
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

EVOLUTIONARYDESIGNUSINGGRAMMATICAL EVO-LUTION
EVOLUČNÍ NÁVRH VYUŽÍVAJÍCÍ GRAMATICKOU EVOLUCI

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR TOMÁŠ REPÍK
AUTOR PRÁCE
SUPERVISOR Ing. MICHAL BIDLO, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
Natural evolution serves as a source of inspiration for this thesis. The basic algorithm
utilizes generational power of grammars in combination with evolutionary approach. The
search for behavior strategies in different environments draws from evolutionary methods.
Behavior trees are the model generally used to control decision making of some artificial
intelligence. This thesis seeks for behavior trees which would control individuals solving the
following two problems: an adjusted version of knight’s tour problem and playing the game
Liar’s dice. When searching for a strategy of a player in a game, a competitive coevolution
was implemented to mitigate the difficulty of designing a good fitness function.

Abstrakt
Evoluce v přírodě slouží jako zdroj inspirace pro tuto práci. Základní myšlenkou je využití
generativní síly gramatik v kombinaci s evolučním přístupem. Nabyté znalosti jsou ap-
likovány na hledání strategií chování v rozmanitých prostředích. Stromy chování jsou mod-
elem, který bývá běžně použit na řízení rozhodování různých umělých inteligencí. Tato práce
se zabývá hledáním stromů chování, které budou řídit jedince řešící nasledující dva prob-
lémy: upravenou verzi problému cesty koněm šachovnicí a hraní hry Pirátské kostky. Při
hledání strategie hráče kostek, byla použita konkurenční koevoluce. Důvodem je obtížnost
návrhu spravedlivé fitness funkce hodnotící výkony hráčů.

Keywords
grammatical evolution, genetic algorithm, competitive coevolution, behavior trees, AI con-
trol, knight’s tour, Liar’s dice

Klíčová slova
gramatická evoluce, genetický algoritmus, konkurenční koevoluce, stromy chovaní, umělá
inteligence, cesta koněm šachovnicí, Pirátské kostky

Reference
REPÍK, Tomáš. Evolutionary Design Using Grammatical Evolution. Brno, 2017. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Bidlo
Michal.

Evolutionary Design Using Grammatical Evolu-
tion

Declaration
Hereby, I declare; this thesis is my authorial work that have been created under supervision
of Ing. Michal Bidlo, Ph.D. All sources used during elaboration of this thesis are properly
cited in complete reference to the source.

. .
Tomáš Repík
May 24, 2017

Acknowledgements
I would like to thank Michal Bidlo, my thesis supervisor, for his willingness and friendly
approach during our collaboration. His professional advices always led me the right way
and helped me with reaching my goal. Special credits to Marek Kukan for development of
Liar’s dice simulator, which I used at the beginning and for prompt answers to all queries I
had about the game. I really appreciate the help with wording, grammar and composition,
from my brother Matej. Big thanks goes also to my wife, family and friends, who supported
me all the way through.

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 Organization . 6

2 Applications 7
2.1 Knight’s tour . 7
2.2 Liar’s dice . 8

2.2.1 Basic rules . 8
2.2.2 Wild ones . 9

2.3 Common solution design . 10
2.3.1 Behavior trees . 11

3 Evolution 13
3.1 Evolution in biology . 13

3.1.1 Reproduction in biology . 13
3.1.2 Adaptiation in biology . 15
3.1.3 Competition and cooperation in biology 15

3.2 From biology to the algorithm . 16
3.2.1 The ultimate goal . 16
3.2.2 Population . 16
3.2.3 Communication . 17
3.2.4 Adaptivness . 17

3.3 Basic evolutionary algorithm . 18
3.4 Parameters of evolutionary algorithms . 18

3.4.1 Population initialization . 18
3.4.2 Quality of individuals . 19
3.4.3 Mates selection strategy . 19
3.4.4 How offsprings are born . 20
3.4.5 Game of survival . 21
3.4.6 Terminating conditions . 21

3.5 Evolutionary algorithm design process . 22
3.6 Coevolutionary approach . 22

3.6.1 Multiple fitness functions . 23

4 Grammatical evolution 24
4.1 Grammatical and developmental computing 24

4.1.1 Grammars . 24
4.1.2 Parse tree . 25

1

4.2 Grammatical evolution algorithm . 27
4.2.1 Genotype mapping . 27

5 Implementing gramatical evolution 29
5.1 Implementation in general . 29

5.1.1 Programming language . 29
5.1.2 Initial grammar design . 30
5.1.3 Behavior tree activaton . 31
5.1.4 Generating simplified behavior trees 32
5.1.5 Tree structure . 33
5.1.6 Common evolution parameters . 33

5.2 Specifics of knight’s tour . 34
5.2.1 Knight’s grammar . 34
5.2.2 Knight’s code . 35
5.2.3 Knight’s tour simulation . 35
5.2.4 Knight’s fitness . 36
5.2.5 Knight’s evolution . 36

5.3 Specifics of Liar’s dice player . 36
5.3.1 Liar’s grammar . 36
5.3.2 Liar’s code . 37
5.3.3 Liar’s evolution . 40
5.3.4 Liar’s competition . 40
5.3.5 Liar’s fitness . 41

6 Experiments 43
6.1 Solving knight’s tour . 43

6.1.1 Size of population . 43
6.2 Playing the Liar’s dice . 44

6.2.1 Are populations improving? . 45
6.2.2 Comparing fitness functions . 45

7 Conclusion 49

Bibliography 51

A List of attachements 53

2

Chapter 1

Introduction

”The systematic method has the disadvantage that there may be an enormous
block without any solutions in the region which has to be investigated first.
Now the learning process may be regarded as a search for a form of behaviour
which will satisfy the teacher (or some other criterion). Since there is probably
a very large number of satisfactory solutions the random method seems to be
better than the systematic. It should be noticed that it is used in the analogous
process of evolution. But there the systematic method is not possible. How
could one keep track of the different genetical combinations that had been tried,
so as to avoid trying them again?“

Alan Turing, Computing Machinery and Intelligence, 1950 [14]

Engineers and scientists are scratching their heads about computers for less than a century.
It was only eighty years ago when Turing started all this describing a principle in his paper
On Computable Numbers [13]. The very principle of computers is still being used nowadays.
Almost everything except the principle has changed since then.

In the early years the most valued engineers were those who knew the math well, and
they led the development in the field. However, it did not took long for scientists to realize
that one day, the methods based on pure math would hit their limits, and some problems
would not be feasible to solve by those methods. The realization made some of them
think differently. They could have continued to optimize their algorithms, search for some
new methods or models as their colleagues. Instead, they started looking for inspiration
elsewhere.

The obvious choice was drawing inspiration from phenomena of natural world. Scientists
have always been inspired by nature, so why not this time. Even the process happaning
around computers since the fifties till now is labeled with a term from biology evolution.
The difference, between the evolution of computers and the evolution that could be observed
in nature, is that one is spontanoius. The other is catalyzed by engineers and scientists.
Would not it be nice, if the evolution in computers was spontanious and after a small
imput form scientists continued on its own? The first one to come up with evolution in
computer science was unsuprisingly Turing in his very influential Computing Machinery and
Intelligence [14]. Nowadays, there is a huge field in computer science inspired by biological
evolution, it is known by term evolutionary computation. The evolutionary algorithms take
some starting parameters, provided by engineers. Then the algorithms work on their own
producing results that are good enough, close to ideal solution. What is actually happening

3

behind the scenes, how the algorithms work, will be discussed later. For now the answer
evolution will do just fine.

Keeping in mind the other half of scientists, all of whom were still developing the
complicated math. One of them was Chomsky. His grammar hierarchy [3] is a pretty
robust mathematical model being used in many fields. Grammars, as some rules for aligning
symbols to form sentences in a language, provide some kind of surety, control or stability.
They allow patterns to repeat and, with regards to the previous paragraphs, they also have
something to do with evolution. In the literature these properties are hidden under the
term generational power.

Aside from grammars, mathematicians came up with another, more practical model.
To represent grammars, sentences and syntactic structures in a presentable form, they
adopted a structure that is also inspired by nature. Tree is one of the basic components of
natural ecosystems and it plays vital role in the computer ecosystem as well. Here is the
analogy between the two trees. In the nature, tree has to provide support for its leaves.
Unsurprisingly, it is done very efficiently. At the bottom there is a stable trunk (based on
roots). As one follows the trunk up to the leaves, the trunk is divided into branches, which
then also divide into smaller branches, and so on, all the way up to the tiniest branches,
which then hold the leaves themselves. The branches are organized in a hierarchy. When
following branches, there is only one path from the trunk to each of the leaves. It is a
very cleverly organized structure. In the world of computers, when it comes to organizing
something into a hierarchy, the structure used for that is also called a tree. Similarly, to
the ones found in forests, the ’computer’ tree has a stable base, usually called root. Then
there is a thicket of branches connecting the leaves to the root. The leaves represent the
objects being organized. The tree model is a very useful structure, unfortunately it is not
clear how long has it been used nor who to admire for the brilliant idea.

1.1 Motivation

”Owing to this struggle for life, variations, however slight and from whatever
cause proceeding, if they be in any degree profitable to the individuals of a
species, in their infinitely complex relations to other organic beings and to their
physical conditions of life, will tend to the preservation of such individuals, and
will generally be inherited by the offspring. The offspring, also, will thus have a
better chance of surviving, for, of the many individuals of any species which are
periodically born, but a small number can survive. I have called this principle,
by which each slight variation, if useful, is preserved, by the term Natural
Selection.“

Charles Darwin, On the origin of species, 1859 [4]

This quote of Darwin is very powerful and relates to almost any field of science. When
monarch butterflies learned to be toxic, leaving a bad taste in mouths of their avian preda-
tors, it saved their species. Their were not eaten unlike other butterflies. However, viceroy
butterflies topped their fellow monarchs. They learned that they didn’t have to be toxic
to stay alive. Simply appearing like monarchs was enough to fool the birds and easier to
evolve. These are both examples of natural selection in biology. When a mathematician
discovers a new theory, a slightly better one than the previous, and the public adopts it
(other mathematicians start to cite it, teachers start to teach it, engineers start to build new
technology based on it), that is a natural selection in mathematics. When a chef invents

4

a new recipe to cook pork and customers find it more delicious than the pork from the
restaurant across the street, they stop eating the pork from across the street. Want it or
not the chef from across the street buys the new pork recipe from his innovative competitor
and starts serving the same pork, in order to keep customers coming to his restaurant.
However, his old recipe is not used any more, it died and that is the natural selection in
gastronomy. Applying the principle of natural selection in computer science resulted in
evolutionary algorithms.

It looks very promising indeed, but there is one big downside of the evolution: it takes
time. The earth is 4543 billion years old and it took it a while to evolve to the current
state. The monarchs and viceroys did not evolve their tricks for survivor in a year. It
took them more than hundred million years. Billions of individuals had to die, before
their genetic sequence was successfully altered and evolved their life saving features. New
mathematical theory also takes weeks or even months to be adopted by public. Similarly,
a word about a new delicious meal has to spread for more than a week to reach all the
possible customers. People do not have that luxury of time in computer world. If one
wanted to sell an awesome algorithm that solves a problem brilliantly, but it would take a
week to evolve the solution, nobody would be interested in buying. Luckily computers are
able to accelerate the evolution, thus the evolutionary algorithms are feasible.

So there is an algorithm to solve problems, but how should one interpret these problems
to the algorithm? The evolutionary algorithms are a method of solving problems, but the
problems need to be specified in a way that a computer understands. Some sort of problem
abstraction is needed. The algorithm could be tightly bound with the problem it is solving.
Instead a method that could solve many different problems is preferred. An algorithm that
takes a problem representation as an input and returns a solution to the problem as a result
of its work.

When one explains his problem to his friend or his health troubles to his GP1, he uses
a language. To communicate with a computer programmers also use languages, although
the programming ones. Thus to explain some problems to the algorithm, some sort of a
language is going to be used as well. A handy tool for language specification is the formalism
presented by Chomsky grammars.

What kind of result is expected from the algorithm? It probably depends on the problem
itself, so a restriction has to be made in here. This thesis focuses on problems, with some
courses of action as solutions. Once again, there is a need to understand the results from
the algorithm, and a need to easily use the results to ones advance. This issue will remain
unanswered for now and instead the goal of the thesis is introduced.

Close examination of available methods of evolutionary computing, development and
grammatical evolution, investigation of properties of grammars and study of the ways gram-
mars are constructed is crucial. Based on the gathered knowledge an algorithm for solving
problems is going to be designed. This algorithm should leverage both Darwin’s natural
selection and Chomsky’s grammars. By applying this algorithm to some problems of real
world, the theoretical considerations would like to be proven. The very common problem
of knight’s tour is slightly adjusted to be the first lab rat. If the rat survives, meaning the
algorithm works, a true real world problem is going to be tackled. The evolution will be
let to handle development of an AI player for the game Liar’s dice.

