four subimages in a Gray-coded
bit-plane

Current Bit-Plane

TL TR

BL BR
Previous Bit-Plane

Figure 3.2: Obtaining the global motion vector from the previous one and the 4 local
vectors for each frame

After gathering this information for all the single video frames, we could start the post-
processing phase and use each GMV to precisely crop and center the original colored image
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sequence to generate a complete and fairly stabilized video, losing some resolution in the
way, as described in the appendix D.

3.2 Work enviroment

To port all this math formulae and data transformations into code legible to a computer,
two tasks appear to take into account:

First of all, in order to make the whole process “visible”, the need to construct some
kind of wrapper to manage the different video transformation steps arises: from
the input sequence to the stabilized result. And also to be a bridge between the inputs,
the different implementations of the algorithms and the outputs. As this is not a project
about computer vision, we tried to avoid as much detail in this aspect as possible. We
used OpenCV’s C++ library for this purpose as it is a very mature framework with a quite
soft learning curve, while providing some usable high level functions and data structures to
work with computer vision that abstract some of the functionality to be carried out by this
wrapper.

1. Video to single frames conversion, to load all the video frames in memory to make
them manageable. They will be represented as OpenCV’s cv::Mat data structures
and loaded into a std::vector to represent the video. There’s an important fact
to take into account at this point: OpenCV has a well known bug (http://code.
opencv.org/issues/1287) that causes the frame count to be incorrect when the
video input has been modified with some tool without altering its metadata, this
causes the program to fail at initial stages. The possibility to replace OpenCV in the
video loading process keeps open to future work.

2. Transform single frames into bit planes: first of all losing all the color information
to turn into grayscale images, decompose them into the different bit planes and use
these to compute the gray-code planes as exposed in the equation 3.2. Then select
the one that comes with relevant information (those identified as so by the paper [17]
were the 4th, 5th and 6th), in our case it will be the 6th one. Finally store them in
the original vector to feed the algorithm.

VIDEO.mp4
Single frames

(.png)
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Regular bit-planes

Remove color
information

0
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2

3

4

5

6

7

Gray-Code bit-planes

Relevant

Figure 3.3: Different preprocessing steps made by the video wrapper.

The second problem to address is the translation of the GC-BPM procedure into code
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capable of being parallelized. We could take advantage of previous work implementing
this algorithm in C/C++ [8] and Matlab [6] as reference for our work. The different
algorithm implementation would be encapsulated in diverse functions that will take both
the current and the previous bit planes as arguments as well as the 𝑥 and 𝑦 components
of the previous frame’s global motion vector and a couple of pointers to the current frame
equivalent components that are set inside the function as they are calculated.

The inputs for all the solutions must specify the full path for the video file and, when
talking about any of the parallel solutions, the number of processing units to be used to run
the algorithm. And as to the outputs of the program concerns, every implementation must
return two different pieces of information: the sequence of global motion vectors ordered
according to the frame they belong and in first place and more important for the present
case, the time measurement mark for the particular run as determined in-program by the
function described in section 2.3.
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Chapter 4

Implementation

4.1 Overview

Before going into specifics, we must discuss the implementation of the video stabilization
strategy and some general aspects about the way to take advantage of parallelism in this
particular problem.

We can broadly describe the algorithm in terms of pseudocode: first, we have a loop
responsible of calling the stabilization routine passing the two frames required and the
previous global motion vector. Then the method itself consisting in 3-nested-loops: one to
consider the 4 subimages and 2 more to move the search window over the previous frame’s
subimage in X and Y directions. The different approaches, as it is usual when working
with algorithms that involve operation with matrices goes trough correctly distributing the
elements between the available processing elements.

The first way to exploit parallelism in which we can think of, and the most straightfor-
ward, is to parallelize the most external loop, the one that just repeats the second point
of the process for each one of the subimages. But this will probably won suffice as the
workload would be too big for a thread/work-item/processing-unit (stream, to be generic)
and only could speed up this fraction of the program by 4, even if there’s more processing
elements available as happens with the GPUs.

The second approach to the problem involves the displacing search window in both
dimensions for each of the 4 subimages that is translated in the two inner loops. This can
be, relatively easy as it can be reduced to a data-parallel problem, in which each
position of the so called correlation matrix will be filled by a different stream being possible
to determine any of the elements of the matrix at any time as all the data is available from
iteration one.

The problem is not that difficult to aboard in detail: on one hand, we have two shared
and read-only memory portions which would be the current frame’s central search window
and the whole previous frame corresponding subimage. The last will be used inside the
different streams to determine the appropriate search window to XOR with the first and
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carry on. Additionally, other shared memory portion that has to be modified by the streams
would be the correlation matrix, each stream only modifies the right cell. The whole matrix
contents only would be used when all of the streams have finished filling it, so there is no
risk of data races or inconsistences. The only matter then is to distribute the indexes of
the matrix between all the processing units. A graphic representation of this idea can be
seen in the figure 4.1.

SHARED MEMORY

CURRENT FRAME
SEARCH WINDOW

PREVIOUS FRAME
SUBIMAGE

CORRELATION MATRIX
C

PROCESSING ELEMENTS

3.COUNT THE BLACK PIXELS

4.FILL C(2p,2p)

LAST ITERATION
1.CALCULATE THE SW.

2.

3.COUNT THE BLACK PIXELS

4.FILL C(0,0)

FIRST ITERATION
1.CALCULATE THE SW.

2. (...)

PE #0 PE #3

Figure 4.1: Parallelization of the 2 inner loops between 4 processors

Obviously, it would be interesting to combine this method together with the one men-
tioned in the first place as the only thing in which they differ is the subimage used. This
could be done either by restructuring the code to include an implicit synchronization oper-
ation after all 4 correlation matrices are filled and the coordinates of the minimal calculated
to get the GMV. Or, if the language supports it (like in the case of the two kernel-oriented
execution models presented in this text), by using a three dimensional index space, where
the Z-index would be the one determining the subimage (from 1 to 4).

