
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

A GRAMMATICAL FORMALIZATION OF TRANSLA-TION AND ITS IMPLEMENTATION
GRAMATICKÁ FORMALIZACE PŘEKLADU A JEJÍ IMPLEMENTACE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MATÚŠ SABOL
AUTOR PRÁCE
SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This thesis serves as an introduction to the topic of formal translations. It introduces the
reader to essential theory and then uses knowledge of said theory to create a translator
based on a particular translation. First part defines the essentials of the formal languages
theory, which is a prerequisite for understanding the formal translation theory, whose es-
sentials are explained after it. The second part describes the translation itself, firstly with
a theoretical model, then with a computational model. Key implementation details are
explained and briefly discussed. The proof-of-concept translator is successfully created and
some of its possible improvements, as well as ways of expanding the formal translation topic
are discussed.

Abstrakt
Táto práca slúži ako úvod do problematiky formálneho prekladu. Čitateľovi predstavuje
podstatnú teóriu a následne používa jej poznatky na vytvorenie konkrétneho prekladača. V
prvej časti sú definované základy teórie formálnych jazykov, ktorá je nutná pre pochopenie
teórie formálneho prekladu, ktorej základne prvky sú vysvetlené následne. Druhá časť
popisuje samotný preklad, najprv matematickým, následne výpočetným modelom. Sú
spomenuté a vysvetlené kľúčové prvky implementácie. Prekladač, ktorý slúži ako overe-
nie konceptu, je úspešne vytvorený. Na záver sú spomenuté niektoré možnosti vylepše-
nia samotného prekladaču, a taktiež aj možnosti ďalšieho rozvoja v tématike formálnych
prekladov.

Keywords
finite automaton, formal language, formal grammar, pushdown automaton, translation
grammar, syntax-directed translation schema, pushdown transducer, translator

Klíčová slova
konečný automat, formálny jazyk, formálna gramatika, zásobníkový automat, prekladová
gramatika, syntaxovo riadené prekladové schéme, zásobníkový prevodník, prekladač

Reference
SABOL, Matúš. A Grammatical Formalization of Translation and Its Implementation.
Brno, 2017. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Prof. RNDr. Alexander Meduna, CSc.

A Grammatical Formalization of Translation and
Its Implementation

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Prof. RNDr. Alexander Meduna, CSc. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references..

. .
Matúš Sabol

May 14, 2017

Acknowledgements
I would like to express my deepest gratitude to Prof. Meduna, who provided me with
guidance, and encouragement throughout the whole making of this thesis. I would also like
to thank PhD. Křivka for providing me with study material..

Contents

1 Introduction 2

2 Theory 4
2.1 Preliminaries . 4

2.1.1 Alphabets . 4
2.1.2 Languages . 5
2.1.3 Grammars . 5
2.1.4 Pushdown automata . 7

2.2 Formalisms for translations . 9
2.2.1 Syntax-Directed Translation Schemata 10
2.2.2 Pushdown Transducers . 11

3 Implementation 15
3.1 Underlying SDTS and PDT . 15

3.1.1 Input grammar . 16
3.1.2 Output grammar . 17
3.1.3 Considerations about used grammars 18
3.1.4 The underlying PDT . 18

3.2 Translator implementation . 20
3.2.1 Input preparation . 21
3.2.2 Structures . 22
3.2.3 Translation algorithm . 23

4 Conclusion 26

Bibliography 27

A Attachments 28

1

Chapter 1

Introduction

The field of formal system theory, especially formal language theory had had a great im-
pact on whole computer science as it provided a base for compilation and interpretation of
higher languages, which marked a great milestone in computer science history. One part
of formal language theory – formal translation theory – may not have recieved as much
notice as some other parts of the formal language theory but its importance should not be
diminished, as it provides us with the ability to translate one formal language into another
– an ability of a great potential.

This thesis is concieved as an introduction to the formal translation theory and as such
provides basic theoretical knowledge required for understanding it. The theory provided is
used to construct a translator to show by example how to describe a translation theoreti-
cally, how to transform it into a computable model and how to implement it. Note that the
translator is by not meant to be an industrial-level solution, but rather a proof-of-concept
program that promotes superieor readability and simplicity over superior performance. It
also shows some considerations concerning design and implementation choices for a trans-
lation.

Thesis is divided into two thematical parts:
The first part, Chapter 2, will introduce base definitions used throughout the whole for-

mal language theory: language, grammar, and pushdown automaton as well as a definition
of postfix notation. It further introduces means of formalizing translations, translational
models and transformation between the two. It is presented in a rigorous manner with
several examples make sure that the reader understands it.

The second part, Chapter 3, provides a de facto method for constructing a translator.
It begins on a more theoretical level with formally defining a particular translation and
transforming it into a computational model using structures and algorithm defined in the
previous part. It then shifts into more practical tone when providing the reader with de-
tails of its actual implementation, such as programmatical structures and algorithms used
to implement the translator based on the provided computational model.

The reader is expected to have fundamental knowledge of mathemathical sets: what is
a set, element inclusion, subset, union, intersection, and Carthesian product. At least basic
knowledge of finite automata is required as well: states, transitions, finishing states. These
are the two cornerstones of formal languages theory that are mainly expanded upon. There
is also a mention of algorithm time complexity and the Big-O notation in several places of

2

the thesis. While knowledge of these is not essential for understanding the topic on hand,
it provides the acknowledged reader with more insight on the matter.

Definitions, examples and algorithms are numbered sequentially within chapters and
they are concluded using symbol �. Another practice in this thesis is emphasizing new or
important terminology by italicizing it. Please make note that phrases of latin origin, such
as et cetera or verbatim are italicized as well. This is not meant as emphasis, but it is a
common practice to italicize such phrases in written text.

3

Chapter 2

Theory

This chapter is dedicated to introducing all the theory necessary for understanding the
topic of this thesis. It will cover basic theory elements of formal systems and some of the
theory needed to understand translations.

2.1 Preliminaries
In this section, we will be going over some of the essentials required to understand the
subject of this thesis. While not at all difficult, a proper understanding of these is abso-
lutely crucial for proper understanding not only translations, but formal systems theory as
a whole.
Definitions are taken from [3] and [4]. Further reading on this topic can also be concluded
in [5], chapters 1 to 3 and [2], chapters 1 to 7.

There will be mentions of reverse Polish (will be referred to as postfix later on) notation in
various places throughout this thesis, and as such a definition is required. This definition
is taken verbatim from [3].

Definition 2.1. Let Σ be an alphabet, whose symbols denote operands. The reverse Polish
expressions are defined recursively as follows:

1. If 𝑎 is an infix expression and 𝑎 ∈ Σ, then 𝑎 is also the reverse Polish expression of 𝑎.

2. If U and V are infix expressions denoted by reverse Polish expressions 𝑋 and 𝑌 ,
respectively, and 𝑜 is an operator such that 𝑜 ∈ {+,−, *, /}, then 𝑋𝑌 𝑜 is the reverse
Polish expression denoting 𝑈𝑜𝑉 .

3. If (𝑈) is an infix expression, where 𝑈 is denoted by the reverse Polish expression 𝑋,
then 𝑋 is the reverse Polish expression denoting (𝑈).

�

2.1.1 Alphabets

The very building blocks of formal systems are alphabets. They contain all symbols that
the system is ”allowed“ to use. We will now define some key terms regarding alphabets.

4

Definition 2.2. We define an alphabet Σ as a finite non-empty set, whose members are
called symbols.