1GP - general practitioner

5

1.2 Organization
The work is split into chapters, which step by step apprise the reader with new ideas
being applied to the solution. The paper starts with an introduction to problems 2 it
is trying to solve. A very high level outline of the solution is presented in section 2.3,
together with a model that the solutions are based on 2.3.1. The means to help solving
the problems follow in chapters 3 and 4. Firstly evolution is examined and the key points
for defining the basic evolutionary algorithm 3.3 are discussed. To better understand all
the parameters of evolutionary algorithms see section 3.4. There are descriptions and also
reasoning for the choices made later during experiments. In adition to the straight evolution,
the coevolutionary approach is introduced in section 3.6. Basic knowledge about grammars,
needed for the purpose of this work, is presented in sections 4.1.1 and 4.1.2. Answers
regarding the last missing part of the algorithm are in section 4.2.1. The grammatical
evolution algorithm itself 2 can be found in the section 4.2. Digging deeper into the details
of the solution is chapter 5. It starts showing the parts that are common in both problems
5.1 and explains the issues found during the implementation and experimenting. Specifics
of the implementation like the design of grammars or implementation of the operations
is described in sections 5.2 and 5.3. In chapter 6 the most interesting experiments are
presented, with some conclusions being made. There is one appendix A to this work. It is
a description of files attached on the digital part of this thesis.2

2These files could be also found on the following url https://github.com/trepik/ge

6

https://github.com/trepik/ge

Chapter 2

Applications

Coming up with a new idea, method or algorithm is very satisfying, but using it to solve
some real problems makes one even more pleased. Choosing the right application domain
was not easy. When opting for an evolutionary approach the problems need to be complex
enough. In case the solutions could be easily computed with the conventional methods,
evolution is not needed. Problems can not be too complex either, because of the computa-
tional power that the evolution needs. In order to develop the algorithm and conduct some
experiments, on a mediocre personal computer, the solution of the problem has to be easily
evaluated.

Navigating a knight over the chessboard and not stepping on the same square twice, is
the first application. The environment of the chessboard is pretty simple and the behavior
of the knight is straightforward. This problem was also chosen for the ease of its implemen-
tation. The second application, behavior of a dice player is definitely more complex. In a
game with dice, where probability plays one of the main roles, finding the right strategy is
not a piece of cake. Leaving it to the evolution is a lazy man’s approach, but also a good
proof of concept.

In the literature, there have been many different applications of grammatical evolution.
This theses tries something yet new, but similar. The inspiration came from Evolving
Behaviour Trees for the Mario AI Competition Using Grammatical Evolution [7], where
the authors control Mario with evolutionary developed behavior trees. This work aims to
achieve something similar with the two scenarios. In the following sections 2.1 and 2.2, the
principles and the rules of both problems are explained, while the last section 2.3 outlines
a common strategy for solving the problems.

2.1 Knight’s tour
In order to know how to catch a big fish, one needs to know how to catch a small one first.
In this section a simple problem is presented, so that a more complex problem could be
solved later. The original knight’s tour is a chess problem. Chess is played on a board of
64 squares organized into a square pattern (8x8). A knight (also known as horse) is one
type of pieces, chess is played with. Knight’s specialty is his L-shaped movement over the
board as shown on figure 2.1.

Definition 2.1.1 (Knight’s tour1)
Knight’s tour is a chess problem in which a knight makes a circuit of the board touching
each square once.

7

A restriction of knight ending one move from the starting position makes it a closed
knight’s tour. This closed version is actually an instance of more general mathematical
problem Hamilton circuit2. Computing knight’s tour for any initial position on the board
is considered solving the knight’s tour problem. One could even question, whether there is
a solution to the problem, but in fact there are several billion solutions.

This thesis does not seek for a sequence of moves, but rather a behavior tree that
controls knight’s movements on the board. So that the one sole result (a behavior tree) is
able to maneuver the knight over the board according to the rules of knight’s tour. A term
behavior tree has been mentioned several times without any further explanation. Detailed
elaboration on the topic is in section 2.3.1.

There is no need to restrain the knight’s tour problem to 8x8 chessboard. Experimenting
with boards of different sizes may be interesting. The smallest board on which the knight
is able to finish his tour is 5x5 borad, and experiments on smaller boards would not make
much sense.

Figure 2.1: All possible knight moves.

2.2 Liar’s dice
In this section a game of dice is presented. There are many different variations and also
names for this game. Only one set of rules is chosen to base the solution on. The Single
Hand version of rules from dicegamedepot.com [5] is implemented. To reference the game
a name Liar’s dice is used from now on. A detailed explanation of the rules follows.

2.2.1 Basic rules

The game is played by two or more players (p ∈ N ∧ p ≥ 2). Each player starts the game
with the same number of 6-sided dice d. The game is further divided into smaller closed

1Definition from http://www.merriam-webster.com/dictionary
2More about Hamilton circuit at http://mathworld.wolfram.com/HamiltonianCycle.html

8

http://www.merriam-webster.com/dictionary
http://mathworld.wolfram.com/HamiltonianCycle.html

segments called rounds. The order of the players in the first round is random. Each round
begins with each player rolling his or her dice at the same time. Everybody keeps his or
her roll to him or herself. The player to start the round states his or her bid consisting of a
value v and quantity b. The bid represents the player’s belief that there are at least b dice
of v value rolled by all players together. Each subsequent player has three options. He or
she can:

• make a higher bid, or

• re-roll, and then make a higher bid, or

• challenge the previous bid.

Making a higher bid can be done in two ways:

• either increasing the value of the previous bid and not lowering the quantity (vnew >
vold ∧ bnew ≥ bold), or

• raising quantity of the previous bid and choosing any value (bnew > bold).

If a player is not sure about making a higher bid based on dice he or she sees, he or she can
uncover at least one of his or her dice and roll the rest again. Then he or she has to make a
higher bid. The bidding, or re-rolling and bidding goes on until one of the players decides
to challenge the previous bid. With a challenge comes the end of a round and everybody
uncovers his or her dice. The challenged bid and the actual state on the table are compared,
giving three possible outcomes. (r = b− a where a is the actual quantity of v value on the
table)

• r < 0 - There are more dice of the bidden value on the table than the actual bid, and
therefore the challenger looses. He or she has to put aside (for the rest of the game)
−r of his dice.

• r = 0 - Both the actual quantity on the table and the bidden quantity are equal,
which makes once again the challenger loose. He or she has to give one of his dice to
the bid caller.

• r > 0 - There are less dice of the bidden value on the table than the actual bidden
quantity, making the bid caller loose. He or she has to put aside (for the rest of the
game) r of his dice.

The loser of a round always begins the following one3. The game is played in an elimination
fashion, once a player has no dice to roll, he or she is eliminated. A winner is the player
who stays last in the game, having at least one dice to play with.

2.2.2 Wild ones

There is one extra rule added to spice up the game a bit. The value of 1 is considered as
wild, always counting as the value of the current bid. When a bid caller announces that
the bid value is fives, this rule of wild ones turns all of the ones rolled into fives. The ones
always match the bid value. The value of ones can also be bidden, and their quantity counts

3Very likely situation to happen is that the looser of a round is eliminated and therefore can not start
the next round. A player right after the eliminated one in the playing order is to begin the new round.

9

double. To top a bid of normal values with a bid of wild values, the new quantity times
two needs to be higher than the previously bidden one. Here is an example of a bid order:
5 sixes < 3 ones < 6 sixes. With this new rule the game becomes a bit more complex,
bringing more possible strategies into the frame.

The rules of the game were explained, but to make sure the reader understands them
well an example of few rounds of the game is presented.

Example 1
There are three players in the game and Mike is to start the first round. Everybody rolls
his or her dice, but keeps it hidden from the others. Mike rolled 1 1 2 5 3 5 and he bids
4 ones. Then both Emily and Josh increase the bid to 5 and 6 ones. Mike is suspicious,
so he calls a challenge. Emily and Josh reveal their dice to Mike and make him sad. Both
Emily and Josh had 2 ones each which makes it total of 6. That is exactly as the Josh’s
bid said (r = 0) and Mike has to give one of his dice to Josh. The second round is here
and Mike starts it because he had lost the last one. He rolls 3 5 2 1 6 and bids 4 sixes.
Both of his opponents once again increase the bid quantity by one up to 6 sixes. Mike does
not want to end up in the same trap as before so he decides to reveal 1 and 6. He re-rolls
his remaining three dice and gets 3 5 6. Luckily for him he rolled one extra six and with
satisfaction calls a new bid 7 sixes. Emily decides to challenge Mikes bid only to find out
that there were exactly 7 sixes rolled on the table. As in the first round r = 0 and Emily
passes one of her dice to Mike. She also starts the next round. All the dice are rolled and
she announces a bid of 1 six. Josh calls 2 sixes and Mike does the same and increases the
bid to 3 sixes. This continues in a similar fashion until the bid is 7 sixes and Mike decides
to call a challenge on Emily’s bid. Everyone reveals their dice showing:

• Mike: 6 1 4 5 3 2

• Josh: 1 2 2 6 3 2 4

• Emily: 5 4 3 3 5

There are only 2 sixes which would mean Emily had to give away all of her 5 dice. Luckily
for her, there is the rule of wild ones and the 2 ones on the table count as sixes. r = 7−4 = 3
and she loses only three of her dice leaving her with two. There is no need to continue with
the game as most of the rules should be clear by now. Who is going to win the game, the
reader would never know.

2.3 Common solution design
Both of previously outlined behaviors, either a knight traversing a chessboard, or a player
trying to win a game of dice, have some similarities. They need to stay within some
boundaries or rules. The same approach will be used trying to solve both problems. To
make them act according to the rules, grammars will be used. To make them improve and
search for better strategies, evolution will be applied. And finally, to represent and evaluate
evolved solutions, behavior trees are employed. Close analysis of these problems follows.

What is a solution to the knight’s tour problem? It is a sequence of moves that maneu-
vers the knight over the board. Similarly, when playing Liar’s dice the algorithm should
be looking for a sequence of moves that lead to a victory. Looking for a single sequence,
could lead to a proper solution of the knight’s tour from one place on the board. However,
changing the initial position of the knight, would probably require a new, different sequence

10

of moves. The same with the Liar’s dice, one strategy leading to victory in one game, might
be terrible in another. So instead of a single sequence of moves the goal is to look for mul-
tiple sequences. They do not necessarily need to be unique sequences and could differ from
one another only slightly, they may overlap. To avoid redundancy, the overlapping parts of
the sequences can be merged and organized into trees. These trees should form a hierarchy
of strategies. By following a certain branch of a tree, player would be applying a certain
strategy. To follow a certain branch means deciding, which branch to follow next at each
branch division. These decisions should be based on some observations of the environment.
In case of the knight he should be considering his position and free slots he can move to. A
player of the Liar’s dice would observe the dice on the table he can see, as well as the dice
that are hidden to him. Similarly he should choose his next move based on the current bid.

So the trees will not consist of actions only, but conditions for testing the state of the
environment should be incorporated as well. In general, this tree is describing behavior of
a player. Behavior trees, as they are called, are widely used in computer games, to define
behavior and actions taken by artificial players. More on behavior trees follows in next
section.

2.3.1 Behavior trees

There are many different types of behavior trees all over the internet. This work is inspired
by the behavior trees described in Natural Computing Algorithms[2]. As mentioned before,
behavior trees are organizing behaviors or player strategies into hierarchical structures.
Higher-level behaviors appear closer to the roots, while the primitives stay in the leaves.
There are two types of leaf nodes in the behavior trees. Action nodes include primitive
behaviors and condition nodes represent the states of environment. Usually there is a
condition node followed by some action nodes, corresponding to the behavior of a player in
a game. At first the player examines the state of the game (condition nodes) and then he
or she takes some actions.

Aside from leaf nodes, there are composite nodes. They are connecting leaf nodes to
form the structure of a tree. According to the terminology of the tree data structure,
composite nodes are parenting leaf nodes. Having the structure connected, it is time to
explain how the structure is used to control a player in a game.

Each of the nodes of a behavior tree has some code attached to it. This code differs
with the type of the node. Aside the code each node can be in one of four different states:
unknown, active, succeeded, failed. At the beginning each of the nodes is in the unknown
state. The decision making starts by moving the root node to the active state. Activating
a node means executing its code. By executing the code a node can move from the active
state. The action nodes directly interact with the environment. If the code of an action node
successfully alters the environment, the node moves to the succeeded state. If something
goes wrong and the action is not accepted by the environment, the resulting state is failed.
The condition nodes, upon activation, change their states according to a test on the state of
environment. Each of the condition nodes tries to get some information about the current
state of the environment and tests a condition, which is either true or false. If a condition
is evaluated as true the condition node moves to succeeded, and if the condition is not true
in the environment, the state changes to failed.

To be able to model more complex structures, two types of composite nodes are going to
be implemented. A sequence composite node is going to activate all of its child nodes one
by one, always in the same order, while they move to the succeeded state. As soon as one of

11

the nodes moves to the failed state the remaining child nodes are not activated. It is similar
to the lazy evaluation of conditions in programming. The sequence node represents the and
operation. The second type of composite nodes is a selector, activating all of its child nodes
until one moves to the succeeded state. The behavior of selector node is equivalent to the or
operation in lazy evaluation of conditions. One last note is that the root is also a composite
node and its type depends on the application.

There are many other types of nodes in the literature like decorators, invertors, suc-
ceeders, repeaters or limiters[9]. However, this work does not attempt to make use of them
and it implements only the types presented in detail in this section.

The construction of behavior trees is one very demanding and time consuming task.
Very good knowledge of the environment and scenarios is required. Instead of a deep
analysis and observations on the environment, the evolution is used to handle the problem.
More on how the trees are generated and used to solve the problems is in section 4.2.

Example 2
Here is an example of a behavior tree with both selector and sequence composite nodes.
With regards to the leaf nodes, each condition precedes an action.

