
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

SIMULATION OF ULTRASOUND PROPAGATION INBONES
SIMULACE ŠÍŘENÍ ULTRAZVUKU V KOSTECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. KRISTIÁN KADLUBIAK
AUTOR PRÁCE
SUPERVISOR Ing. JIŘÍ JAROŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
It is estimated that mind-boggling 14.1 million new cases of cancer occurred worldwide
in 2012 alone. This number is alarming. Although healthy lifestyle may reduce a risk of
developing cancer, there is always some probability that cancer would develop even in an
absolutely fit individual. There are two main conditions for successful treatment of cancer.
Firstly, early diagnostic is absolutely crucial. Secondly, there is a need for suitable surgi-
cal methods for affected tissue removal. Ultrasound has a great potential to be used for
both purposes as a non-invasive method. Photoacoustic spectroscopy is imaging method
for tumor detection of great properties making the use of ultrasound while High-Intensity
Focused Ultrasound (HIFU) is non-invasive surgical method. These methods would be im-
possible without precise ultrasound propagation simulations. The k-Wave is an open source
MATLAB toolbox implementing such simulations. So, why are not these methods already
deployed in treatment? Unfortunately, the simulation of ultrasound propagation is a very
time consuming task, which makes it ineffective for medical purposes. However, there are a
few options how to accelerate these simulations. The use of GPU is a very promising way to
accelerate simulation. The main topic of this thesis is the acceleration of the simulation of
soundwaves propagation in bones and hard tissue. The implementation developed as a part
of this thesis was benchmarked on various supercomputers including Anselm in Ostrava and
Piz Daint in Lugano. The implemented solution provides remarkable acceleration compared
to the original MATLAB prototype. It was able to accelerate the simulation around 160
times in the best case. It means that the simulation, which would otherwise last for 6.5
days, can be now computed in one hour. This acceleration was achieved using an NVIDIA
Tesla P100 to run the simulation with the domain size of 4163 grid points. The thesis in-
cludes performance benchmarks on different GPUs to provide complex image acceleration
capabilities of developed implementation and provides discussion about memory usage and
numerical accuracy. Thanks to the implemented solution harnessing the power of modern
GPUs, doctors and researchers all around the world have a powerful tool in hands.

Abstrakt
Odhaduje sa, že v roku 2012 sa objavilo celosvetovo neuveriteľných 14.1 milióna nových
prípadov rakoviny. Toto číslo je alarmujúce. Napriek tomu, že zdravý životný štýl môže
zredukovať riziko vzniku rakoviny, vždy existuje istá pravdepodobnosť, že sa rakovina objaví
aj u úplne zdravého jedinca. Na úspech liečenia rakoviny majú vplyv najmä dva faktory.
Po prvé - včasná diagnostika je absolútne nevyhnutná, po druhé - musí existovať vhodná
operačná metóda na odstránenie poškodeného tkaniva. V obidvoch prípadoch má ultra-
zvuk veľký potenciál ako neinvazívna metóda. Fotoakustická spektroskopia je zobrazovacia
metóda so skvelými vlastnosťami, založená na princípe ultrazvuku, schopná detegovať tu-
mor. High-Intensity Focused Ultrasound (HIFU) je neinvazívny chirurgický postup. Tieto
metódy by však neboli možné bez presnej simulácie šírenia ultrazvuku. Balíček k-Wave je
open source toolbox pre MATLAB, ktorý implementuje tieto simulácie. Vyvstáva otázka,
prečo nie sú tieto metódy bežne používané v praxi? Dôvodom je fakt, že simulácia šírenia
ultrazvuku je veľmi časovo náročná operácia, čo robi tieto metódy neefektívnymi. Avšak
existujú spôsoby akcelerácie takýchto simulácií. Implementácia simulácie na GPU je veľmi
perspektívny prístup k akcelerácií. Hlavnou úlohou tejto diplomovej práce je akcelerácia
simulácie šírenia ultrazvuku v kostiach a iných tvrdých tkanivách. Implementácia vyvinutá
v rámci diplomovej práce bola testovná na rôznych superpočítačoch ako napríklad Anselm
v Ostrave alebo Piz Daint v Lugane. Implementované riešenie dosahuje pozoruhodné zrých-
lenie v porovnaní s originálnym prototypom v prostredí MATLAB. V najlepšom prípade
bola implementácia schopná urýchliť simuláciu približne 160 násobne. To znamená, že
simulácia, ktorá by za iných okolností trvala 6,5 dňa, je dnes dokončená za jednu hodinu.
Toto zrýchlenie bolo dosiahnuté počas simulácie s rozmermi 4163 bodov a za použitia karty
NVIDIA Tesla P100. Diplomová práca obsahuje porovnanie výkonu na rôznych grafických
kartách, aby čitateľovi umožnila komplexnejší náhľad na akceleračné schopnosti vyvinutej
implementácie a tiež poskytuje bližší pohľad na pamäťovú náročnosť a numerickú presnosť
aplikácie. Vďaka schopnosti aplikácie naplno využiť potenciál grafických kariet, majú lekári
a vyskumníci z celého sveta v rukách mocný nástroj.

Keywords
GPGPU, HPC, CUDA, k-Wave, ultrasound propagation simulation

Klíčová slova
GPGPU, HPC, CUDA, k-Wave, simulácia šírenia ultrazvuku

Reference
KADLUBIAK, Kristián. Simulation of Ultrasound Propagation in Bones. Brno, 2017.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Jaroš Jiří.

4

Simulation of Ultrasound Propagation in Bones

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Jiří Jaroš, Ph.D. and Dr. Bradley E. Treeby. All the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included in the list of references.

. .
Kristián Kadlubiak

May 23, 2017

Contents

1 Introduction 3
1.1 The k-Wave toolbox . 4
1.2 Wave propagation trough elastic medium 5
1.3 Assignment tasks . 5

2 Graphics Processing Unit 7
2.1 Architecture comparison . 7
2.2 General Purpose Graphics Computing Unit 8

2.2.1 GPGPU framework . 8
2.3 CUDA-capable GPU architectures . 9

2.3.1 Host interface . 9
2.3.2 Copy engine . 9
2.3.3 DRAM adapter . 10
2.3.4 Device memory . 10
2.3.5 Streaming multiprocessor . 10

2.4 CUDA thread execution model . 11
2.4.1 Kernel . 12
2.4.2 Grid . 12
2.4.3 Block . 12
2.4.4 Thread . 12
2.4.5 Warp and lane . 13

2.5 CUDA memory model . 13
2.5.1 Global memory . 14
2.5.2 Local memory . 14
2.5.3 Registers . 14
2.5.4 Shared memory . 14
2.5.5 Texture memory . 15
2.5.6 Constant memory . 15

3 Reference Implementation 16
3.1 The k-Wave implementation . 16

3.1.1 Governing equations . 18
3.2 Implementation of governing equations in MATLAB 20

3.2.1 Computation of gradients of stress tensor 20
3.2.2 Computation of split-field particle velocity 20
3.2.3 Spatial velocity gradient calculation 21
3.2.4 Spatial gradients of the time derivative of the velocity 21
3.2.5 Computation of stress tensor values in next time step 21

1

3.2.6 Conclusion . 21
3.3 Existing CUDA framework . 22

3.3.1 Main components of framework . 22

4 Implementation 25
4.1 Implementation breakdown into tasks . 25
4.2 Technologies used in development . 25

4.2.1 The Google test . 25
4.2.2 The HDF5 library . 26
4.2.3 The cuFFT library . 26

4.3 Compute kernels implementation on GPU 27
4.3.1 Computation of gradients of stress tensor 27
4.3.2 Computation of split-field particle velocity 27
4.3.3 Spatial velocity gradient calculation 28
4.3.4 Implementation of stress tensor computation 28
4.3.5 Implementation of velocity and stress sources 29
4.3.6 Unit tests of individual kernels . 29
4.3.7 Current limitations of implementation 30

4.4 Modification of I/O file format . 30
4.5 Integration with the framework . 30
4.6 Integration with the k-Wave . 31
4.7 Numerical accuracy testing . 31
4.8 Performance testing . 32
4.9 Documentation . 32

5 Experimental Results 33
5.1 Performance evaluation . 33
5.2 Numerical accuracy . 37
5.3 Memory consumption . 39
5.4 Performance limitations . 41

5.4.1 The split-field particle velocity computation 42
5.4.2 The matrix addition computation . 45
5.4.3 Conclusion . 48

6 Conclusion 50
6.1 Impact . 50
6.2 Further improvements . 51

Bibliography 52

A Performance benchmark data 55

B Format of the HDF5 input file 57

2

Chapter 1

Introduction

Cancer is nowadays one of the most frightening diseases. It is estimated that in 2012 alone,
mind-boggling 14.1 million new cases of cancer occurred worldwide [24]. Without a doubt,
research of cancer as well as possibilities of treatment are among highest priority tasks
of many health organization around the world. What are actual possibilities of treating
cancer? First of all, the most important is prevention. It is obvious that to minimize the
probability of developing cancer, one should eliminate all activities and actions which may
contribute to cancer development, such as smoking, exposure to certain types of chemicals
and so on. It is also important to take action which can reduce the chance, for example
exercise regularly. However, there are certain factors that person does not have control
of. The genetics or condition of immune system are such factors. There even exist several
viral diseases that can directly cause cancer. All things considered, despite our best effort
to minimize the possibility of developing cancer, it will never be equal to zero. So, what
are the possible steps of treating the patient who has already cancer? Basically there are
two important things. Cancer has to be detected in the first place in patient. Detecting
cancer in its early stages is absolutely crucial to the success of entire treatment. Most of
the time, the stage of detected cancer determines patient prospects of recovery. The other
part of cancer treatment is removal or destruction of affected tissue, preferably, with very
little impact on surrounding tissue and entire human organism.

The ultrasound has a potential to be used in both aspects of the treatment and in some
cases is already being used for certain type of cancer. The photoacoustic spectroscopy is
method which uses ultrasound to create internal representation of examined material in
non-invasive way. In medicine, photoacoustic spectroscopy allows in vivo visualization of
light absorbing structures. It is based on photoacoustic effect and involves illumination of
tissue sample with short pulses of light, infra-red in most cases. The difference between light
absorption properties of blood and surrounding tissue results in creation of ultrasonic waves
by thermoelastic effect. These waves propagate through the tissue to the surface where
they are recorded. Images of initial light absorption properties of the tissue (thus image of
vascular system) can be obtained via backward simulation of recorded acoustic pressure [23].
The precision of this method strongly depends on used equipment and computational model
but, in general, photoacoustic spectroscopy is able to extract very detail pictures of tissue.
Abilities of this method are shown in Fig. 1.1 where photoacoustic spectroscopy was used
to retrieve images of leukemia cells in abdomen of a mouse.

3

Figure 1.1: In vivo photoacoustic images of Tyr-expressing K562 cells after subcutaneous
injection into flank of nude mouse at different time points [6].

