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Abstract
Grammatical evolution is a relatively new approach to genetic programming that can auto-
matically create solutions to various problems in an arbitrary programming language. This
thesis summarizes the principles and algorithms of grammatical evolution and overviews
the existing systems. Accompanying the thesis is a software called Gram – a new library
offering high performance and applying the best programming principles such as modular
code and automated testing. It has been compared to the best-performing available solution
and showed over 30% improvement in execution time. Gram has also been successfully used
to automate test-driven development, a technique commonly used to create software with
automated tests. The thesis and the software project provide a solid ground for further
research and allow for the application of grammatical evolution in new areas.

Abstrakt
Gramatická evoluce je relavitně nový přístup ke genetickému programování, který dokáže
automatizovaně řešit různé problémy vytvářením programů v libovolném programovacím
jazyce. Tato práce shrnuje prinicipy a algoritmy gramatické evoluce a poskytuje přehled
o existujících systémech. Byla vytvořena nová knihovna Gram, která nabízí vysoký výkon
a dodržuje dobré programátorské zvyklosti, jakými jsou modulárnost a automatické tes-
tování. Porovnání tohoto systému s nejvýkonnějším dostupným řešením ukázalo zlepšení
v době výpočtu překračující 30 %. Gram byl také úspěšně použit pro automatizaci testy
řízeného vývoje, techniky běžně používané při vytváření softwaru s automatizovanými testy.
Tato práce a doplňující softwarový projekt tedy poskytují solidní základ pro další výzkum
a umožňují využití gramatické evoluce v nových oblastech.
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Chapter 1

Introduction

Genetic algorithms (GA) have been successfully used for creating solutions to hard op-
timization and search problems since the 1970s. GA relies on operators inspired by the
principles of genetics (such as mutation, crossover, and selection) to drive a set of initial
candidate solutions to the desired state.

While genetic algorithms evolve fixed-length binary strings, a more recent approach
called genetic programming (GP) operates on individuals in the form of computer programs.
One of the most prominent pioneers of GP was John Koza, author of the first monograph
dealing with Genetic Programming [6].

Later, many variations on genetic algorithms were proposed. One of them is grammati-
cal evolution (GE), introduced in the late 1990s by researchers from University of Limerick.
GE can create computer programs in arbitrary language thanks to its flexible representation
of candidate solutions.

Although GE has been around for almost 20 years, there are not many open-source
and well-performing libraries that would allow wide public to experiment with grammatical
evolution and contribute to its advancement.

Therefore, the goal of this thesis is to create a library with a solid design and good
performance that would make it possible for all developers and researchers to apply GE in
new areas and to contribute their ideas to the open-source community.

The text of this thesis is divided into following chapters:

∙ Chapter 2 introduces genetic programming and grammatical evolution and summa-
rizes the advantages of grammatical evolution.

∙ Chapter 3 provides an overview of existing GE systems, the algorithms they imple-
ment and summarizes their advantages and disadvantages.

∙ Chapter 4 describes the design of the proposed library called Gram.

∙ Chapter 5 explains performance aspects of grammatical evolution systems.

∙ Chapter 6 compares Gram with available solutions and presents an application of
grammatical evolution in real-world software development.

∙ Chapter 7 discusses the results of the thesis and suggests next directions of research.
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Chapter 2

Introduction to Grammatical
Evolution

In this chapter, we will introduce the principles of genetic programming and grammatical
evolution.

∙ In Section 2.1, we will review general mechanisms of genetic programming.

∙ In Section 2.2, we will describe unique aspects of grammatical evolution.

2.1 Genetic Programming
Genetic programming (GP) is an approach to automatic generation of computer programs
inspired by the evolutionary process and genetic mechanisms.

It is an iterative algorithm which first generates a population (i.e. a set) of candidate
solutions. GP then repeatedly performs transformations of the candidate solutions, which
often results in a better set of programs. The process is repeated until it finds a viable
solution or available time is spent. Visualization of this process can be seen in Figure 2.1.

×

÷ ×

×

×

÷ ×

Figure 2.1: Algorithm of genetic programming

GP systems usually work with a tree representation of the program where the nodes
correspond to non-terminals (control structures, functions or operators) and the leaf nodes
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represent terminals of the programming language (variable names, keywords, parenthesis,
etc.). See Figure 2.2 for an example of a GP individual.

×

÷ ×

×

×

÷ ×

Figure 2.2: Tree representing the expression (2 + 𝑥)× 3

There are other versions of GP, for example Linear GP or Cartesian GP, but we will
not deal with them in this thesis.

2.1.1 Initialization

As in other evolutionary algorithms, the initial population in GP is typically generated
randomly. The simplest methods, full and grow, also impose a limitation on the tree depth.

In the full method, nodes are randomly chosen from the set of non-terminals of the
programming language until it reaches the maximum depth. Beyond that depth, it chooses
only from the set of terminals.

The grow method is very similar, except that before reaching the maximum depth, it
is allowed to choose from the whole set of language symbols – both non-terminals and
terminals. This approach results in trees of various sizes and shapes, whereas the full
method creates trees that have only branches of the same length.

Neither the grow nor full method generate trees of diverse enough sizes and shapes.
The lack of diversity led to the creation of their combination referred to as the ramped
half-and-half method [14]. This approach generates half of the population using the grow
method and the second half using the full method. Additionally, the tree depth limit is not
set to a single fixed number. Instead, it is randomly chosen from a range of allowed depths,
resulting in trees of a wide variety of shapes and sizes.

2.1.2 Fitness Evaluation

At this stage, the algorithm does not have any way of knowing which of the generated
programs are good at solving the defined problem. This is the purpose of a fitness function.
It represents the goal of the evolution. In a single-objective scenario, the fitness function
𝑓 is defined as:

𝑓 : 𝑆 → R where 𝑆 is a set of all programs and
𝑓(𝑠) where 𝑠 ∈ 𝑆 is a score of individual program 𝑠.

To determine the fitness of individuals, GP, unlike other evolutionary algorithms, eval-
uates the individuals. The evaluation usually involves recursively walking through the tree
representing an individual and interpreting subtrees along the way.

The individuals’ fitness score a value that can be based on a number of different factors
or their combination, for example:
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∙ the difference between correct output and the actual output;

∙ the amount of time to bring the environment to the desired state;

∙ the accuracy of a process (for example of pattern recognition);

∙ or the compliance structure with specified design criteria.

In some cases, the objective may be comprised of multiple goals, often being in op-
position to each other. The goal of the GP system is to find the best trade-off of those
aspects.

2.1.3 Selection

Similarly to other evolutionary algorithms, genetic operators are applied with higher prob-
ability to individuals with better fitness. This means that high-scoring individuals have
a higher chance of having more children. The two most common selection methods of
selection are tournament selection and roulette-wheel selection.

Tournament Selection

In tournament selection, 𝑘 individuals are randomly picked from the entire population. The
algorithm then compares their fitness scores and chooses the best one which is then moved
to the set of parents. This step is repeated 𝑚 times, where 𝑚 is the number of parents.

What best means depends on the particular fitness function and, therefore, should be
configurable for the tournament. In cases where the fitness values represent the difference
between correct and actual output, lower values are preferred. On the other hand, higher
values are considered better in situations where the fitness value corresponds to individual’s
accuracy.

Note that tournament selection does not take into account the relative differences be-
tween fitness values. The sole goal of a fitness function in combination with the tournament
selection is to determine if one individual is better than other, not by how much.