The last way to board this issue would be to tackle down the data dependence problem
between the iterations: as each global motion vector needs to take into account the previous
one to be calculated and it might not be available yet. This would translate into parallelizing
the (most outer) loop that calls the stabilization method, share the array that contains all
the global motion vectors between all threads and synchronize them to calculate the result.
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This method requires more implicit synchronization mechanisms and would imply more
changes in the code to adapt the algorithm because it can be too many operations for a
kernel. This solution differs from the ones presented until this point as can be classified as
task-parallel instead.

As the reader can guess by the extension of the explanation given or as the method was
qualified as “not that difficult”, we finally choose the second one described for our purpose,
it theoretically would offer enough speedup (up to a multiplicative constant of 1/(2 · 𝑝)2 in
the parallel fraction of the program if that many processing units are available) which will
give enough representative results.

4.2 Solution

The software was designed in modules to separate all the responsibilities of the program
as it involves a certain degree of complexity that must be managed to make it correct and
legible at the same time. In this section, we would describe the different modules considered
to build the final sequential solution, as it is the cornerstone of the project.

In first place, we needed an unified interface to run the program with all the possible
inputs from an standard shell session. The file used for this purpose is stabilize.cpp,
it contains the main() method, which handle the command-line arguments validation and
also, what we called the “selector”. It handles the execution of the different solutions based
on the first argument passed to the application. As all the functions, sequential or parallel,
require the same arguments (the two frames, the previous GMV and the empty pointers to
the new), we could define a single entry point for the algorithm and dynamically select the
version to be run based on the option selected.

An object-oriented approach would be to use a strategy pattern with a whole class
hierarchy, but this will only make the solution more complicated compared, for example
with the C-style way, which rely in modifying a function pointer in the switch statement.
But as it is less obscure and antique, we could just take advantage of C++11 templates to
highly simplify this just by switching between the target functions.

Then and also integrated in the previous file, as it is common to all the solutions, we have
the “wrapper” we detailed in last chapter that receives and processes the video by dumping
all the frames into memory and converting them to gray-code bit-planes by making use of
OpenCV functions to ease the way they are later consumed by the algorithm.

A commons.h header file was included to improve the readability of the code and to
factor out some common elements for all the versions, e.g. some constants relative to the
proportions and internals of the algorithm or the declaration of the functions that handle
the mathematical operative implicit to them that are later defined in the helper.cpp source
file. Those functions are:

1. argMin() – used to find the coordinates of the minimal value on the squared corre-
lation matrix (𝐶) and return them as components of the local motion vector. This
procedure should take into account a couple of important matters:
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∙ As the matrix is represented by an array, it is indexed from 0 to (2 · 𝑝− 1). But
it is originally intended to weight a displacement in a Cartesian plane, so to get
the true local motion vector, we should normalize this indexes by subtracting 𝑝
from the result.

∙ Also by definition of the procedure, in the case of a matrix in which all ele-
ments are the same (the result of 2 consecutive search windows containing no
displaced pixels from one to another, meaning no movement) It should return the
coordinates for the central element (0, 0) instead of the first element (−𝑝,−𝑝).

2. median() – this method was extracted from the code provided with [8] (originally
called median5fast()) as a fast method to calculate the median of a 5 element vector.
It is used twice, for coordinates 𝑥 and 𝑦, as the last step of the algorithm to determine
the global motion vector.

And last, the file stabilization.cpp contains the “core” of the algorithm, this is, where
the GMV is determined by taking all the missing steps mentioned in chapter 3. The code
listed here corresponds to the first version developed (v1.0).

47 // Iterate over the 4 different search windows
48 for(int i=0 ; i<4 ; i++){
49 // Correlation matrix to store the results of the search
50 int Cj [2*p][2*p];
51
52 // Displacement loops: exhaustive search
53 for(m_pos =0 ; m_pos < 2*p ; m_pos ++){
54 for(n_pos =0 ; n_pos < 2*p ; n_pos ++){
55 cv:: Mat bxor;
56
57 cv:: bitwise_xor (
58 // Current bit -plane search window :
59 S.at(i)(cv:: Rect(p, p, N, N)),
60 // Previous bit -plane search window :
61 S_prev .at(i)(cv:: Rect(m_pos , n_pos , N, N)),
62 // Result of the XOR between the 2:
63 bxor
64 );
65
66 // Correct OpenCV XOR operation (see section 4.2.1)
67 cv:: bitwise_not (bxor ,bxor);
68
69 // Count the black pixels as (Total no. - Non -Black):
70 Cj[m_pos ][ n_pos] = SW_SIZE - cv:: countNonZero (bxor);
71 }
72 }
73 // Determine position of the min Cj arguments
74 argMin (2*p, (int *)Cj , &Vl_x[i], &Vl_y[i]);
75 }

But this version had some serious limitations. One of the biggest concerns when working
with parallel frameworks, specially in those oriented to GPGPUs, is that the operations we
delegate them must be fine-grained enough as the SMs found in GPUs are really simple
processors only capable of some basic arithmetic. Also, it is evident that any routine with
an entry point in the cv namespace has only been likely compiled for the host CPU and
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will not be usable in device code, making impossible to call any OpenCV function
from a kernel.

However, OpenCV community saw the potential of the parallelism in 2010-2011 and
started giving support both for CUDA and OpenCL (http://opencv.org/platforms.
html). This constitutes further evidence that CUDA popularity is huge and increases
over time. And also OpenCL’s, as we will explain in section 4.3.3 as the computer vision
framework relies part of its standard library in it to accelerate some of the operations when
the hardware is available.

Something that we can point of, as it is directly related to this matter, is that this
support offers the equivalent, highly optimized, parallel functions to some of the present
in OpenCV’s standard library. As an illustrative example, it can be transparent for the
developer to parallelize the XOR function in our code to be executed by CUDA simply by
calling cv::cuda::bitwise_xor() (http://goo.gl/RKX68q).