The High Intensity Focused Ultrasound (HIFU) is method where several rays of ultra-
sound are focused into a matter in such way that they create one focal point. Each ray
passes trough matter with little effect, but in a focal point energy of all beams is combined
together. Ultrasound is basically a mechanical vibration and therefore the HIFU method
increases temperature of focal point. The temperature is adjustable by setting the intensity
of respective ultrasound rays. The HIFU method has tremendous potential to improve the
treatment of certain types of brain cancer. As this modality is non-invasive and accurate,
it may be able to ablate only targeted tissue while sparring healthy adjacent tissue. This is
especially critical to the brain where any damage to healthy tissue can result in significant
loss of function. In addition, focused ultrasound has the potential to reduce the risk of
infection and bleeding, lower procedural morbidity by not opening the skull, and avoid the
toxicity of radiation [1]. Moreover, this method, thanks to variable energy, can be also used
in treatment of many different diseases. For example, lower-intensity HIFU can be used to
destruct blood cloths in arteries. There are many others applications. So, why is potential
of ultrasound not fully utilized in medicine yet? Firstly, despite the fact that ultrasound
and mentioned physical effects are well known for decades, methods as photoacoustic spec-
troscopy and HIFU are relatively new fields in biomedicine and these methods are subject
of intensive research and thus they cannot be used as standard go-to methods for treatment
just yet. Moreover, these methods would not be possible without a proper computational
model. Unfortunately, these models require great amount of data and computational time
to be able to produce desired outcome. One of the projects implementing such a model
is k-Wave toolbox for MATLAB and the main goal of this thesis is to accelerate k-Wave
simulation of ultrasound wave propagation in elastic medium on graphics processing unit.

1.1 The k-Wave toolbox
The k-Wave is an open source third party toolbox for MATLAB developed for simulation
and reconstruction of wave fields propagation in either homogeneous or heterogeneous ma-
terial in one, two or three dimensions. Main goals of creators are creation of fast, precise and
easy-to-use solution. Therefore, there is also a lot of interest in the speed of the simulation
and reconstruction. In this matter, several significant measures have been taken.

Acoustic wave equations are partial differential equations and they are used in simulation
of wave fields in k-Wave. The most common numerical methods for solving partial differ-
ential equations are finite-difference, finite-element and boundary-element methods [22].
Common methods achieve unsatisfying results in terms of performance as they require ex-
treme amount of memory. Major disadvantages of traditional methods are a great number
of grid points per wavelength, and small time-step size to minimize numerical error. There-

4

fore, pseudo-spectral and k-space methods were implemented. The pseudo-spectral method
is based on Fourier series, which can be efficiently calculated by Fast Fourier Transform
(FFT). As little as two grid points per the shortest wavelength occurring in domain are
needed when the pseudo-spectral method is used. The pseudo-spectral method brought
improvement in spatial domain. The k-space method is used to achieve improvements in
time domain by allowing greater time steps while preserving the precision [22]. Besides spe-
cial methods implemented to improve application’s performance, there is also another way
of increasing speed the of algorithms. Parallelism and architecture specific optimization
techniques could be used to improve the performance.

In practice, k-Wave has been successfully used to evaluate prostate cancer patients’
suitability for HIFU treatment [2]. The most common method of prostate cancer treatment
is radiotherapy which requires a small metal marker to be inserted into the prostate. Re-
spective position of this metal marker and the tumor affects significantly the effectiveness
of the HIFU treatment. The impact on wave propagation by various marker positions was
calculated by k-Wave toolbox. Now, patients’ suitability can be evaluated based on a few
x-ray images without the need for any additional procedure.

1.2 Wave propagation trough elastic medium
It is a common knowledge that up to 70% of the human body is made out of water, and
therefore, the majority of the human tissue can be modeled as fluid during wave propaga-
tion simulations. However, there are a few occasions when this model fails. For example,
wave propagation in bones. Although, wave propagation model in elastic medium share
a lot of similarities with fluid model, there are several additional aspects which have to
be taken into account. Bones, in general, have higher acoustic absorption coefficients and
more than double compressional sound speed when compared to fluids. This fact leads
to the reflection, attenuation and aberration of propagating waves and a reduction in fo-
cusing quality [7]. One of the most important difference between fluid and elastic model
is that in elastic medium, the propagation of both compressional (longitudinal) and shear
(transversal) waves has to be simulated in order to accurately calculate the absorption and
related heat generation. The wave propagation itself can be simulated using Hook’s law
and the momentum preservation equation. For viscoelastic materials where absorption oc-
curs, Hook’s law has to be extended so it exhibits time-dependent behavior. Absorption
can be modeled in variety of ways. The one of widely used is Kelvin-Voigt model which
can be described as dumped spring where spring and dumper is connected parallel to each
other [23].

1.3 Assignment tasks
In this section, main tasks which are part of thesis assignment are summed up and for each
task a part of document is mentioned where the reader is able to find further information.
Assignment has flowing tasks:

∙ study the current implementation of the simulation of ultrasound wave propagation
in bones created in MATLAB (more information in Sec. 3.2),

∙ study possibilities of scientific computation acceleration on Anselm and Salomon su-
percomputers (more information in Sec. 2),

5

∙ analyze the current implementation in MATLAB (more information in Sec. 3.2),

∙ design an approach for the code transformation from MATLAB into one of HPC lan-
guages including the format of input and output data (more information in Sec. 3.3),

∙ implement simulation of ultrasound propagation in bones using selected HPC lan-
guage with respect to maximal performance and minimal memory requirements (more
information in Sec. 4),

∙ analyze the performance of the implemented application on a set of standard test
tasks (more information in Sec. 5),

∙ discuss achieved results and practical impact of the thesis (more information in Sec. 6).

6

Chapter 2

Graphics Processing Unit

At the beginning of computer graphics, all necessary calculations were done by central pro-
cessing unit (CPU). As computer graphics became more complex, CPU got overloaded with
graphics computation and the performance of CPU declined rapidly. This trend resulted
in the development of certain dedicated hardware for accelerating of graphics computation.
This kind of specific hardware is today commonly known as a graphics processing unit
(GPU).

The GPU is an electronic circuit specially designed to accelerate creation of images in
the display buffer consequently displayed on a display. Modern GPUs possess highly parallel
architecture, very efficient in calculations of large blocks of data up to certain size. This
size is limited by the size of the GPU memory. The computing power is widely used not
only in computer graphics, but also in physical calculations, simulations and generally in
high-performance computing. The first generation of GPUs was designed as fixed-function
accelerators with a limited set of instructions. The need for higher flexibility resulted in
the development of programmable GPUs.

This thesis is built on knowledge gained in bachelor’s thesis. Since common topic of
both theses is acceleration on GPU, this section was taken from bachelor’s thesis [8].

2.1 Architecture comparison
The main difference between CPU and GPU is in their architecture. Current CPUs are
composed of low tens of cores and supports parallel execution of different processes on CPU
at the same time. CPU also contains deep hierarchy of caches which makes them optimized
for context switching and complex calculations. On the other hand, GPU provides much
greater level of parallelism and therefore much greater throughput. For example, GeForce
GTX TITAN is equipped with 2688 cores capable of floating-point operations compared
to Intel Haswell E5-2699V3 containing eight cores each of which is equipped with AVX2
capable of producing 32 floating-point operations per cycle [5] [13]. We can see that there
is a significant difference in maximum number of operations per cycle for each architecture.
However, we have to take in consideration that the clock rate of GPU is about one third
of CPU, depending on specific models. Despite this fact, GPU can easily outperform CPU
in specific type of problems. In fact, the theoretical single-precision performance of GPU
GeForce GTX TITAN is about 5 times greater than the theoretical performance of Intel
Haswell E5-2699V3 according to Fig 2.1. It is important to mention that GPUs lack many
optimizations, such as long pipelines and out of order execution, important for general-

7

purpose performance. Thus, not all problems are suitable to be accelerated on the GPU.

Figure 2.1: Comparison of single-precision peak performance of high-end GPUs, CPUs and
accelerators [19].

2.2 General Purpose Graphics Computing Unit
The General Purpose Graphics Computing Unit (GPGPU) is term that refers to a concept
in which GPU features are exploited to accelerate computations usually handled by the
CPU. This concept is vastly used for an acceleration of calculation involved in fields like
bioinformatics, molecular biology, image processing, particle physics and many others [20].

2.2.1 GPGPU framework

The GPGPU framework is a platform which contains mechanisms that allows transferring
computation on GPU. Two main platforms are open-source OpenCL framework and CUDA
framework.

OpenCL is open-source standard for cross-platform parallel programing developed and
maintained by Khronos group. Its main purpose is to enable writing applications that can
be executed across heterogeneous sistems composed of devices such as CPU, GPU, digital
signal processor, FPGA and many others. Standard languages as C or C++ can be used
for programing purposes with OpenCL. The OpenCL defines API to control and execute
code on various devices. It implies that key feature of OpenCL standard is compatibility
with various devices created by various vendors [9].

8

CUDA stands for Compute Unified Device Architecture. It is a proprietary platform for
parallel computing and programing model developed by graphics card vendor NVIDIA. It
provides mechanisms to write and execute applications exploiting GPU. The main advan-
tage of CUDA comes from the fact that it is a proprietary platform and therefore CUDA
is optimized for the use with NVIDIA GPUs [11].

For the purposes of this thesis, CUDA platform has been chosen because CUDA provides
better results than OpenCL when used with NVIDIA graphic card present in our testing
environment.

2.3 CUDA-capable GPU architectures
CUDA is supported by six different microarchitectures [25]:

∙ Tesla microarchitecture firstly presented in 2006, with GeForce 8800 GTX,

∙ Fermi microarchitecture firstly presented in 2010, with GeForce GTX 480,

∙ Kepler microarchitecture firstly presented in 2012, with GeForce GTX 680,

∙ Maxwell microarchitecture firstly presented in 2014, with GeForce GTX 750,

∙ Pascal microarchitecture firstly presented in 2016, with Tesla P100,

∙ Volta microarchitecture expected in 2018,

Although, there is a difference between each architecture, all architectures possesses
common hardware features:

∙ host interface that connects GPU with CPU via PCI-Express bus,

∙ copy engines,

∙ DRAM adapter, which interconnect GPU and its device memory,

∙ device memory and caches,

∙ certain number of execution units organized in structures called streaming multipro-
cessors.

Some of mentioned components can be seen in Fig. 2.2

2.3.1 Host interface

Host interface is part of the GPU which handles all communication between CPU and GPU.
Its only purpose is to receive commands via PCI-Express and decode and delegate these
commands further into GPU.

2.3.2 Copy engine

Copy engine is hardware capable of performing memory transfers between CPU and GPU
while computation is being done on GPU. First microarchitectures do not feature copy
engines. Later on, copy engines were only capable of transferring linear device memory.
Today, GPUs are equipped with up to two copy engines, which can convert data between
CUDA arrays and linear memory. Two copy engines provide full-duplex memory transfers.

9

Figure 2.2: Composition of NVIDIA Tesla P100 [14].

2.3.3 DRAM adapter

Memory operations bandwidth and latency have a great impact on the GPU performance,
therefore GPUs possess powerful DRAM providing hundreds of gigabytes per second of
bandwidth and includes hardware support for merging multiple memory operations. Early
hardware required contiguous memory addresses and memory alignment. In later versions,
requirement for memory alignment was removed. However, there is still a performance
penalty.

