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Abstract
This thesis provides a description of Distributed Application Facility (DAF), including its
components, in Recursive InterNetwork Architecture (RINA). The DAF is equivalent to
an application layer of today’s network model. It also documents implementation of the
DAF for the OMNeT++ simulation framework. The aim of this thesis is to extend the
functionality of simulation library and to provide clear application programming interface.

Abstrakt
Tato práce popisuje Distributed Application Facility (DAF), včetně jejích komponent, v Re-
cursive InterNetwork Architecture (RINA). DAF je ekvivalentem aplikační vrstvy dnešních
sítí. Práce dále dokumentuje implementaci DAFu pro simulační framework OMNeT++.
Cílem práce je rozšířit funkcionalitu simulační knihovny a poskytnout jednoduché aplikační
rozhraní.
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Chapter 1

Introduction

These days, distributed applications, as well as cloud computing, is taking advantage over
standard communications principles. The communication goes through the network and
the Software Defined Networking (SDN) moves to the forefront, mainly in this environment.

Today’s network technologies are built on a current underlying architecture based on
TCP/IP model. This model is facing a lack of mobility mechanisms, multihoming, and
more from the beginning. Even though, there is an effort to supplement such mechanisms
to the model, it is hard to implement them.

Recursive InterNetwork Architecture (RINA) is a new network architecture; its author
is John Day. It is based on principles described in his book Patterns in Network Architec-
ture[5]. RINA represents a clean slate architecture that solves all of the mentioned problems
from scratch.

RINA is based on the observation that all communication is just interprocess communi-
cation between two application processes and every application is a distributed application.
Hence, it provides Distributed Application Facility that is an application layer compared to
the TCP/IP model.

Current model needs explicit programming techniques (for example, using Open MPI)
to create distributed applications. RINA should provide an easier approach in this way.
It alludes to the fact that application programmers should not care about networking and
they should just program the applications by manipulating application objects locally.

1.1 Goals
The theoretical part of this thesis aims to provide a detailed analysis of an application
layer called Distributed Application Facility (DAF) of RINA architecture. It is completely
different from current Internet architecture, hence the description is not limited to overall
narration only, but it is focused on each component of DAF relevant to this thesis. In
addition, there has to be included an application protocol, establishing of a connection, as
well as a programming interface. It also brings a new programming model.

The technical report is focused on the description of the design and implementation
of relevant DAF components, including all additional important parts of the OMNeT++
simulation framework. The goal is to use the potential of object-oriented programming to
create easily extendable components with clear programming interfaces.
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1.2 Structure
Chapter 2 provides detailed description of DAF including all its parts. The emphasis is
primarily placed on the local programming interface and RIB Daemon component.

Chapter 3 gives a detailed view on how the applications in RINA RIB Based Pro-
gramming Model should look like. The cooperation of all components in various cases is
provided.

Chapter 4 describes design and implementation of each module created in RINASim
during this work. The great attention is paid to implementation of API of each component
and structure of Resource Information Base.

Chapter 5 covers testing use cases of the implemented model and overall discussion of
impact of the solution on architecture conception.

Chapter 6 contains the final summarization of this thesis.
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Chapter 2

Distributed Application Facility

RINA provides a bit different approach from today’s networks that are based on TCP/IP
model. The significant difference is that there exists only one layer that is recursively
repeated. This layer is called Distributed Application Facility (DAF) and it is a designation
of distributed application. We automatically assume that every application is distributed
application and nothing else.

Figure 2.1: DIF, DAF, DAP and IPCP illustration [17]

The DAF is a collection of Application Processes that are cooperating to perform some
function. We distinguish between two types of DAFs – the heterogeneous and the homoge-
neous. The heterogeneous DAFs are composed of Application Processes of different types.
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On the opposite, the homogeneous DAFs are composed of the same types of Application
Processes.

In RINA we distinguish one special case of DAF that is intended to provide InterProcess
Communication (IPC) called Distributed IPC Facility (DIF). The DIF is one example of
the homogeneous DAFs. All Application Processes of that DIF are of the same type and
they contain the same components. More detailed description of DIFs is provided in RINA
Specifications [11], [8].

An Application Processes on the same processing system may use different DIFs of
different rank with a different scope to provide IPC. The DAF uses (operates over) (N)-
DIF it has access to, as it is shown in more detail in the Figure 2.1. Application Processes
of a single DAF have an access to the same DIF to be able to communicate.

A DAF will operate over a single DIF. There is no reason that DAF can operate over
multiple DIFs. If Application Process has an access to multiple DIFs, it can leak information
because of a different security level of the DIFs. [10]

The following sections provide the detailed description of the DAF components that are
relevant to this thesis only. Summary of all RINA information of all components provided
below came mostly from RINA Specifications and other sources: [3], [4], [7] [9], [10], [13],
[11], [8], [18], [12], [16], [17] and [19].

2.1 Application Process
Application Process (AP) is a program intended to accomplish some purpose, which can
be instantiated on a processing system. An Application Process contains one or more Ap-
plication Entities, that are introduced in the following section, and functions for managing
system resources, such as the processor, storage, and IPC.

Application Process must have at least one Application Entity. Otherwise, AP would
have no input/outpu and would lack the state-sharing purpose.

Figure 2.2: Application process with application entities [10]
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2.2 Application Entity
Application Entity (AE) is a component (task) of an AP. An application needs to commu-
nicate with other applications for multiple purposes, potentially at the same time. These
multiple communication connections (streams) need to be created a managed – this is the
purpose of AEs. Application Entity implements an application protocol. Such protocol
provides shared understanding of the purpose of communication, protocol, set of objects
and their meaning that the two AEs exchange. There is used only one application protocol
called Common Distributed Application Protocol for communication. It is described in more
detail in section 2.5.

AEs should be implemented by subroutine libraries which should be hidden for appli-
cation programmers – they would control it via API calls.

The example should provide a better understanding of the purpose of the Application
Entities. Imagine an application that contains two different Application Entities. One
AE should be responsible for serving requests for web pages, while another AE might be
responsible for communicating with network database server. Each of these AEs has its
defined purpose, set of objects they communicate, and communication protocol.

2.3 Instances of Application Processes and Application En-
tities

Application Process Instance (AP Instance) and Application Entity Instance (AE Instance)
are instantiations of these tasks. On one processing system there can be many instances of
the same AP. Also, it is possible to have many instances of the same AE in one AP.

It may be useful to have the opportunity to create an application connection specifically
to one of the instances of AP and AE. Each instance can manipulate with unique data, it
can have unique parameters, or it is known to have a defined purpose. Moreover, we want
to connect back to it, if the connection fails.

A good example of how the AP and the AE instances might be used is ”voice conference
call“. Imagine, that one Application Instance is a video conference call with more than one
participant. An AE implements a video-streaming protocol. And an AE Instance represents
one camera of one of the participants.

2.4 Naming and Addressing
In sections above, DAF components that are participating in the communication were
described. We need to distinguish endpoints of communication within DAF. RINA defines
special identifiers for each component.

∙ Distributed-Application-Name (DAN) is whatever cast name1 that identifies a dis-
tributed application and it is globally unambiguous. One DAF might have assigned
more than one DAN with different access control properties.

∙ Application Process Name (APN) is a globally unambiguous synonym for an Appli-
cation Process of DAF.