From these facts, two interesting lines of work were open:

The first one and more straightforward, would be to apply these parallel constructions to
our program, making use of cv::cuda and cv::gpu libraries, like the one already mentioned.
From an educated point of view, this solution has some pros and cons. It would not exploit
the full parallel potential the algorithm has, as it reduces considerably the parallel fraction
of the program.

Other disadvantage to study would be the potential overhead that those many calls
and memory movements, if not handled properly by the compiler, could have in the overall
performance. For example, if memory is not properly coalesced in the device many allo-
cations should be carried in the GPU resulting in considerable delays. But however, it is
a very interesting experiment since it relies the algorithm’s main operations from already
optimized functions to even more optimized parallel kernels.

The other way around the problem would be the natural approach. Since this sort
of limitations are determinant to the completion of the project, they lead us to create
a second version (v2.0) of the algorithm more generic and framework-independent. The
main changes between these two versions can be seen in appendix B. Removing all the
data structures and calls made to OpenCV’s helper functions from the “algorithm’s core”:
the cv::Mat variables and their manipulation, the XOR operation and the count of black
pixels in the resulting image. This obviously involves implementing the equivalent helper
functions to translate OpenCV data structures to plain-C which will be the ones passed to
the threads/kernels to operate and fill the correlation matrix as explained before.

∙ splitMat() – will be the equivalent of calling OpenCV’s cv::Rect() over a Mat
object to crop it in 2 dimensions and get a submatrix of it. This is a vital step, since
it has to be done for each iteration of the inner loop to determine the search window
from a given boundaries and dimensions.

∙ mat2arr() – is the one that inverts the pixel values and packs all the raw data obtained
from a cv::Mat to a generic unsigned char (byte) array. Thanks to OpenCV being
mature enough, this translation could be easy if the data in the matrix is contiguous
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in memory as it is in our case, just by accessing the data member on any Mat object.
Also, to take advantage of what we are trying to represent, we could compress every
8-pixels into a single unsigned char, this will improve the memory consumption and
the overall performance, as the bitwise operations are carried taking advantage of
vector processors, we can XOR 8 pixels at a time. (Or even more, if using even larger
data types that also support this behavior).

∙ xor2img() – the responsible of applying the bitwise XOR operation iteratively to all
the elements of both images to get the result.

∙ count1s() – this simple method calculates the number of bits set to one in an array
of bytes, corresponding to the number of black pixels found in the image.

These functions had to be tested as they’re crucial for the correct operation of the
algorithm. So we developed and conducted some sanity tests to check this. Its explanation
and results could be seen in the appendix C.

4.2.1 Problems Found

While developing and running the different versions of the algorithm, we found a few prob-
lems that deserve a special mention because they are closely related to the algorithm’s
results and performance:

∙ The time required by OpenCV’s VideoCapture interface to dump all the frames in
memory can be very high for computers equipped with integrated or low-end GPUs,
since the work is carried in them. This problem should be addressed by loading the
frames on demand, this is, saving just one frame and requesting the next to pass them
as the stabilization routine arguments.

∙ While testing the helper functions and comparing results with v.1.0, we found that
the way OpenCV’s bitwise_xor() function works is not the same, by definition, than
the common bitwise XOR operation, but rather its negation (¬(𝑎⊗ 𝑏)) as the figure
4.2 shows. This happens because the framework applies the operation at bit-level,
but in an grayscale image black pixels are represented by 0𝑠 instead of 1𝑠 and the
opposite for white ones (0xFF), resulting in the inverse image. This finding made us
patch the original version of the algorithm just by adding a cv::bitwise_not() call
after the initial XOR to get the right result.

∙ The different versions of the mat2arr() developed, while correctly packing the data
into the byte arrays in linear time (𝒪(𝑛/8) where 𝑛 is the number of pixels), were not
as efficient in time as using OpenCV’s native data structures and operations, since
they rely in pointer arithmetic and other optimized techniques that reduce memory
movements and allocations.

The last of the problems lead us to take the decision of limiting the number of frames
that are taken into account to be stabilized for the sake of the time needed to run all the
experiments. If we had more time, we could further deepen on the reasons behind these
operations taking that long and optimize them, but as it is not crucial to the original
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Figure 4.2: OpenCV’s XOR operation

purpose of the project, we would let it be.

4.3 Parallel Implementations

In the following sections, we will present the specifics of the parallel solutions. Each follows
a common structure discussing 3 main topics:

∙ How to compile and build the files required for each solution.

∙ Description and comments on the source code of the solution.

∙ Aspects related to the implementation that will be used in chapter 5 to lend color to
the comparative.

4.3.1 OpenMP

Thanks to OpenMP being the result of the effort from a consortium and also from being
around the parallel scene since 1997, the libraries required to compile programs that use
this API are built-in in most mainstream, contemporary compilers. The only thing to take
into account when compiling OpenMP-dependent code (that including #include <omp.h>
header) is to use the -fopenmp gcc’s option.

This was by far, the easiest implementation to construct since it could even have been
done without removing the OpenCV function calls, as the code runs in the processor’s
different threads the routines had been compiled for their architecture. This sums up to
the fact that there is no need to conduct many changes in the sequential code to parallelize
in the way we exposed in this chapter’s Overview. The code for this version can be found
in the stabilization_omp.cpp source file.

By using OpenMP’s pragma constructions, we annotate the code to declare which frac-
tions of memory are shared and which ones are private, how to schedule the distribution of
the thread blocks and also to tell the compiler that the iterations of the two for loops are
the ones to be distributed among the threads set with omp_set_num_threads() function.

∙ #pragma omp parallel for – this pragma is a shortcut to specify a parallel construct
that forms a team of threads based on the number of iteration of the loop(s) and starts
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their parallel execution.