Roulette-wheel Selection

Roulette-wheel selection places the individuals on an imaginary roulette. The size of the
field for each individual – and consequently the probability of selection 𝑝(𝑖) – is proportional
to its fitness value:

𝑝(𝑖) =
𝑓𝑖∑︀𝑛
𝑗=1 𝑓𝑗

where 𝑛 is the size of population

The selection can be imagined similar to spinning the roulette in a casino.
Unlike tournament selection, in the roulette-wheel method, the fitness has to a be

a positive number, and higher values are automatically considered better. Moreover, the
relative magnitude of fitness plays an important role, as it directly affects the probability
of selection. To accommodate for that, the fitness can undergo a process called the fitness
scaling.

There are a number of different ways how one can scale the fitness and they are chosen
with regard to the problem at hand and to the used fitness function. The goal is to ensure
that fitter solutions have a higher probability of selection while worse individuals still have
a non-zero probability they will be chosen for reproduction.
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2.1.4 Genetic Operators

Genetic operators are used to alter the genetic structure of individuals chosen by the selec-
tion process. Two most commonly used operators are crossover and mutation.

Crossover

Crossover in genetic programming combines elements of two tree structures. It chooses a
crossover point (a node) in both trees and works with subtrees of the two chosen nodes, as
illustrated by Figure 2.3.

The crossover points are usually not chosen with an uniform probability. Koza suggested
the widely used approach of choosing non-terminal nodes 90 % of the time and leaves in
the remaining 10 % [6], which prevents the operator to work with too insignificant parts of
the parental trees.

×

÷ ×

×

×

÷ ×

Figure 2.3: Parents in crossover and the selected subtrees

The two subtrees are then swapped between the parents, causing the tree of the first
parent contain a part of the second parent’s tree and vice versa. (see Figure 2.4).

×

÷ ×

×

×

÷ ×

Figure 2.4: Offsprings created by swapping parent subtrees

The newly created offspring trees are placed in the next population of candidate solu-
tions. This process exchanges genetic material of two viable solutions, which can result in
an even better solution.

Mutation

The most common type of mutation in genetic programming works by randomly selecting
a mutation point in a tree and replacing the whole subtree by a new, randomly generated
tree.
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Another form of mutation is a point mutation which chooses a random node in a tree
and replaces the symbol it contains by a random symbol with the same arity. For example,
an addition symbol can be replaced with multiplication operator, as both of them are binary
and operate on real numbers.

2.2 Grammatical Evolution
In genetic programming, the evolved programs are represented as syntax trees, and the
genetic operators work directly with that structure. There is no clear distinction between
genotype and phenotype of the individual, as observed in nature. In biology, genotype
is the actual genetic information. Phenotype include all observable characteristics of an
individual.

The implication is that the genetic operators are closely tied to the chosen program
representation, meaning they cannot be reused for other representations or languages.

Grammatical evolution overcomes this limitation by introducing a clear distinction be-
tween genotype and phenotype. The genetic operators work with the genotype, represented
as a linear (binary) string, and the phenotype is derived from it by a mapping process [13].
The target language is specified by a formal grammar, usually in Backus-Naur form.

2.2.1 Genotype-phenotype Mapping

The mapping process starts by placing the start symbol of the grammar at the beginning of
new phenotype. The given genotype – a binary string – is converted to a vector of integers,
corresponding to biological codons that determine which amino acid will be used during
protein synthesis.

The integers are one by one used to choose production rules of non-terminals in the
phenotype. The rules are indexed starting from zero and the rule on index 𝑟 is chosen:

𝑟 = 𝑐 mod 𝑅

where 𝑐 is the codon (integer) value from genotype and 𝑅 is the total number of rules for
the current non-terminal.

The non-terminal is replaced by symbols of the chosen rule. This process is repeated
until the phenotype contains only terminals of the grammar. If the algorithm reaches
the end of the genotype while the phenotype still contains non-terminals, the so-called
wrapping event occurs. The genotype is simply read again from the beginning, and the
mapping continues.

To prevent endless loops, grammatical evolution systems usually impose a limit on the
number of wrapping events. If the mapping process exceeds this limit, it assigns a bad
fitness score to the individual, effectively eliminating it from the reproduction process.

Example

We provide an example of a complete mapping process that maps genotype from Figure
2.5 to a phenotype with the use of grammar that can be seen in Listing 2.1. The grammar
represents a formal language that is able to express simple mathematical expressions with
one variable 𝑥, a constant and three binary operators.
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Evolution

«EvaluationDriver»

MultiThreadDriver

«Evaluator»

PopulationIndividuals

Individual

Genotype

«Logger»

«Reproducer»

PassionateReproducer

«Selector»

«Crossover»

«Mutation»

4 1 0 5 3 1genotype

phenotype

<expr>

( <expr> <op> <expr> )

( <var> <op> <expr> )

( x <op> <expr> )

( x × <expr> )

( x × 1 )

4 % 2 = 0

1 % 2 = 1

0 % 2 = 0

5 % 3 = 2

( x × <var> )
3 % 2 = 1

1 % 2 = 1

Figure 2.5: Grammatical evolution genotype

Listing 2.1: Example of a BNF grammar
A) <expr > ::= ( <expr > <op > <expr > ) (0)

| <var > (1)
B) <op > ::= + (0)

| - (1)
| * (2)

C) <var > ::= x (0)
| 1 (1)

First, the phenotype contains the start symbol of the grammar. In BNF, the first rule
is automatically considered to be the start rule:
<expr >

and the first genotype value is used to choose one of two production rules of the start
symbol: 𝑟 = 4 mod 2 = 0. The start rule is therefore replaced by the rule with number 0:
( <expr > <op > <expr > )

In the next step, the second codon with value 1 is used to map the first non-terminal in
the phenotype: <expr>. Index of the production rule is again calculated using the modulo
operator: 𝑟 = 1 mod 2 = 1 and the rule on index 1 containing non-terminal <var> replaces
the <expr> non-terminal, resulting in the following phenotype:
( <var > <op > <expr > )

The third genotype value is used to expand the <var> non-terminal by choosing rule
𝑟 = 0 mod 2 = 0 that contains a single terminal x:
( x <op > <expr > )

The <op> non-terminal is expanded with the use of the fourth genotype codon with
value of 5: 𝑟 = 5 mod 3 = 2 to terminal *:
( x * <expr > )

The last non-terminal in phenotype – <expr> – is expanded to <var>, as the fifth integer
in genotype maps to rule number 1: 𝑟 = 3 mod 2 = 1:
( x * <var > )

The <var> non-terminal is finally mapped to terminal 1 using the last genotype codon
with value 1: 𝑟 = 1 mod 2 = 1. The result of the mapping process is phenotype:
( x * 1 )
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2.2.2 Genetic Operators

The principle of genetic operators is very similar to operators in genetic programming. The
main differences stem from the different representation of an individual.

Crossover

Crossover in grammatical evolution is fairly straightforward compared to the crossover
used in genetic programming thanks to the use of linear integer vector. When two parental
genotypes are to be combined, they are both split at a random position. The offspring is
constructed by concatenating the first part of the first genotype with the second part of
the second genotype, as illustrated by Figure 2.6.

×

+ 3

x2

−

÷ ×

5x xx

×

+ 3

x2

×

+ ÷

x2

−

3 ×

xx5x

Initialization

Evaluation

Solution

Selection

Reproduction

Mutation

Initialization

Evaluation

Solution

Selection

Reproduction

Mutation

8 3 1 2 7 3 6 4

4 7 1 0 9 2

8 3 1 2 9 2

parent

parent

offspring

Figure 2.6: Crossover in grammatical evolution

There is a second type of crossover that is sometimes used in grammatical evolution:
two-point crossover. The difference between simple one-point crossover is that the parental
genotypes are split into three pieces (at two random points), and the offspring is created by
swapping the middle part of the first parental genotype with the second part of the second
parental genotype.