1Whatever cast name is a special synonym addressing/naming set of Application Processes.
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∙ Application Process Instance Identifier (API-id) is an identifier bound to AP Instance
to distinguish multiple AP Instances. It is unambiguous within the Application Pro-
cess.

∙ Application Entity Name (AEN) is unambiguous within the scope of the Application
Process.

∙ Application Entity Instance Identifier (AEI-id) is an identifier that is also unambigu-
ous within single AP, and it helps us to identify different AE instances.

2.5 Common Distributed Application Protocol
Common Distributed Application Protocol (CDAP) is the only required application protocol
in RINA. It provides a platform for building all distributed applications. CDAP allows
distributed applications to deal with communication at the object level without the need
to do an explicit serialization and other input/output operations. The CDAP unifies the
approach of sharing data over the network, so we do not need to create any additional
specialized protocols.

From the application perspective, the only operations, which can be performed on ob-
jects, are create/delete, read/write, and start/stop (execute/suspend). These operations
are primarily supported by the CDAP. Also, all of these operations are subject to access
rights on the objects.

The CDAP makes no restrictions on objects and their purpose or nature. There is also
no error-check mechanism for provided objects, except for versioning mechanism1 of the
objects, which ensures that the objects are correctly interpreted by the application.

Figure 2.3: The Common Distributed Application Protocol [10]

CDAP is constructed of three different submodules (2.3):

∙ Common Application Connection Establishment (CACE) module is involved in estab-
lishing an application connection. It is based on a simplified version of the OSI ACSE
protocol.

∙ Authentication (Auth) module provides authentication of the two communicating en-
tities on an application connection. This is the only module that can be modified. It
is assumed that there will be many available Authentication module variants (from
null to passwords to something stronger). The Authentication module can generate
its own protocol, if additional exchanges are needed.

∙ Common Distributed Appplication Protocol (CDAP) submodule.
1Discussed later in section 2.7.1 dealing with objects.
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CDAP is a symmetric protocol. There is no distinguished party in the communication
once the CDAP connection is established.

The CDAP uses only these eighteen messages (Table 2.1):

Message Opcode Purpose
M_CONNECT Initiate a connection from a source application

to a destination application
M_CONNECT_R Response to M_CONNECT, carries connection

information or an error indication
M_RELEASE Orderly close of a connection
M_RELEASE_R Response to M_RELEASE, carries final

resolution of the close operation
M_CREATE Create an application object
M_CREATE_R Response to M_CREATE, carries result

of the create request, including identification
of the created object

M_DELETE Delete a specified application object
M_DELETE_R Response to M_DELETE, carries

result of the deletion attempt
M_READ Read the value of a specified

application object
M_READ_R Response to M_READ, carries part or all of object

values, or error indication
M_CANCELREAD Cancel a prior read issued using M_READ

for which a value has not been completely returned
M_CANCELREAD_R Response to M_CANCELREAD, indicates outcome

of the cancellation
M_WRITE Write a specified value to a specified application object
M_WRITE_R Response to M_WRITE, carries result of the write opera-

tion
M_START Start the operation of a specified application object,

used when the object has operational
and non-operational states

M_START_R Response to M_START, indicates the result of the opera-
tion

M_STOP Stop the operation of a specified application object,
used when the object has operational
and non-operational states

M_STOP_R Response to M_STOP, indicates the result of the operation

Table 2.1: CDAP message types [3]
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2.5.1 Common Application Connection Eestablishment Phase

Common Application Connection Establishment Phase (CACEP) is the first phase that
all communication must go through. It starts immediately after the initiating application
process obtains a positive allocation response from the destination application.

The first CACEP within DAF occurs between Application Processes over ’management
flow’. This is the first connection between two application processes. After the connection is
established, other data transfer connections between AEs may proceed, as it is depicted in
Figure 2.4. CACEP has to proceed on all connections. It is required to determine whether
two AEs are communicating whom they think they do. Also, when the first CACEP is
finished, another phase of communication – called Enrollment – is started. The description
of this phase can be found in Section 2.6.

Figure 2.4: Connection establishment over the newly allocated flow [10]

CDAP messages M_CONNECT and M_CONNECT_R are the only used messages
while establishing an application connection. CDAP M_CONNECT messages carry initial
authentication information in each direction. The authentication is application dependent,
as it may differ from null to password to something more complex (in this case AEs can
exchange additional messages).

The detailed description of this phase is depicted in the following Figures 2.5, 2.6, 2.7.
These figures come from the detailed specification of CACE phase [4]. Figure 2.5 shows the
procedure of the CACE phase from the initiating process perspective. The second diagram,
depicted in Figure 2.6, shows the procedure from the responding process side.

The last diagram, Figure 2.7, depicts the release of the communication, both from the
initiating and the responding process side. In this figure, both application processes are in

”Established“ state when initiator starts releasing. Releasing belongs to CACE phase as
well.

In both diagrams, transitions are denoted with ”input/action“ labels. All diagrams
show only positive progress. All failures, such as receiving unexpected CDAP messages,
are indicated as ”wrong input“. Any process may initiate the deallocation in every state.
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Figure 2.5: Initiating process CACE State Diagram [17]

Figure 2.6: Responding process CACE State Diagram [17]
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Figure 2.7: Both processes Release CACE State Diagram [17]
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2.5.2 Local Programming Interface

Local Programming Interface (CDAP API) provides an easy way to control communica-
tion and manage shared objects. It is the main instrument for programming applications
by application programmers in RINA. The following definitions are neither complete nor
prescriptive.

The listing below provides a description for few shorthands used as arguments in fol-
lowing signatures. The listings are taken from CDAP Specification [3].

∙ objectname
As noted later, there are two ways to identify an object. Either can be used.

∙ objectvalue
The value of an object. Each value has a type and representation appropriate for the
class of the object.

∙ flow
A previously-established data transfer flow with appropriate characteristics.

∙ CDAPconn
The handle that can be used to refer to a successfully-established CDAP connection.

∙ result
The result field of a reply message (a missing field indicates Success).

∙ success
The result (Boolean) of invoking an API call, indicating whether the arguments were
acceptable and the operation was completed as requested.

∙ APname, APinst
Application Process name and (if known) unique instance.

∙ AEname, AEinst
Application Entity (AE) name and (if known) unique instance.

∙ invokeID
A value is chosen by the application to uniquely identify an in-progress exchange of
related messages. In this API description, we permit the invokeID to be omitted, by
which we indicate that any potential reply message is to be suppressed.

The definitions are described as non-blocking function calls in a procedural programming
language. Many of these calls are performed by RIB-encapsulating AE object. The API
will only be used by application programmers, they will not explicitly program it.

The following API description came from CDAP Specification [3].
Lifecycle operations:

∙ success = A_OPEN (invokeID, APname, APinst, AEname, AEinst, ...)
success = A_OPEN (invokeID, flow, ...)
The A_OPEN operation requests a CDAP connection. The second signature could
be used when reusing an existing flow for a subsequent CDAP connection.

14



∙ CDAPconn, ..., result, success = A_GETOPEN_R (invokeID)
Retrieves a reply to a specific A_OPEN request. It returns the result of the earlier
A_OPEN request, as well as any other values carried in the response message. If the
result indicates success, the CDAPconn value is a valid connection handle and can be
used in subsequent operations.