∙ private(m_pos, n_pos, Sp, Res) – the local variables for the threads, meaning
that each one would have a different copy of them. In order: the index to displace
the search window on the X-axis, the equivalent for the Y-axis, the corresponding
previous frame’s search window and the result of applying the XOR operation.

∙ shared(Sc, past, Cj, elements, p) – these would be the shared memory portions
between all the streams, all will hold the same copy: the current frame’s search
window, the past frame’s whole subimage, the correlation matrix and the size in
pixels of the subimage to crop it. (Also p have to be included as it is determined at
runtime).

∙ schedule(static) – this clause tells the scheduler how to distribute the iterations
to the threads, in our case, assigned in round-robin fashion.

4.3.2 CUDA

When it comes to compile CUDA code, the tools have evolved to nowadays’ NVIDIA CUDA
Compiler (nvcc) which eases the process that involves splitting, compiling, preprocessing,
and merging intermediate files from CUDA kernels (.cu) to fully executable code. Still,
to compile the code we have to worry about the GPU architecture details of the machine
since different generations of cards offer different memory disposition and the capability to
launch different number of threads, etc.

As we exposed in chapter 2, the way to work with CUDA code comes in the form of
kernels: plain-C functions that are run by the SMs in what they call thread blocks, the
key point when working with this paradigm is to correctly specify the geometry of this
blocks since we are translating the loops that filled the correlation matrix in the sequential
approach to a uniform distribution of their iterations between all the SMs available in the
device. In our case, we choose blocks of 256 threads as a conservative approach to almost
all CUDA architectures, and partitioning 𝐶𝑗 in 𝑛/256 where 𝑛 is its number of elements.

In our case, the file kernel.cu is the responsible of this task and contains almost the
exact same code we had at the end of the loop. One important consideration to make is
that to call the helper functions from both the host and the device code, as we do, is that
we must annotate them with the labels __host__ and __device__ at the same time to tell
the compiler to build them for both architectures.

Also, as it was described in the section 1.2.4 it is essential to correctly allocate and
distribute the memory elements in both the host and the device. To do so and make our
code more legible, we followed some community conventions as to label with the prefix d_
the variables that are allocated and used in the device and with an h_ their counterpart in
the host.

These variables to copy in the device memory would be the same we pointed out as
shared in the OpenMP version, but in this case, we have to specify the direction in which
we would made the copy as we are talking about different address spaces. Obviously, the
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subimage and the search window need to be moved from host to the device and the opposite
for the correlation matrix. All this operative is described in stabilization_cuda.cpp.

We have to point out that as calling this operations inside a loop make them the bot-
tleneck of the solution, since the allocations and copies are one of the most time-consuming
steps. Considering the use of three dimensional thread-blocks along with synchronization
mechanisms could remove this overhead and speed up noticeably the whole program.

4.3.3 OpenCL

To build an OpenCL program, the procedures vary depending on the OpenCL implementa-
tion in use, as it is made for different environments. The absence of an proprietary compiler
like the nvcc1 together with the heterogeneous ideal of running in that many different plat-
forms makes the whole process of compiling the code really hard for a basic user. Some
difference between the 4 mainstream implementations (say: NVIDIA, AMD, Apple and
Intel) is the location of the SDK path, which needs to be passed as an argument to the
compiler, and also there are differences in this process based on whether if we are talking
about C or C++ code. To handle all this complexity, we must rely on a Makefile. As
example, we took one of the ones used for the code samples in the OpenCL Programming
Book[23]. Nevertheless, a common denominator for all vendors is the use of the -lOpenCL
flag in the compilation process.

The main difference found with CUDA comes as a result of the framework’s stake
to approach heterogeneous support in front of the very specific ecosystem controlled by
NVIDIA itself. Everything must be done in a very runtime-aware way: it introduces the
idea of context, which is just a runtime link to the device and platform, the kernel has to
be loaded and compiled at runtime which is indeed a very obscure way to proceed, since
too many intermediate steps have to be done to make the kernel available and launched,
etc.

The whole summarized process described in detail in stabilization_ocl.cpp involves
getting all the platform IDs (drivers), connect to compatible compute devices by creating
a device group and assign it a compute context that allows the data transference between
host and device and then initiate a command queue to execute the kernel in the devices
selected. From that point, the program resembles very much the one we presented in the
last section.

As a positive point, the only changes between the OpenCL and CUDA kernels are just
the different terms used to annotate the functions and the shared memory portions passed
as arguments (that in the case of OpenCL are marked with the __global identifier) and
also the way to access the indexes to calculate the right search window. As final note,
this kind of kernels are based on C99 which made us port the helper functions to a .c file
compliant with this standard.

As we advanced earlier, OpenCV has the ability to be enabled when the hardware is
1There were some attempts made in this direction by the community, as it was the clcc (http://clcc.

sourceforge.net/) but as the OpenCL standard advanced, the tools did not and stay outdated.
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Index CUDA kernel OpenCL kernel
m_pos blockIdx.y * blockDim.y + threadIdx.y get_global_id(1) * get_global_size(1) + get_local_id(1)
n_pos blockIdx.x * blockDim.x + threadIdx.x get_global_id(0) * get_global_size(0) + get_local_id(0)

Table 4.1: Differences in the methods to access the indexes inside the kernels.

available with OpenCL, this way some computer vision operations could take advantage
of the acceleration of the underlying platform for some of the built-in routines. Extending
where we could take advantage of the parallelism in out program to the wrapper operations,
the main sequential block of code of the program. This falls out of the scope of this project
but could be an interesting topic for a possible complete parallel solution.

4.4 Conformance Testing

As mentioned before, this method has been around for more than 15 years now and it
can be still considered relevant and sufficient for many consumer solutions. The overall
performance of the GC-BPM as video stabilization method was evaluated on section IV:
Simulation Results of [17] and it was one the reasons to choose it as frame topic for this
project, it presents a highly reliable process at a very low price, as it works with very
lightweight data structures, bitwise operators and also, as it has been discussed on this
chapter could be parallelized in a pretty straightforward manner.