2.3.4 Device memory

The device memory is an equivalent of main memory of CPU. In this memory all data
transferred from CPU is stored. For example, NVIDIA Tesla K20 is equipped with GDDR5
memory with a capacity of 5 GB and the throughput of 208 GB/s [10]. The global mem-
ory is cumbersome and slow, therefore L2 cache is present in modern GPUs to enhance
performance of memory sub-system.

2.3.5 Streaming multiprocessor

The main component of GPU is a streaming multiprocessor (SM), which is in charge of all
computations. The number of SMs on card is model-specific but the architecture of SM
remains in the main the same. Each multiprocessor consists of:

∙ execution units capable of 32-bit integer, single-precision and double-precision floating-
point arithmetic,

10

∙ special function units for computing single-precision approximations of mathematical
functions (log, exp, sqrt, sin, cos, etc.),

∙ instruction cache, warp scheduler and dispatch unit for scheduling and dispatching
instruction execution by execution units,

∙ load/store units,

∙ register field for storing local variables,

∙ shared memory with L1 cache for communication between threads and storing tem-
porary result,

∙ constant cache for broadcasting constant variable to each thread,

∙ cache texture hardware with various functions (1D, 2D, 3D prefetching, interpolation
etc.).

2.4 CUDA thread execution model
Thread arrangement, when done wrongly, can have a severe negative impact on execution
time of application using CUDA and therefore it is good to keep in mind few basic principles
of CUDA thread execution model. This section is dedicated to clarification of this model
depicted on Fig. 2.3.

Figure 2.3: CUDA thread execution model [12].

11

2.4.1 Kernel

The kernel is an equivalent of procedures found in common programing languages. Kernels
are part of the application that are computed on GPU. Kernel is declared by keyword
__global__. The launch of the kernel is similar to a traditional function or procedure call,
the only difference is the presence of a special triple angel bracket construction (also known
as kernel configuration) in which grid size and block size are specified. In most cases, once
an optimal size of block is experimentally obtained (value depends on certain GPU and
implementation), grid size is adjusted accordingly to the size of problem. Most of the time,
the goal is to create ideally the same number of threads in grid as the number of elements
in domain.

2.4.2 Grid

The grid encapsulates all threads which are invoked by launching a kernel. Its size is
specified in the number of blocks in three dimensions. The blocks within the grid tend to
be assigned on different SM to maximize performance, although a few different blocks can
reside on the same SM. The maximum size of the grid can be up to 655352 blocks for 1.x
computation capable hardware and 655353 blocks for 2.x computation capable hardware.

2.4.3 Block

The block is an abstraction of independent execution unit. It is a group of threads which are
executed on the same SM. CUDA only allows per-block resource allocation and therefore
overall achieved occupancy of kernel is strongly dependent on size of block and amount of
resources required per block. Achieved occupancy is number of active warps compared to
maximum number of active warps on GPU and represents overall utilization of GPU. The
main reason why GPU cannot be fully utilized is that the block requires too much resource
and therefore only a few whole blocks can fit to SM wasting unallocated resources. In such
case, a logical step would be decreasing amount of threads per block. However this is only
beneficial to certain point because block hides memory latencies by context switching and
when the number of threads in block is too low there is chance that block would be not able
to find a set of threads which is ready to execute and thus not able to hide memory latencies.
It is also good to keep in mind that threads are only able to communicate with each other
within block and therefore CUDA provides a mechanisms for inter-block communication
and synchronization. The block size can also be specified in three dimensions and the block
can contain up to 512 threads in total for 1.x computation capable hardware and 1024
threads in total for 2.x and above computation capable hardware.

2.4.4 Thread

The thread is an elementary part of execution. Each thread has its own unique identification
within the block. Resolving global identification of the thread is essential, as it is the only
mechanism to assign correct portion of the work to the thread. To help resolving global
identification of thread, built-in variables of type dim3 are available for each thread. The
dim3 type consists of 3 integer variables, each for one dimension:

∙ gridDim specifies dimensions of the grid in blocks,

∙ blockDim specifies dimensions of the block in threads,

12

∙ blockIdx specifies the index of a certain block within the grid,

∙ threadIdx specifies the index of a certain thread within the block.

Then statement for computing global index, supposing the grid and the block are defined
only in one dimension, should look as follows:
globalIdx = (blockIdx .x* blockDim .x) + threadIdx .x;

If the grid and the block are both defined in all three dimensions, indices have to be
calculated separately for each dimension:
globalIdx .x = (blockIdx .x* blockDim .x) + threadIdx .x;
globalIdx .y = (blockIdx .y* blockDim .y) + threadIdx .y;
globalIdx .z = (blockIdx .z* blockDim .z) + threadIdx .z;

If there is a need to calculate a flatten 3D index within the block, especially when accessing
shared memory, it can be calculated as follows:
localIdx = thredIdx .z* blockDim .y* blockDim .x;
localIdx += threadId .y* blockDim .x;
localIdx += threadIdx .x;

Sometimes, there is more work for the kernel that can all the threads in the grid process
in one go. Then the global index have to be recalculated as follows:
globalIdx += gridDim .x* blockDim .x;

2.4.5 Warp and lane

Threads are executed simultaneously (SIMD-like) in 32-thread packs called warps which
are atomic element of execution. All 32 threads execute the same instruction, therefore it
is recommended that number of threads in block is divisible by 32 otherwise one or more
threads of last warp of block would not execute any code. The number of the thread within
the warp is called the lane. Both values warp id and lane id can be computed from the
local id of the thread.
warpIdx = localIdx / 32;
laneIdx = localIdx & 31;

Warps are the part of the mechanism of covering memory latencies. When one warp reaches
an instruction resulting in, for example, global memory access, which can last for hundreds
of clocks cycles, warp scheduler activates different warp until data transfer is over. It is
important to say that SM should have enough pending warps ready to be executed in order
to effectively overlap latencies with calculation otherwise stalls are inevitable.

2.5 CUDA memory model
The CUDA platform offers various types of the memory, whether it is physical or logical
memory. Each of these memories serves different purpose and has its own advantages and
disadvantages.

13

2.5.1 Global memory

It is a physical memory which creates the main memory pool for GPU. It means that it is
accessible from each GPU thread. All data transferred from the CPU onto the GPU resides
in this memory, and therefore, each application running on the GPU needs to access global
memory at some point. This memory has the greatest capacity and the lowest bandwidth
compared to all other physical memories present in the GPU. For example, NVIDIA Tesla
K20 is equipped with the GDDR5 memory with capacity 5 GB and throughput of 208
GB/s, as was mentioned in the Sec. 2.3.4.

To reduce the impact of the low bandwidth, global memory is accessed through the L2
cache and SM’s private L1 cache. By turning L1 caching on and off, we can influence global
memory load granularity. If L1 caching is enabled, the size of memory transaction is 128B,
otherwise is 32B. These transactions are aligned to 128B or 32B respectively. When warp
executed operation results in the global memory access, memory sub-system tries to merge
memory transfers to as few transfers as possible. For example, the warp is requesting 32
consecutive 4B floats aligned to 128B. Supposing L1 caching is turned on, this 128 byte
memory request will be satisfied with one global memory transfer. However, if the memory
request is not aligned to 128B, two memory transfers are needed. In the worst case, if
each of these 32 floats is situated in different 128B block, the transaction is satisfied by 32
global memory transfers. Therefore, it is crucial to ensure a sensible access pattern in the
application in order to achieve maximum performance. Setting specific caching options can
lower penalty for unpredictable access patterns.

2.5.2 Local memory

The local memory is a logical memory used for the local variables when the block requires
more space for its local variables than the SM offers. This memory is accessible only by
the thread and it is situated in the global memory pool, and therefore, it has the same
properties.

2.5.3 Registers

Each SM has its own field of registers. These registers are used to store local variables of
each thread which resides on the SM. The registers are private to the thread. Registers are
the fastest memory type.

2.5.4 Shared memory

The shared memory is present on each SM and shares the same memory pool with the L1
cache. Shared memory is accessible for each thread within the same block often used as a
mean of inter-block communication. The shared memory is also often used to reduce the
penalty caused by scattered access patterns into the global memory. In order to reduce
the penalty, a block firstly has to load the values from the global memory with coalesced
access pattern, store them in the shared memory, and then access the data in faster shared
memory. However, shared memory bandwidth is also affected by scattered access pattern.
For devices with the compute capability 2.x and above, shared memory is divided into 32
banks. In the shared memory, 32 consecutive 4-byte values are assigned to 32 banks. If
each thread within the block requests a value assigned to the different bank, the transfer
is done in one transaction. On the other hand, if we access shared memory with the stride

14

equal to 2, it leads to a two-way bank conflict. The two-way bank conflict is a situation
where two different threads request values at different memory addresses assigned to the
same bank, and therefore, the memory transfer is carried out in two transactions. In the
worst case, 32-way bank conflict can occur resulting in 32 memory transactions. However,
if all 32 threads of the active warp request the value from the same address, this request is
satisfied in one transaction in the broadcast fashion.

2.5.5 Texture memory

Although this type of memory is located in the global memory, it is cached and accessed
via dedicated hardware present in each SM. This memory is accessible from each thread.
The texture hardware has some interesting properties. It is able to perform interpolation in
1D, 2D or 3D and whenever some value is requested, the texture hardware also prefetches
surrounding values based on their position in 1D, 2D or 3D array. Due to prefetching,
texture memory can be exploited to reduce impact of some access pattern.

2.5.6 Constant memory

The constant memory is special 64KB read-only memory and it is immutable by kernel
and therefore has to be initialized prior to the kernel launch. This memory is cached with
dedicated cache and it is capable broadcast.

15

Chapter 3

Reference Implementation

3.1 The k-Wave implementation
As mentioned earlier, k-Wave is MATLAB toolbox for simulation of acoustic wave propa-
gation. The simulation of wave propagation in elastic medium is also a part of the toolbox.
The main goal of this thesis is to accelerate mentioned simulation on GPU. Although, k-
Wave implements a lot of different models, basic simulation execution is the same. User
has to specify four main parameters: grid, medium, source and sensor. The grid is a struc-
ture created by utility function which is part of toolbox. This structure represents domain
in which entire simulation takes place. The grid is specified by the number of points in
each dimension (3D in this case) and their spacing. Evenly spaced array of time values is
also a part of grid structure. Another user defined structure is medium. In elastic sim-
ulation, it is possible to specify these properties of medium: compressional sound speed
distribution, shear sound speed distribution, density distribution, absorption coefficient for
compressional waves and absorption coefficient for shear waves. Either of these parameters
can be specified as a matrix with same dimensions as computational grid (heterogeneous
medium) or as a scalar (homogeneous medium). When both absorption coefficients are not
specified, simulation is lossless. Source structure specifies position within the medium, type
of source, mode of source and signal generated by the source. Source can be either stress
source or velocity source or even both. Source can have two modes: additive mode adds
current value of source signal to calculated value of pressure or velocity in source position
and Dirichlet mode forces source value of respective type in source position. It is possible
to specify time-varying signal for each source point or have one common for all points.
Using sensor structure, users are able to highlight an area of domain which they are inter-
ested in and specify quantities which they want to record (for example maximal pressure,
minimal pressure, final distribution of particle velocity, etc.). Afterwards, users are able
run simulation by calling a simulation function with mentioned parameters. In case of 3D
elastic simulation, it is pstdElastic3D. As first, input parameters are checked and prepro-
cessing takes place. Afterwards, simulation is executed in iterations according to time array
specified in grid structure. Iteration is composed of following operations: computation the
gradients of the stress tensor, calculation of particle velocity in next time step according to
gradients of stress tensor, application of velocity source if specified, calculation of the veloc-
ity gradients, calculation of spatial gradients of time derivative of particle velocity provided
medium is absorbing, computation of normal and shear components of the stress tensor in
next step using lossless or Kelvin-Voigt model, application of stress source if specified, and
finally computation of pressure using normal components of stress. Governing equations of

16

simulation loop can be seen in next section. After the end of simulation, the data specified
by sensor structure are collected, processed and optionally displayed to user (some data
may be gathered throughout simulation).