Figure 2.2: Behavior tree example.

12

Chapter 3

Evolution

When one wants to draw inspiration from natural evolution, firstly he or she has to know,
how does it actually work. The basic vocabulary and concepts of evolution are introduced.
Some of the most important terms are defined solely for the purpose of this work. They
may or may not overlap with definitions in literature. Only key ideas are highlighted and
developed step by step making the text easy to follow. The focus is on methods used in
the experiments closely described in chapter 6.

3.1 Evolution in biology
When speaking about evolution, there is always a subject. The subject could be one
individual or a group of individuals. This work focuses on more individuals interacting
with one another calling the group of individuals population.

Definition 3.1.1 (Population)
Population is a community of individuals among whose members interbreeding occurs.

When population is static, there is not much to observe, because there si no evolution.
This implies the changes in a population are going to be investigated. In particular there
are two changes of interest and that are births and deaths. It is possible to cover these
two changes with one term. The father of the evolution theory Darwin wrote about natural
selection in his On the Origin of Species [4]. Shortly after reading this paper Spencer implied
the famous “Survival of the fittest” quote. Survival is the term encompassing births and
deaths, and itself it is a very challenging problem. For successful survival one needs to have
available resources, such as food, water, shelter and mates. Certain mechanisms or skills like
senses, communication, cognition and mobility evolved to help individuals survive. Ability
to reproduce is undoubtedly a key factor in survival as well. These are the properties of
natural evolution that the algorithms presented in this thesis are inspired by.

3.1.1 Reproduction in biology

This section has a closer look at the process of reproduction. Because the process is pretty
complex, it is explained in brief. The emphasis is on the key parts that the algorithms are
leveraging.

Definition 3.1.2 (Reproduction)
Reproduction is a biological process of new individuals being produced.

13

Figure 3.1: Reproduction.

Producers are called parents and the product is called an offspring, as shown on fig-
ure 3.1. From the algorithm development point of view, the most important concept in
reproduction is the transfer of genetic information. This information is stored in each and
every cell of an individual as a sequence of nucleotides. A nucleotide is an organic molecule
serving as the basic building block for genes. One can imagine the genetic information as a
recipe or a manual for a specific feature. For example there is a genetic information saying
what eye color a person has, or would have. The information is called genotype and it is
directly linked with a similar term phenotype. Definitions of both terms follow.

Definition 3.1.3 (Genotype)
Genotype is a genetic information responsible for a particular characteristic.

Definition 3.1.4 (Phenotype)
Phenotype is a particular characteristic or physical expression defined by some genotype.

Within the same species genotypes differ only slightly. As the species phenotypes differ
more the same is with their genotypes. On the other hand there are species having very
similar genotypes but their phenotypes differ a lot. That is possible because genotype is not
necessarily the entire genetic information of an individual, genotype is usually only some
proportion.

Definition 3.1.5 (Genome)
Genome is the complete set of genes or genetic material that an individual poses.

In the process of reproduction parents duplicate their genome and pass it to their
posterity. There are two forms of reproduction. The first one is called asexual. Only one
individual is involved. The whole genome of a single parent is duplicated and its offspring
gets identical or almost identical genetic information. Although the population tend to
grow in numbers exponentially, the genetic evolution in asexual reproduction is making
very small steps. The only changes between parental and offspring genomes are mutations.

Definition 3.1.6 (Mutation)
Mutation is a permanent alteration in the nucleotide sequence.

Individuals reproducing asexually tend to adapt slower in terms of the number of in-
dividuals. More individuals need to reproduce, in order to ratify a change in genotype.
Vulnerabilities of asexually reproducing individuals usually stay longer within the popu-
lation, by traversing from parent to offspring. Types of asexual reproduction observed in
nature are for example budding or binary fission.

The second form of reproduction is sexual. There are two individuals required to sexu-
ally interact in the process of reproduction. Genetic information of both parents is combined
to create completely new genome of their offspring.

14

Definition 3.1.7 (Crossover)
Crossover is an exchange of genetic information between two homologous genetic sequences.

The crossover brings a new variety of genomes to the population. Individuals can
therefore survive in changing conditions, by adapting to the environment faster. Less
individuals need to reproduce in order to ratify a change in the genome. In contrast to
the asexual reproduction, sexual makes much larger steps in evolution. Of course there is
no guarantee that all the steps are in the right direction. The natural selection decides
whether the change in genotype was right or not.

The evolutionary algorithms implement both forms of reproduction, each one for a
different purpose.

3.1.2 Adaptiation in biology

The evolution and reproduction are processes helping populations survive. The other pro-
cess happening behind the scenes is adaptation. It occurs in multiple levels and timescales.
Good illustration is the POE model presented by Sipper et al. in 1997 [11]. Their model
distinguishes between three levels of adaptation. Phylogenesis would be the adaptation
of genomes as mentioned in section 3.1.1. This is actually the slowest level of adaptation
speaking from the number of generations perspective.

Definition 3.1.8 (Generation)
Generation is a collection of all individuals of a certain population living at a certain
moment.

Ontogenesis is the second level of adaptation and covers the development of an individual
during its maturation (differentiation, becoming an adult, etc.). It can be viewed as a
process of genotype to phenotype mapping. The genome stays the same while the individual
still adapts according to its surroundings. It is possible because the genetic information is
not being used all at once. The process responsible for this behaviour in nature is one of
gene expression regulation processes, known as methylation1.

Epigenesis might seem very similar to the Ontogenesis. It is also a process of adap-
tation or development of an individual, and it is also hugely affected by the environment.
However, the development is not engraved in the genome of the individual. The name
epigenesis reflects the fact, meaning something beyond genetics. One can imagine this level
of adaptation as a lifetime learning of an organism. Epigenesis type of adaptation relies on
experience gathered in sort of a memory.

It is true that in nature all these three levels of adaptation are closely interlinked, but
when searching for inspiration in the process of algorithm design, there is no problem in
separating them.

3.1.3 Competition and cooperation in biology

In the natural environment among many species of animals or plants there is a continu-
ous interplay, encounters or interactions of different kinds. Two different species are either
cooperating in order to survive in the environment or there is a competition for resources
between the species. The cooperative behavior is called symbiosis. An example is the sym-
biosis of the Nile crocodile and the Egyptian plover, a bird that feeds on any leeches attached

1More on methylation could be found in the work of Bell et al. [1]

15

to the crocodile’s gums, thus keeping them clean. The competitive behavior resembles an
arms race, when each competitor evolves to overcome the latest tricks of its opponent. The
pray-predator conflict between lions and antelopes, is a perfect example. The environment,
too, is continuously changing and preparing new challenges for the species, so they have to
adopt to it as well. This observation suggest there is more to be investigated on the two
behaviors in evolution: cooperation and competition.

3.2 From biology to the algorithm
Section 3.1 introduced evolution from the biological point of view. Now it is time to use
this knowledge to construct an algorithm. This section is going to prepare the ground by
simplifying and slightly tweaking some concepts. The evolution algorithm itself is presented
in the following section 3.3. Together with the presentation of the algorithm building blocks,
this section contains reasoning for each of the choices made. The rest of this chapter is
inspired by the first chapter from Springer’s Natural Computing Algorithms [2].

3.2.1 The ultimate goal

Before getting started with preparing the building blocks for an algorithm, one needs to
know, what is he or she trying to achieve. What is the ultimate goal of this thesis? An
algorithm in general is a step by step procedure designed to solve a problem. So evolutionary
algorithm should be also able to solve problems. The important here is the plural of the
last word problems. Yes, this work aims to generalize as much as possible, so that the
algorithm could be used to solve not only one but many different problems. It needs to
be universal. If the algorithm would take ages to finish, it would not be very convenient
either. Therefore, a good performance is also one of the targets. It all looks very promising,
but there is one small problem. No one is going to get all this for free. In order to achieve
the listed goals, one needs to give something up, and that something is precision. Why?
Nothing is really perfect in the real world, so there is no need to have perfect solutions to
the problems either. All in all the algorithm or a problem solving mechanism should be
both universal and effective, and should produce solutions that are close approximations of
the ideal solutions.

3.2.2 Population

The term population was already defined and it has also been said that the focus will be
on evolution of a population. But why? Section 3.1.1 partially answered the question,
when it spoke about parents and their offsprings. Making a connection to the ultimate goal
of solving problems, population is one of the key components of the algorithm. Instead
of working on one solution to a problem, the evolutionary algorithm works with multiple
solutions at a time. These potential solutions make up a population of solutions. It is a
huge improvement in contrast to the conventional methods. By working with a population
one imposes parallelism. It is not necessarily a speed up gain, but this approach brings
many other advantages.

With a population of potential solutions, one is trying to avoid convergence to a local
optima of a problem. Then there is no need to restart the algorithm over and over again,
because of an ’unlucky’ initialization. There is much higher probability that one of the
potential solutions in population gets close to the global optima. The vital point is to

16

disperse the initial population evenly to cover the entire solution space. In fact it is beneficial
to maintain the dispersion during the entire evolution. The algorithm is then able to adopt
to changing conditions of the environment. The global optima might also be changing in
larger distances over time and a dispersed population has a higher chance of capturing these
changes. The population mainly allows the algorithm to avoid local optima and achieve a
global search characteristics through dispersion of its individuals.

3.2.3 Communication

Communication, or exchange of information, between individuals within the population is
crucial. Working in isolation would not be much different from the conventional methods.
Yet interacting with peers, who are trying to achieve the very same goal, is profitable.
The exchange of genetic information between parents and offsprings is the actual way
of communication, individuals are able to do. When some individuals are closer to the
target, advertising it to the others is vital. Being the evolution in changing environment,
communication can be beneficial as well, but only in well dispersed population. One can
spot a conflict of interests in here. On one hand the algorithm should guide individuals to
better places, solutions, on the other hand it should keep the population dispersed all over
the solution space. Finding the right balance is key here. Wise communication can help
bias the algorithm towards better solutions, while maintaining dispersion.

3.2.4 Adaptivness

Section 3.1.2 introduced the POE model [11], looking at the process of adaptation from
three perspectives. The algorithm is going to apply principles coming from phylogenesis.
Individuals are going to carry the same genetic information during their entire life. All
of it is going to be used at all time, that means no methylation and thus no change in
behavior. Individuals will have no memory, so they will not be able to apply the principle
of epigenesis either. The population is going to adopt by passing the genetic information
from one generation to another. Each new generation should be at least as good as the
previous one, but it is not a necessity.

Figure 3.2: Evolution cycle.

Before the algorithm is built up, a brief recapitulation of the key characteristics of
evolution follows. At the beginning a population of individuals is born. Some of them
mature, find their mates and become parents. After breeding, new individuals or offsprings
are born. Because of new individuals joined the population, there is not enough resources
for all of the individuals. Darwin’s Natural Selection [4] comes into play and a game of
survival is played to form the next generation. As figure 3.2 shows, the cycle is already
closed. The process repeats over and over again, which makes it the evolution.

17

3.3 Basic evolutionary algorithm
All the necessary building blocks to define a basic evolutionary algorithm were provided.
The algorithm simulates the process of biological evolution (phylogenesis), in order to find a
satisfying solution to a problem. At the beginning initial population of potential solutions is
generated, so that it is evenly dispersed over the solution space. The solutions are iteratively
modified and preferably improved from one generation to another. Some solutions are
selected to become parents, exchange information, and thus create new solutions. Next
generation is formed from both parents and their offsprings, using variety of strategies.
Most of the strategies are based on the quality of individuals. Better solutions are preferably
selected for survival. However, it is important to keep in mind the goal of solution space
coverage. The algorithm ends when one of the solutions meets a predefined criteria. In other
words the solution is good enough to survive in the environment and solve the problem.

Algorithm 1: Basic Evolution [2]

1 population.init()
2 repeat
3 parents = population.getParents()
4 offsprings = parents.breed()
5 population.update(offsprings)
6 until terminating condition

As the reader can see each individual step of the basic evolutionary algorithm is very
abstract and can be implemented in many different ways. That implies existence of mul-
tiple different evolutionary algorithms, all of which have the same starting point the basic
evolutionary algorithm. Section 3.4 describes each step of the basic evolutionary algorithm
in more detail. Different options for each step are presented with highlighting their pros
and cons.

3.4 Parameters of evolutionary algorithms
Without a proper implementation details the previously described procedure is just a
rephrasing of the biological process. In order to make the evolutionary algorithm com-
plete and ready to use, sections 3.4.1, 3.4.2, 3.4.3, 3.4.4, 3.4.5 and 3.4.6 speak about each
step in detail. The most common approaches are presented, emphasizing the ones used
in this work. The algorithm is almost ready, only waiting to asign missing values to its
variables. Now it is time to examine the potential values for each of the variables. This
section is inspired by chapter 3 of the Natural Computing Algorithms [2].

3.4.1 Population initialization

If one already knows some solutions to the problem he or she is trying to solve with evolution,
these information can be without any harm used to initialize the population. Usually
the engineers end up on the other side of the river, where they do not know any good
solutions. The population is then in most of the cases initialized at random. Speaking
about initialization of the population, one might be asking how many individuals should
there be? There is no universal answer to the question. It is one of the parameters of each

18

evolution algorithm. The size depends on many aspects like computational power of the
hardware, specifics of the problem being solved and other parameters of evolution as well.
Usually the size of the population stays the same the entire evolution, but there might be
cases where growing or shrinking population is useful. Size of the initial population is most
often chosen experimentally.