But as our solution is not totally complete, meaning it does not produce any video
output but instead the indicators that determine the direction and strength in which the
video is shaking, we should test the reliability of both the sequential and different parallel
implementations. For this purpose we propose two easy reference tests over the same data
sets to evaluate the numerical outputs.

1. Tests with controlled image sequences: if we decouple the frame extraction
module of the wrapper and inject in memory both stabilized and shaking simple
image sequences, while manually calculating the global motion vector by displacing
the images in the axis of the canvas we can check the coherence of the result, as we
do to present the interpretation of results in appendix D.

2. Comparisons between parallel and sequential results: this is straightforward
and can be carried out after the general, sequential algorithm has been tested with
the first procedure to ensure the results of all the programs are exactly the same no
matter how many processing elements are involved for the calculations.
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Chapter 5

Results

5.1 Methodology

One of the key points of this work is to offer some indicators relative to the performance of
the different tools put into practice in building the parallel solutions. To achieve this, we
have developed a slightly rigorous methodology to compare the contrasting results achieved
by the algorithms.

To carry out with the experiments, we selected a video from Michael Messer (https:
//vine.co/v/iVWbAjB1XmH), a famous viner. Since the format of this vine videos is short
enough for our purpose and usually shaky as they are recorded with smartphones. Also
they have very convenient dimensions and frame rate for our experiments: Duration: 6s,
196 frames – Resolution: 480x480 pixels.

Different runs will be made with different number of processing units for the purpose
of comparing the speedup introduced as these numbers increase. To avoid undesirable
variability around the measurements and to refine the results we will launch the experiments
3 times and calculate the average of their run times. Also, we have to make some notes
on the number of executions that will be made with each tool regarding the number of
processing elements:

∙ Sequential: as we don’t need to compare the different run times of the sequential
version as we can’t introduce more processing units by definition, we would only
count with 3 runs with this configuration.

∙ OpenMP: these could be compared setting different threads, starting with the sequen-
tial equivalent (just one) and doubling this number up to the maximum available for
the particular machine (determined at runtime by the function omp_get_max_threads()).

∙ CUDA: for this framework, we must determine the size of blocks, normal equivalence
classes for the most common microarchitecture (NVIDIA Kepler) are 128, 256, 512
and 1024 threads. But some others have different inbuilt limits for execution.

∙ OpenCL: in this case, we execution model is mapped to the hardware, so the the
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work group size can be at most DEVICE_MAX_WORK_GROUP_SIZE and depending on the
platforms and devices available at runtime, can be executed in a CPU or in a GPU,
having really different possibilities.

5.2 Experiments

There is really important to correctly characterize the environment in which all the runs
are going to be made, in two different dimmensions: the CPU and the GPUs available and
their microarchitecture, since it determines

The experiments by themselves can be performed on virtually any modern general
purpose computer with the exception of those binaries that require of the CUDA plat-
form to be run, which as mentioned in chapter 1 need some special hardware appliances
(https://developer.nvidia.com/cuda-gpus) to be run. Both OpenMP and OpenCL
implementations are open source and freely available for major manufacturer architectures.
Because of this reason, we have not been able to run the CUDA’s implementation,
since to the date, we lack of a machine with these capabilities. However, the compilation
phase was carried for all the implementations since nvcc is not related to the presence of a
device.

The speedup comparison between the tree implementations stays on hold
until some system available to run all four is available for this purpose. But
nevertheless, we build all the tools and scripts to make this straightforward once the machine
is ready. It will only take to compile and execute a couple of scripts to get the final results
and graphics determining which one of the developed is the faster solution. We hope to
have this results available for the defense of this project.

5.3 Results

To make the process of collecting the results of all the experiments simpler, we built a short
script (timecollector.py) to dump the time indicators from the different program runs
into a single .csv document to easily import those into an analysis tool, such as MS Excel
or R lang, or just feed them to a gnuplot script to generate simple but meaningful graphics.
This temporal data is collected by the script into a file with the following structure:

Run,API,Processing_Units,Time
0,0,1,XXXXXXXX
1,0,1,YYYYYYYY
2,0,1,ZZZZZZZZ
3,1,2,UUUUUUUU
...

It contains four differenced columns separated by commas:
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∙ Run: The sequence number of the run, just to discriminate and later refer to a specific
experiment.

∙ API: A numerical code associated to one of the APIs under study as it appears in
commons.h: 1 for the sequential version of the algorithm, 2 for OpenMP, 3 for CUDA
and 4 for the OpenCL version.

∙ Processing_Units: the number of streams (threads, threads per block or the size of
the workgroup) involved in that particular run.

∙ Time: the really relevant variable in each row; reflects how long did it take for the
program to determine all the global motion vectors.

5.3.1 Comparison of the APIs

We already offered the the really important points to compare these APIs from a developer’s
practical point of view thought sections 4.3.1, 4.3.2 and 4.3.3. Where the main differences
in matter of implementation where exposed. In this section we will add some notes to this
comparative about the user experience.

The main problem when trying to measure aspects like the ease of use and user friendly-
ness is that those are both very relative aspects varying among developers. But we can still
propose some opinionated metrics and show their values relative to this particular project:

1. Extra lines of code of the port as taken from the reference sequential algorithm.

2. Amount of official documentation and relative quality provided by the manufactur-
er/consortium behind the API.

3. Approximate total time to make the solution compile.

4. Number of failed versions before getting the right results.

OpenMP CUDA OpenCL
1. 6 21 + 16 (kernel) = 37 37 + 16 (kernel) = 53
2.1 Poor and unstructured Complete and plenty Limited and lacking examples
3. 2h 10h 11h
4. 1 ?2 12

Table 5.1: Comparison of the different metrics considered for the 3 frameworks.