This implementation is using Fourier pseudospectral method to compute gradients. The
difference between local and global method (Fourier pseudospectral method) can be seen in
Fig. 3.1. This method of calculation of spatial gradients has its benefits (reduction number
of needed grid points per wavelength while preserving the same accuracy as local methods),
however, it also has some drawbacks. The use of the FFT to calculate spatial gradients
implies that the domain is periodic. This causes waves leaving one side of the domain
to reappear at the opposite side. The wave wrapping caused by the FFT can be largely
eliminated by the use of a Perfectly Matched Layer (PML). This is a thin absorbing layer
that encloses the computational domain and cause anisotropic absorption at the domain
edges [21]. Another important fact to mention is that k-Wave is using staggered grid to
achieve additional accuracy. Staggered grid is a simple way to avoid odd-even decoupling
between the pressure and velocity. Odd-even decoupling is a discretization error that can
occur on collocated grids and which leads to checkerboard patterns in the solutions [4]. The
principles of staggered grid is shown in Fig. 3.2.

Figure 3.1: Calculation of spatial gradients using local and global methods. (a) First-
order accurate forward difference. (b) Fourth-order accurate central difference. (c) Fourier
collocation spectral method [21].

17

Figure 3.2: Schematic showing the principles of using a staggered spatial grid in 2D. Here
𝜕𝑥𝜎𝑥𝑥 is evaluated at grid points staggered in the x-direction (crosses), while 𝜕𝑥𝜎𝑦𝑦 evaluated
at grid points staggered in the y-direction (triangles) [21].

3.1.1 Governing equations

In this section, governing equations (which are used in k-Wave 2D elastic simulation) will
be presented and described. This section was taken from a paper by The Biomedical Ul-
trasound Group at University College London [23].

Following equations represent only 2D model, however, extension into 3D is not com-
plicated. Fundamental equations for studying lossy wave propagation are derived from
Hook’s law. Provided modeling of viscoelasticity is based on Kelvin-Voigt model, resulting
equation can be written using Einstein summation as follows

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜖𝑘𝑘 + 2𝜇𝜖𝑖𝑗 + 𝜒𝛿
𝜕

𝜕𝑡
𝜖𝑘𝑘 + 2𝜂

𝜕

𝜕𝑡
𝜖𝑖𝑗 , (3.1)

where 𝜎 is stress tensor, 𝜖 is dimensionless strain tensor, 𝜆 and 𝜇 are Lame parameters.
Here 𝜇 is ratio of shear stress to shear strain. Coefficients 𝜒 and 𝜂 represent compressional
and shear viscosity respectively. The Lame parameter are related to compressional and
shear sound speed of medium by

𝜇 = 𝑐2𝑠𝜌0, 𝜆 + 2𝜇 = 𝑐2𝑝𝜌0, (3.2)

where 𝜌0 is mass density. If a relation between strain and particle displacement 𝑢𝑖

𝜖𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
(3.3)

is used, then Eq. (3.1) can be re-written as function of a particle velocity 𝑣𝑖, where
𝑣𝑖 = 𝜕𝑢𝑖/𝜕𝑡

𝜕𝜎𝑖𝑗
𝜕𝑡

= 𝜆𝛿𝑖𝑗
𝜕𝑣𝑘
𝜕𝑥𝑘

+ 𝜇

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︂
+ 𝜒𝛿𝑖𝑗

𝜕2𝑣𝑘
𝜕𝑥𝑘𝜕𝑡

+ 𝜂

(︂
𝜕2𝑣𝑖
𝜕𝑥𝑗𝜕𝑡

+
𝜕2𝑣𝑗
𝜕𝑥𝑖𝜕𝑡

)︂
(3.4)

To be able to simulate wave propagation in elastic medium, Eq. (3.4) is combined with
equation representing momentum preservation. The equation is a function of stress and
particle velocity and it is given by the relation

18

𝜕𝑣𝑖
𝜕𝑡

=
1

𝜌0

𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

(3.5)

Eqs. (3.4) and (3.5) are coupled first-order partial differential equations which model
pressure waves propagation in isotropic viscoelastic medium.

A computationally efficient simulation model can be created using coupled differential
Eqs. (3.4) and (3.5), and Fourier pseudospectral method. This method uses Fourier col-
location spectral method to calculate spatial derivatives and a finite-difference method to
integrate in time domain. Using presented model a step of simulation is composed of several
operations.

As first, using the Fourier collocation spectral method a spatial gradients of stress field
is calculated

𝜕𝑥𝜎
−
𝑥𝑥 = ℱ−1

𝑥

{︁
𝑖𝑘𝑥𝑒

+𝑖𝑘𝑥Δ𝑥/2ℱ𝑥

{︀
𝜎−
𝑥𝑥

}︀}︁
𝜕𝑦𝜎

−
𝑦𝑦 = ℱ−1

𝑦

{︁
𝑖𝑘𝑦𝑒

+𝑖𝑘𝑦Δ𝑦/2ℱ𝑦

{︀
𝜎−
𝑦𝑦

}︀}︁
𝜕𝑥𝜎

−
𝑥𝑦 = ℱ−1

𝑥

{︁
𝑖𝑘𝑥𝑒

−𝑖𝑘𝑥Δ𝑥/2ℱ𝑥

{︀
𝜎−
𝑥𝑦

}︀}︁
𝜕𝑦𝜎

−
𝑥𝑦 = ℱ−1

𝑦

{︁
𝑖𝑘𝑦𝑒

−𝑖𝑘𝑦Δ𝑦/2ℱ𝑦

{︀
𝜎−
𝑥𝑦

}︀}︁
(3.6)

Here ℱ𝑥,𝑦 {} and ℱ−1
𝑥,𝑦 {} are 1D forward and inverse Fourier transformations in 𝑥 and 𝑦

dimensions, 𝑖 is the imaginary unit, 𝑘𝑥 and 𝑘𝑦 are discrete set of wavenumber in 𝑥 and 𝑦
dimension respectively, and ∆𝑥 and ∆𝑦 represents spacing of grid points in uniform Carte-
sian mesh. In order to achieve higher precision, variables are stored in staggered grid and
therefore the exponential terms are spatial shift operators which translate the output by
half the grid point spacing.

Then the particle velocity is updated using finite-difference time step ∆𝑡

𝑣+𝑥 = 𝑣−𝑥 +
∆𝑡

𝜌0

(︀
𝜕𝑥𝜎

−
𝑥𝑥 + 𝜕𝑦𝜎

−
𝑥𝑦

)︀
𝑣+𝑦 = 𝑣−𝑦 +

∆𝑡

𝜌0

(︀
𝜕𝑥𝜎

−
𝑥𝑦 + 𝜕𝑦𝜎

−
𝑦𝑦

)︀ (3.7)

Here superscripts − and + denote value at current and next time step respectively.

Afterwards the spatial gradients of updated particle velocity is calculated again using
Fourier collocation spectral method

𝜕𝑥𝑣
+
𝑥 = ℱ−1

𝑥

{︁
𝑖𝑘𝑥𝑒

−𝑖𝑘𝑥Δ𝑥/2ℱ𝑥

{︀
𝑣+𝑥

}︀}︁
𝜕𝑦𝑣

+
𝑥 = ℱ−1

𝑦

{︁
𝑖𝑘𝑦𝑒

+𝑖𝑘𝑦Δ𝑦/2ℱ𝑦

{︀
𝑣+𝑥

}︀}︁
𝜕𝑥𝑣

+
𝑦 = ℱ−1

𝑥

{︁
𝑖𝑘𝑥𝑒

+𝑖𝑘𝑥Δ𝑥/2ℱ𝑥

{︀
𝑣+𝑦

}︀}︁
𝜕𝑦𝑣

+
𝑦 = ℱ−1

𝑦

{︁
𝑖𝑘𝑦𝑒

−𝑖𝑘𝑦Δ𝑦/2ℱ𝑦

{︀
𝑣+𝑦

}︀}︁
(3.8)

19

Then the spatial gradients of time derivative of particle velocity are calculated using
Eq. (3.5)

𝜕𝑥𝜕𝑡𝑣
−
𝑥 = ℱ−1

𝑥

{︁
𝑖𝑘𝑥𝑒

−𝑖𝑘𝑥Δ𝑥/2ℱ𝑥

{︀(︀
𝜕𝑥𝜎

−
𝑥𝑥 + 𝜕𝑦𝜎

−
𝑥𝑦

)︀
/𝜌0

}︀}︁
𝜕𝑦𝜕𝑡𝑣

−
𝑥 = ℱ−1

𝑦

{︁
𝑖𝑘𝑦𝑒

+𝑖𝑘𝑦Δ𝑦/2ℱ𝑦

{︀(︀
𝜕𝑥𝜎

−
𝑥𝑥 + 𝜕𝑦𝜎

−
𝑥𝑦

)︀
/𝜌0

}︀}︁
𝜕𝑥𝜕𝑡𝑣

−
𝑦 = ℱ−1

𝑥

{︁
𝑖𝑘𝑥𝑒

+𝑖𝑘𝑥Δ𝑥/2ℱ𝑥

{︀(︀
𝜕𝑥𝜎

−
𝑥𝑦 + 𝜕𝑦𝜎

−
𝑦𝑦

)︀
/𝜌0

}︀}︁
𝜕𝑦𝜕𝑡𝑣

−
𝑦 = ℱ−1

𝑦

{︁
𝑖𝑘𝑦𝑒

−𝑖𝑘𝑦Δ𝑦/2ℱ𝑦

{︀(︀
𝜕𝑥𝜎

−
𝑥𝑦 + 𝜕𝑦𝜎

−
𝑦𝑦

)︀
/𝜌0

}︀}︁
(3.9)

Finally the stress field is updated using a finite-difference time scheme

𝜎+
𝑥𝑥 = 𝜎−

𝑥𝑥 + 𝜆∆𝑡
(︀
𝜕𝑥𝑣

+
𝑥 + 𝜕𝑦𝑣

+
𝑦

)︀
+ 𝜇∆𝑡

(︀
2𝜕𝑥𝑣

+
𝑥

)︀
+ 𝜒∆𝑡

(︀
𝜕𝑥𝜕𝑡𝑣

−
𝑥 + 𝜕𝑦𝜕𝑡𝑣

−
𝑦

)︀
+ 𝜂∆𝑡

(︀
2𝜕𝑥𝜕𝑡𝑣

−
𝑥

)︀
𝜎+
𝑦𝑦 = 𝜎−

𝑦𝑦 + 𝜆∆𝑡
(︀
𝜕𝑥𝑣

+
𝑥 + 𝜕𝑦𝑣

+
𝑦

)︀
+ 𝜇∆𝑡

(︀
2𝜕𝑦𝑣

+
𝑦

)︀
+ 𝜒∆𝑡

(︀
𝜕𝑥𝜕𝑡𝑣

−
𝑥 + 𝜕𝑦𝜕𝑡𝑣

−
𝑦

)︀
+ 𝜂∆𝑡

(︀
2𝜕𝑦𝜕𝑡𝑣

−
𝑦

)︀
𝜎+
𝑥𝑦 = 𝜎−

𝑥𝑦 + 𝜇∆𝑡
(︀
𝜕𝑦𝑣

+
𝑥 + 𝜕𝑥𝑣

+
𝑦

)︀
+ 𝜂∆𝑡

(︀
𝜕𝑦𝜕𝑡𝑣

−
𝑥 + 𝜕𝑥𝜕𝑡𝑣

−
𝑦

)︀
(3.10)

3.2 Implementation of governing equations in MATLAB
In this section, all functions in main the simulation loop will be mentioned and described on
representative example. Only a sample of code is presented due to the fact that simulation,
being 3D in nature, uses most of the code repetitively, and therefore, the same operation
is repeated for each of the Cartesian components.