3.4.2 Quality of individuals

After an individual is born, it is vital to get some information about its qualities. Without
it the natural selection could not compare the individuals with each other and would be
helpless. To enable the natural selection a measure of fitness is established.

Definition 3.4.1 (Fitness)
Fitness is measure of capability to solve a certain problem.

From now on, when comparing two individuals, one is going to be fitter. In other words
one is going to have a better fitness, than the other. The actual fitness measurement or
computation is problem specific. Designing a good measure of fitness, or so called fitness
function, is also a crucial part in the algorithm specification. It is the second parameter.
Evaluating individuals is usually the most resource consuming part of the evolutionary
algorithm. That is why one needs to keep the fitness function as simple as possible. At the
same time the fitness function must well distinguish the individuals, to drive the evolution
forward. To keep the algorithm efficient, one does not want to be evaluating the same
individuals multiple times, and rather use the fitness stored somewhere. However, it is not
always possible and in some cases the fitness of an individual needs to be calculated at each
generation.

3.4.3 Mates selection strategy

Motivation behind breeding is simple, newly generated individuals should be fitter, better
suited for the environment. Therefore tending to choose better solutions to mate is intuitive.
However, it is not always the best policy. Selection strategy, dictating which individuals
are going to provide their genetic information, in order to breed an offspring, determines
the selection pressure.

Definition 3.4.2 (Selection pressure)
Selection pressure is amount of bias towards selecting fitter individuals for breeding.

There are two extremes, one of which is pressure being too low. In that case the
evolution is usually too slow and inefficient. The other extreme of pressure being too high,
results in an evolution not maintaining the population dispersion, thus possibly converging
to a local optima. Finding the right balance is key here. The original method for mates
selection is fitness proportionate selection. A probability of an individual being selected is
directly related to its fitness. The selection itself is based on a roulette principle, where
the probability of selection is transformed to a space on a roulette wheel. The method is
very intuitive, but it embeds a high selection pressure. Generally, in the early stages of the
algorithm, there are many different solutions with some being noticeably better. The better
ones are selected by roulette more frequently and thus push the population to a premature
convergence. There is also a risk of low selection pressure occurring. In the later stages
of the algorithm the individuals have more or less the same probability for selection, and

19

slightly better solutions are not able to strongly influence future populations. To overcome
the selection pressure problems, another approach was introduced ordinal selection.

In ordinal selection, the fitness measure is computed in two steps. Firstly all solutions
are ranked according to their original fitness. Fitter solutions get higher rank. Then
the rescaled fitness values are computed using the ranks. That should lessen the risk
of high selection pressure in the early stages of the algorithm. The roulette principle of
selection could be applied as before but there are other more sophisticated options. Top
rank selection method looks only at the top n ranked individuals and chooses mates from
those. The most commonly used method of ordinal selection approach is a tournament
selection. From k individuals, chosen randomly without replacement, the fittest one always
’wins the tournament’ and is selected for mating. The k parameter is very interesting. With
low values of k the selection pressure is low, while high values of k result in higher pressure.

Mates selection utilizes only phenotypes (fitness of individuals) and thus it is dependent
neither on genetic information of an individual nor on the representation. The mates
selection strategy is the third parameter of evolutionary algorithms.

3.4.4 How offsprings are born

In contrast to mates selection, breeding a new offspring is genotype dependent. There are
two genetic operations generating variety and both were already defined in section 3.1.1.
With mutation in play the evolution process makes smaller steps, but never stops. On the
other hand by applying crossover evolution can make bigger steps but once the population
converges to the same genotype, crossover cease to produce novelty.

In the natural evolution mutations occur randomly. To represent this randomness in the
algorithm, a probability for a mutation is set. As by definition 3.1.6, mutation alters genetic
sequence in some parts. To represent the true nature of mutation a different probability
should be set for each part of the sequence, as different parts are more or less likely to
mutate. In the algorithm a simplification, of setting the same probability of mutation for
the entire sequence, is applied. The probability does not have to stay the same and can also
evolve. Setting up the right probability is once again crucial. Setting up high probability of
mutations could resemble a random search method, but in combination with high selection
pressure, premature convergence of the population could be prevented.

The crossover operation allows for good genetic material to be inherited by next gen-
erations. This encourages more intensive search in the space of better solutions. There are
two common types of crossover operations. A n-point crossover distributes n points across
sequences, splitting them into parts, which are numbered. The points have to be at the
same positions for both sequences being crossed over. Otherwise, the length of the resulting
sequences would differ. To form a new sequence odd parts from one parent are merged with
even parts from the other parent and vice versa. The other approach is uniform crossover
where the combination is basically a random selection of genetic information from either
of two parents. There is also some probability involved in crossover operation determining
whether the crossover is applied. If the crossover is not applied, then the offsprings are only
clones of their parents.

So far it has not been discussed how does the actual genetic information look like. It is
also very problem specific, but there are some common representations like binary, integer
or real-valued sequences. It was mentioned earlier that both genetic operations depend
on genotype and therefore on its representation. Design of these operations is another
parameter of evolutionary algorithms.

20

3.4.5 Game of survival

Once offsprings are born, there is one last important step to be done. Individuals surviving
into next generation have to be chosen. Again, there are many strategies of doing so and
again, the survival selection strategy is one of the evolutionary algorithm parameters. These
are some of the most common strategies:

• direct replacement - all offsprings replace their parents

• random replacement - individuals advancing to a new generation are selected at ran-
dom from both parents and offsprings

• fitness based replacement - both parents and offsprings are selected to form a new
generation based on their fitness (roulette, top rank, tournament)

• steady state replacement - only small number of offsprings is created and replace
usually the least fit parents

• elitism strategy - keeps always the fittest parents in the population

• crowding operators - maintain the population dispersion, allowing new individuals to
join the population, only by replacing the most similar individual

3.4.6 Terminating conditions

The natural evolution never stops and it is possible that also evolutionary algorithm has
no end. But most of the evolutionary algorithm scenarios have an end. The algorithm is
computing a fitness of each individual during its run. It is common to set a threshold for
fitness. When an individual’s fitness reaches the threshold, the algorithm stops and take
that solution as the result. To be honest, it is likely that the threshold would never be
reached. Lowering the threshold throughout the evolution is one solution, the other is to
terminate the evolution after some number of generations, and taking the fittest individual
as the result. Fitness threshold and number of genrations are the last two parameters of
evolutionary algorithms, which need to be set up beforehand.

21

3.5 Evolutionary algorithm design process
• population initialization strategy

• population size

• fitness function

• mates selection strategy

• mutation operation

• probability of mutation

• crossover operation

• probability of crossover

• replacement strategy

• fitness threshold

• number of generations

In section 3.4 these parameters of evolutionary algorithm were discussed separately. How-
ever, it is possible that all parameters mentioned before affect each other. This knowledge
has to be taken into account, when designing an algorithm. Generally, fitness-based selec-
tion is implemented either for mates selection or replacement selection, not both. When
one starts to dig deeper into the details of the evolutionary algorithm, many other ques-
tions arise. How many individuals are chosen to become parents? How many offsprings
should be created? These two are closely related with each other, as with the selection
and replacement strategies. Regarding the probabilities of genetic operations, mutation is
much less likely to happen (usually around 0,1) than crossover (usually from 0,6 to 0,9). If
an algorithm implements both of these operations, crossover is usually applied first. Set-
ting up a fitness threshold always depends on the fitness function itself, but also on the
computational power or time one has.

Huge part of setting up and practicing evolutionary algorithms is experimenting. Com-
paring the results is fundamental to fine tune the parameters. There is never a perfect setup
of the parameters. Adjusting the parameters is an ongoing process an evolution itself. More
about this can be found in the experimental part of this work in sections 6.1 and 6.2.

3.6 Coevolutionary approach
The most of evolutionary algorithm applications work with a single population. As men-
tioned in section 3.1.3, in natural ecosystems more species, populations, interact and evolve
together. Splitting individuals into more populations and evolving them simultanously is
the so called Coevolutionary approach. Populations could be competing against each other
to get more of the recources that the environment offers. A mutual cooperation is not out of
the scope either, when each population could be dealing with a distinct part of a problem.

22

Tomassini et al.[12] divided the coevolutionary approaches into two categories:

• Cooperative coevolution, is a system in which a number of different species, populations
cooperate in order to find partial solutions, which are then combined in some way to
solve the global problem.

• Competitive coevolution, is a system in which the different species, populations pros-
per or decay at the expense of each other.

When is using this coevolutionary strategy appropriate or even beneficial? Chapter 14 in
How to Solve It: Modern Heuristics [8] talks about using coevolution in the search for
optimal strategies for playing games. When there is no easy way to measure performance
beyond counting wins or loses. Defining a suitable fitness function is difficult or even
impossible. All these symptoms exactly fit the case of the Liar’s dice player. Therefore a
competitive coevolution is implemented, rather than the straight evolution. More details
can be found in section 5.3.3.

3.6.1 Multiple fitness functions

When dealing with a single population, there was only one fitness function employed at
once. With the coevolutionary approach and more populations evolving simultaneously, a
new dimension of experiments opens. Instead of having a common fitness function for all
populations, each population can have a different fitness function. It is possible because
an individual is compared only with individuals from his population. No inter-population
comparisons occur. Having different fitness functions for each population better resembles
the coevolution happening in nature. Experimenting with different fitness functions in
solving the Liar’s dice problem is described in section 6.2.2.

23

Chapter 4

Grammatical evolution

’In natural computing algorithms grammars are mainly utilized to construct syntactical
structures.’ ’This generative nature is useful with a developmental approach.’ ’Some devel-
opmental algorithms take advantage of grammatical encoding.’ ’In genetic programming,
grammars take control of evolving executable structures.’ These statements from Natural
Computing Algorithms [2] suggest that using grammatical evolution in evolutionary design
is not a waste of time.

4.1 Grammatical and developmental computing
This section introduces the other adaptation level, discussed in section 3.1.2, into the play.
The process of ontogenesis inspires a field of natural computing called developmental com-
puting. The ontogenesis also fits into the frame of basic evolution algorithm 1, where it is
responsible for mapping genotype to its phenotype. One can look at the mapping process,
as if genotype was holding some parameters, and development would be decoding those
into a solution, a phenotype. The original process is usually pretty simple, but with gram-
mars in hand, the algorithm gains power. Grammatical computing are methods powered
by a generative engine, a grammar. These methods have one big advantage over the other
approaches in natural computing. They are capable of, not only generating the appropri-
ate parameters for a model, but also generating the model itself. Most importantly both
grammatical and developmental computing tend to go hand-in-hand. While the develop-
ment ensures a stable connection between a model and the environment forming so called
feedback loops, grammars tend to produce parameters for the model, and are capable of
altering the model itself, if needed. In sections 4.1.1 and 4.1.2 the generative engine and
its representation are introduced, borrowing all definitions from [10].

4.1.1 Grammars

The basic component of grammatical computing algorithms are grammars. To represent
grammars in this work a very common notation technique for grammars, the Backus-Naur
form, is used. It contains two kinds of symbols:

• terminal symbols, terminals, denoting lexemes and

• nonterminal symbols, nonterminals, representing syntactic structures.

24

These symbols are formed into productions (p), with a nonterminal on the left hand side
lhs(p) and a sequence of terminals and nonterminals on right hand side rhs(p). Nontermi-
nals are usually words in pointy brackets, terminals are usually same as the lexeme they
represent. The name productions indicates that something is produced. How? By replac-
ing a left hand side of a production with the respective right hand side. The replacement
is called a derivation step. By doing derivation steps, one performs a derivation. The
derivation usually starts from a special start nonterminal symbol and it ends when there
are no nonterminals left to replace. The sequence of terminals one gets at the end belongs
to a set called generated language. So far the descriptions perfectly matches a description
of context-free grammars, an equivalent to the Backus-Naur form. There are other types
of grammars, but for this thesis the context-free ones will suffice the case. Formal defini-
tions of context-free grammar 4.1.1, direct derivation 4.1.2, leftmost derivation 4.1.3 and
generated language 4.1.4 follow.

Definition 4.1.1 (Context-Free Grammar)
A context-free grammar is a quadruple G = (N,T, P, S), where

• N is a set of nonterminals

• T is a set of terminals, N ∩ T = ∅

• P is a finite set of productions of the form A→ x, where A ∈ N , x ∈ (N ∪ T)∗

• S ∈ N is the start nonterminal

Definition 4.1.2 (Direct Derivation)
Let G = (N,T, P, S) be a context-free grammar, p ∈ P , and x, y ∈ (N ∪ T)∗. Then,
x lhs(p) y directly derives x rhs(p) y according to p in G, denoted by

x lhs(p) y ⇒ x rhs(p) y [p]

Definition 4.1.3 (Leftmost Derivation)
Let G = (N,T, P, S) be a context-free grammar, u ∈ T ∗, v ∈ (N ∪ T)∗ and p = A→ x ∈ P .
Then, uAv directly derives uxv in the leftmost way according to p in G, written as

uAv ⇒lm uxv[p]

Definition 4.1.4 (Language)
Let G = (N,T, P, S) be a context-free grammar. If S ⇒∗ w in G, then w is a word of G. A
word w, such that w ∈ T ∗ is a word generated by G. The language generated by G, L(G),
is the set of all words that G generates:

L(G) = {w : w ∈ T ∗, S ⇒∗ w}

4.1.2 Parse tree

One might easily get disoriented in derivation steps, lose track of which symbols were
derived from which. Therefore, it is a good habit to represent the derivation steps visually.
For that scientists use parse trees. By constructing and later examining a parse tree, one
can easily trace derivation steps. To formally define a parse tree a small subtrees called
production trees are used.