∙ success = A_CLOSE (CDAPconn, optional invokeID)
Requests closing of the the CDAP connection. No future operations except
A_GETCLOSE_R, if an invokeID was provided, are permitted on the CDAPconn.
If no invokeID is present, the flow is immediately closed, without waiting for a re-
sponse. If an invokeID is present, the flow remains open until the A_GETCLOSE_R
invocation.

∙ result, success = A_GETCLOSE_R (CDAPconn, invokeID, optional
leaveopen = false)
Retrieves a reply to a previous A_CLOSE request. If the Boolean leaveopen argument
is TRUE, the flow will not be closed.

Get/Set operations on valid objects:

∙ success = A_READ (CDAPconn, optional invokeID, objectname)
Sends a request to retrieve the value of an object.

∙ objectvalue, complete, result, success = A_GET_READ_R (CDAPconn,
invokeID)
Retrieves the result of a previous A_READ request. The Boolean value complete is
set if this response completes the A_READ request, indicating that no more replies
will be received for this value of invokeID. If complete is false, then there will be at
least one more reply message for the invokeID – such reply does not have to carry a
value.

∙ success = A_CANCELREAD (CDAPconn, optional invokeID)
Terminates an A_READ before the entire result has been returned.

∙ success = A_CANCELREAD_R (CDAPconn, invokeID, result)
Responds to an earlier A_CANCELREAD operation. (Note that there is a race
condition when an M_CANCELREAD is sent, but the opposite end has already sent
the final response to the read, which causes the invokeID associated with it to be
retired and the M_CANCELREAD to be discarded. The M_READ_R with the
invokeID that completed the M_READ will have already been sent, so it performs
the same function as the M_CANCELREAD_R would have, and the invokeID is
retired upon receipt of either – only one will arrive.)

∙ success = A_READ_R (CDAPconn, invokeID, result, objectname, ob-
jectvalue, optional complete = true)
Sends back a result, and if successful, the data requested by an A_READ operation
with the specified invokeID. If the value is not complete, the complete Boolean must
be set to false. The reader will keep the invoke_id valid, awaiting further data, until
a subsequent A_SENDREAD_R operation with a complete value of true is received,
at which point the A_READ is complete and the invokeID is no longer valid for
replies.

15



∙ success = A_WRITE (CDAPconn, optional invokeID, objectname, ob-
jectvalue)
Sends a request to set the value of object objname to the specified objvalue.

∙ objectvalue, result, success = A_GETWRITE_R (CDAPconn, invokeID)
Retrieves the result of an earlier A_WRITE request. If provided as part of the reply,
it also provides a value for the object (which can be either the prior value, the value
after the update, or something else – this is an application behavior).

∙ success = A_WRITE_R (CDAPconn, invokeID, result, objectname, op-
tional objectvalue)
Sends back a result, and if supplied, an objectvalue, for the object written to by a
prior A_WRITE with the same invokeID.

Creation/Destruction of an object:

∙ success = A_CREATE (CDAPconn, optional invokeID, class, objectname,
optional objectvalue)
Requests creation of an object with the specified class, objectname, and if supplied,
initial value objectvalue.

∙ success = A_CREATE_R (CDAPconn, invokeID, result)
Responds to a previous A_CREATE operation with the same invokeID.

∙ success = A_DELETE (CDAPconn, invokeID, objectname)
Requests the deletion of the named object.

∙ success = A_DELETE_R (CDAPconn, invokeID, result)
Responds to a previous A_DELETE operation.

Starting/Stopping of an object:

∙ success = A_START (CDAPconn, optional invokeID, objectname, op-
tional objectvalue)
Requests start of an object with the specified class, objectname, and if supplied,
argument objectvalue.

∙ success = A_START_R (CDAPconn, invokeID, result)
Responds to a previous A_START operation with the same invokeID.

∙ result, success = A_GET_START_R (CDAPconn, invokeID)
Retrieves the result from a previous A_START operation with the same invokeID.

∙ success = A_STOP (CDAPconn, invokeID, objectname, optional object-
value)
Requests the stop of the named object, possibly providing an optional objectvalue.

∙ success = A_STOP_R (CDAPconn, invokeID, result)
Responds to a previous A_STOP operation with the same invokeID.

∙ result, success = A_GET_STOP_R (CDAPconn, invokeID)
Retrieves the result of a previous A_STOP operation.
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2.6 Enrollment
Enrollment is the phase of communication that follows after the CDAP connection1 is
established with a member of a DAF. An Application Process must always be enrolled
to become a member of a DAF. The phase is initialization of a new member of a DAF
to become a full-featured member of a DAF. The Enrollment might perform, but is not
limited to, the following operations (as it is described in [10]):

1. Determine the current state of the new member AP (if it is completely new, first time
joining DAF, or it is a returning member);

2. Assigning capabilities of the new member;

3. Assigning synonyms to the new member for use within the DAF;

4. Initializing static aspects of the AP and initializing a DAF related policies;

5. Creating additional connections;

6. Initializing or synchronizing the RIBs; etc.

The list of operations is not complete. Additional operations may be performed. The
operations might be diverse for different DAFs. Normal RIB update follows after successful
Enrollment.

In RINA, there exist two types of Enrollment. The first one is within DIF and the
second one is within DAF. They differ mainly from the perspective of the information that
is exchanged during the phase. In this thesis, we deal with the Enrollment on DAF level
only.

The following diagrams are created according to Enrollment specification [7]. The spec-
ification is primarily focused on Enrollment within a DIF, but it may be used also within a
DAF. Figure 2.8 shows Enrollment of the initiating process. Figure 2.9 depicts Enrollment
of the responding process of the communication. In both diagrams, transitions are denoted
with ”input/action“ labels.

The diagrams are self-explanatory except two parts. In Figure 2.9, we can see state
called ”CreatingObjects“, during which the member Application Process is sending
M_CREATE messages to the initiating process. In this state, the initiating process creates
important objects in its RIB to be able to operate within DAF.

After all necessary objects are created, the initiating process can request additional
information about the DAF from the member Application Process.

1The CDAP connection is described earlier in Chapter 2.5.1 as CACE phase.
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Figure 2.8: Initiating process Enrollment State Diagram [14]

Figure 2.9: Responding process Enrollment State Diagram [14]
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2.7 Resource Information Base
Resource Information Base (RIB) is the logical representation of the local repository of
objects in DAF. Each member of a DAF has its own portion of the information stored in
local RIB. All objects are accessible via RIB Daemon, that is responsible for managing and
maintaining them. RIB Daemon is described in section 2.8.

The RIB is a storage, from the operating system point of view. There are no restrictions
for implementation of the RIB. In DAF, it should most likely be implemented as some kind
of database of an application related objects.

In current TCP/IP based networks, the RIB should be compared to SNMPs Manage-
ment Information Base that is used for the same purpose (storing objects).

2.7.1 Objects

Object is the designation for a structured data that the CDAP is dealing with. All modern
programming languages have the concept of objects; it is useful to deal with data on an
object level from its perspective.

Objects are the main building block of the RIB. Two communicating AEs creates a
shared object space, and they provide an access to the portion of the application’s RIB.

All objects belong under some access rights. There should be at least two groups of
objects. The first one is accessible only by AEs that created it and communicate it. The
second one should contain the rest of objects of an application. These objects can be
accessed by any component. But there should be more access rights models, than this easy
one.