3.2.1 Computation of gradients of stress tensor

Derived from Eq. (3.6) MATLAB code for calculation of spatial gradient of stress tensor
look as follows
dsxxdx = real(ifft(bsxfun (@times , ddx_k_shift_pos ,...

fft(sxx_split_x + sxx_split_y + sxx_split_z , [], 1)), [], 1));

Here fft(data, [], 1) represent a 1D fast Fourier transform in the axis given by the third
parameter (1 for 𝑥, 2 for 𝑦, 3 for 𝑧), ifft() represent an inverse fast Fourier transform,
bsxfun(@times, vector, matrix) is a function for element-wise matrix-by-vector multiplica-
tion, ddx_k_shift_pos refers to an exponential term from Eq. (3.6), and real(data) extracts
the real part of the complex numbers. From The CUDA implementation point of view, this
code requires two kernels. The first kernel to add split-field values together, and second to
multiply matrix by vector element-wise.

3.2.2 Computation of split-field particle velocity

This code snippet refers to Eq. (3.7). It uses stress calculated by the kernel presented in
Sec. 3.2.1 in form of
ux_split_x = bsxfun (@times , mpml_z , bsxfun (@times , mpml_y , ...

bsxfun (@times , pml_x_sgx , bsxfun (@times , mpml_z , ...
bsxfun (@times , mpml_y , bsxfun (@times , pml_x_sgx , ux_split_x)))...
+ dt.* rho0_sgx_inv .* dsxxdx)));

20

This operation involves element-wise matrix-by-vector multiplication, matrix-by-constant
multiplication, element-wise matrix multiplication and matrix addition. In implemented
kernel values of mpml_x, mpml_y and mpml_z could be most probably reused. This may result
in a better data temporal locality than in the former case. Variables mpml_x, mpml_y and
mpml_z represent Multi-axial Perfectly Matched Layer mentioned in Sec. 3.1.

3.2.3 Spatial velocity gradient calculation

Calculation of spatial velocity gradient implementing Eq. (3.8) is performed by
duxdx = real(ifft(bsxfun (@times , ddx_k_shift_neg , ...

fft(ux_sgx , [], 1)), [], 1));

It is clear that this function is almost identical to the one presented in Sec. 3.2.1, and
therefore, the same assumption can be made. However, in this case, no matrix addition
is performed so only one kernel is needed. Moreover, there is good chance that the kernel
implementing the code from Sec. 3.2.1 can be reused.

3.2.4 Spatial gradients of the time derivative of the velocity

This code directly refers to Eq. (3.9) and looks as follows:
dduxdxdt = real(ifft(bsxfun (@times , ddx_k_shift_neg , ...

fft ((dsxxdx + dsxydy + dsxzdz).* rho0_sgx_inv , [], 1)), [], 1));

It is obvious that this function shares a lot of common features with function presented in
Sec. 3.2.1. It can be said that for this computation an slightly modified of kernel imple-
menting code in that section can be used. Also the same assumptions, stated in Sec. 3.2.1,
are valid for this function.

3.2.5 Computation of stress tensor values in next time step

Finally, the computation of stress field for next time step derived from Eq. (3.10) has a
form of
sxx_split_x = bsxfun (@times , mpml_z , bsxfun (@times , mpml_y , ...

bsxfun (@times , pml_x , bsxfun (@times , mpml_z , ...
bsxfun (@times , mpml_y , bsxfun (@times , pml_x , sxx_split_x))) ...
+ dt .*(2* mu + lambda).* duxdx ...
+ dt .*(2* eta + chi).* dduxdxdt)));

This is the most complex computation, but still composed of the same operations as previous
functions.

3.2.6 Conclusion

Functions, presented in Sec. 3.2, are not the only computation which will be handled by
GPU. There are also functions to simulate source of stress or velocity and also other utility
functions needed by other kernels, but these are not mentioned in this section for their
simplicity.

It is easy to spot that all functions are composed of several basic operations namely ma-
trix addition, element-wise matrix-by-vector multiplication, matrix-by-scalar multiplication
and element-wise matrix multiplication. All this operations are fairly simple and do not
involve a lot of computation. Therefore all kernel will probably exhibit low arithmetic in-
tensity. Due to this property it is estimated that implementation will be memory-bounded.

21

3.3 Existing CUDA framework
As was mentioned in Sec. 3.1, simulation of wave propagation in elastic medium is a part
of k-Wave toolbox. Another part of this toolbox is a fluid medium simulation with stand-
alone CUDA/C++ accelerated code (hereinafter referred to as fluid code) created by Dr.
Jaroš. The fluid code is capable of running small to moderate (643 to 5123 grid points)
simulations. This code is part of the k-Wave project and it is implemented in such way
that it can be seamlessly incorporated into the toolbox and ran from MATLAB script
using a few additional parameters. In k-Wave, there is sub-script, which is able to create
HDF5 input file for fluid code based on user-specified parameters. General use-case is then
composed of these steps: User specifies initial parameters of simulation (this is closely
discussed in Sec. 3.1), user selects fluid code as an acceleration of simulation by running
wrapper function (wrapper function has the same interface as k-Wave simulation), k-Wave
subscript generates HDF5 input file with all necessary data and launches the fluid code,
fluid code runs the simulation (providing user have previously correctly installed the fluid
code) and produces an HDF5 output file, and k-Wave loads output file and presents user
with the results. This process is absolutely transparent to users and requires only prior
installation of the module and slight change in simulation script.

Due to similar nature of both simulations (fluid simulation and elastic simulation) and
to provide the same ability to include acceleration in k-Wave, it has been decided that
for purpose of implementation of elastic simulation, the fluid code will serve as the frame-
work. Keeping the same structure and interface (as existing fluid code) is also one of the
requirements of implemented code.

3.3.1 Main components of framework

The most important classes of fluid code are mentioned in this section. Please note, that
this is not exhaustive list of all parts of the framework.

22

Figure 3.3: Diagram of main classes which are part of existing CUDA framework includ-
ing: main KSpaceFirstOrder3DSolver class, SolverCUDAKernels class containing computational
kernels, MatrixContainer class responsible for matrix operation, Parameters class, HDF5 class
which manipulates HDF5 files and Logger class to format and display messages

The Fig. 3.3 represents simplified structure of fluid code. The KSpaceFirstOrder3DSolver

class represents the main class responsible for handling entire simulation. In this class,
the preprocessing, the postprocessing as well as simulation loop methods are implemented.
In preprocessing phase KSpaceFirstOrder3DSolver invokes methods of MatrixContainer to allo-
cate the memory and load the data into matrices needed during the computation. Solver
class also implements methods to precalculate variables which needs to be available prior
to simulation launch. Most of these variables have to be calculated only once and are cal-
culated by CPU. After preprocessing phase is completed, simulation phase begins. In
this stage, KSpaceFirstOrder3DSolver invokes appropriate methods, implemented in class
SolverCUDAKernels, one-by-one according to model. This process is then repeated based
on time array provided by Parameters class. Once simulation is over, main class invokes
procedures in MatrixContainer to store data specified by parameters (the data storing may
also occur during the simulation) and free memory. Afterwards application terminates.

23

The SolverCUDAKernels is class implementing all computations which occur during sim-
ulation on GPU. Whenever one of its methods is invoked by main class, SolverCUDAKernels

calls appropriate computational kernel according to input parameters (linear or nonlinear
simulation, homogeneous or heterogeneous medium) with appropriate data provided by
MatrixContainer class.

The MatrixContainer class is responsible for data handling. This class implements meth-
ods to create, allocate, destroy and load data into matrices. The create method basically
adds matrix records consisting of matrix name, type and size into list. The size of matrices
is calculated based on domain size provided by Parameters class. Creation of some matrices
is even conditioned by values of some parameters. Matrices from the list are then allocated
by allocate method. For each matrix, the memory on CPU as well as GPU is allocated.
The MatrixContainer is responsible for data transfers between CPU and GPU. It also holds
references to all the matrices and it is able to serve pointers to CPU or GPU memory of
each matrix.

The Parameters class process command line parameters, loads parameters from input
file, sets up device constants and serves other classes with these parameters. This class is
modeled as a singleton and at some point almost every other class in framework obtains a
reference to the Parameters.

The Logger class is responsible for all outputs to standard and error output. It also
implements methods for messages formatting.

Class HDF5 implements the simplified interface to operate with HDF5 files allowing easy
manipulation, loading and storing the data.

24

Chapter 4

Implementation

4.1 Implementation breakdown into tasks
These steps are necessary to implement acceleration of simulation of sound wave propaga-
tion in elastic medium (hereinafter referred to as elastic code):

∙ implementation of kernels discussed in Sec. 3.2 on GPU,

∙ modification of Input/Output (I/O) file format,

∙ integration with the framework

∙ integration with the k-Wave

∙ accuracy testing

∙ performance testing

4.2 Technologies used in development

4.2.1 The Google test

Google test is a C++ language unit test framework developed by Google. This framework
follows the scheme of xUnit, which is a collective name for unit testing frameworks derived
from SUnit developed for Smaltalk and designed by Kent Beck in 1998 [26]. The xUint
frameworks have a common architecture composed of:

∙ test runner - application which executes xUnit tests and produces test results

∙ test case - most elemental class implementing a test

∙ test fixtures - used to set-up the state needed by the test and afterwards returns to
normal state. It is useful for memory allocation prior to the test and cleaning after
the test

∙ test execution - execution of the test itself

∙ test result formatter - transforms the test runner output to specific the format, most
commonly, XML

25

∙ assertion - function or macro used to verify behavior of a unit under the test. Usually
has a form of a logical condition that compares the actual value produced by unit to
the expected value. Failing the assertion usually results in an exception being thrown.

The Google test was chosen as the test framework for several reasons. Firstly, the framework
is released under the BSD license. This means it is free to use, and therefore, ideal for
academic projects. Secondly, it has a great variety of assertions which can be divided into
two main groups, asserts and expects. The main difference between assert and expect is
that the assertion terminates an execution on failure while expect does not. Google test
also supports user defined assertions. The feature that makes the Google test stand out of
crowd, is so-called death tests which enable checking the return value and the error message
in case of an failure of application.