Mutation

The mutation operator iterates over the entire genotype and with defined probability
changes codons to random values. An alternative version of mutation works directly with
bits of the integer that represents a codon.

2.2.3 Unique Properties of Grammatical Evolution

The distinction of genotype and phenotype in grammatical evolution implies a separation
of search and solution spaces, which can result in benefits such as unconstrained search of
the genotype while ensuring the validity of the phenotype [1].

The wrapping mechanism in the genotype-phenotype mapping is similar to overlapping
genes – a phenomenon observed in many viruses, bacteria, and mitochondria – that allows
for a reuse of the same genetic material in different genes [12].

Since the modulo operation used by the mapping process transforms a large range
of numbers into few rules of the grammar, genotype mutation often does not affect the
individual’s phenotype. This is similar to the neutral mutation and codon degeneracy
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observed in biological systems, which may improve the genetic diversity as according to the
neutral theory of evolution [5].
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Chapter 3

Grammatical Evolution
Implementations

Currently, there are only few publicly available implementations of grammatical evolution:
GEVA, AGE, PonyGE, gramEvol, libGE, GERET, and PyNeurGen. Unfortunately, most
of them are not maintained anymore.

In this chapter, we will focus on GEVA and AGE. GEVA implements most of the com-
monly used GE algorithms and can be used as a reference for development of new libraries.
Notable features of AGE include flexible, modular architecture and great performance,
which are also the goals of the project accompanying this thesis.

We will briefly describe the implemented algorithms and assess the strengths and weak-
nesses of both projects. That will be useful during development of a new GE library
described in Chapter 4.

3.1 GEVA
GEVA is a framework for grammatical evolution developed by Natural Computing Research
& Applications group in University College Dublin. The latest version – 2.0 – was released
in June 2011.

The framework is implemented in Java and provides both command line interface and
simple GUI. Its interesting features include modularization of the algorithms and the ability
to combine those modules into pipelines [11].

3.1.1 Goal Definition

The pivotal class of the whole framework is AbstractRun which manages the main evolution
loop. The loop runs until it reaches the maximum number of generations or until the method
foundOptimum returns true. This method has by default access to high-level information
about the fitness and length of individuals in the current population.

While users of the framework are free to create their own implementation of the method,
the provided information may not be sufficient for more complex use-cases, where direct
inspection of each individual might be necessary.

Moreover, the generation limit is hard-coded, meaning users who want to have a different
limit than the default 100 generations must re-implement the whole run method, which is
very complex because it orchestrates the whole evolution.
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3.1.2 Initialization

GEVA offers the following initialization algorithms:

∙ random initialization,

∙ full method,

∙ grow method,

∙ ramped half-and-half method.

Although grammatical evolution uses a binary string to represent individuals, GEVA in-
corporates initialization strategies specific to the tree representation of individuals borrowed
from genetic programming: the full and grow methods described in Section 2.1.

The initialization process constructs a derivation tree based on the BNF grammar along
with the usual GE genotype. This allows to leverage advantages of both genetic program-
ming (great population diversity thanks to a wide range of tree shapes) and grammatical
evolution (simple representation).

The genotype is implemented as a variable length vector of 32-bit integers, the size of
whose cannot be changed.

3.1.3 Selection

Supported selection methods include both methods described in Section 2.1.3: the tourna-
ment and roulette-wheel selection.

The problem is that developers of GEVA made the assumption that a lower fitness is
always better and did not provide an easy way to change this.

That results in the necessity for ensuring that the better solutions are assigned a lower
fitness, which can be confusing in scenarios where the fitness represents an accuracy, and
better individuals are expected to have high fitness score. This can be done by inverting
the score or changing its sign.

While this trick works for the tournament selection, it fails in the case of roulette-wheel,
because it automatically rescales the fitness using the following equation:

𝑓 ′
𝑖 =

𝐹 − 𝑓𝑖
𝐹

𝐹 =

𝑛∑︁
𝑗=1

𝑓𝑗 where 𝑛 is the population size

The rescaling maps all fitness values to a very narrow interval, making the roulette-wheel
selection unsuitable in some scenarios, as it can make very fit individuals indistinguishable
from the very poor ones. Unfortunately, the scaling cannot be easily changed, so the user
is forced to write the whole selection algorithm again when the need for a different scaling
function arises.

In addition, GEVA also offers an option for the user to manually pick individual through
the GUI. While it probably will not be used in real-world applications, it can be useful for
education.
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3.1.4 Crossover

Genetic operators are the most advanced aspect of the GEVA framework. Besides the one-
point and two-point crossovers mentioned in Section 2.2.2, GEVA implements a subtree
crossover.

Similar to the initialization methods, it slightly diverts from the original idea of gram-
matical evolution and builds derivation trees from the genotype of both selected individuals.
The crossover then swaps randomly chosen subtrees of the same type between the two trees
similarly to the GP crossover. The derivation trees are then serialized back to the original
representation.

3.1.5 Mutation

Similarly to the crossover operator, the mutation operator is available in more sophisticated
variants. In addition to the usual codon-level mutation, GEVA offers a structural mutation
and subtree mutation that use the individuals’ derivation tree to perform a codon change
that does affect only a small part of the individual [2].

3.1.6 Other Aspects

The source code of GEVA is distributed in an archive that can be downloaded from the
website of Natural Computing Research & Applications group. The downside of this ap-
proach is that nobody except the original authors can contribute new code and improve
the framework.

The project contains automated unit tests, which ensure changes in source code do
not introduce new bugs. Some classes contain main methods without any mention in the
documentation. I suspect the authors wanted to have a way how to do quick tests, but it is
not a common pattern and seems strange given the project already has proper unit tests.

3.2 AGE
AGE is a software project accompanying the bachelor’s thesis of Adam Nohejl [10]. It is
a C++ library focused on implementation of standard grammatical evolution algorithms,
modularity, adequate documentation, reproducibility of results and performance.

The library is used in a small number of applications solving symbolic regression, Santa
Fe ant trail, time tabling and few other problems.

3.2.1 Goal Definition

The evolutionary algorithm stops after a defined number of generations or when the best
individual reaches a certain fitness level. In comparison with GEVA, this is somewhat
limited and does not allow for more complex statistical analysis.

3.2.2 Initialization

AGE implements a random initializer which creates individuals of a variable size randomly
chosen from a specified range.

The second available initialization method is ramped half-and-half with a number of
customizable parameters such as range of maximum depths, the ratio of full and grow
trees, whether all trees should be unique, etc.
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3.2.3 Selection

Besides the usual tournament and roulette-wheel methods, AGE offers an interesting combi-
nation of the two. The algorithm is called ”Wetzel ranking“ and works like the tournament
method, but the selection of tournament competitors is done using a roulette-wheel selec-
tion. The thesis does not describe its advantages and does not offer any measurements.

The library offers a set of fitness scaling algorithms that are particularly useful in
roulette-wheel selection. Unlike in GEVA, they are easy to change and are useful for the
selection method.

3.2.4 Crossover

The crossover operator is present in the form of a simple single-point crossover. It can be
configured to either change or keep the length of genotypes.

3.2.5 Mutation

AGE comes with three variants of mutation:

∙ bit mutation,

∙ slow bit mutation,

∙ codon mutation.

The first two algorithms work directly on bits representing the genotype. When we
consider that the algorithm calls the random number generator for each bit in the genotype
when deciding whether to mutate it or not, it becomes apparent that it is not optimal
from the performance standpoint. Although the number of generator calls can be reduced
by an optimization described in Chapter 5, the author does not provide an explanation
why he decided to implement the bit-level mutation in addition to a more straightforward
integer-level mutation.