�

Definition 2.3. We define a string 𝑤 over Σ as:

𝑤 = 𝑎1𝑎2𝑎3...𝑎𝑛; 𝑎𝑖 ∈ Σ, 𝑖 ∈ N

, a sequence of symbols from Σ. A special string contaning zero symbols is called an empty
string and is denoted by 𝜀. Such string is still a string over Σ.

�

Definition 2.4. We denote Σ* a set of all strings over Σ. We define Σ+ as Σ+ = Σ*−{𝜀}.

�

2.1.2 Languages

Languages are one step above alphabets. They are sets of strings over an alphabet, both
finite and infinite, defined as follows:

Definition 2.5. We define a language 𝐿 over Σ* as a set 𝐿 ⊆ Σ*. If 𝐿 is a finite set, we
call it a finite language, otherwise it’s an infinite language.

�

We will now show an example of alphabet and a language over said alphabet.

Example 2.6. Let there be an alphabet Σ = {𝑎, 𝑏}. Let us define a language 𝐿 =
{𝑎𝑛𝑏𝑛;𝑛 ∈ N}. This would create an infinite language of strings in form 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏,
etc.. This is obviosly a subset of Σ* (all strings possibly made with only 𝑎 and 𝑏), and thus
by definition, it is an alphabet over Σ.

�

2.1.3 Grammars

In the field of natural languages, grammars set the rules that generate the structure of the
language: how words are formed, the word order, where the commas go, et cetera. They
do not define the meaning of said words or sentences, however. In formal languages, this
is very much same, as formal grammars lay down the rules for constructing languages. In
other words, a formal grammar generates a formal language.

Definition 2.7. A context-free grammar is a 4-tuple 𝐺 = (𝑁,𝑇,𝑅, 𝑆), whose elements are
defined as follows:

𝑁 is a finite set of non-terminal symbols

𝑇 is a finite set of terminal symbols

𝑅 is a finite set of productions rules in form of 𝐴 → 𝑤;𝐴 ∈ 𝑁 ;𝑤 ∈ (𝑁 ∪ 𝑇)*

5

𝑆 is the starting non-terminal, 𝑆 ∈ 𝑁

�

It should be noted that while there also exist context-sensitive grammars for whose pro-
duction rules holds true that 𝐴 ∈ (𝑁 ∪ 𝑇)*. However, those are of no interest for us, and
as such we will only consider context-free grammars for the purposes of this thesis.

The way grammars work is by transforming the output, that starts as the non-terminal
𝑆 using production rules from 𝑅, until no non-terminals remain in the output. This means
that in every derivation step they choose a non-terminal from the current output, and ap-
ply any applicable rule (any rule whose right side is equal to the chosen non-terminal) by
replacing the non-terminal with the sequence of terminals on the left side of the production
rule. We will now properly define these actions:

Definition 2.8. A derivation step is a transition 𝑥
𝐴→𝑤−−−→ 𝑦 using the production rule

𝐴 → 𝑤, where
𝑥 = 𝑥1𝐴𝑥2;𝐴 ∈ 𝑁 ;𝑥1, 𝑥2 ∈ (𝑁 ∪ 𝑇)*

and
𝑦 = 𝑥1𝑤𝑥2;𝑥1, 𝑥2, 𝑤 ∈ (𝑁 ∪ 𝑇)*

The production rules have often times assigned their ordinal number. In such case, we can
also write 𝑥

𝑛−→ 𝑦, with 𝑛 being the ordinal number of said production rule.

�

While by strict definition the order of non-terminals chosen is irrelevant, in praxis we
always use one of two approaches:

1. Always picking the left-most non-terminal, this results in a left-most derivation

2. Always picking the right-most non-terminal, this results in a right-most derivation

For the purposes of this thesis, we will always consider a derivation to be left-most unless
specifically said otherwise.

Definition 2.9. We define a k-step derivation 𝑆 →=𝑘 𝑤 a derivation, that applies exactly
𝑘 production rules to the output, to produce a valid output string 𝑤.
We define a derivation 𝑆 →* 𝑤, as a k-step derivation, where 𝑘 ≥ 0.
We define a derivation 𝑆 →+ 𝑤, as a k-step derivation, where 𝑘 ≥ 1.

�

Definition 2.10. We define 𝑤 a string generated by grammar G, denoted 𝑆 ⇒𝐺 𝑤, if and
only if there exists such production in G, for which

𝑆 →* 𝑤;𝑤 ∈ 𝑇 *

holds true.

�

6

Definition 2.11. A language 𝐿(𝐺), generated by grammar G, is a language

𝐿(𝐺) = {𝑤|𝑤 ∈ 𝑇 *, 𝑆 ⇒𝐺 𝑤}

, which is a subset of all strings generated (accepted) by grammar G.
�

With all the important terminology defined, we will now show an example of a context-
free grammar defining a language 𝐿(𝐺) = {𝑎𝑛𝑏𝑛|𝑛 ∈ N}.

Example 2.12. We have a grammar 𝐺 = ({𝑆}, {𝑎, 𝑏}, 𝑅, 𝑆), with R defined as:

𝑆 → 𝑎𝑆𝑏

𝑆 → 𝑎𝑏

We will now show that this grammar really generates language 𝐿(𝐺) = {𝑎𝑛𝑏𝑛|𝑛 ∈ N}. We
start with the non-terminal 𝑆, which we can replace either with 𝑎𝑆𝑏 or 𝑎𝑏, according to
the production rules for 𝑆. If we choose the latter, we have run out of non-terminals, and
have generated the string 𝑎𝑏. Otherwise, we are left with the string 𝑎𝑆𝑏 and we can keep
applying productions 𝑆 → 𝑎𝑆𝑏 for 𝑛− 2 more times, until we are left with 𝑎𝑛−1𝑆𝑏𝑛−1. At
this point, we use the production 𝐴 → 𝑎𝑏, which transforms the string into 𝑎𝑛𝑏𝑛. This
show, that the language generated by this grammar is in fact 𝐿(𝐺) = {𝑎𝑛𝑏𝑛|𝑛 ∈ N}.

�

2.1.4 Pushdown automata

A pushdown automaton is a finite automaton extended by an infinite stack, which is in
formal system theory referred to as a pushdown. A pushdown automaton uses not only the
input, but also the top of the pushdown to decide the next transition.

Definition 2.13. A pushdown automaton is a 7-tuple

𝑃 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑍0, 𝐹)

, whose elements are defined as follows:

𝑄 is a finite set of states

Σ is an input alphabet

Γ is a stack alphabet

𝛿 is a finite set of rules, mappings from 𝑄× (Σ ∪ {𝜀}) × Γ to finite subsets of 𝑄× Γ*

𝑞0 is the initial state, 𝑞0 ∈ 𝑄

𝑍0 is the initial stack symbol, 𝑍0 ∈ Γ

𝐹 is a finite set of terminal states, 𝐹 ⊆ 𝑄

�

7

Each transition, in addition to changing the state of the automaton, also pushes a string
over the stack alphabet Γ.
We use configurations to express a state of a pushdown automaton. This is most commonly
used to express its current state, or as a means to define transitions from 𝛿.

Definition 2.14. We define a configuration of a pushdown automaton 𝑃 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑍0, 𝐹)
a 3-tuple

(𝑞, 𝑤, 𝛾)

, where 𝑞 ∈ 𝑄 is the current state, 𝑤 ∈ Σ* is the current input string, and 𝛾 ∈ Γ* is the
current pushdown.