Objects stored in the RIB and relevant to CDAP have four core properties:
Class, or Type recursively captures all of the types of the outermost object and all con-

tained objects.

Name is unique identifier among other objects of the same class.

Value contains actual value of the object.

Object Identifier is an integer identifier that is assigned to specific instance of an object
by its owner, it is an alias to its class and name.

The objects that are stored in RIB are of two types. The passive objects that contain static
information, and the active objects, which information has a side effect (e.g., a boolean
value, which setting to true causes a reboot of a processing system).

2.7.2 RIB Based Programming Model

The RINA comes up with a different approach of programming distributed applications (or
network applications) than it is in today’s networks. As it is described earlier, the CDAP
protocol, and one or more AEs, can be used to create a Distributed Application. All the
data are stored in distributed RIB.

This model introduces an idea that application programmers will be more likely manip-
ulating with local objects in RIB, rather than using an explicit communication operations.
The AEs and CDAP are completely hidden from the application programmer. The appli-
cation will not use AEs and CDAP APIs directly. They should use higher level application
programming interface described in section 2.5.2 instead. It is primarily designed for ma-
nipulation with objects.
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2.8 RIB Daemon
RIB Daemon is one of the key components of the Application Process. It is responsible
for managing and maintaining information objects in RIB within DAF. The RIB Daemon
should monitor all events that are occurring within DAF, because there could be a sub-
scription that is triggered by the event. It can also keep a log of events if needed.

Application Process of a DAF may have several sub-tasks or threads. The RIB Daemon
is a common component for those sub-tasks. If any sub-task has requirements for informa-
tion from other participants in distributed application, it uses RIB Daemon to get it. The
getting/setting of the information is done via subscriptions for objects.

All tasks of an AP can communicate with the RIB Daemon via special RIB Daemon
API. The possible RIB Daemon subscription API is described in the following Section 2.8.1.

The RIB Daemon accepts subscriptions from tasks, and it performs the subscriptions
as efficiently as possible. It contains mechanisms to avoid duplicate subscriptions. The
subscription requests are time driven, event driven and direct. In DAF, it is expected that
there will be a higher proportion of direct requests.

According to the RIB Based Programming model described in Section 2.7.2, the RIB
Daemons role is also to make information available as efficiently as possible. It keeps the
delay of the tasks that are using the data as little as possible. This needs an implementation
of some pre-paging mechanism with the prediction of objects that will be needed next.

We can summarize the main functions of the RIB Daemon within DAF:

∙ upon events or periodically request or notify all sets of members of the current value
of selected objects;

∙ monitor all events occurring within the DAF, in case it is bound to a subscription;

∙ immediate notification of an events arrival to tasks;

∙ to provide RIB Daemon API that can be used by APs sub-tasks;

∙ respond to requests for information from other members of DAF;

∙ maintain a mandatory log of received events;

2.8.1 RIB Daemon API

The RIB Daemon API is based on read/write subscriptions to objects. The receiving/send-
ing of an object is based on an occurrence of an event or done periodically.

The API should look like (according to the RIB Daemon Specification [6]):

Create Subscription <Read/Write> <relation-expression> <tolerance>
<attribute_list> <notify/record> <member_list> <subscription-id>

Delete Subscription <subscription-id>

Read Subscription <subscription-id>

Read Subscription is there for receiving the definition of a subscription. Note that there
is no Write Subscription, the only possible procedure is to delete subscription and create a
new one.
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Description of parameters:

<Read/Write> define whether the subscription will cause receiving data from the members
or it will send data to them.

<relation-expression> represents an expression that defines when this subscription will be
invoked. This should be time periodicity, a boolean expression of events, or attribute
values defining conditions upon which subscription will be invoked.

<tolerance> parameter provides an indication of the tolerance that is bound to relation-
expression, under which the RIB Daemon can optimize requests that can occur ”near“
each other.

<attribute_list> represents the information that will be read or written.

<notify/record> determines if the action is only recorded in the RIB or it should be
delivered to the requester (requesting task), or both.

<member_list> is the list of names of the DAF members which attributes will be ex-
changed.

<subscription-id> is special identifier that uniquely identifies this subscription internally
to this process.
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Chapter 3

Applications Concept in RINA
RIB Based Programming Model

RINA comes with a new view of how distributed computing should work. This chapter
provides a deeper look into how current applications should be designed using RIB-Based
Programming model. Each component has its defined purpose and functionality as it
was described in the previous chapter. The following design description definitely not
represent the only possible way. Even more, It describes our understanding and possible
implementation of applications in RINASim.

3.1 Overview
Application Process is the highest level component encapsulating all other components. The
programming interface described in section 2.5.2 is used here for programming applications.
Most of operations behind the API calls will be handled by AEs, which is completely hid-
den from application programmers. The application programmers should not care about
communication and distribution of objects behind the API calls and should instead ma-
nipulate objects using only through the high-level API – the emphasis is on AEs to cover
communication. The main benefit of this approach is that RINASim users can define their
way how the communication will be handled.

All DAFs should be secured and there has to be an authentication mechanism protecting
not trusted APs to become an member of DAF. This is included in CACE and Enrollment
phase when AP tries to connect to AP of DAF.

AEs has shared understanding of application objects that they are communicating with,
i.e. an application protocol. That means for different purposes of communication there
should be different AEs. AEs handle communication between nodes, as well as subscriptions
with RIB Daemon. There are two possible ways of communication – using RIB Daemon
or a direct exchange of messages between two AEs. It means that AEs stay in the border
between an application, RIB Daemon, and other AEs in different APs. Connection to
concrete AE Instance requires CACE including authentication. This protects accessing
shared objects of communication between two concrete AE Instances.

Then there is RIB Daemon that is responsible for managing application objects in RIB.
It is the only component in AP that should access and manage objects in RIB. There
should be implemented an access control mechanism to determine, whether a component
can perform a read/write/create/delete operation on an object on given level. RIB Daemon
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uses AEs for communication between nodes. All requests will be optimized according to
subscriptions.

3.2 Streaming
One of the most common applications using communication through the network is
streaming. This section provides a possible view on how the communication and interac-
tions between the internal AP components look like.
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Figure 3.1: Streaming application between nodes

The Figure 3.1 shows how the connections look like in streaming application. The
process is as follows:

1. At first, there should be an AP that continuously write data to an object in RIB. In
our case, the AP on a host Host X spawns an AE Instance. It creates an object using
AP API call. The API call forwards a request for object creation to AE Instance and
it creates an object in RIB using RIB Daemons API. The AP then starts to write
data to that object periodically. This means that the AP API call is periodically
used. The AE Instance creates a subscription in RIB Daemon for writing an object
value to the RIB on every API call. This is the type of subscription that is handled
only once on this request, not periodically or on an event. This streams the data only
locally.

2. The AP on host Host A wants to read the stream. In the first instance, the AP goes
through Enrollment procedure to become a member of the same DAF as AP on Host
X. It becomes a member of the DAF.
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3. The AP on host Host A spawns an AE Instance and creates a connection to an AE
Instance of AP on the Host X. The AP via AP API call requests the same object
which the streaming AP is writing data to. The request is forwarded to the AE
Instance. There are several options possible how the data should be requested and
processed.