25

Definition 4.1.5 (Production Tree)
Let G = (N,T, P, S) be a context-free grammar, and p ∈ P . The production tree pt(p),
corresponding to p is a labeled elementary tree, such that lhs(p) labels root(pt) node and
frontier nodes, fr(pt(p)) consist of |rhs(p)| nodes labeled with the symbols appearing in
rhs(p) from left to right

Now, based on the definition above, one is able to construct a production tree for each
production of a grammar. As a derivation is a sequence of applied productions, a parse tree
is a set of production trees joint together.

Definition 4.1.6 (Parse Tree)
Let G = (N,T, P, S) be a context-free grammar. A parse tree of G is a labeled tree t
satisfying two conditions:

• root(t) is labeled with a start symbol S

• each elementary subtree t′ appearing in t represents the production tree pt(p) corre-
sponding to a production p ∈ P .

The following example 3 should demonstrate all new structures presented in last two sections
4.1.1 and 4.1.2 and resolve any potential misunderstandings.

Example 3
Consider a grammar with these two productions,

1 : 〈expression〉 → 〈expression〉+ 〈expression〉
2 : 〈expression〉 → 〈term〉

• the left hand side of a production, is denoted as: lhs(1) = 〈expression〉

• the right hand side of a production, is denoted as: rhs(1) = 〈term〉+ 〈expression〉

• nonterminals in this example are: 〈expression〉, 〈term〉

• the only terminal is +

A production tree, representing production 1, is on figure 4.1 and a parse tree, representing
the following derivation is on figure 4.2.

〈expression〉 ⇒ 〈expression〉+ 〈expression〉 [1]
⇒ 〈term〉+ 〈expression〉 [2]
⇒ 〈term〉+ 〈term〉 [2]

〈expression〉

〈epression〉+〈expression〉

Figure 4.1: Production tree.

〈expression〉

〈expression〉

〈term〉+

〈expression〉

〈term〉

Figure 4.2: Parse tree.

26

4.2 Grammatical evolution algorithm
The algorithm for grammatical evolution is presented and described in this section. There
is one last piece of the puzzle that needs to be explained in advance. Therefore section 4.2.1
reveals all secrets of this process.

4.2.1 Genotype mapping

Mapping a genome to a phenotype is the thing that is unique for grammatical evolution.
This section explains how is the issue solved in this thesis. The process of mapping depends
on representations of both genotype and phenotype. While the genotype is kept simple the
phenotype can be as complex as one wishes. The advantage of having a simple genotype is
in the simplicity of genetic operations. One would implement these rather over a sequence
of bits, than over behavior trees. For the purpose of this work a sequence of integers was
selected as the genotype representation. Any programming language can easily store and
work with sequence of integers, operations with integers are simple and fast. Moreover the
genotype is easy to read by humans.

How does the algorithm map a sequence of integers to phenotype? Grammar, a gen-
erative engine described in detail in section 4.1.1, is going to transform the integers of
genotype, to a behavior tree, phenotype. Derivation starts with the starting symbol, as
usual. Always the left most nonterminal symbol is expanded, applying the leftmost deriva-
tion. Each derivation step is controlled by integers from genotype. This assures that the
derivation is deterministic and never ambiguous. The choice of which production should
be applied, is computed with a simple equation: p = c % o where p is a production option
to be used, c is the next integer value from the genome, % is the modulo operation and
o represents the number of all production options. This simple evaluation, hand in hand
with the respective derivation step, continues on, until there is no production to apply. The
final phenotype is reached. One could ask, what if there was not enough integer values in
a genome? A very simple solution of taking values once again from the beginning of the
genome could be applied. It is called a circular genome.1

There is one specialty in the genotype mapping. A distinct nonterminal symbol, 〈gene〉,
may be used in a grammar. When this symbol is to be expanded, the next integer value
from the genome is stored directly in the behavior tree instead of the 〈gene〉 symbol. How
this value is used during the decision making, depends on the application, but the number
usually represents some kind of threshold.

The whole process of mapping has to be deterministic. So that reproducing the process
on the same genotype would produce the same result. Thanks to the determinism of the
process, mapping happens only once in a lifetime of an individual, in a similar way to the
original process in nature.

1Circular genomes or DNA can be found in nature as well for example among bacteria, but also plasmids,
mitochondrial DNA and chloroplast DNA form circular structures.

27

Algorithm 2: Gramatical Evolution [2]

1 grammar.init()
2 fitnessFunction.define()
3 parameters.set()
4 population.init()
5 population.develop()
6 population.evaluate()
7 repeat
8 parents = population.getParents()
9 offsprings = parents.breed()

10 offsprings.develop()
11 offsprings.evaluate()
12 population.update(offsprings)
13 until terminating condition

All steps of the algorithm were discussed before, but here is a short recapitulation. In
the initialization phase a problem specific grammar is created. Fitness function is also
problem specific and it must be defined beforehand. One is trying to keep it as simple as
possible, because computing the fitness is usually the bottleneck of the algorithm. Other
parameters of the algorithm were thoroughly described in section 3.4. Those are the parts
of the algorithm requiring experimenting. Population is then initialized, perhaps randomly
at the first experiments, but with some gathered knowledge applied latter in the day. The
first development takes place even before the evolution starts. It was mentioned in section
4.2.1 as genotype to phenotype mapping. Once all individuals have their phenotype, the
fitness can be computed. This is the step where knowledge about behavior trees, from
section 2.3.1, comes in. Evaluating an individual means applying its phenotype, a behavior
tree, and solving the problem with it. Quality of the solution is computed as an individuals
fitness. Inside of the evolutionary loop there are only operations already described in the
section 3.3 or here.

28

Chapter 5

Implementing gramatical evolution

After reading this chapter, the reader should be able to reproduce the solution and imple-
ment all described algorithms by him or herself. The following paragraphs elaborate on the
most intimate details of the implementation. Nothing is left for later explanation and all
of potential questions should be answered. If not do not hesitate to contact the author of
this thesis. Section 5.1 speaks about common features of the algorithm, those that are the
same for both problems. The problem specific parts are discussed in sections 5.2 and 5.3.

5.1 Implementation in general
As mentioned in section 2.3, both problems have some similarities and the same mechanism
is used to solve them. Having the theoretical algorithm all prepared and ready is one thing,
but when it comes to writing the code, many hidden unanswered questions arise. The
following sections 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5 and 5.1.6 speak about these little issues.
How were the questions answered and what effect did the answers have on the final solution.

5.1.1 Programming language

The choice of the implementation language is a bit controversial, but this section tries
to reason for the choice. A mediocre computer science engineer would suggest the use of
compiled languages over the interpreted ones. He would reason that the compiled languages
produce small optimized binaries, they have tight memory control, so they are fast. It is a
perfectly acceptable and valid reason to choose a compiled language like C++ or Java. In
spite of this knowledge Python was chosen, for many different reasons:

• The implementation is smooth with fast turnaround time1and easy debugging.

• The source code is easy to read and manage.

• Genetic operations (selection, mutation and crossover), which are the core of the
evolutionary approach, do not take much time to compute in whichever programming
language. The bottleneck of the algorithm is fitness evaluation.

• The code is constantly changing during the development of the algorithm.
1Period for completing a process cycle, commonly expressed as an average of previous such periods.

(http://www.businessdictionary.com)

29

http://www.businessdictionary.com

• To show that even a popular scripting language can successfully apply evolutionary
approaches.

• The game simulator used for evaluating a player of Liar’s dice was written in Python.

If one wanted to use the algorithm in production, coding it in a compiled language
would be necessary.

5.1.2 Initial grammar design

The grammar has to be designed, so that it would generate a behavior tree. There has to be
a root, sequence and selector nodes, and of course condition and action nodes. Productions
of the initial grammar were constructed to allow for nested behavior trees. No restriction
regarding the order of action and condition nodes in selectors or sequences were made.
These common productions were used in the first run of the experiments:

〈start〉 → sequence 〈behaviorTree〉 | selector 〈behaviorTree〉

〈behaviorTree〉 → 〈behaviorTree〉 〈node〉 | 〈node〉

〈node〉 → 〈condition〉 | 〈action〉 | 〈start〉

The productions with 〈condition〉 and 〈action〉 on its left hand side are problem specific,
and therefore, the implementations are presented separately in the respective sections 5.2.1
and 5.3.1. The use of circular genome, explained in section 4.2.1, opened a possibility
for constructing an infinite behavior tree. Obviously it is not possible to work with an
infinite behavior tree on a finite hardware, so a limitation had to be made. The number
of generated subtrees was restricted. After a certain amount of usages of the production
〈node〉 → 〈start〉, the production is removed from the grammar. This forbids generating
more subtrees than the parameterized threshold.

Figure 5.1 shows an example of a parse tree generated by the common productions
presented in this section. Although this tree does not resemble the tree from figure 2.2, it
is a valid behavior tree and it was used according to the outline from section 2.3.1.

〈start〉

〈behaviorTree〉

〈node〉

〈start〉

〈behaviorTree〉

〈node〉

〈action〉

selector

〈behaviorTree〉

〈node〉

〈cond〉

sequence

Figure 5.1: Behavior tree generated by the initial common productions.

30

5.1.3 Behavior tree activaton

After a tree was built, it can be used to solve the targeted problem. A decision making
process starts here. The root node of the tree is activated and its code is executed, as does
section 2.3.1 suggest. Now it is the right time to explain, what the code actually contains.

To traverse a behavior tree recursive descent is implemented. When a composite node
activates one of its children, code of the activated node is executed, while the original
execution is paused. This is where the recursive behavior transpires. Recursion is an
elegant solution, offloading the complicated context switching tasks to a compiler or an
interpreter and keeping the code clean. However, it is a quid pro quo for performance.

A bright reader could object here, that the behavior tree from section 5.1.2 had some
extra nodes that were not described in section 2.3.1, nor was their code explained here.
The objection would be valid, but the code of start, behaviorTree and node will not be
mentioned even here. The reason is found in the following paragraph.

As the first round of experiments was run, using the initial grammar, the results were
not very satisfying. It took too many generations and too much processor time for evolution
to produce some reasonable, not necessarily good, solutions. The first experiments are not
mentioned in more detail either, as they produced poor results. A review of the algorithm
followed and decision to simplify the structure of behavior tree was made.

As figure 5.2 shows, the initial behavior tree presented on figure 5.1 can be reduced to
a very simple behavior tree with only four nodes. A three-fold reduction was made in this
case, as the original tree had twelve nodes. Less nodes mean less recursion, less memory and
better performance. The number of nodes was not the only problem of the initial design.
The grammar allowed for creation of trees that had some dead nodes. These nodes could
have never been activated or their activation was of no use. For example a condition node
after an action node is of no use and a tree without any action nodes likewise. Creating
such trees made no sense in the first place.

Figure 5.2: Simplified behavior
tree from figure 5.1.

Figure 5.3: Behavior tree generated by enhanced
method.

There were two possible ways to overcome the revealed obstacle. Implementing an al-
gorithm that would simplify the parse tree generated by the grammar, by removing the
unnecessary nodes, was the longer way around. It would not be a trivial algorithm, but
more importantly, additional computation would be needed, decreasing the overall perfor-
mance. The second and shorter way was removing the obstacle completely and creating
a new enhanced grammar. Constructing a simplified behavior tree right away saved some

31

execution time and increased performance. Figure 5.3 shows an example of a behavior tree
generated by enhanced method from section 5.1.4.

5.1.4 Generating simplified behavior trees

A new grammar was designed to generate more appealing behavior trees. The new design
is inspired by the work of Nicolau et al.[7]. At first new productions are presented and then
a description of each symbol and the respective implementation follows.

〈rootSelector〉 → 〈behaviorBlock〉〈rootSelector〉|〈actionSequence〉

〈behaviorBlock〉 → 〈condition〉〈behaviorBlock〉|〈condition〉〈actionSequence〉

〈actionSequence〉 → 〈action〉〈actionSequence〉|〈action〉

The logic behind the new grammar goes like this. The root node is a selector node (rootS-
elector) with zero or more sequence nodes (behaviorBlock) as its children. The last and the
only mandatory child of the root node is also a sequence node (actionSequence). A behav-
iorBlock consists of one or more condition nodes followed by an actionSequence. There is no
mystery behind the actionSequence, as it consists of one or more action nodes. A decision
making based on the new type of behavior tree is pretty straightforward. The leftmost
behaviorBlock is activated and the conditions associated with the block are tested. If all of
the conditions are satisfied, the actions following are activated, one by one. Otherwise the
conditions of the following block are tested. In case all of the blocks fail to satisfy their
conditions, the default actions are activated. For the convenience of the implementation
the default actions are also covered by a behaviorBlock. The default sequence solves the
problem of individuals failing to do any move, as a result of not meeting any condition
combinations.