3.2.6 Other Aspects

AGE is currently distributed as an archive through author’s personal website, which makes
any contributions from other people impossible.

The library algorithms are not covered by any automated tests, making any change a
potential source of bugs and therefore not suitable for real production applications.

The architecture is solid, with a clear separation of concerns and adequate level of
abstraction. All fundamental parts of the grammatical evolution engine are hidden behind
abstract classes (interfaces), making it fairly easy to create new implementations of involved
algorithms.

The main advantage over GEVA is faster execution time. On symbolic regression, it
performs over 10 time better than GEVA [10].
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Chapter 4

Gram: System Design

The goal of the new grammatical evolution library Gram is to combine the best parts of
both systems from previous chapter.

The main objective is to design a modular library that allows users to easily supply
their own implementation of any algorithm. This is achieved with careful design and the
use of interfaces, that are described later in this chapter.

Another important aspect is good portability. This is achieved by using the CMake
build manger that generates platform-specific build configurations. Gram can be therefore
easily built on Linux, Mac and Windows operating systems. While a CMake project cannot
quite match the portability of Java used in GEVA, it is certainly better than plain Unix
Makefiles.

The third objective is to create a open-source project that is easily approachable. The
code is hosted on GitHub, the de-facto hosting service for open-source projects. The project
also has thorough automated tests that help developers to faster understand the library
interface and to grasp the functionality of each module. Both implementations described
in previous chapter are distributed as archives on the authors’ websites and do not offer
a way how to contribute to their development.

This chapter in detail describes the class structure of the Gram library along with the
build system and test suite.

4.1 System Overview
As shown in Figure 4.1, the Evolution class is the central part of the library. It handles
evaluation and reproduction of the population as well as communication with the user
through the Logger interface.

The evaluation is realized by an user-supplied implementation of the Evaluator inter-
face, which is wrapped by an EvaluationDriver, for example MultiThreadDriver.

The population is a set of individuals that contain the genotype – a vector of integers.
Note that individuals do not contain the phenotype, as it is dynamically mapped inside an
Evaluator implementation.

The reproduction process is handled by an implementation of the Reproducer inter-
face, such as PassionateReproducer. It uses instances of the Selector, Crossover and
Mutation interfaces.
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Figure 4.1: Diagram of Gram’s core classes

4.2 Success Definition and Evolution Run
The most significant class in the library is Evolution which provides a run method that
starts the evolutionary algorithm. From its signature (see Listing 4.1) it is apparent that
it works with a population of individuals and a terminating condition.

The fact the population is supplied by the user rather than initialized inside the method
makes it easy to use the library in situations where the user already has an existing popu-
lation. It might be the result of a previous run or a set of hand-crafted individuals.

Listing 4.1: Signature of the run method of Evolution class
Population Evolution :: run( Population & population ,

function <bool( Population &)> successCondition )

The successCondition parameter is a function that represents the goal of the evolution.
Both systems described in Chapter 3 terminate the algorithm after a certain number of
generations or after the best individual reaches a certain level of fitness. While that might
be sufficient for benchmarks and simple demos, in real applications, it might be desirable
to evolve a whole group of good solutions and do additional operations with them outside
of the grammatical evolution library.
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Listing 4.2: Example of a success condition lambda function
[]( Population & population ) -> bool {

return population . lowestFitness () < 0.1;
}

The lambda function allows for more complex termination conditions by providing access
to the whole population of individuals. The user is free to do an advanced statistical analysis
on the individuals or just to simply set a fitness or generation limit. For an example of a
simple implementation of successCondition, see Listing 4.2.

4.3 Initialization
For more ordinary situations, Gram users can create an initial population with the use
of the Initializer abstract class. Its interface consists of a single method initialize
(Listing 4.3) which creates a new population of the given size that reproduces with the
specified reproducer.

Listing 4.3: Signature of the initialize method of Initializer abstract class
Population Initializer :: initialize ( unsigned long count ,

shared_ptr <Reproducer > reproducer )

Gram by default offers a simple RandomInitializer class that performs a purely ran-
dom initialization. More complex algorithms can be easily implemented by creating a new
child class of Initializer.

4.4 Evaluation and Fitness Function
The evaluation of individuals is completely in the hands of the library user. Its aspects are
specific to the problem at hand, but it usually consists of three basic steps:

∙ mapping individual’s genotype to a phenotype,

∙ evaluating the phenotype,

∙ determining the fitness.

The evaluation takes place in a class inheriting from the base Evaluator abstract class.
It defines the evaluate method which can be seen on Listing 4.4.

Listing 4.4: Signature of the evaluate method of Evaluator class
double Evaluator :: evaluate ( Genotype & genotype )

A complete example of a math evaluator can be found in Appendix B.
The evaluators are wrapped in an EvaluationDriver whose responsibility is to do some

preparation steps before the evaluation itself. Even though users are free to implement their
own drivers, Gram already contains with two implementations – SingleThreadDriver and
MultiThreadDriver.

The single thread variant iterates over the whole population and evaluates the individ-
uals one by one. The multi-thread driver is more complex as it creates a number of new
threads, splits the population into chunks and assigns each chunk to a thread to evaluate.
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From a performance standpoint, it would be beneficial to create a driver that imple-
ments the thread pool pattern. That would prevent from repeated creation and termination
of threads for each generation. This process is very time-consuming and having few back-
ground threads for the whole evolution run would eliminate this bottleneck.

4.5 Reproduction
The reproduction process is invoked by calling the reproduce method on the current pop-
ulation. Internally the population calls the reproduce method on its Reproducer member.
The signature of the method is shown in Listing 4.5.

Listing 4.5: Signature of the reproduce method of Reproducer

Individuals Reproducer :: reproduce ( Individuals & individuals )

The only implementation of the abstract class is called PassionateReproducer. It cre-
ates the new population entirely by applying the crossover operator on pairs of individuals
chosen by a selector and then tries to mutate every single offspring.

The class internally depends on Selector, Crossover and Mutation abstract classes
that are described in the following sections.

4.5.1 Selection

Picking parents from a set of individuals is the responsibility of the Selector abstract class.
Its pivotal method is called select and the signature can be seen in Listing 4.6.

Listing 4.6: The select method for picking parents
Individual & Selector :: select ( Individuals & individuals )

Gram by default implements the tournament selection described in Subsection 2.1.3. As
suggested, the notion of a good fitness can be configured and in this case, the configuration
is done by an IndividualComparer object passed to the selector in a constructor. When the
tournament selector randomly chooses a number of individuals, it compares their fitness
values with the comparer, rather than directly with a relation operator. The comparer
signature is provided in Listing 4.7.

Listing 4.7: The interface of IndividualComparer

bool IndividualComparer :: isFirstFitter ( Individual & first ,
Individual & second )

This abstraction could be used to add support for multi-objective optimization in the
future. The raw fitness is rarely used in any other part of the system, which would make
it easy to write a custom implementation of the IndividualComparer and compare the
individuals on a whole set of criteria instead of only one fitness value.

4.5.2 Crossover

The crossover operator combines two existing individuals into a new one. Gram makes
the interface very readable by providing a mateWith method on the Individual class. As
shown by Listing 4.8, it depends on generic Crossover abstract class that can be used to
create new implementations.
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Listing 4.8: Mate with
Individual Individual :: mateWith ( Individual & partner ,

Crossover & crossover )

The mateWith method internally uses the crossover’s method from Listing 4.9.

Listing 4.9: Crossover
Genotype Crossover :: apply ( Genotype & first ,

Genotype & second )

By default, Gram contains the simple one-point crossover. However, the abstraction
of the operator makes it easy to experiment with more complicated algorithms. In recent
years, more sensible crossovers such as the structure-preserving crossover were proposed [4].