∙ The AE Instance creates a subscription to RIB Daemon that will poll an object
from the Host X’s RIB. This means, that it will periodically send CDAP M_READ
messages and write the obtained object to the local RIB.

∙ The second option is that AE Instance subscribes for an object to local RIB
Daemon once. RIB Daemon generates CDAP M_READ message, that will be sent
to the second AP. The receiving AE Instance creates a write subscription, based
on the received request, to the local RIB Daemon, for an object that is in the
local RIB. The RIB Daemon on the Host X then adds the requesting AE Instance
to the write subscription list for the object. It can be a time driven or event-
based subscription. Then the RIB Daemon sends CDAP M_WRITE messages to
the requesting AE Instance. The AE Instance forwards it to RIB Daemon and
the object is written to the local RIB.

4. The AP gets the data upon an AP API call A_GET_READ_R with the received object
and response flag set, so that other replies will be received.

5. If the data are not needed, the AP API call A_CANCELREAD is forwarded to the AE
Instance. The AE Instance generates CDAP M_CANCELREAD message and sends it
to the second AE Instance. The receiver AE Instance deletes the previous write
subscription for an object.

There are possible options how the two APs can be connected. The streaming AP may
create a private stream, so that the data will be available only by connecting to one special
AE Instance, only on AE level, or globally in DAF. This depends on where the data in RIB
are stored.

If the object is stored under a concrete AE Instance, the connection to the concrete
AE Instance on the remote host has to be created to receive this data by requesting AE
Instance. This is indicated in Figure 3.1 by the dashed line from Host A’s AE Instance to
the same AE Instance as Host B’s AE Instance is connected.

If the object is stored in the global level of DAFs RIB, the connection should be created
to any AE Instance and the data can be received.

3.2.1 Object distribution

The RIB is a partially replicated database. The same data objects are spread among
multiple RIBs in DAF. The data objects are distributed to nodes when an AP request it.
But there is a possibility to spread the objects between multiple nodes, even, they are not
requested. The reason for this is to make them replicated and available closer.
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Figure 3.2: Forwarding data objects between nodes

In this case, there are spawned AE Instances between two nodes and objects are dis-
tributed by RIB Daemon from one RIB to another. This is applied especially to global
objects that can be accessed by everyone. The only interactions are between AE Instance
and RIB Daemon.

3.3 Conference Call
Another good example of a commonly used application using communication over the net-
work is a conference call between multiple users. The process should look like:
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Figure 3.3: Conference call between multiple nodes case 1
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1. The start should be similar as in the previous streaming case. The AP on Host C
spawns an AE Instance which periodically writes data to the local RIB. This is done
without any connection between other AE Instances of different AP.

2. If the AP on Host A wants to join the conference call, it creates a connection to the
Host C’s AE Instance. The process is the same as in the streaming case. At first,
the Host A’s AP has to be a member of the same DAF as the AP on the Host C. If
not, the Enrollment has to proceed. The AE Instance reads data from remote RIB,
or the write subscription is created from the remote AE Instance. The conference call
works in both directions. There are more possibilities how the AE Instances can be
connected.

∙ There is another AE Instance on the Host A that writes data to local RIB. The
AE Instance of Host C needs to create a connection to that AE Instance and
get the data objects from it. This means that there are multiple streaming AE
Instances and other AE Instances have to create connections to them to get the
data. It is the same process as in the streaming case but repeated multiple times.
The connections between AE Instances of different APs are depicted in Figure
3.3.
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∙ Another possible approach is that there is only one AE Instance in each AP
participating in the conference call. The AE Instance creates one connection to
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the remote AE Instance that serves for both directions of the communication
– such connection requires QoS with higher bandwidth. Or there are created
two connections between the same AE Instances for communication. The one
connection is used for getting data from one AE Instance and the other for the
second direction. The connections are indicated in Figure 3.4.

3. If the data are not needed, the AP cancels the read by issuing the A_CANCELREAD API
call, and the data objects are not read anymore. The rest of the process is the same
as in the streaming case.

3.4 Ping
Ping is one of the most basic applications that should be requested. In this case, each RIB
contains a global, periodically updated object, containing the currently synchronized time.
The application then creates the connection with the desired node and request the value of
an object of that node. In the case of AE implementation, as it was mentioned earlier, two
possible options of communication are possible.

∙ using RIB Daemon - The AE Instance subscribes for an object to RIB Daemon. The
RIB Damon then requests an object from RIB from the desired node and returns it
to AE that forwards this value to an AP.

∙ using direct request - The AE Instance sends a request for time from another AE
Instance. This is a direct request between two AE Instances without using the RIB
Daemon and RIB. The AE Instance forwards the obtained value to the AP.
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Figure 3.5: Design of Application Process

Figure 3.5 depicts both possible cases in one. The dashed lines represent the case where
the RIB Daemon is incorporated into the process of obtaining the data.
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Chapter 4

Design and Implementation of
DAF

This chapter documents the design and implementation of Distributed Application Facility
and its components in RINASim.

4.1 Development Environment

4.1.1 OMNeT++

OMNeT++ [1] is an open-source discrete event simulation framework used primarily for
simulation of networks. Network simulation is not the only focus of this project; it is also
used to simulate IT systems as well as hardware architectures.

OMNeT++ provides components (modules) that create the basic building blocks. These
modules are hierarchically plugged and they communicate with each other. The modules
should have defined input and output gates. Between the gates are created connections
that all communication among modules goes through.

The component logic is programmed in C++ language. A special language called NED
is used for the structural definition of composite components. OMNeT++ runs on every
Unix-like platform as well as on Windows.

4.1.2 RINASim

RINASim (Recursive InterNetwork Architecture Simulator) is an open-source simulation
library for the OMNeT++ framework. The purpose of RINASim is to provide a way to
model and simulate RINA networks. It is developed by the NES@FIT research group at
the Faculty of Information Technology of Brno University of Technology.

The development of this library has started within the PRISTINE [15] EU-7FP-ICT
project. It is hosted on GitHub [2] under MIT license. It was successfully presented at
OMNeT++ Summit 2016 and got officially added to supported OMNeT++ frameworks.
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4.2 Modules
This section describes the design and implementation of modules participating in an AP. It
is necessary to pay extra attention to each module as each module has its special purpose
in the AP. Modules are designed in such way so that they can be extended or replaced by
a new module.

The OMNeT++ allows us to use three different techniques of passing objects between
modules – using signals, messages, or direct API calls. The signals are emitted by one
module transmitting an object and caught by any module that has a subscription to this
signal. This thesis makes use of all mentioned techniques. Figure 4.1 depicts the interaction
between modules within an AP.