We denote a pushdown automaton transition defined by a rule

(𝑞, 𝑥, 𝛼) → (𝑟, 𝛽)

, where 𝑞, 𝑟 ∈ 𝑄, are automaton states, 𝑥 ∈ Σ is the current input character, 𝛼 is the
current pushdown top, and 𝛽 ∈ Γ* is a string over the stack alphabet as a mapping

(𝑞, 𝑥𝑤, 𝛼𝛾) ⊢ (𝑟, 𝑤, 𝛽𝛾)

and in definitions we denote it as

𝛿(𝑞, 𝑥, 𝛼) ∋ (𝑟, 𝛽)

.

By the example set in 2.9, we define a transition

(𝑞, 𝑤, 𝛾) ⊢* (𝑟, 𝑤′, 𝛾′)

as a k-step transition, where 𝑘 ≥ 0.

�

As pushdown automata are finite automata, there is a need to decide when its operation
is correctly finished; string that leads to the automaton finishing correctly is also called a
string accepted by the automaton. This can be determined using one of 3 methods:

∙ in finishing state and empty input string

∙ in finishing state and empty pushdown

∙ in finishing state, empty input string and pushdown

In the first two methods the state of pushdown and input string, respectively, is not rele-
vant. If the automaton cannot apply any of the rules before the chosen condition is met,
the automaton fails meaning that the input string is not accepted by the automaton. It
should be noted that in practice, it is not uncommon that the ”in finishing state“ condition
is disregarded. Often time it is formalized as 𝐹 = ∅.

As an example of a pushdown automaton, we will construct one that accepts the same
language as the grammar in example 2.12.

8

Example 2.15. Denote a pushdown automaton

𝑃 = ({𝑞}, {𝑎, 𝑏}, {𝑆,𝐸, 𝑏}, 𝛿, 𝑞, 𝑆, {𝑞})

that accepts strings by empty input string and pushdown, where rules 𝛿 are defined as:

𝛿(𝑞, 𝜀, 𝑆) = {(𝑞, 𝜀)}
𝛿(𝑞, 𝑎, 𝑆) = {(𝑞, 𝐸)}
𝛿(𝑞, 𝑎, 𝐸) = {(𝑞, 𝐸𝑏)}
𝛿(𝑞, 𝑏, 𝐸) = {(𝑞, 𝜀)}
𝛿(𝑞, 𝑏, 𝑏) = {(𝑞, 𝜀)}

We can see right away from the first rule that this pushdown automaton will accept
empty strings. In the case that the input string is a string in form 𝑎𝑛𝑏𝑛 we first apply
transition (𝑞, 𝑎, 𝑆) → (𝑞, 𝐸) followed by 𝑛 − 1 transitions (𝑞, 𝑎, 𝐸) → (𝑞, 𝐸𝑏), where 𝑛 is
the total number of 𝑎 symbols in the input. At this moment, the input and output look
like this: (𝑏𝑛, 𝐸𝑏𝑛−1). On the first occurence of symbol 𝑏 we can only use the transition
(𝑞, 𝑏, 𝐸) → (𝑞, 𝜀) which leaves us with state (𝑏𝑛−1, 𝑏𝑛−1). At this point, we apply the
transition (𝑞, 𝑏, 𝑏) → (𝑞, 𝜀) for another 𝑛 − 1 times, until we are left with empty input
and empty pushdown, signifying that the string 𝑎𝑛𝑏𝑛 is really accepted by the pusdown
automaton. If the input string was in the form 𝑎𝑛𝑏𝑚;𝑛 ̸= 𝑚, then there would be an
imbalance between stack symbols which would lead either to non-empty input or non-
empty pushdown after we can no longer apply rules, which means that no such string can
be accepted.

�

Keep in mind that this is not the only pushdown automaton that accepts such language.
In fact, there is an infinite amount of such automata, but most of them do not concern us
for purposes of this thesis.

2.2 Formalisms for translations
Having covered the basic theory for understanding formal systems, we can now move on to
defining theory for translation itself. The preliminary text and definitions were taken from
[1], sections 3.1.2 and 3.1.4.

There are several desirable features in translation definitions, two of them being:

1. It should be easy to determine the translation pairs.

2. It should be possible to construct a translator directly from the definition using an
algorithm.

As with translation definitions, there are some particular features that are desirable in
translators. Some of them are:

1. Time efficiency - their time to process string of length 𝑛 should be 𝑂(𝑛).

9

2. Small size.

3. Ability to create small finite test such that if the translator passes this test, it would
guarantee correct working on all inputs.

While there may be several ways to formally describe translations, in this thesis we will
only consider syntax-directed translation schemata and pushdown transducers as means of
doing so.

2.2.1 Syntax-Directed Translation Schemata

A syntax-directed translation schema is essentially a grammar with translation elements
provided with each rule. Every time a certain rule is used in the input derivation step,
the translation element is used to determine a part of the output associated with the input
generated by that rule. They are often times also called translation grammars, but we will
use the term syntax-directed translation schema for purposes of this thesis.

Definition 2.16. A syntax-directed translation shcema (SDTS for short) is a 5-tuple

𝑇 = (𝑁,Σ,∆, 𝑅, 𝑆)

, where

1. 𝑁 is a finite set of nonterminal symbols

2. Σ is a finite input alphabet

3. ∆ is a finite output alphabet

4. 𝑅 is a finite set of rules of the form 𝐴 → 𝛼, 𝛽, where 𝛼 ∈ (𝑁 ∪ Σ)*, 𝛽 ∈ (𝑁 ∪ ∆)*,
and the nonterminals in 𝛽 are a permutation of the non-terminals in 𝛼

5. 𝑆 is the starting non-terminal, 𝑆 ∈ 𝑁

�

As we can see from the definition, a SDTS structurally almost identical to a regular
grammar, with the exception that every rule now has two outputs - first one representing
the input language grammar and the second one representing the ouput language grammar.

For further formal needs, we will also define syntax-directed translation, input, and output
grammar.

Definition 2.17. Define a SDTS 𝑇 = (𝑁,Σ,∆, 𝑅, 𝑆). The grammar

𝐺𝑖 = (𝑁,Σ, 𝑃, 𝑆)

, where 𝑃 = {𝐴 → 𝛼|𝐴 → 𝛼, 𝛽 ∈ 𝑅} is called underlying (or input) grammar of the SDTS
𝑇 .
The grammar

𝐺𝑜 = (𝑁,Σ, 𝑃 ′, 𝑆)

where 𝑃 ′ = {𝐴 → 𝛽|𝐴 → 𝛼, 𝛽 ∈ 𝑅} is called the output grammar or 𝑇 .

10

�

Let us explain these definitions on a simple example:

Example 2.18. Let 𝑇 = ({𝐸}, {𝑎,+, *}, {𝑎,+, *}, 𝑅,𝐸) be a SDTS. R is defined as follows:

𝐸 → 𝐸 + 𝐸,𝐸𝐸+

𝐸 → 𝐸 * 𝐸,𝐸𝐸*

𝐸 → 𝑎, 𝑎

The input grammar 𝐺𝑖 of this SDTS is defined as:

𝐺𝑖 = ({𝐸}, {𝑎,+, *}, 𝑃, 𝐸)

where P contains rules:

𝐸 → 𝐸 + 𝐸

𝐸 → 𝐸 * 𝐸

𝐸 → 𝑎

The output grammar 𝐺𝑜 of this SDTS is defined as:

𝐺𝑜 = ({𝐸}, {𝑎,+, *}, 𝑃 ′, 𝐸)

where P’ contains rules:

𝐸 → 𝐸𝐸+

𝐸 → 𝐸𝐸*

𝐸 → 𝑎

For example, the translation of 𝑎 * 𝑎 + 𝑎 according to this SDTS would be 𝑎𝑎 * 𝑎+.

�

From these facts, we can tell that this particular SDTS translates an expression in infix
notation into an expression in postfix notation.