One aspect that is necessary to mention is the hard that has been to make all the APIs
correctly work with a relatively modern setups, the exception would be OpenMP which
is standardized in a really solid way that make it available in almost every environment
and compiler. Special mention in this case goes to OpenCL, which have been particularly
difficult to build and compile. Offering which we can call a very obscure API. We can get

1Some details and examples will be given later in this text.
2See section 5.2
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a glimpse of this just by taking a look into AMD’s official introductory tutorial to OpenCL
[14], to see the humongous number of steps we have to take to make a simple Hello World
style program with the framework.

Regarding the documentation and material offered by the responsible of maintaining
the different APIs, we have some notes to make:

∙ OpenMP ARB does not offer any de facto documentation, but rather links [3] to
community tutorials, books and examples.

∙ The NVIDIA developer zone [7] is a really great compilation of resources for the CUDA
platform. It contains, from installation instructions, to the whole API reference and
some guides to speed up the implementations, learn how to use their tools, and many
more. Is the most updated (Sep. 2015) of the three analyzed here.

∙ Khronos Group, the association behind OpenCL standard, has a nice structured but
really limited and outdated (2010) documentation [15], that also lacks of examples
like the ones found in CUDA’s and is constantly linking the OpenCL Specification, a
400 pages very technical document that does constitute a really good documentation
repository.

5.3.2 General Comparison Between CUDA and OpenCL

Additionally, as CUDA and OpenCL frameworks rely on the kernel execution model, they
are the most sensitive to be compared. In this section, we will mention some differences
and facts with relevance when deciding between these two.

While OpenCL can natively talk to a large range of devices from different vendors,
that doesn’t imply that the code will run optimally on all of them without overhead and
also there is no guarantee it will even run, given that different devices have very different
instruction sets. If we stick to the OpenCL spec and avoid vendor-specific extensions,
the code should be portable, if not tuned for speed. For now the programmer must face
some efforts on the scale of a rewrite of the whole kernel code when switching devices for
nontrivial programs. Fortunately though, the host-side stays the same across devices.

OpenCL does not support pinned host memory. This may cause a penalty of about
a factor of two in host-device transfer rates. Pinned memory is memory allocated using
functions like cudaMallocHost, which prevents the memory from being swapped out and
provides better transfer speeds. Non-pinned memory is memory allocated using common
malloc function. In this sense, pinned memory is much more expensive to allocate and
deallocate but provides higher transfer throughput for large memory transfers. [16]

CUDA’s synchronization features are not as flexible as those of OpenCL where any
queued operation (memory transfer, kernel execution) can be told to wait for any other set
of queued operations. CUDA’s streams are more limited then, summed up to the fact that
OpenCL supports synchronization across multiple devices. CUDA has more mature tools,
including its own compiler, debugger and profiler while OpenCL does not have this kind of
support. [16]
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As we mentioned through the first chapters of this work, the world of High Performance
Computing as it exists today consists of many GPU-accelerated systems and applications.
As it was the pioneer in the field, NVIDIA’s CUDA in some ways concentrated the monopoly
as both programming language and infrastructure. The problem with this model is that
software is almost always strictly controlled and its source code is most often propietary,
and the hardware options are limited to one vendor.

Recently, some efforts have been made in order to make CUDA a platform more portable.
In this sense, in 2015 major NVIDIA competitor, AMD presented the “Boltzmann Initia-
tive” [13] that included something called Heterogeneous-compute Interface for Portabil-
ity or HIP offering several benefits over other heterogeneous programming interfaces, like
OpenCL:

∙ Developers can code in C++, and mix host and device C++ code in their source files.

∙ HIP API is less verbose than OpenCL.

∙ Because both CUDA and HIP are C++ languages, porting from CUDA to HIP is
significantly easier than porting from CUDA to OpenCL.

∙ HIP offers an offline compilation model where the kernel binary is read in by the host
code.
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Chapter 6

Conclusions

This bachelor’s project is the result of a one-semester temporal effort to review and compare
from a practical point of view some mainstream but still specific parallel programming
tools, some of its results are really relevant to the times considering the world of multicore
processors is now a reality in everyday computers, even for embedded and mobile devices.

These consumer electronics and mobile applications could take advantage of this phe-
nomenon, being more performant and offering better results, for instance, many modern
smartphones could use a similar procedure as the one presented here to stabilize video files
taken from the device in-built camera. Or one of the recent market booms: the very small-
scale action cameras like GoPro includes an image processing unit that could benefit hugely
from supporting multicore processing as their regular mode of operation involves this kind
of problems.

We have implemented both sequential and parallel versions of the Gray-Coded Bit Plane
Matching algorithm. The other core topic of this thesis was presenting a methodology to
compare their performance, which stays on hold until they can be compared in the right
environment, and a few representative metrics from the developer experience to offer a more
complete comparison between these commercial parallel APIs.

6.1 Future Work

There are many different possibilities to extend this work at this point. The first path
to consider would be the one leading to a true and complete stabilization solution, some
examples on how to carry on where this project leaves would be:

∙ The direct application of the global motion vector determined by the algorithms to
modify the original video sequence to correct all the involuntary displacements. This
would be matter of employing different computer vision techniques to crop and rotate
the original input to generate a lower-quality and size product with the important
advantage of being stabilized. Some steps on how to build this result are broadly
explained in appendix D.
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∙ Despite the fact that GC-BPM, as formulated works well for translational (horizontal
and vertical) motion, it includes no estimation or compensation capability for highly
rotational nor zooming motion [6], considering these are both very common in prac-
tice, some different methods not suffering by this problem could be considered to be
parallelized and compared to this particular one.

∙ Find the causes and solve the efficiency problems we reviewed in section 4.2.1 to get
closer to the times obtained with the OpenCV standalone version.