One extra trick is implemented in addition to the new grammar. In case there are two
selector nodes in the tree, and one is a child of the other, a simplification can be made.
The simplification comes directly from the theory of behavior trees presented in section
2.3.1. The definition says that a selector node activates its children one by one, always
in the same order, until one of the children succeeds. In that case the selector node itself
succeeds, otherwise it fails. So without breaking the rules of this definition a hierarchy of
nested selectors can be transformed to a single selector. It does not matter on which level of
the nested selectors a node succeeds. Once it does, its parent does the same and the success
is escalated to the topmost level. The same works with sequence nodes, so a hierarchy of
nested sequence nodes can be transformed to a single sequence. As soon as only one node
in the sequence hierarchy fails, the failure is escalated to the topmost sequence, which fails
as well. These two properties are used, as the so called trick, to simplify each behavior tree.
Each nested selector or sequence node is attached to its parent only temporarily. When the
temporary node is expanded, its children are attached to the tree at the exact spot, where
the temporary node was residing. An example to demonstrate the trick follows.

Example 4
Let g = [14, 5, 2, 47, ...] be a genome of an individual, who is about to generate its behavior
tree, using the productions from section 5.1.4. Derivation starts with the starting symbol
and that is 〈rootSelector〉. Using the equation from section 4.2.1 (p = 14 % 2 = 0)2, the
first alternative of the production is applied. Figure 5.4 captures the state of the behavior
tree after the first expansion. The fourth derivation step expands the other 〈rootSelector〉

32

node. Here comes the trick. The expanded node is removed and all of its children are
attached to its parent. The state of the tree before the expansion is captured on figure 5.6,
the state after the trick is shown on figure 5.7. In fact the trick was applied also in step three,
where the 〈actionSequence〉 node was replaced by the 〈action〉 node. In all four figures
shortcuts for the nonterminals are used in the following manner: RS = 〈rootSelector〉,
BB = 〈behaviorBlock〉, AS = 〈actionSequence〉, C = 〈condition〉 and A = 〈action〉.

RS

RSBB

Figure 5.4: Step 1.

RS

RSBB

ASC

Figure 5.5: Step 2.

RS

RSBB

AC

Figure 5.6: Step 3.

RS

ASBB

AC

Figure 5.7: Step 4.

5.1.5 Tree structure

To store a behavior tree the program leverages a Node class. Each Node has three attributes:
data used for a type of a node, children containing list of child nodes, size as the total
number of nodes in the sub-tree. Constructing a behavior tree, means adding Node objects
to the lists of children of the rootSelector Node object.

5.1.6 Common evolution parameters

Some parameters of evolution are common for both algorithms. At the beginning of the
evolution the population is initialized randomly. It is done in hope for a well dispersed
population, but there is no guarantee. The size of the population is specified by parameter
POPULATION_SIZE. Only positive multiples of 4 are valid population sizes. Each individual is
initialized with a genome, consisting of random integer values. The maximum value is set by
MAX_GENE_VALUE parameter and the number of values is set by GENOME_LENGTH parameter.
Each individual is given a random name, to have a friendly reference to him or her. For
generating the random names the program uses a python package names3. The range of
values for both fitness functions is: 〈0, 1〉. After each new generation is formed, a new
fitness value is computed for each individual. The reason is the ever changing environment
that the individuals interact with.

When it comes to creating a new generation, the number of individuals selected for
mating is set by MATES_NUMBER parameter. The parents are always selected in pairs and an
individual can mate only once per generation. A crossover operation is continually applied
to both provided genomes and two new individuals are born. The operation splits both
genomes at random but same place and combines these parts to form new genomes. After
the single point crossover a mutation operation is applied to both genomes. The traditional
approach of specifying some probability for mutation is not used. The operation uses two
parameters which can be specified for each evolution: MUTATION_SIZE tells how many genes
are mutated and MUTATION_INTENSITY is the maximum value to be added to the mutated
gene. The locations of mutation are chosen randomly. Also the value added to the mutated

2Result of the modulo operation is zero and the list of production alternatives is also indexed from zero.
That means the first alternative (on index zero) of the production is to be applied.

3the package was obtained from: https://pypi.python.org/pypi/names/

33

https://pypi.python.org/pypi/names/

gene is chosen randomly from 0 up to the maximum value specified by the parameter.
This implementation ensures that the evolution does not end, because there is always some
change in the genome, thanks to mutation.

After a certain number of generations the evolution is terminated. The number of
generations is one of the parameters of the evolution run. More on setting a proper value,
could be found in section 6.1. All the other parameters that were not mentioned are problem
specific and will be described for each problem separately in sections 5.2.5 and 5.3.3.

Although there are some common parts of the algorithm two separate scripts are used to
solve each of the problems. There are no configuration files, no parameters, no arguments,
no environment variables. Every parameter is set directly at the beginning of each script.
Python logging module is used to manage the data flowing from the evolution. Methods
for formatting the data, like behavior trees, board status, rolled dice, genomes, fitness values
and many other, are implemented to help with experimenting.

5.2 Specifics of knight’s tour
To solve the problem of the knight’s tour as specified in section 2.1, the behavior tree gives
decisions on where to move the knight next on the board. A specific grammar is used for
the generation of a behavior tree. A mechanism which takes a behavior tree and simulates a
knight’s tour on the board is part of the algorithm. To be able to compare two individuals
a pretty simple fitness function is used. Parameters of evolution specific to the knight’s
tour are discussed as well as some additional features included to help with experimenting.

5.2.1 Knight’s grammar

The following grammar was implemented in the grammatical evolution of the knight’s tour
problem. Gk = (Nk, Tk, Pk, Sk), where:

Nk = {〈rootSelector〉 , 〈behaviorBlock〉 , 〈actionSequence〉 , 〈condition〉 , 〈action〉 ,
〈op〉 , 〈gene〉}

Tk = { possibleMoves, movesLeft, inCorner, onEdge, =, >, <, ≥, ≤, NW, NE, EN,
ES, SE, SW, WS, WN }

Sk = 〈rootSelector〉

Pk =

〈rootSelector〉 → 〈behaviorBlock〉 〈rootSelector〉 | 〈actionSequence〉
〈behaviorBlock〉 → 〈condition〉 〈behaviorBlock〉 | 〈condition〉 〈actionSequence〉
〈actionSequence〉 → 〈action〉 〈actionSequence〉 | 〈action〉
〈condition〉 → possibleMoves 〈op〉 〈gene〉 | squaresLeft 〈op〉 〈gene〉 | inCorner
〈gene〉 | onEdge 〈gene〉
〈op〉 → = | > | < | ≥ | ≤
〈action〉 → NW | NE | EN | ES | SE | SW | WS | WN

34

5.2.2 Knight’s code

What happens when a selector or a sequence node is activated was already described in
section 2.3.1. Upon activation of a condition or an action node an actual condition is
evaluated or an actual action is taken. What each specific condition tests or what each
specific action does is explained in the following sections.

Conditions

possibleMoves - Compares the number of moves knight can make from its current
position against a threshold, using an operator. The operator is one of the parameters
of the condition. The threshold is computed using the second parameter gene4as so:
threshold = gene % 8.

squaresLeft - Compares the number of squares that were not yet visited by the
knight against a threshold, using an operator. The operator is one of the parameters
of the condition. The threshold is computed using the second parameter gene as so:
threshold = gene % total_squares_on_board.

inCorner - Checks, whether the knight is standing in a corner further specified by
a parameter. Each of the corners is marked with a number starting from the north-
western corner and continuing clockwise. To get the number of the corner the following
equation is used: corner = gene % 4.

onEdge - Checks, whether the knight is standing next to an edge of the board further
specified by a parameter. Each of the edges is marked with a number starting from
the northern edge and continuing clockwise. To get the number of the corner the
following equation is used: edge = gene % 4.

Actions

There are eight possible actions a knight can make: NW, NE, EN, ES, SE, SW, WS and
WN. Each of them tries to move the knight to a new position on the board. The letters
stand for a direction of the move: N - north, E - east, S - south and W - west. The knight
moves two squares in the direction of the first letter and one square in the direction of the
second letter. For example the directive ES moves the knight two squares east and one
square south.

5.2.3 Knight’s tour simulation

This section speaks about the evaluation of an individual. There is one class (KnightsTour)
responsible for simulating knight’s movement on the board. For each tour a new board is
initialized and the knight is placed on a random starting position. Then the first round of
moves begins. The knight’s behavior tree is activated and generates a sequence of moves.
The simulator tries to move the knight according to the sequence. If one of the moves was
to break the rules, the round is over and the rest of the moves is thrown away. However,
if the knight failed to move at least once during the round, the entire tour is over. Moving
knight out of the board or to a square that has already been visited is considered breaking
the rules.

4explained in section 4.2.1

35

5.2.4 Knight’s fitness

Computing fitness of an individual is pretty straightforward. An individual is sent on a
single knight’s tour several times, each time starting from a random position on the board.
The number of visited squares on the tour divided by the total number of squares of the
board is considered a partial fitness of an individual. The total fitness of an individual
is the arithmetic mean of all his partial fitness values. The fitness of a population is the
arithmetic mean of each individual’s fitness. In addition to that, the highest fitness value
from all individuals is recorded for each generation.

5.2.5 Knight’s evolution

The most of the evolution process has already been explained, the rest is found here. A
selection strategy for parents is fitness based. The individuals are sorted by their fitness
and the fittest individuals form mating pairs. As mentioned in section 3.5 only one of the
selection should be fitness-based, so the replacement was to be set at random. All of the
new individuals would join the population, replacing the old ones selected at random. First
experiments proved that the design was not right and the population did not improve.
Sometimes good solutions were replaced by poor ones and the valuable information had
been lost. An improved strategy was implemented. Still all of newborns were to replace the
old ones selected at random, but only if the new ones were fitter. This updated increases
the selection pressure, but it is on demand. Because knight always starts its tour from a
random square, the fitness of each individual is recomputed for each generation.

Once the evolution is run several times, some results are produced. The enhancement
called Adam uses results from previous evolution runs to start a new evolution. If an Adam
is provided, he is inserted to the otherwise random initial population.

5.3 Specifics of Liar’s dice player
Sections 3.1.3 and 3.6 introduced a very interesting concept of coevolution, which is imple-
mented to solve the problem of Liar’s dice. The most significant change compared to the
straight, single population, evolution is in computation of fitness values. Otherwise both
algorithms are more or less the same.

5.3.1 Liar’s grammar

The common productions from section 5.1.4 are simplified a bit for performance reasons.
The game is played in turns and each turn can be represented as a single action in the
behavior tree. A single activation of the behavior tree should then produce only single
action.5So there is no need for the actionSequence symbol in the grammar. It is replaced
by a simple action and the third production, with actionSequence on its left hand side, is
dropped completely. However, there is one special compound action hidden in the grammar.
It is the move when a player reveals some of his or her dice and than makes a new bid.
The are two stages of this move, the first is revealing some of player’s dice. The second
stage consists of announcing a new bid after re-rolling the remaining hidden dice. This
compound action activates the behavior tree twice. First time from the root, second time
from the spot where the first activation ended.

5The original design was generating sequences of actions. It would be possible to pre-generate moves for
more turns and activate the tree only when there were no actions left. However the environment and the

36

For generating behavior trees, which could play Liar’s dice, the following grammar was
implemented. Gl = (Nl, Tl, Pl, Sl), where:

Nl = {〈rootSelector〉 , 〈behaviorBlock〉 , 〈actionSequence〉 , 〈condition〉 , 〈action〉 ,
〈reveal〉 , 〈bid〉 , 〈gene〉}

Tl = { firstToPlay, firstRound, haveHiddenDice, valueMatches, probableBid, impos-
sibleBid, wonLastRound, lostLastRound, haveWilds, goodHand, bidderLowOnDice,
lowOnDice, challenge, revealBidden, revealAny, revealWilds, revealAll, simpleRaise,
raiseMore, newBid, bidWilds }

Sl = 〈rootSelector〉

Pl =

〈rootSelector〉 → 〈behaviorBlock〉 〈rootSelector〉 | 〈action〉
〈behaviorBlock〉 → 〈condition〉 〈behaviorBlock〉 | 〈condition〉 〈action〉
〈condition〉 → firstToPlay | firstRound | haveHiddenDice | valueMatches | prob-
ableBid | impossibleBid | wonLastRound | lostLastRound | haveWilds 〈gene〉 |
goodHand 〈gene〉 | bidderLowOnDice 〈gene〉 | lowOnDiceinCorner 〈gene〉
〈action〉 → challenge | 〈reveal〉 〈bid〉 | 〈bid〉
〈reveal〉 → revealBidden | revealAny | revealWilds | revealAll
〈bid〉 → simpleRaise | raiseMore | newBid | bidWilds

5.3.2 Liar’s code

Designing conditions, which examine the environment well, and actions, which bring the
player closer to victory, is one of the key parts of the solution. A good knowledge of
the rules of the game as well as some experience from playing the game is required. The
following conditions and actions were crafted, in order to generate somewhat clever and
competitive players. Adding new conditions or actions to the model is quite simple and the
code structure is ready for that. Removing already implemented actions or conditions is
also very trivial.

counting probability

Some of the conditions and actions use probability to make decisions. An auxiliary function
is implemented to help with the computation. It has one argument, the value of interest, and
its name is get_probable_count(value). It computes minimum number of dice matching
the value of interest that is most likely rolled on the table. If the argument in not the wild
value, also the probable count of the wild valued dice is added to the final count. First
the player’s hidden dice are examined and the number of dice matching the target values
is added. Then all the revealed dice is examined in the same manner. The last numbers
added to the count is one sixth of the total number of all hidden dice of the opponents,
and another sixth if the targeted value is not wild. An example should clarify how does the
function compute the result.

state of the game is changing with each turn. Therefore activating the tree and examining the state of the
game at each turn is more clever solution.