2.2.2 Pushdown Transducers

We will now introduce an important class of translators called pushdown transducers. Push-
down transducer are obtained by providing a pushdown automaton with an output, that
is, on each step the automaton is allowed to emit a finite-length output string.

11

Definition 2.19. A pushdown transducer (PDT) 𝑃 is an 8-tuple

𝑃 = (𝑄,Σ,Γ,∆, 𝛿, 𝑞0, 𝑍0, 𝐹)

, where all symbols have the same meaning as for a pushdown automaton, except that ∆
is an outptut alphabet and 𝛿 is now mapping from 𝑄 × (Σ ∪ {𝜀}) × Γ to finite subsets of
𝑄× Γ* × ∆*.

�

The configuration and transition is defined similarily to a pushdown automaton, although
with the difference of adding the current state of the output.

Definition 2.20. We define a configuration of 𝑃 as a 4-tuple (𝑞, 𝑤, 𝛾, 𝑦), where 𝑞, 𝑤,
and 𝛾 are the same as for a PDA and 𝑦 is the output string emmited to this point. If
𝛿(𝑞, 𝑥, 𝑍) ∋ (𝑟, 𝛼, 𝑧), then we write (𝑞, 𝑎𝑤, 𝑍𝛾, 𝑦) ⊢ (𝑟, 𝑤, 𝛼𝛾, 𝑦𝑧) for all 𝑤 ∈ Σ*, 𝛾 ∈ Γ*, and
𝑦 ∈ ∆*.

We say that 𝑦 is an output for 𝑤 if (𝑞0, 𝑤, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝛼, 𝑦) for some 𝑞 ∈ 𝐹 and
𝛼 ∈ Γ*. The translation defined by P , denoted 𝜏(𝑃), is

{(𝑥, 𝑦)|(𝑞0, 𝑤, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝛼, 𝑦), 𝑞 ∈ 𝑄,𝛼 ∈ Γ*}.

�

As with pushdown automata we can say that 𝑦 is an output for 𝑥 by empty pushdown
list if (𝑞0, 𝑥, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝜀, 𝑦), 𝑞 ∈ 𝑄. The translation defined by P by empty pushdown
list is

{(𝑥, 𝑦)|(𝑞0, 𝑤, 𝑍0, 𝜀) ⊢* (𝑞, 𝜀, 𝜀, 𝑦), 𝑞 ∈ 𝐹}.

As mentioned after definition 2.14, the 𝑞 ∈ 𝐹 is often times disregarded in practice.

Having introduced both syntax-directed translation schemata used to formally describe
translations and pushdown transducers to formalize translation implementation, it would
be beneficial for us to have an algorithm for constructing a PDT from a SDTS. One such
algorithm is provided here:

Algorithm 2.21. Let alphabet ∆′ be defined as:

𝑎′ ∈ ∆′ ⇐⇒ 𝑎 ∈ ∆

Let homomorphism ℎ be defined by

∀𝑎 ∈ ∆ : ℎ(𝑎) = 𝑎′

Let us define a PDT 𝑃 = ({𝑞},Σ, 𝑁 ∪ Σ ∪ ∆′,∆, 𝛿, 𝑞, 𝑆, ∅), where 𝛿 is defined as follows:

12

1. ∀𝐴 → 𝑥0𝐵1𝑥1...𝐵𝑘𝑥𝑘, 𝑦0𝐵1𝑦1...𝐵𝑘𝑦𝑘 ∈ 𝑅, 𝑘 > 0 : 𝛿(𝑞, 𝜀, 𝐴) ∋ (𝑞, 𝑥0𝑦
′
0𝐵1𝑥1𝑦

′
1...𝐵𝑘𝑥𝑘𝑦

′
𝑘, 𝜀),

𝑦′𝑖 = ℎ(𝑦𝑖), 0 ≤ 𝑖 ≤ 𝑘

2. ∀𝑎 ∈ Σ : 𝛿(𝑞, 𝑎, 𝑎) = {(𝑞, 𝜀, 𝜀)}

3. ∀𝑎 ∈ ∆ : 𝛿(𝑞, 𝜀, 𝑎′) = {(𝑞, 𝜀, 𝑎)}

�

Proof of this can be found in [1], Lemma 3.2.

Let us explain this algorithm on an example where we construct PDT that implements
SDTS from example 2.18 using algorithm 2.21:

Example 2.22. Let 𝑃 = ({𝑞}, {𝑎,+, *}, {𝐸, 𝑎, 𝑎′,+,+′, *, *′}, {𝑎,+, *}, 𝛿, 𝑞, 𝐸, ∅) be a PDT.
We define 𝛿 as:

𝛿(𝑞, 𝜀, 𝐸) = {(𝑞, 𝐸 + 𝐸+′, 𝜀), (𝑞, 𝐸 * 𝐸*′, 𝜀), (𝑞, 𝑎𝑎′, 𝜀)}

𝛿(𝑞, 𝑎, 𝑎) = {(𝑞, 𝜀, 𝜀)}

𝛿(𝑞,+,+) = {(𝑞, 𝜀, 𝜀)}

𝛿(𝑞, *, *) = {(𝑞, 𝜀, 𝜀)}

𝛿(𝑞, 𝜀,+′) = {(𝑞, 𝜀,+)}

𝛿(𝑞, 𝜀, *′) = {(𝑞, 𝜀, *)}

𝛿(𝑞, 𝜀, 𝑎′) = {(𝑞, 𝜀, 𝑎)}

Let us look at the steps done by the PDT on the same input as in example 2.18:

13

(𝑞, 𝑎 * 𝑎 + 𝑎,𝐸, 𝜀) ⊢ (𝑞, 𝑎 * 𝑎 + 𝑎, 𝐸 + 𝐸+′, 𝜀)

⊢ (𝑞, 𝑎 * 𝑎 + 𝑎, 𝐸 * 𝐸 *′ +𝐸+′, 𝜀)

⊢ (𝑞, 𝑎 * 𝑎 + 𝑎, 𝑎𝑎′ * 𝐸 *′ +𝐸+′, 𝜀)

⊢ (𝑞, * 𝑎 + 𝑎, 𝑎′ * 𝐸 *′ +𝐸+′, 𝜀)

⊢ (𝑞, * 𝑎 + 𝑎, * 𝐸 *′ +𝐸+′, 𝑎)

⊢ (𝑞, 𝑎 + 𝑎, 𝐸 *′ +𝐸+′, 𝑎)

⊢ (𝑞, 𝑎 + 𝑎, 𝑎𝑎′ *′ +𝐸+′, 𝑎)

⊢ (𝑞, + 𝑎, 𝑎′ *′ +𝐸+′, 𝑎)

⊢ (𝑞, + 𝑎, *′ +𝐸+′, 𝑎𝑎)

⊢ (𝑞, + 𝑎, + 𝐸+′, 𝑎𝑎*)

⊢ (𝑞, 𝑎, 𝐸+′, 𝑎𝑎*)

⊢ (𝑞, 𝑎, 𝑎𝑎′+′, 𝑎𝑎*)

⊢ (𝑞, 𝜀, 𝑎′+′, 𝑎𝑎*)

⊢ (𝑞, 𝜀, +′, 𝑎𝑎 * 𝑎)

⊢ (𝑞, 𝜀, 𝜀, 𝑎𝑎 * 𝑎+)

As we see, this translator produced output 𝑎𝑎 * 𝑎+ for input 𝑎 * 𝑎 + 𝑎, the same as the
aforementioned STDS from example 2.18.