4.5.3 Mutation

Mutation is the second genetic operator used in grammatical evolution. In the Gram library,
it can be used by passing a Mutation object to the mutate method of Individual as Listing
4.10 shows.

Listing 4.10: Mutate
void Individual :: mutate ( Mutation & mutation )

The individual handles the call in a similar fashion to how it handles the crossover
operator – by calling the apply method of the Mutation operator (Listing 4.11).

Listing 4.11: Mutation
Genotype Mutation :: apply( Genotype genotype )

Gram offers two mutation implementations. The first one is called NaiveCodonMutation
and its naivety lies in iterating over each genotype codon and deciding whether to mutate
it or not by executing an expensive call to a random number generator.

For that reason, Gram also has the FastCodonMutation that avoid frequent calls to the
random number generator by using the inversion method. This optimization is in greater
detail described in Chapter 5.

4.6 Other Tools
Apart from the essential algorithms for grammatical evolution, Gram also offers a few
useful tools that make working with the library easier, namely a BNF grammar parser and
a logging mechanism.

4.6.1 BNF parser

As BNF grammars are at the very core of grammatical evolution, Gram provides a parser
that makes plugging in different grammars an easy process.

There are many variants and extensions of BNF. The format compatible with Gram’s
parser is on Listing 4.12. Note terminals enclosed in double-quotes.
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Listing 4.12: BNF grammar format
<expr > ::= "(" <expr > <op > <expr > ")" | <var >
<op > ::= "+" | "-" | "*"
<var > ::= "x" | "1"

The grammar can be supplied as the form of a string to the BnfRuleParser method
parse whose signature is on Listing 4.13.

Listing 4.13: Signature of the parse method
ContextFreeGrammar parse( string input)

4.6.2 Logger

Gram has logging capabilities to provide users an immediate feedback on the evolution run.
This is enabled by the Logger abstract class that offers two methods shown in Listing 4.14.

Listing 4.14: Logger methods
void logProgress ( Population & population )
void logResult ( Population & population )

The logProgress method is called after evaluation of each population. The logResult
method is called at the end of the evolution run as the user may want to log the result in
a different way than a population in the middle of the run.

The default logger implementation in Gram is called NullLogger and does not perform
any action. Users can easily implement their own logger that is specific to their problem.

4.7 Automated Tests
The source code of Gram is thoroughly tested. It comes with unit tests that verify the
behavior of grammatical evolution algorithms. The project also contains an acceptance
test that verifies the cooperation of all library modules. It can also serve as a starting point
for users creating a new Gram project as it shows all necessary configuration and usage of
each class.

Table 4.1: Code metrics
Type Lines
Production code 1247
Testing code 1416

The ratio of production and testing code is in Table 4.1. It shows that the testing code
more than doubles the number of lines in the project and also requires extra work and
maintenance.

Automated tests, however, give developers working on the library a greater level of
confidence when refactoring an existing code and creating new modules. Gram source code
is hosted on GitHub, and after each code change, the continuous integration server runs
all tests and verifies the change did not break the existing code and behaves according to
specification.
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Moreover, potential users can see that the library handles all edge-cases, rendering it
reliable for use in production applications.

The tests themselves are written in a C++ testing framework called Catch developed
by Phil Nash. A mocking library FakeIt by Eran Pe’er was used to isolate the tested code
from the rest of the system and make random number generators more transparent.

4.8 Build System
Gram uses a cross-platform tool CMake to manage the build process. It allows developers
to generate configuration for the native build system, for example, Makefiles on Linux,
Visual Studio solutions on Windows or Xcode projects on Mac OS.

To build Gram, the operating system needs to have the following software installed:

∙ Git,

∙ CMake,

∙ a native build system,

∙ a C++14 compiler.

All details regarding the build process of Gram along with an example build can be
found in Appendix A.
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Chapter 5

Performance Tuning

This chapter provides recommendations for creating high-performance grammatical evolu-
tion engines. It describes the optimization process Gram underwent including language-
specific factors and variations of standard algorithms used in grammatical evolution.

∙ In Section 5.1, we will explain the process of profiling.

∙ In Section 5.2, we will analyze influence of various implementation details.

∙ In Section 5.3, we will explore the performance impact of random number generators.

∙ In Section 5.4, we will learn about an alternative approach to the mutation operator.

∙ In Section 5.5, we will describe fitness caching techniques.

∙ In Section 5.6, we will investigate performance gains of parallel evaluation.

All measurements were taken on a machine with Intel Core i7-7700K running at 4.2 GHz
with 16 GB of 2666 MHz DDR4 memory. The operating system was Ubuntu 16.04, and all
executables were compiled with Clang 3.8.

5.1 Profiling
To optimize a program for performance effectively, we usually use tools called profilers.
Those tools perform a dynamic program analysis by collecting data such as memory usage,
frequency of instructions or the frequency and duration of function calls.

The tool used for optimizing Gram’s performance is called perf and it is exclusively
available on Linux operating systems. This profiler collects statistical data by sampling
the application during execution. It periodically probes the program’s call stack using
interrupts and approximates how often are individual functions called and how much of the
execution time they consume.

This allows developers to focus on optimizing the most frequently used parts of the code.
Without profilers, it is not obvious where the performance bottlenecks are, and developers
may end up optimizing functions that have a negligible impact on performance.
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5.2 Implementation Details
Generally speaking, development in programming languages such as C or C++ gives de-
velopers a very good control over the performance. During the optimization of Gram’s
performance, the most significant speedups were obtained by improvements in the memory
management.

Avoiding object copying appeared to be very beneficial. In one case, adding a single
& character to create a reference instead of a whole object by copying yielded a perfor-
mance improvement of over 35 %. The code was located in the genotype-phenotype map-
per (ContextFreeMapper::map) and was executed for all codons in the genotype of each
individual in all generations.

The second issue was the memory allocation. In grammatical evolution systems, there
are many algorithms that are constructing a defined number of items, for example:

∙ initializer creating a new population of individuals,

∙ initializer creating a new genotype of an individual,

∙ crossover creating a new genotype by combining two existing genotypes,

∙ or the tournament selector placing individuals in a tournament.

Rather than allocating memory for each element, we can allocate memory once for
all of them, saving a large number of expensive system calls. In C++, most containers
have a reserve memory that is built for this reason. Using it led to another significant
performance improvements.

5.3 Random Number Generators
From the theory of grammatical evolution described in Section 2.2, it is apparent that it
heavily relies on generating random numbers. Two principal methods are used to generate
random numbers. The first measures a physical phenomenon that is considered to be
random, such as atmospheric noise. The second method uses algorithms that are able to
generate sequences of apparently random values from a short initial sequence called the
seed.

Although the first method produces truly random numbers, it is very slow and requires
additional equipment. Thus, the second method that generates only pseudo-random values
is commonly used as it provides good enough results for most applications.

In this section, we will measure the impact of three pseudo random number generators
on the GE performance:

∙ linear congruential generator – minstd_rand from C++ <random> module,

∙ Mersenne Twister – mt19937 from C++ <random> module,

∙ XorShift – the 32-bit variant [8].

For their historical importance, linear congruential generators are included in the test
despite not being very good by today’s standards [7]. Mersenne Twister [9] is the default
random number generator in many applications, and XorShift promises high performance
with acceptable randomness parameters [8].

24



The tests were conducted on a simple symbolic regression problem with parameters
listed in Table 5.1. Variations of this setup will be used for all experiments discussed in
this chapter.