37

Example 5
The situation on the table is like this and the wild value is one:

Martin’s hidden dice: 4 5 1

Martin’s revealed dice: 5

Helen’s hidden dice: 2 3 3 1

Helen’s revealed dice: 1 5

Andrew’s hidden dice: 4 4 1 6 3

Andrew’s revealed dice:

Martin calls the function get_probable_count(5) and the counting starts. c = 1 (for the
one 5 Martin has hidden) +1 (for the one wild value Martin has hidden) +1 (for the one 5
Martin has revealed) +1 (for the one 5 Helen has revealed) +1 (for the one wild Helen has
revealed) +1 (as the one sixth of all hidden dice) +1 (as another one sixth of all hidden
dice because the target value is not wild) = 7. In fact this ’guess’ is quite accurate as the
actual count of fives + wilds on the table is 7.

conditions

firstToPlay - Checks if the player is to start the round.

firstRound - Checks if the current round is the first round of the game.

haveHiddenDice - Checks if the player has some hidden dice left.

valueMatches - Checks whether the value of the current bid is the most frequent dice
among the player’s hidden dice.

probableBid - Compares the result of the get_probable_count() function passing
the current bid value as the argument with the current bid count. The following
comaprison is made: computed_count ≥ current_bid_count

impossibleBid - Checks if the current bid count is less or equal to the all dice on the
table.

wonLastRound - Checks whether the player has won the last round.

lostLastRound - Checks whether the player has lost the last round.

haveWilds - Checks if the player has more or equal number of wild valued dice among
his hidden dice than a threshold. The threshold is computed from the gene parameter
as so: threshold = gene % INITIAL_DICE6

goodHand - Counts the number of the most frequent dice among the player’s hidden
dice and comperes the proportion to all of his hidden dice with a threshold. The
threshold is computed from the gene parameter as so: threshold = gene % 100

6INITIAL_DICE - the number of dice each player had at the beginning of the game

38

bidderLowOnDice - Checks if the player who called the last bid has less hidden
dice than a threshold. The threshold is computed from the gene parameter as so:
threshold = (gene % LOW_ON_DICE_MAX7) + 1

lowOnDice - Checks if the player has less hidden dice than a threshold. The threshold
is computed from the gene parameter as so:
threshold = (gene % LOW_ON_DICE_MAX) + 1

actions

revealBidden - Reveals all the hidden dice that match the value of the last bid.

revealAny - Reveals one random dice.

revealWilds - Reveals all the hidden dice of the wild value.

revealAll - Reveals all the hidden dice that match the value of the last bid as well
as all the hidden dice of the wild value.

simpleRaise - Bids the same value as the current bid and only increases the count
by one.

raiseMore - Bids the same value as the current bid. The count is computed by the
get_probable_count() function passing the current bid value as the argument. If
the computed count is smaller or equal to the current bid count, the current bid count
increased by two is bidden. Otherwise the computed count is bidden.

newBid - Changes the value of the current bid. The new value is the most frequent
value among the players hidden dice. However, if the most frequent value is the
same as the current bid value, the second most frequent dice among the players dice
is bidden. As for the count it is computed by the get_probable_count() function
passing the new value as the argument. If the computed count is smaller or equal to
the current bid count, the current bid count increased by one is bidden. Otherwise
the computed count is bidden.

bidWilds - Bids the wild value. The count is computed by the get_probable_count()
function passing the wild value as the argument. If the computed count is smaller
or equal to the current bid count, the current bid count increased by one is bidden.
Otherwise the computed count is bidden.

7LOW_ON_DICE_MAX - maximum value for the threshold of testing if a player has low number of dice

39

5.3.3 Liar’s evolution

Algorithm 3: Gramatical Competitive Coevolution

1 grammar.init()
2 fitnessFunctions.define()
3 parameters.set()
4 foreach p ∈ populations do
5 p.init()
6 p.develop()
7 end foreach
8 populations.compete()
9 repeat

10 foreach p ∈ populations do
11 parents = p.getParents()
12 offsprings = parents.breed()
13 offsprings.develop()
14 p.update(offsprings)
15 end foreach
16 populations.compete()
17 until terminating condition

Similarly to the straight evolution algorithm (2), the new algorithm starts by creating a
grammar. Then a set of fitness functions is defined and all of the evolutionary parameters
are set. Each population is initialized, with the number of individuals specified by the
POPULATION_SIZE parameter. The initialization continues with genotypes being mapped
to phenotypes and fitness functions being chosen for each population. A new operation
compete() takes all individuals of one population and let them compete against all other
individuals from the other populations. After all the competitions, fitness values of all indi-
viduals are computed. The evolutionary loop did not change much either. Each population
advances to a next generation and then once again the round of competitions gets under-
way. The same evolutionary parameters are used for each population. Parents are selected
at random, and the replacement strategy is fitness based. Individuals are sorted based on
their fitness and the worst are replaced by newborns. The evolution cycle terminates after
some number of generations. The number is specified by the parameter GENERATIONS.

5.3.4 Liar’s competition

This section explains how do the two individuals compete against each other, during the
evolution. The competition is actually a set of games of Liar’s dice, that the individuals
play against each other. Playing only one game does not say a lot about the quality of an
individual, because the victor might just be lucky in that sole game. Good performance
over multiple games is what makes individuals more valuable. The number of games per
competition is specified by parameter COMPETITION_GAMES. Each game is played according
to the rules specified in section 2.2. Both players take turns in activating their behavior
trees and making the move their tree chooses. If a player makes an invalid move, he or she
immediately looses the game. Along the game both players collect some data that is used

40

for computing their fitness. The list of information being collected with short description
follows.

• games_won - number of games a player has won

• dice_saved - sum of the number of dice a player had at the end of each game played

• challenger - number of challenges a player made in all games played

• challenger_won - number of successful challenges made in all games played

• challenged - number of challenges called on player’s bids in all games played

• challenged_won - number of unsuccessful challenges against a player in all games
played

• giveaways - total number of dice a player gave to other players in all games played

• takeaways - total number of dice a player took from other players in all games played

5.3.5 Liar’s fitness

To compute ones fitness, the data described in section 5.3.4 is used. The fitness is calculated,
after all individuals ended all of their competitions and after all data has been collected.
The fitness of a population is the arithmetic mean of fitness values of all individuals of the
population. Four fitness functions were designed to measure the quality of individuals. In all
functions the fitness of an individual is always relative to individuals of other populations.
Descriptions of each fitness function follow.

Games won

This is the simplest function implemented. It counts the games an individual has won and
divides the number by the total number of games he or she played. The goal is maximizing
the number of victories of course.

f1 =
games_won

total_games

Dice saved

This function sums the number of dice that an individual had left at the end of each game
he played. This number is divided by the total number of dice a player received at the start
of each game.

f2 =
dice_saved

total_dice_recieved

This measure should capture player’s qualities a bit better, as during the game each player
is loosing dice. The player who looses the least number of dice is the winner of the game.
The goal is once again maximizing the number of dice saved in each game.

41

Successful challenges

Another approach of evaluating individuals is to investigate their success in each round
of the game. A round of Liar’s dice ends when one of the players calls a challenge. To
compute the fitness, this function counts all challenges made by a player, the number of
successful ones, the number of challenges against a player and the number of unsuccessful
ones. The goals are to maximize the successful challenges made and minimize the success
of challenges against.

f3 =
challenger_won

challenger
+

challenged_won+ takeaways

challenged

Dice transfers

The final and most sophisticated fitness function is similar to the the one counting chal-
lenges. The specialty of this method are giveaways and takeaways. In ice hokey, these
statistics count the number of pucks a player either ’gave away’ to an opponent or ’took
away’ from an opponent. In Liar’s dice, it is about counting dice. A special situation
occurs at the end of a round when the bid precisely matches the state on the table. Then
the challenger gives one of his or her dice to the bid caller. This act of donating a dice
to an opponent is very costly and this fitness function penalizes or rewards it. With the
two parameters involved, GIVEAWAY_FACTOR and TAKEAWAY_FACTOR, one is able to set how
much the donation of a dice affects the value of final fitness. Similarly to f3, the goals are
to maximize the successful challenges made and minimize the success of challenges against.
On top of that, lays minimizing the number of giveaways and maximizing takeaways.

g =
challenger_won− giveaways× GIVEAWAY_FACTOR

challenger

h =
challenged− challenged_won− takeaways× TAKEAWAY_FACTOR

challenged

f4 = g − h

42

Chapter 6

Experiments

This chapter details some interesting experiments that were conducted. For the following
experiments these common parameters of evolution were set:

MAX_GENE_VALUE = 99

GENOME_LENGTH = 23

MUTATION_SIZE = 2

MUTATION_INTENSITY = 3

MATES_NUMBER = POPULATION_SIZE / 2

6.1 Solving knight’s tour
In the early stages of investigations on the topic, this problem seemed much easier to
solve than playing the Liar’s dice. However, after some behavior trees were generated and
knight’s tours were attempted, it became apparent that solving this problem with behavior
tree would be impossible. Therefore the initial goal slightly changed. Instead of looking for
the perfect solution or abandoning the idea completely, new purpose of life was found for
the problem.

Evaluating a tour is pretty simple and designing a fitness function was also straightfor-
ward. With this in hand, the concepts of the algorithm were to be tested on the knight’s tour
problem. Therefore, the potential experiments were focused on parameters of evolution.

6.1.1 Size of population

It is one of the questions that bothers each scientist: How to set up the constants or
parameters? This experiment tries to figure out what is the best size of population for
the grammatical evolution. Running the algorithm with different sizes of population and
checking out which one gives the best results, looks as the way to go. However, trying this
approach would most likely lead to a conclusion that larger population is always better.
The reason is simple. The more individuals are in population the more genotypes and
phenotypes are tested and there is a higher probability of finding a good solution. So that
the experiments were objective, the number of individuals tested against the environment
should be constant. To satisfy this condition, the number of generations was always adjusted
according to the size of the population. GENERATIONS× POPULATION_SIZE = const

43

Five different scenarios were tested. In all of them the following parameters of the
knight’s tour were set:

KNIGHTS_TOUR_RUNS = 5

BOARD_SIZE = 5

The respective results are summarized by the following table.

POPULATION_SIZE execution
times

generation 40 last generation

GENERATIONS
average
fitness

best
fitness

average
fitness

best
fitness

42 46 3m41.186s 0.102 0.2 0.1315 0.336
43 45 4m51.406s 0.1316 0.432 0.1355 0.32
44 44 4m29.982s 0.1039 0.32 0.1507 0.48
45 43 4m52.332s 0.1006 0.384 0.1237 0.456
46 42 4m49.182s 0.0862 0.512

Table 6.1: Knight’s tour population size experiment

What is the best size of population then? Looking at the results, it is not easy to answer
the question. Based on the best fitness at last generation, it looks as the more individuals
in population the better. However, this sole value is not the result of evolution rather a
result of a random search. Because of the specifics of the fitness function evaluation, found
in section 5.2.4, the average value of fitness needs to be taken into account as well. In the
second row of the table, one can see that the average fitness value has not improved much
since the 40th generation. It was around the 40th generation in each case that the values of
both best and average fitness stabilized and did not tend to improve. The execution times
prove that the number of individual evaluations was kept the same throughout all runs.
There is no clear victor and any population size produced more or less the same quality of
individuals at the end. Choosing smaller population size is ’more evolutionary’ approach,
as the solutions are found through genetic operations and not by brute force of a random
search.

When investigating the phenotypes of the best individuals, an interesting discovery was
made. Behavior trees of best individuals of all evolution runs were not containing any
condition nodes. The sole behaviorBlock was the defaultActionSequence. The evolution
chose not to use the condition nodes and rather started building a sequence of moves, like
the traditional methods solving the knight’s tour problem. This experiment proved that
using behavior trees to navigate a knight on his tour over the board is not a good idea.

6.2 Playing the Liar’s dice
In the experiments the game of Liar’s dice was restricted to only two players. So all the
games played during the competitions were games of two players. The obvious reason is
performance, the game of more players is longer, as more dice are in the game and more
rounds are played. With having games of two players only, the logical consequence is having
two populations competing in the coevolution.

44

6.2.1 Are populations improving?

The first experiment examines the course of coevolution on populations having the same
fitness functions. Both populations used f1, only counting victories. To be able to see more
changes, the evolution was run for more generations than probably needed. To mitigate the
larger number of generations the number of individuals in each population was kept small.
The following parameters were set:

POPULATION_SIZE = 8

GENERATIONS = 10000

COMPETITION_GAMES = 5

LOW_ON_DICE_MAX = 3

This setup has been executed five times and the results were similar. The evolution of
fitness of two runs is shown on figures 6.1 and 6.2. The charts are displaying the fitness
of one population only because the sum of both fitness values in one generation is 1. The
value 0.5 means that both populations are equally good.

Fitness values of each 10th generation were captured and from each ten values the
arithmetic mean was computed and is shown on the chart. Both figures show that a
population was able to gain the upper hand for a longer period. The charts also prove
that the other population was able to recover and evolve a feature to swing the pendulum
to its side. This behavior, of searching for ways to overcome the opposing side, is what
the coevolution was designed to do. The fact that ’the pendulum swings’1proves that the
populations are improving.

Figure 6.1: Liar’s dice coevolution (f1 1). Figure 6.2: Liar’s dice coevolution (f1 2).