�

14

Chapter 3

Implementation

The knowledge of theory from the previous chapter was utilized to create a tool called if2pf
using C++ programming language. Standing for ”infix to postfix“, that does exactly what
it says on the tin – it transforms an expression in infix notation into an equivalent expres-
sion in postfix notation.

This chapter is dedicated to description of the tool and explanation of the implementa-
tion decisions made in its making.

3.1 Underlying SDTS and PDT
The very base stone of any translation is the SDTS which defines the language that’s being
translated from and the language that’s being translated to.

The STDS that I ultimately settled for after some fixes, tweaks and changes was:

𝑇 = ({𝐸}, {𝑎,+,−, *, /, (,)}, {𝑎,+,−, *, /}, 𝑅,𝐸)

, with rules defined as:

1. 𝐸 → 𝐸 + 𝐸,𝐸𝐸+

2. 𝐸 → 𝐸 − 𝐸,𝐸𝐸−

3. 𝐸 → 𝐸 * 𝐸,𝐸𝐸*

4. 𝐸 → 𝐸/𝐸,𝐸𝐸/

5. 𝐸 → (𝐸), 𝐸

6. 𝐸 → 𝑎, 𝑎

Example 3.1. This example will demonstrate that this SDTS does in fact describe a
translation from infix expressions to postfix.
(The input/output string pairs have been encapsulated in brackets for better readability of
this example.)

[𝐸, 𝐸]
3−→ [𝐸 * 𝐸, 𝐸𝐸*]

7−→ [𝑎 * 𝐸, 𝑎𝐸*]
6−→ [𝑎 * (𝐸), 𝑎𝐸*]

1−→
1−→ [𝑎 * (𝐸 + 𝐸), 𝑎𝐸𝐸 + *]

7−→ [𝑎 * (𝑏 + 𝐸), 𝑎𝑏𝐸 + *]
7−→ [𝑎 * (𝑏 + 𝑐), 𝑎𝑏𝑐 + *]

15

�

From the final output string we can see that 𝑏𝑐+ will be computed first, followed by
𝑎𝑑*, where 𝑑 = 𝑏𝑐+. This is effectively the same as 𝑎 * (𝑏 + 𝑐), meaning that the output
string is in fact a translation of the input string

3.1.1 Input grammar

As we are translating from postfix expressions, our input grammar 𝐺𝑖 must generate infix
expressions. One of such grammars, and probably the simplest one of them is:

𝐺 = ({𝐸}, {𝑎,+, *}, 𝑅,𝐸)

, where 𝑅 contains rules as follows:

1. 𝐸 → 𝐸 + 𝐸

2. 𝐸 → 𝐸 * 𝐸

3. 𝐸 → 𝑎

This grammar is the most basic grammar that only produces expressions like 𝑎+𝑎, 𝑎*𝑎
and combinations of thereof. You can see it cannot do subtractions, divisions or paretheses.
As the grammar is very simple, expanding it to accomodate for these requirements is very
straightforward.
Note that while we are formally using the rule 𝐸 → 𝑎, but the actual implementation uses
rules from 𝐸 → 𝑎 to 𝐸 → 𝑧, but for the sake of not writing out 25 more rules, we will
only write the rule 𝐸 → 𝑎, which will also include the other 25 rules for the rest of variables.

With all this said, we can define our final input grammar 𝐺𝑖:

𝐺𝑖 = ({𝐸}, {𝑎,+,−, *, /, (,)}, 𝑅𝑖, 𝐸)

with the rules in 𝑅𝑖 defined as

1. 𝐸 → 𝐸 + 𝐸

2. 𝐸 → 𝐸 − 𝐸

3. 𝐸 → 𝐸 * 𝐸

4. 𝐸 → 𝐸/𝐸

5. 𝐸 → (𝐸)

6. 𝐸 → 𝑎

We can see that the grammar is left-recursive, which means that the leftmost symbol
from 𝑤 in 𝐴 → 𝑤 is the same as 𝐴. While this trait is often times undesirable, especially
in grammars used to construct compilers, it doesn’t concern us in the case of translation
from infix to postfix.

We will show on an example that this grammar does, in fact, produce infix expressions:

16

Example 3.2. We begin with the non-terminal 𝐸 and we apply productions, choosing the
leftmost non-terminal every time:

𝐸
3−→ 𝐸 * 𝐸 6−→ 𝑎 * 𝐸 5−→ 𝑎 * (𝐸)

1−→ 𝑎 * (𝐸 + 𝐸)
6−→ 𝑎 * (𝑏 + 𝐸)

6−→ 𝑎 * (𝑏 + 𝑐)

We can clearly see, that this expression is in infix form. Any other expression would
be constructed in a similar fashion and would also be in infix form. Note that this is in
now way a rigorous proof, but a demostration of the grammar. Also note that we also used
letters 𝑏 and 𝑐 to denote variables – this is for proper identification of said variables, as we
will later on construct a postfix equivalent of this expression.

�

3.1.2 Output grammar

Having described the input grammar, the output grammar is very similar except as it needs
to generate postfix expressions, the operator have been moved from between non-terminals
to behind of them. Also one big change is that postfix expressions do not have the need for
parentheses, which makes them excellent for computer processing. These changes turn the
grammar 𝐺𝑖 into grammar 𝐺𝑜 as such:

𝐺𝑜 = ({𝐸}, {𝑎,+,−, *, /}, 𝑅𝑜, 𝐸)

with the rules in 𝑅𝑜 defined as

1. 𝐸 → 𝐸𝐸+

2. 𝐸 → 𝐸𝐸−

3. 𝐸 → 𝐸𝐸*

4. 𝐸 → 𝐸𝐸/

5. 𝐸 → 𝑎

As with the input grammar, we will now show on an example that this grammar ideed
produces postfix expressions. We will create a postfix equivalent of the expression created
in example 3.2

Example 3.3. We begin with the non-terminal 𝐸 and we apply productions, choosing the
leftmost non-terminal every time:

𝐸
3−→ 𝐸𝐸* 5−→ 𝑎𝐸* 1−→ 𝑎𝐸𝐸 + * 5−→ 𝑎𝑏𝐸 + * 5−→ 𝑎𝑏𝑐 + *

�

We can see that because of the way the expression is constructed, 𝑏𝑐+ will be computed
first, followed by 𝑎𝑑*, where 𝑑 = 𝑏𝑐+. This is effectively the same as 𝑎 * (𝑏 + 𝑐).

17

3.1.3 Considerations about used grammars

While in construction of compilers we often strive for deterministic LL(1) grammars (a
𝐿𝐿(1) grammar is a grammar that reads input from left to right, produces the leftmost
derivation with lookup of 1 character - that means it only needs the current symbol under
the reading head to decide the next derivation), you could determine that the grammars
𝐺𝑖 and 𝐺𝑜 we use are neither deterministic, nor 𝐿𝐿(1). and I’m actually quite sure they’re
not even 𝐿𝐿(𝑘) grammars.

Even though the chosen grammars are far from what would be considered ideal when
creating compilers, they work just fine in translations. In fact, I found it impossible to
construct a working SDTS using 𝐿𝐿(1) grammars for this particular trasnlation. This is
mainly due to the nature of such translation: the position, and possibly even order of op-
erators within the string is changed due to how operator priorities are handled. This holds
especially true for expressions in parentheses, as they can move operators with lesser pri-
ority before operators with greater priority, which would otherwise come before said lower
priority operators.

With all this said, the method I devised to make this work despite all the complications
will be covered in further part of this paper dedicated to implementation, as it has nothing
to do with the theoretical part of the program.

I also took this opportunity to show that one doens not require grammars with perfect
attributes to achieve good results.