Figure 4.1: Design of Application Process

4.3 Application Process
The AP is a module wrapper that contains all internal modules as it is depicted in Figure
4.2. The current level of abstraction enables us to create one static AP Instance. The
apInst represents the implementation of the AP Instance functionality, and it is the core
module of AP. The purpose of this module is to provide the API (described in the 4.3.1)
to users so they can create its applications.
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Figure 4.2: Application Process module structure

4.3.1 AP API

The OMNeT++ is a discrete event simulator, so each API call has to be bound to a
scheduled event. The blocking calls are not possible to implement here. The AP API is
designed so that every scheduled API call, described in 4.1, has its callback method for
receiving a result of the operation. These callback methods are under the explicit control
of application programmers. The following API calls are implemented, and it can be used
when programming AP Instance.
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Method Description

a_open(int invokeID,
string APname,
string APinst,
string AEname,
string AEinst)

- checks if the AP is already enrolled
- the input parameters represents a destination
naming information, source naming parameters
are generated from them
- creates an AE Instance dynamically based on
the input parameters
- issues start of AE Instance functionality that
leads to the creation of CDAP connection

a_close(int CDAPConn,
int invokeID = 0)

closes the connection

a_read(int CDAPConn,
string objName,
int invokeID = 0)

reads object matched by objName using the
CDAP Connection

a_write(int CDAPConn,
string objName,
object_t *obj,
int invokeID = 0)

writes obj value to an object matched by
objName

a_cancelread(int CDAPConn,
int invokeID = 0)

cancel the reading of an object on CDAP Con-
nection matched by invokeID

a_create(int CDAPConn,
string clas,
string objectname,
object_t *obj = NULL,
int invokeID = 0)

creates an object with desired objectname, if
obj is not NULL then value is also assigned

a_delete(int CDAPConn,
string objectname,
int invokeID = 0)

deletes an object matched by objectname

a_start(int CDAPConn,
string objectname,
object_t* objectvalue = NULL,
int invokeID = 0)

starts an object with desired objectname, if
objectvalue is not NULL then value is also as-
signed

a_stop(int CDAPConn,
string objectname,
object_t* objectvalue = NULL,
int invokeID = 0)

stops an object with desired objectname

Table 4.1: AP API calls
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This second list covers all callback functions that can be redefined while programming
a user specific AP Instance. All callbacks are called when the result is obtained for a
particular previous API call.

The APIResult object is passed as a parameter to all of the named methods in the
following list. The APIResult class contains the result of an operation, identification of the
connection, and application object if needed. It is created in AE Instance and passed via
signal back to AP Instance.

Method

onA_getOpen(APIResult* result)

onA_getRead(APIResult* result)

onA_getWrite(APIResult* result)

onA_getCreate(APIResult* result)

onA_getDelete(APIResult* result)

onA_getStart(APIResult* result)

onA_getStop(APIResult* result)

onClose(APIResult* result)

Table 4.2: AP API callback methods

All of these callbacks are called immediately after the appropriate operation is done, if
not stated otherwise by an AE Instance implementation.

4.4 AE
Application Entity implements an application protocol – shared understanding of objects
it is dealing with. This means that there should be several different AE instances with
different purposes, which will deal with objects in different ways.

The aei is a core module, in which all main functionality is implemented. This should
be implemented by RINASim users by themselves. The interface classes AEBase and AE
are provided, which extend the interface class by basic functionality. The AE class provides
methods that handle reactions on CDAP messages obtained from
commonDistributedApplicationProtocol, and reactions on calls from apInst API and
RIB Daemons API. The list of methods and their meanings is named in 4.4.2.
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Figure 4.3: Application Entity Instance module structure

The commonDistributedApplicationProtocol is a submodule provided in each AE
Instance. Its purpose is to forward and process CDAP protocol messages. It is modeled as
a compound module consisting of five submodules:

∙ cace - Common Application Connection Establishment protocol forwarding CDAP
M_CONNECT and M_RELEASE messages;

∙ auth - providing advanced authentication exchanges;

∙ cdap - providing forwarding of other CDAP messages;

∙ cdapSplitter - splitter forwarding messages to appropriate upper modules;

∙ cdapMsgLog - logger for all processed messages.

The last module is the socket. It should work as a buffer for incoming data. If the flow
is overwhelmed with incoming data it should return an error.

4.4.1 Parameters

Parameters of the AE Instance are divided into three parts. The first part contains naming
information with the source and destination of the connection it is managing. The values
are set during dynamic creation of the module initiated by an API call from apInst.
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Data type Name Description

string aeName AE name of this AE

string aeInstance AE Instance name of this AE Instance

string dstApName destination AP name

string dstApInstance destination AP Instance name

string dstAeName destination AE name

string dstAeInstance destination AE Instance name

Table 4.3: AE naming parameters

The next two parts are fully configurable. The first one contains all QoS settings for a
given connection, as can be seen in the following listing.

Data type Name Description

int averageBandwidth bits/s

int averageSDUBandwidth SDU/s

int peakBandwidthDuration peak bandwidth-duration

int peakSDUBandwidthDuration peak SDU bandwidth-duration

int burstPeriod burst period

int burstDuration burst duration

double undetectedBitErr undetected bit error rate

double pduDroppingProbability PDU dropping probability

int maxSDUsize maximum SDU size

bool partialDelivery partial delivery

bool incompleteDelivery incomplete delivery

bool forceOrder SDUs must be delivered in-order

int maxAllowGap maximum allowable gap in SDUs

int delay delay in usecs

int jitter jitter in usecs

int costTime $/ms

int costBits $/Mb

Table 4.4: AE QoS parameters
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The last part contains the configuration of the authentication used during CACE phase.
This is also a fully configurable part. By default, no authentication is used, so the authen-
tication always passes.

Data type Name Description

int authType authentication type

string authName authentication type name

string authPassword password

string authOther another type of authentication

Table 4.5: AE authentication parameters

4.4.2 AE API

The API of the AE is divided into three separate parts depending on from which module
the methods are issued. All of them are composed of callback methods, which are redefined
by AE programmer.

The first group represents reactions on API calls from an AP Instance. The APIReqObj
object contains all parameters needed for each API call and the type of the issued call.

Method

onA_read(APIReqObj* obj)

onA_write(APIReqObj* obj)

onA_create(APIReqObj* obj)

onA_delete(APIReqObj* obj)

onA_start(APIReqObj* obj)

onA_stop(APIReqObj* obj)

onA_cancelread(APIReqObj* obj)

Table 4.6: AE callbacks handling reactions from AP API

The second group is a collection of callback functions that are issued in case that message
from commonApplicationDistributionProtocol is passed to this AE Instance. The input
parameter here is CDAPMessage object.
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Method

processMRead(CDAPMessage* msg)

processMReadR(CDAPMessage* msg)

processMWrite(CDAPMessage* msg)

processMCreate(CDAPMessage* msg)

processMCreateR(CDAPMessage* msg)

processMDelete(CDAPMessage* msg)

processMDeleteR(CDAPMessage* msg)

processMCancelread(CDAPMessage* msg)

processMCancelreadR(CDAPMessage* msg)

processMStart(CDAPMessage* msg)

processMStartR(CDAPMessage* msg)

processMStop(CDAPMessage* msg)

processMStopR(CDAPMessage* msg)

Table 4.7: AE CDAP message processing methods

The last group represents only one method RIBSendData that passes an object from
RIB Daemon to CDAP module directly.

4.5 RIB
The RIB is simple module provided by every AP. It provides an interface implemented
in RIBBase class, and the core functionality is extended in DAFRIB class. The RIB class
contains RIB tree-structured database, and it implements operations for manipulation with
such database.

Figure 4.4: RIB module structure

The only module that can do operations in RIB is RIB Daemon. This restriction leads
us to use a friend class to RIB Daemon class and declares all methods as private.
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4.5.1 RIB Structure

Resource Information Base serves as a database of application objects in the AP. RIB in
each AP represents only one portion of the entire replicated database of all objects in DAF.
It implements all necessary data operations.