Table 5.1: Parameters of GE for symbolic regression problem used for performance tuning
Objective Find approximation of 𝑓(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥
Grammar See Listing 5.1
Fitness cases 21 points for 𝑥 ∈ [−1.0, 1.0]
Raw fitness Sum of squared errors for all fitness cases
Population size 500 individuals
Genotype length 200 codons, fixed
Codon size 32bits
Selection Tournament, size 5
Crossover One-point, probability: 1.0
Mutation Codon-level, probability: 0.1
Initialization Random
Mapping Maximum wraps: 3
Maximum generations 100
Success predicate Lowest fitness score in the population under 0.000001

Listing 5.1: The BNF grammar used in the symbolic regression problem
<expr > ::= ( <expr > <op > <expr > ) | <var >
<op > ::= + | - | *
<var > ::= x | 1
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Figure 5.1: Time consumed by 1000 runs of GE using different random number generators

Figure 5.1 shows a great performance difference between the three algorithms. Simple
symbolic regression is more than twice as slow when using linear congruential generator
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compared to XorShift. This is most likely due to the modulo operator used in each iteration
of the congruential algorithm. Mersenne Twister appears to be more than 40 % slower than
XorShift, which is not surprising given its superior randomness rankings. The usage of
a random number generator of lesser quality did not affect the success rates of grammatical
evolution.

In the next chapter, we will focus on optimizing the mutation operator that uses the
random number generators most often in our grammatical evolution system.

5.4 Optimizing Mutation Operator
As we have established in the previous section, the choice of a random number generator
can have a great impact on the performance of grammatical evolution systems. Here we
will try to further reduce the bottleneck by optimizing the biggest consumer of random
numbers – the mutation operator.

In our version of GE, the decision whether to mutate a single codon follows a Bernoulli
distribution with the probability of mutation 𝑝. The number of unaffected codons until the
next occurrence of mutation follows a geometric distribution with the same parameter 𝑝.

Random variates of this distribution can be calculated with the use of the inversion
method [3]. This method uses the cumulative distribution function 𝐹 along with a random
variable 𝑢 ∈ (0, 1) following a uniform distribution. Given that 𝐹 can be inverted, the
random variate 𝑠 can be computed using Equation 5.1.

𝐹−1(𝑢) = 𝑠 =

⌊︃
ln(1− 𝑢)

ln(1− 𝑝)

⌋︃
0 < 𝑢 < 1 0 < 𝑝 < 1 (5.1)

The value of 𝑠 denotes the number of steps until the next mutation takes place. This
calculation can, therefore, be used instead of checking each codon whether it should be
mutated, effectively reducing the complexity of the check from 𝑂(𝑛) to 𝑂(𝑝 · 𝑛), where 𝑝 is
usually a value close to zero.
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Figure 5.2: Time consumed by 1000 runs of GE with mutation probability 𝑝 = 0.2 with
and without the optimization
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Figure 5.3: Time consumed by 1000 runs of GE with mutation probability 𝑝 = 0.05 with
and without the optimization

Figure 5.2 shows the performance improvement of the optimized mutation in combina-
tion with two different random number generators and high mutation probability 𝑝 = 0.2.
While we can see that the optimization does not have any significant impact on the XorShift
generator, in the case of Mersenne Twister, it yields a 15 % improvement in execution time.

Results of runs with a lower probability 𝑝 = 0.05 can be seen in Figure 5.3. This more
real-world setting again does not show any improvement for XorShift generator. Mersenne
Twister, on the other hand, performs 35 % faster with the optimization turned on, which
effectively brings its execution time on the same level as XorShift. That leaves no practical
reason for using XorShift instead of the standardized and statistically superior Mersenne
Twister.

5.5 Fitness Caching
Evaluation of individuals and calculation of their fitness score is the most time-consuming
task in many applications. One can avoid repeating this calculation for the same individuals
by employing a technique called caching.

Example Gram applications employ a hashtable that contains the fitness values indexed
by the individuals’ phenotype – a string of characters. The problem with this approach
is that all individuals have to always undergo an expensive genotype-phenotype mapping
process to retrieve the fitness score from the cache.

The only way how to prevent repeated mapping is to index the fitness values by the
genotype. In our experiments, this approach did not provide any improvement over the
original system with phenotype-based caching. The ineffectiveness of this solution stems
from the fact that a large number of genotypes can be mapped to the same phenotype.
The fact that populations are usually very genetically diverse then leads to a high count of
cache misses, meaning only a few individuals can avoid the expensive evaluation.

In Figure 5.4, we can see the benefit of phenotype-based caching where it reduced the
overall execution time by 38 %. Of course, the more expensive the fitness function is,
the greater the performance benefit. It is also important to account for the grammar size
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Figure 5.4: Time consumed by 100 runs with two caching setups

because use more complex grammars will lead to greater phenotype diversity. That will in
turn cause lower number of cache hits, rendering the caching technique less beneficial.

5.6 Using Multiple Cores
A common approach to reducing the execution time of many types of applications is employ-
ing multiple processor cores. Gram uses this technique only for the evaluation of individuals,
as it usually is the most time-consuming task in grammatical evolution. In our tests, the
computational intensity of real-world tasks was simulated by repeating the evaluation of
symbolic regression individuals 100 times.

The MultiThreadDriver creates 𝑛 threads for the evaluation in each generation. There
are more effective approach to multi-threading, such as the thread pool pattern, which
creates 𝑛 threads at the start of application and reuses those threads throughout the ap-
plication run. This removes the overhead caused by repeated creation and termination of
new threads.

However, in Figure 5.5, we can see that even our more straightforward implementation
of multi-threading yields a significant performance improvement. Using two cores instead
of one brings the overall execution time of 100 runs down by 32 %.

28



Sin
gle

thr
ead

Tw
o thr

ead
s

0

20

40

60

80

T
im

e
in

se
co

nd
s

Figure 5.5: Time consumed by 100 runs of GE with one and two threads enabled

5.7 Profiling Optimized Grammatical Evolution System
Figure 5.6 shows the percentage of execution time consumed by individual GE algorithms
in Gram with all optimizations described in this chapter enabled.

Mapping

38%Evaluation
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Reproduction
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Figure 5.6: Percentage of execution time consumed by algorithms in optimized GE system

A notable finding is that over one third of the execution time (38 %) is spent on the
genotype-phenotype mapping. This is probably due to frequent use of the modulo operator,
which tends to be incredibly slow on today’s processors. Although the percentage will be
lower in applications with more expensive individual evaluation, the mapping process seems
like a good candidate for further optimizations.
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Chapter 6

Experiments

In this chapter, we will test the Gram library in two applications.

∙ In Section 6.1, we will focus on symbolic regression, comparing the new library to an
existing implementation.

∙ In Section 6.2, we will apply grammatical evolution on a novel task: automating
test-driven development.

As mentioned in Chapter 5, all measurements were taken on a machine with Intel Core
i7-7700K running at 4.2 GHz with 16 GB of 2666 MHz DDR4 memory. The operating
system was Ubuntu 16.04, and all projects were compiled using Clang 3.8.

6.1 Symbolic Regression
Symbolic regression is a statistical process that searches the space of mathematical expres-
sions to find the model that best fits the given dataset. Historically, symbolic regression
has been used by many as a benchmark application for grammatical evolution systems.

We will compare Gram to AGE, a C++ library described in Chapter 3. We will focus
on the execution time needed for evolving a viable solution as well as the frequency of
success for each generation. Our graphs show a cumulative frequency of success – the sum
of frequencies of success in the current and all previous generations – a commonly used
metric for examining the quality of grammatical evolution runs.