∙ Also, some data structures could be reviewed when working with this kind of highly
regular data patterns, if the price of going low level is not a problem, as logical matrices
(containing only binary variables) are, some examples of such would be Quadtrees or
even in more memory-critical conditions, bitmaps, in which even very lage images can
be coded into a very small amount of data.

∙ Some other memory tweaks can be looked into, specially in the case of CUDA, which
offers a complete memory hierarchy to the programmer, so large that can be used to
optimize allocations and reduce the bottleneck of this solution. We are talking about
the read-only memory portions for the SMs (constant and texture memories) that
could be written by the host CPU with the whole frame sequence.

∙ Play with the idea of parallelizing the process of determining the GMV in the four
search windows at the same time, this is, the outer loop of the algorithm to multiply
the potential speedup of the application by a factor of 4. We already gave some
instructions on how to construct such solution.

As video capture hardware is constantly evolving, the recording resolution keeps getting
higher. Just a few years ago, 1080p or Full HD was the standard for high-quality video;
today image sensors are capable of capturing 4K video, in each frame of which 4 complete
FullHD frames could be allocated. The impact in algorithms like the one we have used for
this thesis will be tremendous with a sequential approach: the search windows grows in size
exponentially. As we have seen, parallelism comes very handy at solving this kind of issues.
More recent approaches [1] to this algorithm make the whole process way more precise by
decomposing each one of the frames into 9 different search windows instead of 4. This kind
of methodological switch could have an enormous impact into performance as increasing
this number introduces a multiplicative constant to the overall runtime of the programs,
but if we take the benefits of calculating each local vector by a single thread and have the
multicore infrastructure to support this model we could maintain a great performance as
the resolutions keeps growing.

Second approach to deepen in the topics of this work would be to look in the way
of exploring more parallelism options out there. As this is a one-semester project, its
scope has to be limited to fit into time, that was the reason we only choose three popular
frameworks from different programing models to compare, but yet several more APIs should
be considered to have the full picture of the parallel landscape, some examples are: the
maturity and reliability of Pthreads, the ubiquity of MPI, lots of hybrid and heterogeneous
solutions like OpenHMPP, OpenACC or the newborn AMD’s HIP... and the list goes on
for a while, considering these are slowly proving they worth and becoming greatly adopted.
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Nevertheless, it is already an arduous task to find some practical project to be developed
and compared in such a diversified environment, this reflects the industry trend to use and
develop more specific purpose APIs instead of pursuing tools that could work with different
programming models abstracting some of the specifics.
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Appendix A

CD Contents

∙ Source code for the solutions presented in chapter 4 in the src directory.

– v1 – Sequential version using OpenCV presented in 4.2.

– v2 – The final sequential solution and their parallel equivalents.

– test – Simple source code and image examples used to test the helper functions
in appendix C.

∙ LATEX source code of this document in latex directory.

∙ The video file used as example to be stabilized, named video.mp4.

∙ The tools to get the speedup results: timecolector.py and gnuplot scripts to elab-
orate the graphics. In the tools folder.

∙ This document compiled in PDF format: BP_FIT_Samuel_Alfageme_2016_v2.pdf.
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Appendix B

Sequential Implementation

B.1 First Approach – v.1.0: Use of OpenCV

1 # include <opencv2 / opencv .hpp >
2
3 # include " commons .h"
4 # include " stabilization .h"
5
6 /* Gray Coded Approach based on:
7 * [17] S. Ko , S. Lee , S. Jeon , and E. Kang. Fast digital image
8 * stabilizer based on gray -coded bit -plane matching .
9 * ------------------------------------------------------------------

10 */
11 void GC_BPM (cv:: Mat Scurr , cv:: Mat Sprev , int Vg_prev_x , int Vg_prev_y
12 , int *Vg_x , int *Vg_y)
13 {
14 int rows(Scurr.rows), cols(Scurr.cols);
15
16 // Proportions of the search window and margins
17 int N = 120;
18 int p = (rows /2 - N)/2;
19
20 // Size of the search window : squared (A. Brooks [6] approach )
21 int SW_SIZE = N * N;
22
23 // Local motion vectors (0 -3)
24 int Vl_x [5];
25 int Vl_y [5];
26
27 // We take into account the previous global motion vector (4)
28 Vl_x [4] = Vg_prev_x ;
29 Vl_y [4] = Vg_prev_y ;
30
31 // Break both previous and current frames into 4 subimages :
32 std :: vector <cv::Mat > S(4);
33 std :: vector <cv::Mat > S_prev (4);
34
35 S_prev .at (0) = Sprev(cv:: Rect (0,0, cols /2, rows /2));
36 S_prev .at (1) = Sprev(cv:: Rect(cols /2,0, cols /2, rows /2));
37 S_prev .at (2) = Sprev(cv:: Rect (0, rows /2, cols /2, rows /2));
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38 S_prev .at (3) = Sprev(cv:: Rect(cols /2, rows /2, cols /2, rows /2));
39
40 S.at (0) = Scurr(cv:: Rect (0,0, cols /2, rows /2));
41 S.at (1) = Scurr(cv:: Rect(cols /2,0, cols /2, rows /2));
42 S.at (2) = Scurr(cv:: Rect (0, rows /2, cols /2, rows /2));
43 S.at (3) = Scurr(cv:: Rect(cols /2, rows /2, cols /2, rows /2));
44
45 int m_pos , n_pos;
46
47 // Iterate over the 4 different search windows
48 for(int i=0 ; i<4 ; i++){
49 // Correlation matrix to store the results of the search
50 int Cj [2*p][2*p];
51
52 // Displacement loops: exhaustive search
53 for(m_pos =0 ; m_pos < 2*p ; m_pos ++){
54 for(n_pos =0 ; n_pos < 2*p ; n_pos ++){
55 cv:: Mat bxor;
56
57 cv:: bitwise_xor (
58 // Current bit -plane search window :
59 S.at(i)(cv:: Rect(p, p, N, N)),
60 // Previous bit -plane search window :
61 S_prev .at(i)(cv:: Rect(m_pos , n_pos , N, N)),
62 // Result of the XOR between the 2:
63 bxor
64 );
65
66 // Correct OpenCV XOR operation (see section 4.2.1)
67 cv:: bitwise_not (bxor ,bxor);
68
69 // Count the black pixels as (Total no. - Non -Black):
70 Cj[m_pos ][ n_pos] = SW_SIZE - cv:: countNonZero (bxor);
71 }
72 }
73 // Determine position of the min Cj arguments
74 argMin (2*p, (int *)Cj , &Vl_x[i], &Vl_y[i]);
75 }
76 *Vg_x = median (Vl_x);
77 *Vg_y = median (Vl_y);
78 }