The objects are addressed by their names. Each name has special a format, by which it
should be addressed on a different level in the hierarchy of objects. The format is following:

/DAF/[LABEL|AE_NAME]/[LABEL|IAE_NAME]/ObjName

Each object is subject to access rights related to a level in the hierarchy it is stored
on. For example, the object is stored under a concrete AE Instance, then only two AE
Instances that has the connection between them can access this object.

Tree Structure

Sorted binary search tree (BST) with reverse pointers was chosen to design the RIB database
of objects and hierarchy tree. The hierarchy tree is a structure of multiple trees that model
different levels in the database, as it is depicted in Figure 4.5.

/Level1/Level2/Level3/...

...

Figure 4.5: The hierarchy tree structure

The whole database is composed of two different trees. Both trees are BST but with
different nodes and purpose. The purpose of a tree hierarchy is to create a structure with
different levels of plumbing, depending on which level the concrete object belongs to.
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Key:  name 

Left child node pointer Right child node pointer

Parent node pointer

Objects root tree pointer Sub-level root tree pointer

Node

Figure 4.6: The hierarchy tree node

Each node of this tree has five pointers, as it is captured in Figure 4.6. First three
pointers are standard pointers of BST (parent node and two child nodes). Then there is
a pointer to a sub-level tree, which allows us to create more levels, like one AE with AE
Instances – all AE Instances then have their nodes in this sub-level tree. The last item is
a pointer to an object tree. The name of the label in current level is used as a key for this
node.

Figure 4.7: The Object tree

The object tree is the second different BST, shown in Figure 4.7. Its purpose is to store
all objects that belong under some label in the hierarchy tree. The tree is sorted by the
object name. Each node contains a list of object values and the name as a key. The list of
objects contains different versions of instances of an object. The key for each node is the
name of an object.
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4.5.2 Objects

Application objects are stored in the separate object tree, it is implemented by
RIBTreeNodeObj. This class contains a list of objects, the object is represented by structure
object_t.

s t r u c t object_t {
s t r i n g ob j e c tC l a s s
s t r i n g objectName
i n t o b j e c t I n s t a n c e
ObjectPtr ob jectVa l

}

4.5.3 RIB API

RIB API supports two types of operations. The first group manipulates with the tree
structure and the tree levels. This group supports only operations for creating AE and AE
Instance levels in the tree. All these operations are described in Table 4.8.

Method Description
createAE(string AEName) creates tree node at AE level

createIAE(string IAEName,
AEBase* ae)

creates tree node at AE Instance level and as-
signs a pointer of the AE Instance to it

deleteAE(string AEName)
deletes tree node with AE, also destroys all sub-
trees

deleteIAE(string IAEName)
deletes tree node with AE Instance, also de-
stroys all subtrees

Table 4.8: RIB API for manipulation with tree structure

The second group of methods covers operations with objects, namely read/write/cre-
ate/delete. These methods are described in Table 4.9.
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Method Description
createObj(string objName,
object_t *obj)

creates object according to name an assigns the
value of it

deleteObj(string objName) deletes object in the object tree

writeObj(string objName,
object_t *obj)

writes object value to object matched by name

readObj(string objName) reads object value of object matched by name

Table 4.9: RIB API for manipulation with data objects

4.6 RIB Daemon
The RIB Daemon is a simple module that stands on the border between AEs and RIB. It
manages all objects stored in the RIB. The core functionality is implemented in DAFRIBd
class, which extends the interface DAFRIBdBase class. Application entities can use the RIB
Daemon API to create, read, or delete subscriptions for objects in the RIB. Three types of
subscriptions are supported – on an object change, periodically, or once on request. Each
of the subscriptions is stored in one of the two lists, and it is checked based on its type.

Figure 4.8: Rib Daemon module structure

The RIB Daemon generates messages and uses appropriate AE Instances for sending
them to destinations. On the other side, RIB Daemon receives messages from AE Instances
or reacts on AE Instance requests.

4.6.1 RIB Daemon API

RIB Daemon provides the following API. The primary user of this API are AE Instances.
The API is divided into two parts. The first one covers operations with subscriptions, which
are described in Table 4.10.

The second part contains only supporting operations – creation and deletion of AE
Instance record in RIB structure. The description can be seen in Table 4.11.
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Method Description

createSubscription(
SubscriptionOption option,
SubscriptionWhen when,
SubscriptionOperation operation,
string obj,
string member,
int subscId)

creates a subscription for an object in RIB
based on input parameters
- option - READ|WRITE whether it is read or
write subscription
- when - ON_REQUEST|ON_CHANGE whether
the subscription is on request, or on object
change
- operation - NOTIFY|STORE whether the ac-
tion is only recorded in RIB, or sent back to
requester
- obj - object name
- member - member to which the action be-
longs
- subscId - subscription id

deleteSubscription(int subscId)
deletes subscription based on subscriber id as
an input parameter

readSubscription(int subscId) reads subscription based on subscriber id

Table 4.10: RIB Daemons subscription API

Method Description

createIAE(AEBase* iae)
creates IAE entry in RIB tree structure on
the appropriate level

deleteIAE(AEBase* iae) deletes IAE entry in RIB

Table 4.11: RIB Daemons addition methods

4.7 Enrollment
The enrollment module encapsulates enrollment and enrollmentStateTable. The pur-
pose of enrollment is to manage two phases of connections, i.e., generates and reply on
received messages according to finite state machine states.

Both state machines are implemented in separate classes. The CACEMgmt class imple-
ments CACE phase, and the Enrollment phase is implemented in DAFEnrollment class,
which contains the core functionality of the enrollment module. It implements both ini-
tiator and responder roles in one module.

This module spawns Management AEs and uses them for communication. The module
catches all relevant CDAP messages to both phases as an input and reacts to them according
to recorded states.
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Figure 4.9: Enrollment module structure

The Enrollment has to maintain a state of all application connections. This is ensured by
class EnrollmentStateTable that implements a storage of entries. This state information
is stored separately from RIB because it should be managed only by the enrollment module.
The visualization of this data in the simulator is also more transparent to users, as it is
depicted in Figure 4.10.

Figure 4.10: Enrollment state table entries

4.7.1 Initial Phases of Communication

The initial phases of the connection are CACE and Enrollment. At first, when the user
tries to create an application connection to another AP, the apInst module sends the signal
to the enrollment module, to check whether the AP is already enrolled to this DAF. If not,
the first AE Management is spawned, which tries to create an application connection to
the destination AP.

The CACE takes place over this new connection. This phase is managed by CACEMgmt
class that implements a finite state machine described in section 2.5.1. This class is also
part of the enrollment module.

The Enrollment phase starts right after the connection is successfully established. The
entire phase is managed by DAFEnrollment class, which implements the Enrollment finite
state machines mentioned in section 2.6.

After successful enrollment, the Enrollment module sends a notification signal back to
apInst, that AP is enrolled to the DAF and other connections can be created. The apInst
then spawns an appropriate AE Instance. According to the parameters, the AE Instance
allocates connection and also goes through the CACE phase. This CACE is handled by
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CACEGeneric class, which is similar to CACEMgmt class and also implements the same finite
state machines.

Both connections are stored in EnrollmentStateTable as it is depicted in Figure 4.10.
The difference is that DAFEnrollmentStatus is not set in normal connections.