4.2.2 The HDF5 library

In real-life applications, the domains are usually on the order of 10𝑑𝑚3 in size which trans-
lates to a Cartesian grid of roughly 10243 grid points. The number of grid points strongly
depends on various properties of simulation, the numbers are just for illustration purpose.
To be able to run a simulation, the application needs several matrices representing medium
properties, physical quantities, sources, sensors and etc., many of which have the same size
as grid. When simulating in MATLAB, all matrices are stored internally and all computa-
tion is performed on this data stored in the computer main memory. The problem occurs
when data needs to be transferred from MATLAB into file and handed to the accelerated
application for processing. The use of standard Unix or Windows files is quit cumbersome.
Moreover, those files are incompatible due to file system nuances in many cases. To over-
come disadvantages of using the standard files, a HDF5 library have been incorporated into
the fluid code. The HDF5 file format is a fifth iteration of hierarchical data format devel-
oped by HDF Group [3]. This file format has many advantages just as support for great
variety of datatypes, efficient and flexible I/O, portability, extensibility and suitability for
high volume and complex data. Another important fact is that MATLAB has a built-in
support for HDF5 file format. Thanks to its advantages, HDF5 file format became de-facto
industry standard for storing high-volume data, especially in scientific applications.

4.2.3 The cuFFT library

The cuFFT library is a Fast Fourier Transform (FFT) library developed by NVIDIA [16].
This library implements a divide-and-conquer approach to effectively compute FFT in par-
allel on GPU. It is one of the most widely used algorithm to compute such an operation.
It is capable of 1D, 2D and 3D forward and inverse transformations on complex or real
datasets. The cuFFT library is highly optimized for data sizes that can be written in form
of 2𝑎 × 3𝑏 × 5𝑐 × 7𝑑 and the highest performance is on input sizes of power of 2. Another
interesting fact is that algorithm exhibits a 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time complexity.

The cuFFT library was chosen as a library to handle FFT due to two main reasons.
Firstly, cuFFT is developed by NVIDIA and therefore highly optimized for CUDA graphics
cards. The other reason is the implementation of a custom FFT algorithm on GPU is
simply out of scope of this thesis.

26

4.3 Compute kernels implementation on GPU
The kernels are the part of framework that is in charge of almost all computations. Ker-
nels implement a physical model of the simulation and are therefore the most important
part of the application. The correct implementation of the computation kernels is essential
to achieve desired results it terms of performance and precision. Kernels have to be im-
plemented with a deep knowledge of underlying hardware to harness the full potential of
modern GPUs and deliver maximum performance.

Almost every implementation was done inside of existing framework. All compute ker-
nels are solely implemented in SolverCUDAKernels class (see Sec. 3.3.1 for more information).
Due to fact that fluid and elastic code implements different model in terms of required
operations, this class has been almost entirely modified. However, some of the kernels was
reused, for example kernels for matrix transposition.

4.3.1 Computation of gradients of stress tensor

The computation of the gradient of stress tensor, as presented on Eq. (3.6), uses a pseudo-
spectral method to calculate the gradient of a given function. The pseudo-spectral method
requires data to be transformed into frequency domain. The whole process can be described
in a few independent steps: compute pressure by adding all its components, transform
data using the FFT to the frequency domain, preform a shift in frequency domain and
multiply the spectrum by the matrix of wawenumbers, and use inverse FFT to transform
data back to spatial domain. To be able to calculate gradient of all normal components
of stress, described process has to be repeated for each component. Moreover, for each
shear component computation has to be done two times. For example, 𝜕𝑥𝜎𝑥𝑦 and 𝜕𝑦𝜎𝑥𝑦
are calculated from the same shear component of stress tensor 𝜎𝑥𝑦. This computation has
to be done 9 times in total to calculate all gradients.

One of the drawback of the cuFFT it that it cannot be called from within another kernel
and has to be launched from the host code. It is clear that the computation is divided into
2 FFT and 2 kernel calls. The first kernel is basically a matrix addition with a fairly
straightforward implementation. There is no doubt that this kernel has a low arithmetic
intensity, and therefore, is bottlenecked by the bandwidth of on-chip memory. The other
kernel implements element-wise matrix-by-vector multiplication, where one input is data
in spectral domain and other is a precomputed vector of coefficients to perform a shift and
wavenumber multiplication in spectral domain.

The cuFFT computes 1D FFT only in 𝑥-axis, therefore before each forward FFT in any
other axis, matrix has to be transposed accordingly. This allows to preform element-wise
matrix-by-vector multiplication always as if the vector was 𝑥-axis vector. This leads to
always optimal pattern when loading data of vector inside the kernel. This fact increase
global memory load efficiency. However, matrix transposition itself is very time-consuming
operation and its use negates all performance benefits resulting from previously stated fact.

4.3.2 Computation of split-field particle velocity

This kernel is in charge of updating particle velocity according to Eq. (3.7). In this case, no
FFT is required to calculate particle velocity, which means that computation is not divided
and thus can be implemented using a single kernel. This is desired since kernel launch
time is not negligible. On the other hand, computation of one component of velocity ten-
sor (for example 𝑢𝑥) is further divided into computation of three Cartesian components,

27

hence the name split-field particle velocity computation. This decomposition can be seen in
Sec. 3.2.2, where ux_split_x represents 𝑥-axial Cartesian component of 𝑢𝑥 which is just one
part of velocity tensor. Computing in 3D is composed of 9 kernels invocations (3 Cartesian
components per velocity vector, 3 velocity vectors in tensor). However, the computations
of the velocity components are mutually independent and there is no data dependency,
therefore they can be aggregated into fewer kernels. In the actual implementation, com-
putations of all three components of velocity vector were aggregated into one. By doing
so, it was possible to create only one CUDA kernel with a reasonable amount of input
parameters. The computation of different velocity vectors is then achieved by invoking the
kernel with appropriate input parameters. The aggregation of kernels do not just reduced
time consumed by the kernels invocation but also the number of memory loads by one
third compared to implementation where the kernel would have been invoked for each of
the Cartesian components. This optimization may seem to have minor effect on the over-
all performance of split-field particle velocity computation, but considering the fact that
the kernel is composed of a simple mathematical operations with relatively high amount
of data, each optimization which would lead to the reduction of memory transfers can be
considered significant.

One of the parameters acting in the calculation is density of the medium. However, the
k-Wave toolbox allows the definition of the medium density in two variations. It is either
a matrix of the same dimensions as a computational grid or a scalar value (heterogeneous
or homogeneous medium). To avoid the need for additional kernel version, this kernel is
implemented templated. The template variable is a boolean flag signaling the form of the
medium density input. Inside the kernel, an ternary operator is used to load a correct value.

4.3.3 Spatial velocity gradient calculation

This is implementation of the mathematical operation demonstrated on Eq. (3.8). The
implementation is almost identical to the one described in Sec. 4.3.1 with the same as-
sumptions and conclusions. The only difference is the input of an FFT is the same for
calculations of all partial derivations of one components of the velocity tensor (for example
𝑢𝑥). Then these values can be calculated in advance which saves 6 matrix-addition kernel
invocations.

4.3.4 Implementation of stress tensor computation

This is the final step of iteration. Here, the values of stress tensor in the next time step are
computed based on values computed earlier in the simulation. This implementation refers
to Eq. (3.10). The calculation of normal components of a stress tensor is very similar to the
implementation discussed in Sec. 4.3.2 with a few differences. The main difference is the
computation of a stress field operates with Lame parameters instead of material density.
The k-Wave toolbox allows both Lame parameters to be defined as matrices with the same
dimensions as a computational grid or scalars. This issue is solved in the same way as
in Sec. 4.3.2 but this time with two template boolean variables which give four possible
variations of the kernel. All these variants are packed into one kernel thanks to templating.
Unfortunately, the minor difference between calculation of stress value in different dimension
does not allow to use only one kernel with different parameters. Therefore three different
kernels has to be implemented.

On the other hand, the calculation of shear components of stress tensor is not that
complex and allows to be computed by one kernel. By implementing the same technique

28

as in Sec. 4.3.2, it is possible to reduce global memory load requests by one third compared
to calculation done by separated kernels.

4.3.5 Implementation of velocity and stress sources

So far, the description of the implementation of the whole physical model was presented step
by step. However, to be able to simulate a real-life scenarios physical model is insufficient
on its own. Users need to have an ability to specify the source of pressure waves. This
is why pressure and velocity sources are implemented in the k-Wave version of the elastic
simulation. The source is given by a set of indices. These indices defines the placement as
well as the shape of sensor. Application of the source signal can be in two modes. The first
and default mode is the additive mode meaning the value of signal emitted by source is
added to existing value of pressure or velocity at the specific point. The other mode is called
Dirichlet. The source in this mode forces its signal value to the specific point. In terms
of driving the signal, there are also two different options. The options are: a single time-
varying signal applied at all points of source or multiple signals each assigned to a point of
source. The implementation of such sources are fairly straightforward. Despite the fact that
both kernels implement exactly same functionality, the kernels for velocity and stress source
have to be implemented separately due to a difference in the internal data representation.
From a performance point of view, it is worth noting that a specifying source position by
a set of indices implies double indexing when accessing stress or velocity matrices. This
double indexing can have a negative impact on the performance of the kernel in terms of a
non-efficient access pattern. This pattern is strongly dependent on the shape of the source.
On the other hand, there is one performance optimization implemented for multi-signal
sensor. Time-varying signals are not stored in a traditional fashion in 𝑦 dimension, where
𝑥 dimension is time, but signals are stored in revers order (𝑦 index specifies time, 𝑥 index
specifies the signal). This way, consecutive threads in warp read signal values that are
physically stored consecutively in memory, while updating source points in parallel. This
approach balances to some extent disadvantage resulting from the sensor’s definition by set
of points. However, these kernels consume only a fraction of the computational time and
therefore their impact on the overall performance is not significant.

4.3.6 Unit tests of individual kernels

Each kernel is backed up by a unit test to be able to identify errors early on and to support
continuous integration. Implementation of unit tests have no relation with any part of
existing framework, therefore it was carried out in its own part of project. Implementation
includes creation of Google test application into which some of the framework’s classes was
included. This application allows testing of main components of framework (for example
SolverCUDAKernels).

Process of creation of typical unit test follows these steps: create input parameters for
the kernel, create a reference results using input parameters in the k-Wave simulation, and
implement suitable comparison method with the results. The same comparison method was
used for most kernel test. As first, the method calculate absolute error of kernel computed
value. The absolute error has a form of a matrix. Then for each point, absolute error is
normalized by appropriate reference value and checked using Google test assertion to be
below a selected value. Sometimes, especially in unit test of function containing FFT calls,
absolute error is normalized by maximum value in reference data. This technique allows
to spot easily local anomalies in data. To be able to measure the overall precision of the

29

computation, mean error is calculated and then normalized by mean value of reference data.
This error is also tested using assertion.