3.1.4 The underlying PDT

As we showed earlier, our chosen STDS describes the translation we seek, this means all
that is left now is to construct a PDT that is equivalent to it.
The PDT 𝑃 constructed from the SDTS for this translation using algorithm 2.21:

𝑃 = ({𝑞}, {𝑎,+,−, *, /, (,)}, {𝐸, 𝑎, 𝑎′,+,+′,−,−′, *, *′, /, /′, (,)},
{𝑎,+.−, *, /}, 𝛿, 𝑞, 𝐸, ∅)

18

with transition 𝛿 defined as:

𝛿(𝑞, 𝜀, 𝐸) = {
(𝑞, 𝐸 + 𝐸+′, 𝜀),

(𝑞, 𝐸 − 𝐸−′, 𝜀),

(𝑞, 𝐸 * 𝐸*′, 𝜀),
(𝑞, 𝐸/𝐸/′, 𝜀),

(𝑞, (𝐸), 𝜀),

(𝑞, 𝑎𝑎′, 𝜀)

}
𝛿(𝑞, 𝑎, 𝑎) = {(𝑞, 𝜀, 𝜀)}
𝛿(𝑞,+,+) = {(𝑞, 𝜀, 𝜀)}
𝛿(𝑞, *, *) = {(𝑞, 𝜀, 𝜀)}
𝛿(𝑞, (, () = {(𝑞, 𝜀, 𝜀)}
𝛿(𝑞,),)) = {(𝑞, 𝜀, 𝜀)}

𝛿(𝑞, 𝜀,+′) = {(𝑞, 𝜀,+)}
𝛿(𝑞, 𝜀, *′) = {(𝑞, 𝜀, *)}
𝛿(𝑞, 𝜀, 𝑎′) = {(𝑞, 𝜀, 𝑎)}

As was said before, the transitions that contain the terminal 𝑎 in any way or form stand
for all such transitions from 𝑎 to 𝑧, but only the 𝑎 ones are shown for the sake of brevity.
We are now going to show, for the sake of completeness, that this PDT is equivalent to the
aforementioned STDS.

19

Example 3.4.

(𝑞, 𝑎 * (𝑏 + 𝑐), 𝐸, 𝜀) ⊢ (𝑞, 𝑎 * (𝑏 + 𝑐), 𝐸 * 𝐸*′, 𝜀)

⊢ (𝑞, 𝑎 * (𝑏 + 𝑐), 𝑎𝑎′ * 𝐸*′, 𝜀)

⊢ (𝑞, * (𝑏 + 𝑐), 𝑎′ * 𝐸*′, 𝜀)

⊢ (𝑞, * (𝑏 + 𝑐), * 𝐸*′, 𝑎)

⊢ (𝑞, (𝑏 + 𝑐), 𝐸*′, 𝑎)

⊢ (𝑞, (𝑏 + 𝑐), (𝐸)*′, 𝑎)

⊢ (𝑞, 𝑏 + 𝑐), 𝐸)*′, 𝑎)

⊢ (𝑞, 𝑏 + 𝑐), 𝐸 + 𝐸+′)*′, 𝑎)

⊢ (𝑞, 𝑏 + 𝑐), 𝑏𝑏′ + 𝐸+′)*′, 𝑎)

⊢ (𝑞, + 𝑐), 𝑏′ + 𝐸+′)*′, 𝑎)

⊢ (𝑞, + 𝑐), + 𝐸+′)*′, 𝑎𝑏)

⊢ (𝑞, 𝑐), 𝐸+′)*′, 𝑎𝑏)

⊢ (𝑞, 𝑐), 𝑐𝑐′+′)*′, 𝑎𝑏)

⊢ (𝑞,), 𝑐′+′)*′, 𝑎𝑏)

⊢ (𝑞,), +′)*′, 𝑎𝑏𝑐)

⊢ (𝑞,),)*′, 𝑎𝑏𝑐+)

⊢ (𝑞, 𝜀, *′, 𝑎𝑏𝑐+)

⊢ (𝑞, 𝜀, 𝜀, 𝑎𝑏𝑐 + *)

�

As we can see, the result is the same as in example 3.1, meaning that this PDT is really
equivalent with the infix to postfix SDTS defined earlier in this chapter, which means that
implementing this PDT will implement a translation of expressions from infix to postfix
notations. This observation concludes this chapter, as now we are ready to implement this
transducer.

3.2 Translator implementation
Having figured the PDT for the translation, the only thing left is to implement it; however
such implementation is generally no menial task. If your PDT is created from a 𝐿𝐿(1)
SDTS, then it is of course easy: you can implement it the same way you would implement
a recursive descent complier, except you would include pushdown and output manipulation.

As was stated in section 3.1.3, our chosen SDTS is not created using 𝐿𝐿(1) grammars,
which means that this solution is not usable. The fact that we are dealing with a formal
language that factors precedence is also one of the reasons that the recursive descent solution
may not have worked anyway.

20

3.2.1 Input preparation

To deal with this problem, an input preparation algorithm, that reads the input expression
and returns a list of operators sorted by their priorities in ascending order was devised.
This list is used to choose transitions that produce a correct output.

Example 3.5.
An input string ”𝑎 * (𝑏 + 𝑐) * 𝑑 + 𝑒“ would be transformed to list ”+ * *(+“.
An input string ”𝑎 + 𝑏− 𝑐“ would be transformed to list ”−+“.

�

You can see that the closing parenthesis is omitted as it only caused problems with the
implementation and otherwise was not a factor in any shape or form. You can also see
that the order of operators in the second example is mirrored, this is because we are using
a pushdown (a stack), which is a LIFO container in nature. If the string ”𝑎 + 𝑏 − 𝑐“ was
transformed into ”+−“ (that is, without mirroring the order of equiprecedent operators),
it would lead to an incorrect translation. We will explain why in Algorithm section. Also
note that the original input string is conserved.

Algorithm 3.6.
Define a set of operators 𝑂 = {+,−, *, /, (,)}.
Define an input string 𝑤.
Define a stack 𝑆 that holds positions of starting parentheses.
Define a list 𝑃 of pairs of indices.
Define a list 𝐿 of sorted operators.

For all characters in 𝑤:

1. read 𝑖− 𝑡ℎ character 𝑎𝑖 from 𝑤

2. if 𝑎𝑖 = (then push index of 𝑘 into 𝑆, where 𝑘 = |𝐿| + 1

3. if 𝑎𝑖 =) then pop index 𝑙 from 𝑆 and put a pair (𝑙, 𝑘) into 𝑃

4. if 𝑎𝑖 ∈ 𝑂 then add 𝑎𝑖 to 𝐿, go back to step 1.

In the end, we also add a pair (1, |𝐿|) into 𝑃 .

After this is done, we are left with a list of operators that is not sorted yet. The next part
will sort them by precedence.

For all pairs (𝑗, 𝑖) ∈ 𝑃 :

1. sort all operators in interval from 𝑗 to 𝑖 in 𝐿 by precedence in ascending order, treat
expressions in parentheses as a single operator

2. mirror sequences of equiprecedent operators, leaving out expressions in parentheses

3. remove the closing parenthesis

After all these steps, the list 𝐿 is in fact a list of operators sorted ascending by their
precedence, as showed in example 3.5.

21

�

To make things clear, we will show an example of how such list is constructed from an
output.

Example 3.7.

Define input string 𝑤 = 𝑎* (𝑏+ 𝑐* (𝑑− 𝑒+𝑓))/𝑔. After the first part of the algorithm is
done, 𝑤 = *(+*(−+))/. We have 3 intervals defined in 𝑃 , those are (1, 10), (2, 9), and (5, 8).