B.2 Second Approach – v.2.0: Independent Algorithm

As all the preprocessing work from v.1.0 is the same for this second version, we only
present here the core differences.

54 for(int i=0 ; i<4 ; i++){
55 int Cj [2*p][2*p];
56
57 int elements = S.at(i).cols;
58
59 unsigned char* current = S.at(i).data;
60 unsigned char* past = S_prev .at(i).data;
61
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62 unsigned char* c2 = new unsigned char[ SW_SIZE ]();
63
64 splitMat (current , elements , p, p, N, c2);
65 mat2arr (c2 , SW_SIZE , Sc);
66
67 for(m_pos =0 ; m_pos < 2*p ; m_pos ++){
68 for(n_pos =0 ; n_pos < 2*p ; n_pos ++){
69
70 unsigned char* p2 = new unsigned char[ SW_SIZE ]();
71 splitMat (past , elements , m_pos , n_pos , N, p2);
72
73 mat2arr (p2 , SW_SIZE , Sp);
74 xor2img (Sc , Sp , Res , dimension );
75 Cj[m_pos ][ n_pos] = count1s (Res , dimension );
76 }
77 }
78 argMin (2*p, (int *)Cj , &Vl_x[i], &Vl_y[i]);
79 }
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Appendix C

Conformance Tests carried on the
Helper Functions

As for version 2 we no longer relied on functions of some trustworthy framework standard
library, we were in need of performing some simple test to check the correctness of the
helper methods developed.

For the sake of simplicity, we created the following 2 10x10px images: img1.png and
img2.png to see if the process of packing the images into unsigned char (or bytes) data
structures was being carried out properly.

(a) Enlargement of
img1.png

(b) Enlargement of
img2.png

1111111111 11111111 | 255
1011111111 11101111 | 239
1001111111 11111001 | 249
1000111111 11111110 | 254
1000011111 00111111 | 63
1000001111 10000111 | 135
1000000111 11100000 | 224
1000000011 11111000 | 248
1000000001 00011110 | 30
1000000000 00000011 | 3

10000000 | 128
01100000 | 96
0000 | 0

1111111111 11111111 | 255
0000000011 11000000 | 192
0000000111 00110000 | 48
0000001111 00011100 | 28
0000011111 00001111 | 15
0000111111 00000111 | 7
0001111111 11000011 | 195
0011111111 11110001 | 241
0111111111 11111100 | 252
1111111111 11111111 | 255

01111111 | 127
11111111 | 255
1111 | 240
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In the previous listing, we can see, for both of the images, in the left an ASCII represen-
tation of each 10x10 matrix followed by the result in memory after executing the function
mat2arr() in them as observed in a debugger program. As the reader can see, all the data
is correctly packed and coalescent as it was explained in chapter 5.

The “core” function of the algorithm, the one that performs the exclusive-or operation
between two images, was also tested to see if the operative was sound. To do so, we
invoked the operation between the two presented matrices, which resulted in the following
memory allocation and, when unpacked according to the original matrix dimensions, can
be translated in the ASCII equivalent of the matrix presented by its side. We created the
PNG version using OpenCV’s functions to check their match.

Figure C.2: Enlargement of xor.png

0 | 00000000 0000000000
47 | 00101111 1011111100

201 | 11001001 1001111000
226 | 11100010 1000110000
48 | 00110000 1000000000

128 | 10000000 1000110000
35 | 00100011 1001111000
9 | 00001001 1011111100

226 | 11100010 1111111110
252 | 11111100 0111111111
255 | 11111111
159 | 10011111
240 | 11110000

To test the count1s() function, we calculated the number of black pixels for each one
of the previous matrices, passing the arrays in which they were packed, resulting in 55 for
img1.png, 64 for img2.png and 49 for the resulting xor.png, the same numbers that we
can count in the presented images.

Finally, the splitMat() function was used with the arguments (img1, 10, 3, 3, 4,
result) to simulate the selection of a centered 4x4 search window over img1.png as can
be seen in figure C.3. This printed out the following results that correspond with the 16
ordered pixels of the submatrix: 0 for the black and 255 for the white:

255 0 0 0 255 255 0 0 255 255 255 0 255 255 255 255
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10px

x=3
y=3

4px

Figure C.3: Area of the matrix selected to be split
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Appendix D

Example Results

The output of executing any of the programs is a generated results.txt file containing
the sequence of Global Motion Vectors ordered by frame.

Time: 50.8518s
10,12
13,10
...

To both describe how to interpret this results and give some instructions on how to
complete the computer vision application to generate the stabilized video we injected two
close frames in the algorithm (just to be more significant, they don’t have to be consecutive)
to obtain their GMV. If we trace a “stabilization window” with the right size by leaving a
margin of 𝑝 in every side, the meaning of the vector is the displacement of this window from
the reference frame to the other. For the particular case of the two frames selected on the
figure D.1 this GMV was (−5,−9) and the resulting stabilized video will be the consecutive
cropped areas in the images.

60px

60px

(a) Reference frame (𝑛)

55px

51px

(b) Compared frame (𝑛+ 4)

Figure D.1: Displacement of the stabilized window between the two frames
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