The same setup was used with changing both fitness functions to f2, counting saved
dice. One can see that the top line is not straight like when counting wins. The sum of
fitness values is not necessarily 1, because both players could loose some dice in a single
game. Some values are over 1, and that is more likely because of rounding errors. Most
importantly the behavior of ’the swinging pendulum’ is ever present, so the populations
improved over generations.

6.2.2 Comparing fitness functions

The second experiment was about each of the populations having different fitness functions.
In this scenario each population is pursuing a different goal and both populations should
possibly develop different strategies. The following setup was used for the experiments.
The evolution is going to be shorter but with more individuals involved. Both parameters
were not chosen randomly but based on the Blondie24 experiment [6]. The setup was like
this:

1the position of the leading population alternates between both populations

45

Figure 6.3: Liar’s dice coevolution (f2 1). Figure 6.4: Liar’s dice coevolution (f2 2).

POPULATION_SIZE = 16

GENERATIONS = 800

COMPETITION_GAMES = 5

LOW_ON_DICE_MAX = 3

GIVEAWAY_FACTOR = 4

TAKEAWAY_FACTOR = 4

The first interesting comparison is the coevolution where one population uses f1 and
the other uses f2. Both fitness functions look at the results of games. As figure 6.5 reveals,
the evolution of fitness values is similar to the first experiment (6.2.1). At the beginning
f1 is better, but f2 improves and between generations 200 and 300 has the upper hand.
Then for some 150 generations the situation is calm before the storm. As f2 finds some
good individuals and tries to overcome f1, the battle is on. After all f2 seems victorious,
because towards the end of the evolution it leads the competition. What conclusions can
be made from this run? Once a again ’the swinging pendulum’ is present, probably because
both functions work on similar bases. However, it seems that over a longer period fitness
function that counts saved dice tends to improve and gains an advantage.

Figure 6.5: Liar’s dice coevolution (f1 f2).

The second comparison is between the other two fitness functions f3 and f4. These
two are also very similar, but the ranges of their values are different. On figure 6.6 both
functions were shifted and rescaled to range 〈0, 1〉. At first glance, one can see the difference
from the previous figure. There is way more oscillation present. Why? Functions f3 and
f4, both look at the results of each round of each game of an individual. Their measure of
quality is based on more data, but if more is better in this case, is hard to tell. Other than

46

oscillation, one can see some alterations of the leading population. It look as though the f4
is in the lead for more generations, but because of the scaling and shifting no conclusions
are made.

Figure 6.6: Liar’s dice coevolution (f3 f4).

As the third comparison, functions measuring performance on a different level were
chosen. There is a coevolution of populations graded by functions f1 and f3 on figure 6.7
and a coevolution of populations graded by functions f2 and f3 on figure 6.8. This time
no scaling and shifting was applied to the fitness values. Therefore, each fitness will be
examined separately. For the first time, it is easy to determine which population evolved
into being supreme to the other, or is it? Looking at the fitness values of the f1 and
f2 function respectively, most of the time, they are over 0.5. That is from the previous
experiences considered as having the upper hand. However, there are two weird artifacts
that could not be easily explained, like the sudden peak decrease of performance close to
600th generation in the first chart. Comparing figures 6.5 and 6.8 one can see that in both
cases the population with function f2 had very low score at the beginning, but towards the
end, the tendency was to improve. Values of fitness of population with function f3 are still
oscillating a lot, but not decreasing globally. This can not be said about f1 where the slight
decline is obvious.

Figure 6.7: Liar’s dice coevolution (f1 f3). Figure 6.8: Liar’s dice coevolution (f2 f3).

And what are the outcomes of the experiments? If one should choose from fitness
functions that were presented, according to the experiments, the most promising is f2. If
one was to employ coevolution, using both f2 and f3 together is the recommended choice.
The results of function f4 were not bad at all, but tweaking the parameters a bit would be

47

necessary. Going for the simplest fitness function f1 is not a bad choice because winning
games is the thing that counts in the end.

Having different fitness functions for evaluating individuals is definitely beneficial in the
search for better solutions. A good way to compare the functions is using the coevolutionary
approach. Based on the gathered knowledge and observed properties, some new and more
sophisticated functions can be designed.

48

Chapter 7

Conclusion

There are almost no boundaries in evolution and it is possible that the best methods of
evolutionary design are yet to be discovered. This thesis aimed to show the use of already
established methods on different domains of problems. An algorithm using grammatical
evolution to produce behavior trees was designed, developed and implemented. The gen-
erated behavior trees were used to control individuals, solving problems. The algorithm
was designed in a way that a grammar representing the problem is plugged in and the
solutions are produced. The only other thing needed is a fitness function which quantifies
the performance of an individual in the environment.

The first problem of knight’s tour searched for a tree that would navigate the knight to
complete his tour from any initial position. The experiments proved that the designed model
was not able to solve the knight’s tour completely. However, the population was improving
and making longer and longer tours, with more generations passed. The evolution chose
to build a single sequence of moves rather than a decision making structures of behavior
trees. Perhaps the designed condition operations were not providing the right information
from the environment. The experiment on choosing a proper population size showed that
the results of evolution have to be examined closely and the interpretation is not easy.

The other problem of interest, playing Liar’s dice, is considered the more interesting one.
For the likes of Mario [7] or Checkers [8] the common strategies for playing the games are
well known and many algorithms playing the games were already created. With the game
of Liar’s dice, the building of the algorithm started from the scratch. At first, the same
approach of straight, single population evolution was implemented. However, it was hard
to interpret the results and tell, whether the evolution was actually working. Simplifying
the structure of behavior trees helped with the performance of the algorithm as well as
with the debugging. After some discussions with the thesis supervisor, a coevolutionary
approach was adopted. With two populations of individuals, one is able to determine
which individuals are better. More importantly the experiments demonstrated that the
evolution was working, as the populations were competing against each other to evolve fitter
individuals. The coevolution also solves the problem of individuals learning to play against
a certain type of players. Within a single population the individuals tend to follow a similar
path of solutions, but there is no genetic dependency between two separate populations.

The main motivation for generating a player of Liar’s dice, is a private programmers
contest between friends.1The evolutionary developed player from this thesis is going to hit a
real competition of different algorithms playing the Liar’s dice. It is the best fitness measure
that the presented algorithm could get. Before the contests begins, there is still some time
to improve the current solution. Adding new conditions and possibly also actions is a way

49

to improve, other than fine tuning the parameters of evolution. The algorithm has to be
generalized for playing games of multiple players. Using coevolution of more populations
is an option here.

The evolutionary computing has already established itself as one of the big fields of
AI. All the algorithms and results prove that there is a big potential. Similarly to the
beginning, the thesis is ended with a quote by Turing.

”We can only see a short distance ahead, but we can see plenty there that needs
to be done.“

Alan Turing, Computing Machinery and Intelligence, 1950 [14]

1Announcement about the contest: https://marekkukan.github.io/liars-dice/

50

https://marekkukan.github.io/liars-dice/

Bibliography

[1] Bell, J. T.; Pai, A. A.; Pickrell, J. K.; et al.: DNA methylation patterns associate
with genetic and gene expression variation in HapMap cell lines. Genome Biology.
vol. 12, no. 1. 2011: page R10. ISSN 1474-760X.
Retrieved from: http://dx.doi.org/10.1186/gb-2011-12-1-r10

[2] Brabazon, A.; O’Neill, M.; McGarraghy, S.: Natural Computing Algorithms. Springer
Publishing Company, Incorporated. first edition. 2015. ISBN 3662436302,
9783662436301.

[3] Chomsky, N.: Syntactic Structures. The Hague: Mouton and Co.. 1957.

[4] Darwin, C.: On the origin of species. New York :D. Appleton and Co.,. 1859. 470 pp.
Retrieved from: http://www.biodiversitylibrary.org/item/71804

[5] Depot, D. G.: Dice game rules: Liar’s Dice.
Retrieved from: http:
//www.dicegamedepot.com/dice-n-games-blog/dice-game-rules-liars-dice

[6] Fogel, D. B.: Blondie24: Playing at the Edge of AI. Morgan Kaufmann Publishers
Inc.. 2002. ISBN 1-55860-783-8.

[7] Liebana, D. P.; Nicolau, M.; O’Neill, M.; et al.: Evolving Behaviour Trees for the
Mario AI Competition Using Grammatical Evolution. In EvoApplications. 2011.
Retrieved from: https://pdfs.semanticscholar.org/af31/
03a750ab88d4903bcfe264aaf7d74090f8ed.pdf?_ga=
1.103289280.1794265660.1484083956

[8] Michalewicz, Z.; Fogel, D. B.: How to Solve It: Modern Heuristics. Springer. second
edition. 2010. ISBN 9783642061349.
Retrieved from: http://www.springer.com/us/book/9783540224945

[9] Pereira, R.: An Introduction to Behavior Trees.
Retrieved from: http:
//blog.renatopp.com/2014/08/15/an-introduction-to-behavior-trees-part-3

[10] Repík, T.: Systems of Sequential Grammars Applied to Parsing. june 2014.

[11] Sanchez, E.; Mange, D.; Sipper, M.; et al.: Phylogeny, ontogeny, and epigenesis:
Three sources of biological inspiration for softening hardware. Berlin, Heidelberg:
Springer Berlin Heidelberg. 1997. ISBN 978-3-540-69204-1. pp. 33–54.
Retrieved from: http://dx.doi.org/10.1007/3-540-63173-9_37

51

http://dx.doi.org/10.1186/gb-2011-12-1-r10
http://www.biodiversitylibrary.org/item/71804
http://www.dicegamedepot.com/dice-n-games-blog/dice-game-rules-liars-dice
http://www.dicegamedepot.com/dice-n-games-blog/dice-game-rules-liars-dice
https://pdfs.semanticscholar.org/af31/03a750ab88d4903bcfe264aaf7d74090f8ed.pdf?_ga=1.103289280.1794265660.1484083956
https://pdfs.semanticscholar.org/af31/03a750ab88d4903bcfe264aaf7d74090f8ed.pdf?_ga=1.103289280.1794265660.1484083956
https://pdfs.semanticscholar.org/af31/03a750ab88d4903bcfe264aaf7d74090f8ed.pdf?_ga=1.103289280.1794265660.1484083956
http://www.springer.com/us/book/9783540224945
http://blog.renatopp.com/2014/08/15/an-introduction-to-behavior-trees-part-3
http://blog.renatopp.com/2014/08/15/an-introduction-to-behavior-trees-part-3
http://dx.doi.org/10.1007/3-540-63173-9_37

[12] Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in
Space and Time (Natural Computing Series). Springer. 2005 edition. 2005. ISBN
9783540241935.
Retrieved from: https://link.springer.com/book/10.1007/3-540-29938-6

[13] Turing, A. M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society. vol. 2,
no. 42. 1936: pp. 230–265.
Retrieved from: https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

[14] Turing, A. M.: Computing Machinery and Intelligence. 1950.
Retrieved from: http://cogprints.org/499/

52

https://link.springer.com/book/10.1007/3-540-29938-6
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://cogprints.org/499/

Appendix A

List of attachements

Here a list of files that are available on the Compact Disc supplement to this thesis.

GE-KT.py - script dealing with the problem of knight’s tour

GE-LD.py - script dealing with the problem of Liar’s dice

kt/ - folder containing some results of experiments presented in section 6.1

e1-8-2-5t-5b.csv - a file from the folder kt carrying results of one evolution run

ld/ - folder containing some results of experiments presented in section 6.2

e2-10k-8i-5g-f2-f1-1.csv - a file from the folder ld carrying results of one evolu-
tion run

thesis/ - folder containing the source files for generating the text of the thesis

names-0.3.0.tar.gz - a python module used for generating random names

The naming conventions of the .csv files is explained:

e1 - experimnet number

8-2 - using 48 evaluations of individuals and 42 as the population size

5t - 5 knight tours

5b - board size is 5x5

10k - 10000 generations

8i - 8 individuals per population

5g - 5 games per competition

f2 - first population uses f2 to evaluate its individuals

f1 - second population uses f1 to evaluate its individuals

1 - first run of the setup

53

	Introduction
	Motivation
	Organization

	Applications
	Knight's tour
	Liar's dice
	Basic rules
	Wild ones

	Common solution design
	Behavior trees

	Evolution
	Evolution in biology
	Reproduction in biology
	Adaptiation in biology
	Competition and cooperation in biology

	From biology to the algorithm
	The ultimate goal
	Population
	Communication
	Adaptivness

	Basic evolutionary algorithm
	Parameters of evolutionary algorithms
	Population initialization
	Quality of individuals
	Mates selection strategy
	How offsprings are born
	Game of survival
	Terminating conditions

	Evolutionary algorithm design process
	Coevolutionary approach
	Multiple fitness functions

	Grammatical evolution
	Grammatical and developmental computing
	Grammars
	Parse tree

	Grammatical evolution algorithm
	Genotype mapping

	Implementing gramatical evolution
	Implementation in general
	Programming language
	Initial grammar design
	Behavior tree activaton
	Generating simplified behavior trees
	Tree structure
	Common evolution parameters

	Specifics of knight's tour
	Knight's grammar
	Knight's code
	Knight's tour simulation
	Knight's fitness
	Knight's evolution

	Specifics of Liar's dice player
	Liar's grammar
	Liar's code
	Liar's evolution
	Liar's competition
	Liar's fitness

	Experiments
	Solving knight's tour
	Size of population

	Playing the Liar's dice
	Are populations improving?
	Comparing fitness functions

	Conclusion
	Bibliography
	List of attachements