After applying the second part on the interval (1, 10), we are left with 𝑤 = / * (+ * (−+)).

Next is the interval (2, 9) after which 𝑤 = / * (+ * (−+).

After the algorithm is applied for the last interval, we are left with 𝑤 = / * (+ * (+−.

�

3.2.2 Structures

An important part of implementing a translation, or any formal system for that matter, is
representation of transitions. For example, in the case of aforementioned 𝐿𝐿(1) grammars
transitions are represented by methods that form a recursive descent parser. Unfortunately,
we cannot use such approach for our particular translator. What we can use is storing the
transitions in a structure similar to the mathemathical representation of transition. While
such approach may be rather naïve and most likely not very time-efficient compared to
other possible means of representing transitions, it is also the simplest and most readable.
Since our goal is not to create a highly efficient industrial solution but rather to show a
proof of concept I decided to use exactly such solution.

As we can see in definition 2.19 a PDT transition is effectively a mapping (𝑞, 𝑥, 𝛼) →
(𝑟, 𝛽, 𝑦) where 𝑞, 𝑟 are states, 𝑥 is an input character, 𝑦 is an output string, 𝛼 is a character
on pushdown top and 𝛽 is the string that is pushed into the pushdown. Representing such
transition by a single tuple would be advantageous for programmatical purposes. Since
the PDT we use only has one state, this implies that 𝑞 = 𝑟 and hence the state is not a
factor. The final representation chosen was (𝑥, 𝛼, 𝑦, 𝛽, ℎ), as the elements are ordered in a
way where the input elements come before the output ones. There is also an extra element
ℎ called hint which is used in transitions that would otherwise be non-deterministic. If a
transition is deterministic, then ℎ = 𝜀. The C++ class that achieves this is:

class PDTtransition {
PDTsymbol string_input;
PDTsymbol stack_input;
PDTsymbolString string_output;
PDTsymbolString stack_output;
PDTsymbol hint;

};

It is apparent that this class truly represents the tuple (𝑥, 𝛼, 𝑦, 𝛽, ℎ). Note that all class
methods are omitted from this listing and will be omitted from any other code listing for
sake of brevity.

22

You can see that that the PDTtransition class is composed of 5 members of 2 types:
class PDTsymbol that represents a single symbol of an alphabet and class PDTsymbolString
which is a string of such symbols.

class PDTsymbol {
std::string symbol;

};

class PDTsymbolString {
std::vector<PDTsymbol> symbolString;

};

The class PDTsymbol was chosen to represent a single symbol with a C++ string because
this way you could represent symbols like 𝑎′ literally by string "a’", without any need to
look for substitute characters. This is, of coure, not an optimal solution, as every string
operation takes at least 𝑂(𝑛) time. It is, however, the most readable, and readability is
one of the goals of this thesis.

3.2.3 Translation algorithm

Having defined our structures and a way to prepare the input to help us correctly translate
it, we can now move on to the algorithm that performs the actual translation. Note that
the implemented PDT accepts strings by empty pushdown.

Until now, we have been only considering the syntax of both input and output language
for the translation grammar. But since a program cannot, unlike humans, choose correct
transitions in correct order to produce a correct translation by means of logical thinking,
we need to start looking at the semantics as well. Let us expand on definition 2.1. If we had
an infix expression 𝐴𝑜1𝐵𝑜2𝐶, and precedence of 𝑜1 and 𝑜2 was the same, then the postfix
equivalent would be 𝐴𝐵𝑜1𝐶𝑜2; this means that operations would be calculated in the order
they are written. If, however, the precedence of 𝑜2 was greater than that of 𝑜1, it would
mean that operation 𝐵𝑜2𝐶 would precede 𝐴𝑜1𝑋; this would be translated as 𝐴𝐵𝐶𝑜2𝑜1.
This means that more precedent operators need to appear before less precedent ones in
postfix notation.

Since we are implementing a PDT, which contains a pushdown – a LIFO structure –
we need to push the less precedent operators before the more precedent ones, which would
result in more precedent operators being translated before the less precedent ones, which
is exactly what we want. This is the reason we created a list of operators sorted by their
precedence using alorithm 3.6; so that it can help us deterministically choose the tranitions
to apply to create a correct translation.

Algorithm 3.8.
Define current currently first symbol of the input string. If the input string is empty then
current = "".
Define peek a symbol right after current. If the input string length is 1 and no symbol
after current can be acquired then peek = "".
Define pushdown 𝑃 , whose initial element is 𝐸.
Define 𝐿 list of operators sorted by precedence.

23

Define function 𝑓𝑝(𝑥) a priority function, such that 𝑓𝑝(𝑎) = 𝑓𝑝(𝑏) = ... = 𝑓𝑝(𝑧) < 𝑓𝑝(+) =
𝑓𝑝(−) < 𝑓𝑝(*) = 𝑓𝑝(/) < 𝑓𝑝(

′(′) = 𝑓𝑝(
′)′) < 𝑝(𝑡ℎ𝑒 𝑟𝑒𝑠𝑡).

Define hint ℎ.

While 𝑃 is not empty:

1. read current and peek from input, move in input by one symbol

2. acquire top symbol stackTop from 𝑃

3. if stackTop != E declare ℎ = 𝜀 and jump to step 6.

4. if 𝑓𝑝(current) ≥ 𝑓𝑝(𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐿) or 𝑓𝑝(peek) ≥ 𝑓𝑝(𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐿), then

4a. if |𝐿| > 0, then ℎ = 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐿 and remove first element of 𝐿 from 𝐿

4b. else ℎ = current

5. otherwise ℎ = current

6. find transition (current, stackTop, 𝑦, 𝛽, ℎ), if no transition is found then end with
error

7. push 𝛽 to 𝑃 , write 𝑦 to output

�

The most important part of the algorihm is step 4. where it checks whether the input
(since one of current or peek will always be an operator in a correctly written expres-
sion) includes operators with lesser or equal priority than the operator currently on the
beggining of 𝐿. This ensures that the operators in output will be placed in the correct
order, as in infix notation the operations with lower priority occur after the operations
with higher priority when reading from left to right. This will in effect cause the translator
to first use production rules that create a ”base“ for higher priority operations and then
repeats the process for each ”operand“ (either a variable or an expression in parentheses) in
the base expression. Only by doing this we can achieve the correct order of output operands.

Another fact that should be mentioned that due to the nature of PDTtoken using a C++
string, the only reasonable search method in step 6. is linear seach - meaning that every
time we search for the transition we iterate the whole list of transitions, comparing strings
on every iteration. This gives this search algorithm a terrible worst-case time complexity
𝑂(𝑛.𝑚), where 𝑛 is the number of transitions and 𝑚 is the maximum length of a string,
whose comparison takes 𝑂(𝑚). While this is the theoretical time complexity, the effective
time complexity would be 𝑂(1), although with a very large constant, as 𝑛 stays constant
(89) during the translation and 𝑚 is always ≤ 2 in this particular translator.