4.3.7 Current limitations of implementation

Due to fact the elastic code is still under development, and is pending to be tested on real-
life data, it does not support all features present in the k-Wave. As shown in Sec. 3.2.4, this
code snippet computes spatial gradient of time derivatives of particle velocity. This spatial
gradient is only needed in lossy Kelvin-Viogt model. However, current version only supports
a lossless model, so there is no implementation of this spatial gradient computation. Besides
lack of Kelvin-Voigt model, there are few other features k-Wave supports, but the current
version elastic code does not. Creating and recovery from checkpoint in the simulation is
supported by the framework in fluid code but for elastic code this feature have not been
tested and most probably requires additional modifications.

4.4 Modification of I/O file format
In the k-Wave framework, there is effort to provide the unified interface for all simulation
functions, therefore fluid and elastic code shares a lot of common input variables. However,
some changes were inevitable. Simulation of wave propagation in elastic medium requires,
compared to fluid simulation, additional 6 PML operators (multi-axial PML operators)
and 2 Lame parameters. On the other hand, elastic code does not need the 𝐵/𝐴 nonlinear
medium property variable, because only linear propagation is currently supported. Another
differences is addition of stress source and absence of transducer source in elastic code. The
list of the differences is quit extensive, thus the format of input file is appended to this
document (for detail information see Appendix B.1).

The changes in input file have to be reflected in Parameters and MatrixContainer classes
of framework. More on this topic in the next section.

4.5 Integration with the framework
After finishing previous implementation, it was necessary to start integrating parts of frame-
work together to form elastic code. It was mentioned that all elastic code compute kernels
had been implemented inside SolverCUDAKernels class and also that format of the input file
underwent some modifications. Therefore, integration with framework consists of: modifi-
cation of Parameters and MatrixContainer classes according to new format of the input file,
modification of MatrixContainer class to handle all variables needed throughout simulation,
modification of KSpaceFirstOrder3DSolver control class, and other minor modifications.

The KSpaceFirstOrder3DSolver class has been modified extensively. A lot of parts of the
preprocessing phase has been altered. In elastic code, the preprocessing phase does not
include that many operations as in fluid code. The simulation loop method have been
almost completely altered. In this method, the computation kernels are invoked one-by-one
to compute one simulation step, so the need for modification is obvious. Besides some
minor modifications in postprocessing phase, rest of the class remains the same.

In MatrixContainer class, the most notable changes have been made in matrices creation
method. This method has been modified in such way that class now includes all variables
required by elastic simulation and is able to fetch pointers to those variables. Due to clever
design, other parts of class have not been modified.

30

The Parameters class have been modified mainly to address new set of parameters occur-
ring in new format of the input file. Also CUDA parameters have been slightly modified.

4.6 Integration with the k-Wave
With fully functioning elastic code, there is only one obstacle which prevents simulation
to be run by framework. It is a lack of input data. However, as mentioned earlier in
Sec. 3.3, k-Wave already includes a sub-script for fluid code input file creation called
kSpaceFirstOrder_SaveToDisk.m. This file have been slightly modified to provide all data spec-
ified in new file format. The other k-Wave integration, creation of wrapper function, have
been implemented by Dr. Treeby, co-author of the k-Wave, and is currently only available
for testing purposes.

4.7 Numerical accuracy testing
Since kernels had got integrated into framework, there was no chance to access framework
from the outside and testing with Google test became impossible. Therefore, a MATLAB
script was created to calculate error of elastic code compared to the reference implementa-
tion on the level of simulation output. It is based on the comparison of the final pressure
field. This script also implements a more scientific approach to comparison incorporating
𝐿∞ and 𝐿2 errors. Method calculates two types of error.

The first one is derived from 𝐿∞ and it is calculated by

𝐿∞𝑒𝑟𝑟𝑜𝑟 =
𝐿∞

𝑚𝑎𝑥 |𝑥|
=

𝑚𝑎𝑥 |𝑥− �̇�|
𝑚𝑎𝑥 |𝑥|

. (4.1)

Here the 𝑥 and �̇� represent results of elastic code and reference result respectively and 𝑚𝑎𝑥
function extracts maximum value in data. The standard 𝐿∞ is then given by 𝑚𝑎𝑥 |𝑥− �̇�|.
The 𝐿∞ is basically the maximal absolute error. This error is then normalized by maximum
value of reference data. This is a common practice in signal processing because the signal
peaks carry the most energy of signal and therefore the error in this part has a significantly
greater impact then the error in parts with relatively low amplitude. The normalization by
maximal amplitude reflect this fact.

The other error uses 𝐿2 and it is given by

𝐿2𝑒𝑟𝑟𝑜𝑟 =
𝐿2

𝑚𝑎𝑥 |𝑥|
=

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(𝑥𝑖 − �̇�𝑖)
2

𝑁 ×𝑚𝑎𝑥 |𝑥|
.

(4.2)

This error is calculated very similarly to 𝐿∞𝑒𝑟𝑟𝑜𝑟 with a few differences. The 𝐿2 is basically
root-mean-square deviation and represents mean error in every data point. This error is
then normalized by the maximum value in reference data. It displays the overall accuracy
of the elastic code simulation compared to MATLAB implementation.

Besides the two mentioned errors, the script also calculates raw error, checks the number
of Not a Number (NaN) values in data and also provides a unnormalized versions of 𝐿∞
and 𝐿2. Another feature of the script is the ability to calculate the number of normalized
errors which are greater than a specified limit.

31

4.8 Performance testing
Both k-Wave and framework have built-in timer calculating elapsed time of simulation.
These timers was used to measure the time consumed by one time step of the simulation.
This value is then used to compare performance of both implementation. Sec. 5 is dedicated
to performance evaluation. The NVIDIA Visual Profiler (NVVP) was used to further inves-
tigate performance of elastic code. Profiling results and derived conclusions are presented
in Sec. 5.4.

4.9 Documentation
The process of implementation of the elastic code was documented using git repository.
For every feature, a new branch was created with appropriately structured issue to meet
the standards. Currently, the git repository is not accessible for public. The doxygen
documentation is also a part of project.

32

Chapter 5

Experimental Results

5.1 Performance evaluation
Performance is the key aspect of the implementation as it is one of the main goals of the
thesis, therefore great amount of effort have been put towards achieving high performance
during development. The performance is also a key factor in making the k-Wave suitable
for medical application. To be able to measure a performance of the elastic code and
get objective picture of performance, elastic code was tested on various hardware configu-
rations ranging from an accessible enthusiast-tier desktop GPUs to latest supercomputer
GPUs. The lossless simulation of wave propagation with multi-signal stress source in het-
erogeneous environment was used as a benchmark. The heterogeneous environment means
heterogeneous material properties. By setting non-uniform medium properties, a worst
case scenario, in terms of computational time was created. The benchmark was performed
using grid sizes starting at 643 and ending at 5123. The dimension sizes are gradually
increased by 32 one-by-one to ensure sensible FFT plans. Overall performance is expressed
by duration of one time step. Both standard CPU MATLAB implementation (M-CPU)
and GPU accelerated MATLAB implementation (M-GPU) using built-in acceleration via
Parallel Computing Toolbox are taken as reference point. Investigated implementations
was tested on following system.

Table 5.1: Hardware configuration of the CPU used for measuring the performance of the
reference MATLAB solutions

Processor Memory
System CPU name Cores Frequency Capacity Speed
Cluster E5-2660 2x8 2.4 GHz 16 × 32 GB 1600 MHz

33

Table 5.2: Hardware configuration used for GPU performance benchmarking

Processor Memory Price
GPU name Architecture Cores Peak performance Capacity Throughput
Tesla K20 Kepler 2,496 3.52 Tflops 5 GB 208 GB/s 1,725$
GTX 980 Maxwell 2,048 4.61 Tflosp 4 GB 224 GB/s 700$
Titan X Maxwell 3,072 6.14 Tflops 12 GB 336 GB/s 1,250$

Tesla P40 Pascal 3,840 10 Tflos 24 GB 345 GB/s 5,700$
Tesla P100 Pascal 3,584 9.3 Tflops 16 GB 720 GB/s 7,400$

Table 5.3: Overall hardware configuration used for measuring reference MATLAB perfor-
mance

Dataset name Processor Accelerator
M-CPU Cluster N/A
M-GPU Cluster Tesla K20

34

1
0

6
1
0

7
1
0

8
1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

D
o
m

a
in

 s
iz

e
 [
g
ri
d
 p

o
in

ts
]

Time of time step [ms]

T
im

e
 p

e
r

ti
m

e
 s

te
p

M
−

C
P

U

M
−

G
P

U

K
2
0

G
T

X
 9

8
0

T
it
a
n
 X

P
4
0

P
1
0
0

Figure 5.1: Performance benchmark of elastic code on different GPUs and various domain
sizes ranging from 643 to 5123. There is also data series for reference MATLAB CPU
(M-CPU) and MATLAB GPU (M-GPU) solutions.

35

Fig. 5.1 shows execution times achieved on various GPUs compared to M-CPU (MAT-
LAB’s CPU solution) and M-GPU (MATLAB’s GPU solution). The figure clearly demon-
strates the power of GPU and reasons why it is so often used for acceleration of scientific
computations. Even the least effective GPU acceleration, M-GPU represented in Fig. 5.1
by a brown line, is on average 4.6 times faster than standard M-CPU implementation and,
considering the peak performance, it is 7.3 times faster. This implementation is least effec-
tive because Parallel Computing Toolbox does not have access to problem-specific imple-
mentation of kernels, only general purpose implementation of MATLAB functions exists.
Therefore, custom implementation can easily outperform M-GPU solution. In fact, the
results of M-GPU (brown line) and elastic code (green line) are achieved on the same hard-
ware configuration (cluster node with K20 accelerator). By comparing these two data sets,
it is possible to get picture of difference between general implementation and implementa-
tion optimized for specific purpose. To be fair though, it is not only the problem-specific
optimizations that contributes to this difference. There is also a lot of additional overhead
related to M-GPU acceleration (e.g. data transfers between GPU and CPU). Nevertheless,
the performance of both approaches differs significantly. The elastic code outperforms M-
GPU acceleration by a factor 6.3 on average, and by a factor 13.8 at best. However, the
greatest difference in performance occurs for relatively small domain sizes and gradually
declines with increasing domain size, so it is safe to say that elastic code is roughly 5 times
faster than the M-GPU in general.

The fastest execution was achieved on GPU Tesla P100. The average acceleration
factor is 108.3, which a is remarkable achievement, and peak acceleration factor is 158.5.
Moreover, the acceleration factor tends to increase with the grid size and, as mentioned
earlier, a real-life applications are performed on relatively large domain sizes. In short, the
bigger the domain size, the higher the performance benefit. This statement, however, is
valid to some extent. The domain size is limited by GPU memory size, but more on this
topic in Sec. 5.3.