To test both libraries, we performed 1000 runs with the target being a fourth degree
polynomial: 𝑥4 + 𝑥3 + 𝑥2 + 𝑥. The parameters of grammatical evolution are listed in
Table 6.1.

Listing 6.1: The BNF grammar used in symbolic regression problem
<expr > ::= ( <expr > <op > <expr > ) | <var >
<op > ::= + | - | *
<var > ::= x | 1
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Table 6.1: Parameters of GE for symbolic regression problem
Objective Find approximation of 𝑓(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥
Grammar See Listing 6.1
Fitness cases 21 points for 𝑥 ∈ [−1.0, 1.0]
Raw fitness Sum of squared errors for all fitness cases
Population size 500 individuals
Genotype length 200 codons, fixed
Codon size 32 bits
Selection Tournament, size 5
Crossover One-point, probability: 1.0
Mutation Codon-level, probability: 0.1
Initialization Random
Mapping Maximum wraps: 3
Maximum generations 50
Success predicate Lowest fitness score in the population under 0.000001

As can be seen in Figure 6.1, Gram performs better compared to AGE, if more than
15 generations are spent. That might be due to a slightly different reproduction algorithm.
Gram creates all new individuals using the crossover operator and then tries to apply
mutation to all of them. AGE, on the other hand, creates new individuals either by crossover
or mutation of individuals from the previous generation, never applying both operators on
a single individual. This might lead to lower genetic diversity in later generations and
consequently to lower success rates.
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Figure 6.1: Frequency of cumulative success in 1000 GE runs of symbolic regression with
target function 𝑥4 + 𝑥3 + 𝑥2 + 𝑥
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Figure 6.2: Time consumed by 1000 GE runs of symbolic regression with target function
𝑥4 + 𝑥3 + 𝑥2 + 𝑥

Figure 6.2 shows the CPU time consumed by both applications where Gram appears to
be 33 % faster than AGE. This is probably caused by higher success rates of Gram shown
in Figure 6.1 along with faster evaluation, phenotype-based fitness caching and overall
more optimized implementation. It is worth noting, that AGE uses a fast random number
generators and the optimized mutation operator described in Chapter 5.

6.2 Automating Test-Driven Development
In addition to the obligatory symbolic regression problems, Gram has been also used for
a novel task: automating test-driven development.

Test-driven development is a widely used process of creating software products with
automated tests. In this process, developers first write tests based on given specifications
and then proceed to write the minimal amount of production code that passes those tests.

Automated testing plays an important role in quality assurance of software products.
Its purpose is to automatically verify that each version behaves according to specifications.
That leads to less time spent on manual testing and lower number of bugs, which can
significantly reduce the cost of development and maintenance of software.

Automating the creation of production code could allow developers to either create more
specifications or make them more detailed, possibly speeding up the process of software
development or making the resulting product more reliable.

6.2.1 Fitness Function

To applt grammatical evolution to this problem, we have to find a way how to determine
the fitness of candidate solutions. For this purpose, we use test assertions. Most testing
frameworks allow developers to verify, whether the tested code returned the expected value.
We can determine the fitness by calculating the distance between the desired and actual
value. Our system calculates the fitness score 𝑓 for a candidate solution 𝑠 using equation:

𝑓(𝑠) =
𝑡∑︁

𝑖=1

𝑑𝑖𝑠𝑡(𝑒𝑖, 𝑎𝑖) (6.1)
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where 𝑡 is the number of test assertions, 𝑒𝑖 is the expected value and 𝑎𝑖 is the actual value
returned by the tested code.

Computation of the distance in assertions varies based on the data type. In our tests,
we have used a simple equation for numeric types:

𝑑𝑖𝑠𝑡(𝑒, 𝑎) = 𝑎𝑏𝑠(𝑒− 𝑎)

In assertions working with arrays, we have to account for the situation where the number
of elements in the actual array is not the same as in the desired array. In those cases, we
simply set the fitness to a predefined constant 𝐶. For arrays of the same size 𝑛, the resulting
fitness is equal to the sum of distances of each pair of corresponding elements:

𝑑𝑖𝑠𝑡(𝑒, 𝑎) =

{︃∑︀𝑛
𝑖=1 𝑑𝑖𝑠𝑡(𝑒𝑖, 𝑎𝑖), if arrays are of the same size 𝑛,

𝐶, otherwise.

6.2.2 Experiment Setup

The target language of choice is PHP with its testing framework PhpUnit. PHP is suitable
for this task because of its weak typing and implicit type conversions. While not always de-
sirable in real-world systems, these properties make the language more forgiving to semantic
type-releated error that usually occur in code generated by grammatical evolution.

The goal of our experiment is to generate the array_filter function based on hand-
written automated tests. The generated function must pass all tests for the experiment to
be considered successful.

The first parameter of this function is an array of elements to be filtered. The second
parameter is a lambda function that takes one argument – an element of the array – and
decides whether it should be kept in the array or not. array_filter returns an array of
elements that meet the filter requirements. The signature of the function is in Listing 6.2

Listing 6.2: Signature of the array_filter function
function array_filter ( array $input , callback $filter ): array

The $filter callback used in tests is in Listing 6.3 and it passes integers that are
greater than zero. The $input array along with the expected output is shown in Table 6.2.

Listing 6.3: The $filter used in tests
$filter = function (int $item) { return $item > 0 }

Table 6.2: Data used in tests of array_filter

Input Correct output
[] []
[-10, -5, -3, -1] []
[-10, -1, 3, 5] [3, 5]
[1, 20, 42] [1, 20, 42]

The parameters of grammatical evolution are listed in Table 6.3.
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Table 6.3: Parameters of GE for evolving array_filter function
Objective Create the array_filter function
Grammar See Listing C.1
Fitness cases See Table 6.2
Raw fitness See Equation 6.1
Population size 200 individuals
Genotype length 40 codons, fixed
Codon size 32 bits
Selection Tournament, size 5
Crossover One-point, probability: 1.0
Mutation Codon-level, probability: 0.15
Initialization Random
Mapping Maximum wraps: 3
Maximum generations 100
Success predicate Fitness is 0

6.2.3 Results and Discussion

In Figure 6.3, we can see that in most runs the system was able to create a viable solution
in less than 60 generations. This is probably due to a relatively limited grammar that
contains only rules necessary to create the target function.
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Figure 6.3: Cumulative frequency of success in 100 GE runs of evolving array_filter

The generated array_filter function is shown in Listing 6.4. Some of the solutions
contain redundant code after line 3 (e.g. repeated initialization of the $output variable)
and unreachable code after the return statement on line 9. While this does not affect
the behavior of the function, it makes it harder to understand, which could lead into
more difficult maintenance of the code in the future. However, defects like this can be
automatically fixed by using a static analysis tools after the evolution finds a viable solution.
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Listing 6.4: The evolved array_filter function
1 <?php
2 function array_filter ($input , $filter ) {
3 $output = [];
4 foreach ( $input as $item) {
5 if ( $filter ($item )) {
6 $output [] = $item;
7 }
8 }
9 return $output ;

10 }

Despite using weakly typed language with implicit type conversions, a great number
of candidate solutions were semantically flawed. Most semantic errors were caused by the
usage of undefined variables – an aspect of programming languages that is not captured in
their formal grammars.

This could be eliminated by using information provided by static analysis tools in the
rule selection process.

While the evolved code is fairly simple, this experiment shows its possible to utilize
grammatical evolution in real-world software engineering process. Systems like this could
be used to create more reliable software, faster.
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Chapter 7

Conclusion

This thesis introduced grammatical evolution, a grammar-based approach to genetic pro-
gramming originally proposed by Michael O’Neil and Conor Ryan. We have reviewed the
basic principles of genetic programming and described the novel approach of grammatical
evolution to the representation of individuals and consequently the crossover and mutation
operators.