Example 3.9.
Let us have an input string 𝑤 = 𝑎 * (𝑏+ 𝑐). By applying algorithm 3.6 to it, we now have a
sorted list of operators 𝐿 = *(+. Pushdown 𝑃 is starting with only symbol 𝐸. Translation

24

process will be shown as a sequence of rows with each row showing the state of the trans-
lator before applying a transition that would lead into the row below it.

input=a*(b+c) | current=a | peek=* | L=*(+ | P=E | hint=* | output=”
input=a*(b+c) | current=a | peek=* | L=(+ | P=E*E*’ | hint=a | output=”
input=a*(b+c) | current=a | peek=* | L=(+ | P=aa’*E*’ | hint=” | output=”
input=*(b+c) | current=* | peek=(| L=(+ | P=a’*E*’ | hint=” | output=”
input=*(b+c) | current=* | peek=(| L=(+ | P=*E*’ | hint=” | output=a
input=(b+c) | current=(| peek=b | L=(+ | P=E*’ | hint=(| output=a
input=(b+c) | current=(| peek=b | L=+ | P=(E)*’ | hint=” | output=a
input=b+c) | current=b | peek=+ | L=+ | P=E)*’ | hint=+ | output=a
input=b+c) | current=b | peek=+ | L=” | P=E+E+’)*’ | hint=b | output=a
input=b+c) | current=b | peek=+ | L=” | P=bb’+E+’)*’ | hint=” | output=a
input=+c) | current=+ | peek=c | L=” | P=b’+E+’)*’ | hint=” | output=a
input=+c) | current=+ | peek=c | L=” | P=+E+’)*’ | hint=” | output=ab
input=c) | current=c | peek=) | L=” | P=E+’)*’ | hint=c | output=ab
input=c) | current=c | peek=) | L=” | P=cc’+’)*’ | hint=” | output=ab
input=) | current=) | peek=” | L=” | P=c’+’)*’ | hint=” | output=ab
input=) | current=) | peek=” | L=” | P=+’)*’ | hint=” | output=abc
input=) | current=) | peek=” | L=” | P=)*’ | hint=” | output=abc+
input=” | current=” | peek=” | L=” | P=*’ | hint=” | output=abc+
input=” | current=” | peek=” | L=” | P=” | hint=” | output=abc+*

�

Note that the last three rows of the sequence are misaligned to the rest on purpose so
that the ouput could fit well inside the page.

If you compare the sequence of colums input, P, and output with example 3.4, you can
see that they have the same values through the whole sequence of transitions. This further
shows that the implemented translator is in fact equivalent to the PDT defined in section
3.1.4, and hence equivalent to the SDTS defined in 3.1, and hence exactly the translator
we have been seeking to implement.

25

Chapter 4

Conclusion

By creating a software translator from a formal description of a translation I have suc-
cessfully achieved the main goal of this thesis. The existence of such translator provides
not only a proof of concept of easily implementing 𝐿𝐿(𝑘)-based translations for large or
variable 𝑘 (maybe even non-𝐿𝐿-based translations); but even more importantly an easily
understandable and expandable example for a translator.

As was mentioned before, the if2pf in its current state is rather poorly optimized for
performance, which provides much opportunity for optimization even in its base form.

One possible improvement would be not to use std::string for encoding symbols,
but rather representing each symbol as an arbitrary combination of bits stored in a prim-
itive type. Each combination’s meaning would then be represented by a lookup table pair
𝑏𝑖𝑡_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ↔ 𝑠𝑦𝑚𝑏𝑜𝑙. This would allow for a reasonable amount of represented
symbols and increased speed as it would no longer be necessary to compare strings. The
memory footprint of such solution would probably be lower as well, as there would be no
need to store a string object, but only a few bytes for each symbol. In case of great number
of symbols, this advantage might be partially offset by a large lookup table that would be
needed.

Other such improvement would be to merge stack top symbol and hint into a single
field, effectively creating a unique key for each transition. The list of such ”compacted”
transitions could then be sorted by the stack-hint field, which would make it possible to use
binary search, which would bring down worst-case time complexity of finding a transition
during translation from 𝑂(𝑛.𝑚) to 𝑂(𝑙𝑜𝑔 𝑛) where 𝑛 is number of transitions.

Expanding on the concept of formal translation is the logical next step. I see that there
are two essential ways to expand in this area:

1. ”into the depth”: by describing translations using more complex mathemathical mod-
els, such and transforming them into more complex computational models that would
allow even more complex languages to be translated with similar amounts of effort;
or

2. ”into the width”: taking inspiration from [6], chapter 4, utilizing grammar systems
in translation and creating translation systems – systems of several simpler transla-
tion grammars working together achieving the effect of a more complex translation
grammar.

26

Bibliography

[1] AHO, A. V.; ULLMAN, J. D.: Theory of Parsing, Translation and Compiling.
Prentice-Hall, Inc.. 1972. ISBN 0-13-914556-7.

[2] HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D.: Introduction to Automata
Theory, Languages, and Computation, Second Edition. Addison-Wesley. 2001. ISBN
0-201-44124-1.

[3] MEDUNA, A.: Automata and Languages: Theory and Applications. Springer. 2000.
ISBN 978-1-4471-0501-5.

[4] MEDUNA, A.: Elements of Compiler Design. Auerbach Publications. 2008. ISBN
978-1-4200-6323-3.

[5] ROZENBERG, G.; SALOMAA, A.: Handbook of Formal Languages, Volume 1.
Springer. 1997. ISBN 978-3-642-59136-5.

[6] ROZENBERG, G.; SALOMAA, A.: Handbook of Formal Languages, Volume 2.
Springer. 1997. ISBN 978-3-662-07675-0.

27

Appendix A

Attachments

Contents
This thesis includes a memory medium (an SD card) which holds this thesis in PDF format,
its LATEX sources, as well as the created translator if2pf. It will contain two folders as
follows:

if2pf contains source files and Makefile of the if2pf program, as well as its Windows and
Linux executables

thesis contains source files of this thesis, as well as the thesis in PDF format

if2pf manual
The folder if2pf

¯
contains four files in total: if2pf.cc which is its source code; Makefile

used to build the program; if2pf_win.exe which is a Windows executable built using
MinGW G++ compiler on Windows 10; and finally if2pf which is a Linux executable
built using GNU G++ compiler.

Installation

All that is required to build the program is to navigate into its folder in your CLI of
choice and run command make. By invoking command make clean you delete the built
executable. Alternatively, you could just invoke command g++ -Wall –std=c++11 -O2
if2pf.cc -o if2pf; the warning and optimization flags being optional. Please note that
if2pf requires C++11 compatible compiler to build correctly. As if2pf does not use any
platform-specific libraries or function calls, it is fully portable across all platforms that have
C++11 compatible compilers. After the executable is created the program is ready for use.

Usage

The program is invoked by command ./if2pf with no parameters. User then provides an
input string in infix form that meets the following requirements:

1. only operands allowed are in form of ”variables“ represented by lowecase letters of
English language

2. there is no whitespace between any of the operands or operators

28

Otherwise the input string is equivalent to an expression in infix notation that uses only
operators +, −, *, / and parentheses that can be nested. The output of if2pf is in the
same format as its input.

Examples. These few examples show the functionality on three simple examples: first
two providing a correct input, while the thirt once provides an incorrect input by adding a
whitespace into it. The first row of each example shows invokation of the program; the sec-
ond row is the input provided by the user and the third one is the ouput provided by if2pf.

> ./if2pf
> a+b
> ab+

> ./if2pf
> a+b*c
> abc*+

> ./if2pf
> a+ b
> ERROR MESSAGE

�

There is not much more to it, as if2pf is quite a bare-bones tool, but provides great
extensibility and moddability in return.

29

	Introduction
	Theory
	Preliminaries
	Alphabets
	Languages
	Grammars
	Pushdown automata

	Formalisms for translations
	Syntax-Directed Translation Schemata
	Pushdown Transducers

	Implementation
	Underlying SDTS and PDT
	Input grammar
	Output grammar
	Considerations about used grammars
	The underlying PDT

	Translator implementation
	Input preparation
	Structures
	Translation algorithm

	Conclusion
	Bibliography
	Attachments