4.8 Management AE
Management AE is a special AE designed to manage and communicate through manage-
ment connections, hence the special attention is devoted to this module. Only the Enroll-
ment and RIB Daemon module can use this AE, and it is completely independent. It has
almost the same structure as normal AE as it is shown in Figure 4.11.

Figure 4.11: Management Application Entity module structure

The parameters are the same as in the case of normal AE Instance. The difference is
only in values that are assigned statically, such as QoS of connection.

In addition, there is one special submodule called enrollmentNotifier. This compo-
nent is implemented to forward signals between Enrollment module and aemgmt module.
This enables more clear implementation of aemgmt component because it works with only
two signals from enrollmentNotifier.
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Chapter 5

Testing and Evaluation

The testing scenario is focused on testing the whole implemented model. The first part
is devoted to testing finite state machines and transitioning to appropriate states both for
CACE and Enrollment. The second part tests simple ping scenario with reading data from
remote AP using RIB Daemon. The topology is very simple and contains only two hosts
and two APs communicating with each other. The whole scenario is depicted in Figure 5.1.

Figure 5.1: Two hosts and two AP topology

The AP SourceA is supposed to create one application connection with destination
AP SourceB. This is enough to test both Enrollment and CACE, one over management
connection and normal application connection. This process also comprises the dynamic
creation of AE modules and appropriate cooperation of the modules in AP. Appropriate sent
messages and final states of successful CACE and Enrollment are depicted in accompanying
Figure 5.2.
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The process follows:

1. The simulation starts with an API request for a new connection. This results in
a check if the AP is enrolled to DAF. If not, the Enrollment module spawns an
aeManagement instance, creates an entry in an enrollmentStateTable and
aeManagement instance allocates a new management connection.

2. After a successfully allocated connection, the CACE state machine takes the initiative
and sends the first CDAP M_CONNECT message. This message carries an authentication
that is set by the configuration. The message is passed through the connection to the
second host. If the authentication was successful, a positive M_CONNECT_R message
(indicated by Connect+/Auth in Figure 5.2) is sent back as a response. With that,
the CACE phase is complete, and Enrollment phase may proceed.

3. When CACE phase is finished, the initiative is taken by Enrollment state machine.
This includes an exchange of four CDAP messages M_START(Enrollment),
M_STOP(Enrollment), M_STOP_R(Enrollment) and M_START(Operation). Neither
the initiator nor the responder needs to read or create any objects. Hence there are
no more exchanges, and the Enrollment procedure is short.

4. After the last message received, the Enrollment notifies that the AP is successfully
enrolled and the other connections within DAF may be created. The AEMonitor
is spawned and a new application connection with desired parameters is allocated.
Then an entry in the enrollmentStateTable is created, and CACE state machine
manages the CACE phase. The exchange of messages is the same as in the case of
previous management connection. After a successfully established connection, the
M_READ messages is sent.

Figure 5.2: Resulting EnrollmentStateTable and message transitions log

The extract of enrollmentStateTable entries shows the resulting states on the left
side in Figure 5.2. State transitioning is depicted in Figure A.1.

Right after Enrollment and CACE over allocated application flow between two AEMonitor
instances passed, the reading of data may proceed.
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1. The AP issues A_READ method call. The AP forwards the request to AEMonitor
instance, which creates subscription request to RIB Daemon with option ON_REQUEST
and NOTIFY set. The RIB Daemon, based on subscription, sends M_READ message
using AEMonitor instance to the remote AP.

2. The AEMonitor instance in the remote AP forwards the message to RIB Daemon, it
gets required object from RIB and send it in M_READ_R message using local AEMonitor
instance back to the requestor.

3. The requesting AEMonitor instance receives this CDAP M_READ_R message, forward
it to RIB Daemon and forward the resulting object back to AP.

Figure 5.3: Resulting EnrollmentStateTable and message transitions log

Figure 5.3 depicts the CDAP M_READ and M_READ_R containing application object. In
the first message, it is specified that what object to receive. The second message contains
also object value.

All parts of the model was validated and experimentally tested multiple times. The
modules reacts as it was described in design.

5.1 Discussion
The development of RINASim was primarily focused on IPC Process and its function. The
AP contained only one AE and nothing more. The AE served as a traffic generator to test
underlying DIFs. There was no API to use. The CDAP messages were passed directly to
the underlying IPC process. There were no AP Instances and the AE was static. The old
state is depicted in Figure 5.4 on the left.
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Figure 5.4: Progress between old and current AP

The work of this thesis aimed at extending AP of all its components so that the user
of RINASim could expect the AP behaviour as it is described in the specifications. The
current implementation can be seen in Figure 5.4 on the right.

It allows the user to experiment with the full-fledged model of AP that can finally par-
ticipate in DAF and create distributed applications. The AP was extended with phases of
communication, such as CACE and Enrollment. The programming of RINASim applica-
tions has moved to a higher level, the AP Instance became the highest unit that can be
programmed. The AP Instance has its API that the users can use. The AEs are created
dynamically based on AP Instance API calls.

The AE is created as an interface module, providing several APIs for communication
with different modules. This brings new possibilities for experimenting with the model.
Each user can create its AE in case it does not fit our understanding of the AP behaviour.

The model was also extended with RIB that serves as a partially replicated database.
There was added RIB Daemon as component taking care of management and distribution
of application objects, and it also provides an API available for communication with other
modules.
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Chapter 6

Conclusion

The thesis aimed to understand each component participating in DAF. The main goal of
the work was to design the components according to specifications, so they provide an easily
usable API and fulfill the desired purpose. All the outlined goals were accomplished.

The RINASim contained only a single Application Entity that served as a traffic genera-
tor between two static nodes. This work brings a full-featured Application Process capable
of creating multiple connections, dynamic creation of modules, and primarily dealing with
communication on a data object level. The emphasis is on the design of a new approach
called RIB based programming model and distribution of data between nodes.

The significant part of the work is design and implementation of an API that provides
easier and uniform creation of applications in RINASim. It also helps with the better un-
derstanding of how to create distributed applications in RINA. The RINASim was extended
with the implementation of models of CACE, Enrollment, Application Process, Application
Entity, Management Application Entity, RIB Daemon and Resource Information Base. The
implementation was tested and validated according to the specifications.

The implementation is continuously added to new releases of the official version of
RINASim. RINASim is used worldwide by many researchers to help understand how RINA
works and to experiment with its model. The simulator is marked as one of the official
OMNeT++ frameworks.

This work was supported by the Brno University of Technology organization and by the
research grant PRISTINE EU-7FP-ICT.

Part of this thesis was accepted to the student’s conference Excel@FIT in years 2016
and 2017. The work has been awarded in two categories, Expert panel award, and the
Professional community award, at the conference in 2016.

The work brought the opportunity to participate in continual research of a completely
new network architecture. The continual research required discussion with other researchers,
even with the author of the RINA architecture.

The discussions about parts of the architecture are still evolving. The future work will
be focused on extending the model in RINASim during my Ph.D. studies. Also, several
different AEs have to be created to represent different approaches in the design of commu-
nication. The measurement of the efficiency of distribution of objects between APs should
also create a significant role in future work.
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Appendix A

Enrollment Progress

Figure A.1: EnrollmentStateTable Contents Progress
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