Following the introduction is a review of two grammatical evolution implementations:
GEVA and AGE. We have examined the implemented GE algorithms, reflected on the
overall system design and summarized strong and weak points of each implementation.

Based on the knowledge from previous chapter, we have proposed a new library imple-
menting grammatical evolution called Gram. Main goals of the project were good perfor-
mance, modular architecture and reliability ensured by thorough automated tests – a mix
of the best features of the mentioned implementations.

Next chapter outlined the performance tweaks utilized in the Gram library. We have
found that an important performance consideration is memory management, notably avoid-
ing unnecessary memory allocations. We have documented the performance impact of ran-
dom number generators in grammatical evolution systems. Our benchmark revealed that
the fastest RNG is Xorshift, followed by Mersenne Twister (40 % slower) and linear congru-
ential engine (100 % slower). The next optimization reduced the number of random number
generator calls in the mutation operator. Thanks to the inversion method, we were able
to erase the performance difference between the widely regarded Mersenne Twister and
the less popular XorShift generator. We have also introduced a phenotype-based fitness
caching which improved the performance by 38 %. The last optimization is the utilization
of multiple CPU cores for the fitness evaluation. In our benchmark, doubling the number
of cores brought the execution time down by another 32 %.

Gram was also compared to an existing GE implementation. In symbolic regression
problems, its execution time was 32 % lower compared to AGE, the faster of the two
reviewed systems.

We have also used GE in test-driven development: we were able to automate the process
of creating function implementation by evolving an array_filter function based solely
on simple unit tests. While the evolved function is fairly simple, we have shown that
grammatical evolution could be used in the process of software development. This part of
the thesis was also presented in the form of a poster on Excel@FIT 2017 conference.

This thesis and the accompanying software project have fulfilled its goals. The Gram
library could be further improved by employing more complex initialization, crossover and

36



mutation operators using derivation trees as seen in GEVA. Recent research shows they
can be superior to the original operators proposed by O’Neill and Ryan.

From our benchmarks, it is apparent, that the mapping process is currently the slowest
part of the library because of frequent use of the modulo operator. Focusing on building
grammars that do not require use of such operator could yield another significant perfor-
mance improvements.

As we have demonstrated in Chapter 6, grammatical evolution can be applied to process
of creating software with automated tests. Leveraging static analysis tools might lead to
a system that is able to create complex production code in chosen language based solely on
unit tests. I would like to see more research focused on this particular application of GE.

I hope the Gram library to act as a platform for further experiments and research of
grammatical evolution, as it has shown competitive performance and easy application to
various types of tasks.
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Appendix A

Building Gram

Gram uses cross-platform tool CMake to manage the build process. The instructions below
apply for Linux-based operating systems. Building on Windows and Mac OS might slightly
vary.

To be able to proceed with the process, your operating systems has to have the following
software installed:

∙ Git,

∙ CMake,

∙ a native build system,

∙ a C++14 compiler.

The sequence of commands on Listing A.1 downloads the Gram source code, compiles
it as a static library and also creates executable binaries running unit and acceptance tests.

Listing A.1: Gram build process
$ git clone https :// github .com/ jansvoboda11 /gram
$ cd gram
$ mkdir build
$ cd build
$ cmake -DGRAM_BUILD_TESTS ..
$ make

Paths of the created binaries are listed in Table A.1.

Table A.1: Paths to Gram binaries
Static library gram/build/src/libgram.a
Unit tests gram/build/test/unit/utest
Acceptance tests gram/build/test/acceptance/atest
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Appendix B

Example Gram Project

Listing B.1: Example of a Gram evaluator
class StringDiffEvaluator : public Evaluator {

public :

StringDiffEvaluator ( unique_ptr < ContextFreeMapper > mapper , string desired )
: mapper (move( mapper )), desired ( desired ) {
//

}

double evaluate ( const Genotype & genotype ) noexcept {
try {

return calculateFitness (mapper ->map( genotype ));
} catch (...) {

return 1000.0;
}

}

private :

double calculateFitness ( string program ) {
unsigned long shorter = min( desired . length (), program . length ());
unsigned long longer = max( desired . length (), program . length ());

double fitness = static_cast <double >( longer - shorter );

for ( unsigned long i = 0; i < shorter ; i++) {
if ( program [i] != desired [i]) {

fitness += 1.0;
}

}

return fitness ;
}

unique_ptr < ContextFreeMapper > mapper ;
string desired ;

};
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Listing B.2: Example of a Gram project
// selection
unsigned long size = 5;
auto numGen1 = make_unique < XorShiftNumberGenerator >();
auto comparer = make_unique < LowFitnessComparer >();
auto selector = make_unique < TournamentSelector >( size , move( numGen1 ), move( comparer ));

// crossover
auto numGen2 = make_unique < XorShiftNumberGenerator >();
auto crossover = make_unique < OnePointCrossover >( move( numGen2 ));

// mutation
Probability probability (0.1);
auto numGen3 = make_unique < XorShiftNumberGenerator >();
auto stepGen = make_unique < BernoulliStepGenerator >( probability , move( numGen3 ));
auto numGen4 = make_unique < XorShiftNumberGenerator >();
auto mutation = make_unique < FastCodonMutation >( move( stepGen ), move( numGen4 ));

// reproduction
auto reproducer =

make_shared < PassionateReproducer >( move( selector ), move( crossover ), move( mutation ));

// mapping
string bnfGrammar =

"<word > ::= <word > <char > | <char >\n"
"<char > ::= \"g\" | \"r\" | \"a\" | \"m\"";

BnfRuleParser parser ;
auto grammar = parser . parse ( bnfGrammar );
unsigned long wrapLimit = 3;
auto mapper = make_unique < ContextFreeMapper >( grammar , wrapLimit );

// evaluation
string target = "gram";
auto evaluator = make_unique < StringDiffEvaluator >( move( mapper ), target );
auto evaluationDriver = make_unique < SingleThreadDriver >( move( evaluator ));

// logging
auto logger = make_unique < NullLogger >();

// initialization
auto numGen5 = make_unique < XorShiftNumberGenerator >();
unsigned long genotypeLength = 100;
RandomInitializer initializer (move( numGen5 ), genotypeLength );
unsigned long populationSize = 200;
Population initial = initializer . initialize ( populationSize , reproducer );

// evolution
Evalution evolution (move( evaluationDriver ), move( logger ));

// run
Population result = evolution .run(initial , []( Population & current ) -> bool {

return current . lowestFitness () == 0.0;
});
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Appendix C

Used PHP Grammar

Listing C.1: Subset of PHP’s grammar used by GE in the task of automating TDD
<program > ::= <?php function array_filter ($input , $condition ) { <stmts > }

<stmts > ::= <stmt > <stmts >
| <stmt >

<stmt > ::= <array - initialization >
| <array -push >
| <foreach -loop >
| <if -condition >
| <return >

<array - initialization > ::= <array -var > = [];
<array -push > ::= <array -var > [] = <item -var > ;
<foreach -loop > ::= foreach ( <array -param > as <item -var > ) { <foreach -stmts > }
<if -condition > ::= if ( <logical - expression > ) { <if - statements > }
<return > ::= return <array -var > ;
<logical - expression > ::= <callable -param > ( <item -var > )

<foreach -stmts > ::= <array - initialization >
| <array -push >
| <if -condition >
| <return >

<if -stmts > ::= <array - initialization >
| <array -push >
| <foreach -loop >
| <return >

<array -var > ::= $var
<item -var > ::= $item

<array -param > ::= $input
<callable -param > ::= $condition
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