The Tesla P100 GPU accelerator is the most powerful GPU of all tested without any
doubt. On the other hand, it is also the most expensive, and therefore, unreachable for many
people and institutions. So it is good to know how implementation behaves on something
more accessible. For this purpose, the elastic code performance was measured on GTX 980.
This card can be bought for as little as 600 USD (price depends on vendor and retailer).
This is very little compared to almost 8,000 USD price tag for Tesla P100. The GTX 980
is in enthusiast tier of graphics cards, but it is sill accessible and you can find it in almost
very electronics e-shop. Due to the fact that NVIDIA already released a new line of GPU
(10th generation), there are also a lot of second hand offers for this card. This GPU was
able to accelerate the MATLAB implementation 34 times on average and peak acceleration
factor achieved was 42.7. Similarly to the former case, the acceleration factor tends to get
higher with increasing domain sizes. From the figure, it is clear that Tesla P100 is roughly 3
times more powerful (considering only this application) but 13 times more expensive than
GTX 980. Recalculated on a 1 USD, GTX 980 provides roughly 0.056 acceleration per
USD, while Tesla P100 provides only 0.013 acceleration per USD, which makes GTX 980
roughly 4.3 more efficient in terms of invested expenditures. On the other hand, users using
GTX 980 would have to settle for smaller domain sizes because elastic code consumes a lot
of on-chip GPU memory. In fact, P100 is able to simulate domain of up to 512𝑥512𝑥256
points while, for GTX 980, the limit is only 256 × 256 × 224 points. All things considered,
the fluid code provides significant performance boost even on moderate GPUs, however,

36

users have to take into account slower run of the application and domain size limits as a
result of considerably smaller on-chip memory of GPU.

Up on closer inspection of Tab. 5.2 and Fig. 5.1, an interesting question may come to
mind. Why acceleration factors of GPUs with comparable performance (Tesla P40 and Tesla
P100) differs that much? This question can be quickly answered by looking on memory
bandwidth of inspected GPUs. Tesla P100 has almost the double the memory bandwidth
compared Tesla P40. This ratio almost perfectly matches with achieved performance dif-
ference. This is not accidental. In fact, there is a strong correlation between achieved
performance and the memory bandwidth. This relation holds true for every combination of
investigated GPUs. It is safe to say that memory throughput has a major impact on, if not
determines, GPU performance in elastic code. This only supports the prediction mentioned
in Sec. 3.2.6 that most of kernels, and theretofore elastic code itself, will be memory-bound.

The interesting fact is somehow erratic behavior of some GPUs. Most notable example
of this behavior can be seen, in Fig. 5.1, as plot of P100 performance approaches last
points. It seems the performance of Tesla P100 (and also Tesla P40) suddenly increases
for a particular grid size. This behavior is caused by the fact that for this domain size,
cuFFT is able to create a very efficient plan and therefore the computation of FFT takes
less time. As mentioned in Sec. 4.2.3, the cuFFT library is highly optimized for the grid
sizes that can be written in a form of 2𝑎 × 3𝑏 × 5𝑐 × 7𝑑. In this case, the data size in
question is 512 × 512 × 256 which can be rewritten as 28 × 28 × 27 and therefore the 1D
FFT plans are optimal and performance of cuFFT is high. It may seem the application was
only tested under a favorable circumstances, but in real-life scenarios, there is no problem
to add padding to data to be able to run simulation more efficiently.

Another fact worth mentioning is seemingly 𝑂 (𝑛) time complexity of algorithm despite
it was clearly stated, in Sec. 4.2.3, that cuFFT implementation of FFT has 𝑂 (𝑛 𝑙𝑜𝑔 𝑛)time
complexity. This contraindicative result can be traced to one facts. In the case of time com-
plexity definition of 3D FFT, 𝑛 represents the number of grid points in domain. Therefore,
it is possible to write it this way 𝑂 (𝑁𝑥𝑁𝑦𝑁𝑧 𝑙𝑜𝑔 𝑁𝑥𝑁𝑦𝑁𝑧). However, the application
only uses 1D FFT and therefore the complexity of FFT is
𝑂 (𝑁𝑥 𝑙𝑜𝑔 𝑁𝑥) or even better written 3

√
𝑛 𝑙𝑜𝑔 (3

√
𝑛) (considering the same size in each

dimension). Therefore implementation has linear time complexity.

5.2 Numerical accuracy
Accuracy is another key aspect of the implementation. As a part of the k-Wave, fluid code
is also aspiring to be used as a tool in medicine. In such field the accuracy of simulation is
absolutely crucial. However, most of currently used imaging methods has some kind of error
in its calculations. The key to success is keeping error of simulation below acceptable level.
Transition from a real world into discrete virtual world inevitably introduces an error into
simulation. The overall accuracy of simulation of ultrasound waves propagating throughout
the elastic medium is affected by variety of factors including: implemented methods, dis-
cretization error, time step size, number of grid points, maximum frequency of a simulated
signal, level of medium heterogeneity and use of PML just to name a few. For example,
the typical error introduced solely by the PML is on the order of 10−3 to 10−4, even with
optimized parameters [18]. Influence of many of factors can be reduced by applying finer
discretization (more grid points and/or smaller time step reduce numerical dispersion).
However these actions lead to simulation being more time and memory consuming. In gen-

37

eral, precision and performance are inversely related to each other. Therefore, in computer
simulations, there is a allays need for a acceptable trade-off.

power of 2 odd even prime
0

1

2

3

4
x 10

−10 (a) Elastic simulation l−2 error

N
o

rm
a

liz
e

 e
rr

o
r

Different scenarios

power of 2 odd even prime
0

1

2

3

4

5

6

7
x 10

−6 (b) Elastic simulation l−inf error

N
o

rm
a

liz
e

 e
rr

o
r

Different scenarios

Figure 5.2: Example of numerical accuracy achieved by elastic code on various data sizes.
Plot (a) represents the largest normalized error in pressure distribution and plot (b) repre-
sents average normalized error.

According to Fig. 5.2, the overall accuracy of fluid code seams to be acceptable at first
glance. Presented values are calculated using implemented MATLAB script described in
Sec. 4.7 where values 𝐿∞ and 𝐿2 are calculated based on equations Eqs. (4.1) and (4.2)
respectively. The accuracy of the elastic code was measured on pressure distribution in
medium. Four scenarios of grid sizes were chosen, namely a power of 2, even, odd and
prime which refers to actual sizes 643, 653, 663 and 673. The simulation used for accuracy
measurements is the same as the one used to measure performance of the application.
Judging from Fig. 5.2, the accuracy of elastic code is dependent on type of domain sizes.
The code seems to be quiet accurate for domain sizes which are the power of 2. On the other
hand, accuracy drops significantly when simulating domains with odd or prime dimensions.
However, this situation can be easily avoided by simple padding. Anyhow, even in the
worst case, the maximum error does not go above 6 × 10−6 which is 6−4%. The error
introduce by implementation on GPU is smaller then error caused solely by PML on the
order of magnitude and therefore it should not significantly affect the overall accuracy. It
is also important to say that the accuracy of elastic code was not tested against the ground
truth experiment, so no assumption about overall accuracy of simulation can be made. The
displayed data represent differences between k-Wave solution and elastic code only.

38

(a) MATLAB

20 40 60

10

20

30

40

50

60
−4

−2

0

2

(b) Elastic code

20 40 60

10

20

30

40

50

60
−4

−2

0

2

(c) Error

20 40 60

10

20

30

40

50

60 −1.5

−1

−0.5

0

0.5

1

x 10
−6 (d) Medium density and source placement

20 40 60

10

20

30

40

50

60
1000

1050

1100

1150

1200

Figure 5.3: Examples of pressure distribution calculated using k-Wave implementation (a)
and the fluid code (b). Plot (c) represents error of the fluid code. Plot (d) shows material
density and the placement of source (white line).

Fig. 5.3 displays two distributions of acoustic pressure in medium (plots a and b). This
two pressure distribution were calculated by k-Wave (plot a) and elastic code (plot b).
The final plot represents the error (plot c). The difference between plot a and plot b is
impossible to spot with a naked eye, which only supports the claim that error of elastic
code is within an acceptable range.

All thing considered, the implementation achieves acceptable level of accuracy while
delivering outstanding performance.

5.3 Memory consumption
Ultrasound simulations demands a lot of data especially in real-life applications. In such
cases, simulation in domain of 10243 points is nothing unusual. However, single quantity
of this domain size represents 4 GB of data in single-precision. It is clear that simulation
requires several of such variables to run. Approximate notion of number of variables needed
by the simulation can be derived from the equations presented in in Sec. 3.1.1. Nowadays, it
is not a problem to run across a cluster node (usually referred to as fat” which has 256 GB or
even 512 GB of main memory. However, the situation around GPUs is a bit different. The
GPU with most on-chip memory used to test implementation was, according to Tab. 5.2,
Tesla P40 which only has 24 GB of memory. Moreover, Tesla P40 is specifically designed
to handle large amount of data in scientific computations. More commonly, GPUs have up
to 10 GB of memory. Considering the case from the beginning, the Tesla P40 can hold only
6 variables in its on-chip memory. This number is absolutely insufficient for the purpose

39

of the elastic code and therefore most tested GPUs were able to run simulation only on
significantly smaller domains. For GPUs with around 4 GB of memory, the limit size is
around 2563. For Tesla P40, the limit size is around 4483. Without any doubt, memory
consumption is great limitation of elastic code. To be able to predict what is possible and
what is beyond capabilities of certain GPU, an equation has been constructed:

𝑀𝑒𝑚𝑜𝑟𝑦 [𝐺𝐵] ≈
(45 + 𝐴)𝑁𝑥𝑁𝑦𝑁𝑧 + 6𝑁𝑥

2 + 6𝑁𝑦 + 6𝑁𝑧 + 2𝐺𝐶𝑆 + 𝑖𝑛𝑝𝑢𝑡

10243/4
(5.1)

In the Eq. (5.1) 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 represents grid dimensions. Number 𝐴 in the first
term have value from interval < 0, 8 > and this number is dependent on the number
of material properties that are heterogeneous. For example, when the material density is
heterogeneous, it means that 4 additional martices have to be allocated. The GSC is largest
of values (𝑁𝑥

2 +1)𝑁𝑦𝑁𝑧, 𝑁𝑥(𝑁𝑦
2 +1)𝑁𝑧 and 𝑁𝑥𝑁𝑦(𝑁𝑧

2 +1). Thanks to the implementation
of cuFFT, at most 𝐺𝐶𝑆 number of elements is needed to store all values computed by 1D
FFT in various dimensions. However, values in the frequency domain are complex numbers
and therefore the actual number of float elements in this matrix is double the 𝐺𝐶𝑆. The
𝑖𝑛𝑝𝑢𝑡 represents the amount of additional user-defined input data, usually sources. The
application allows to specify a lot of different sources (source_p0, source_ux, source_sxx, etc.).
There could be up to 10 sources that can have sizes up to size of the domain (very unlikely
except for source_p0 which is always the size of domain). Furthermore, each source has
time varying signal assigned to it. This means that for each point of source there is time
series of values. The final number of bytes needed to store the input can be calculated
as 𝑆𝑖𝑧𝑒𝑂𝑓𝑆𝑜𝑢𝑟𝑐𝑒 × 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑓𝑆𝑜𝑢𝑟𝑐𝑒 × 4. Number 45 represents variables that are
mandatory and have to be allocated for every type of simulation. Also, 1D vector variables
are taken into account. There are 6 1D vectors needed for each dimension for storing
values of shift terms and values of PML. The equation does not account for every memory
allocation on GPU, for example device constants are omitted. These kind of allocations are
not part of equation because they are either hard to predict or negligible. This equation
should provide users with a qualified estimate.

One of the unpredictable memory allocation is related to creation of three FFT plans
by cuFFT. The size of plans strongly depends on the domain size. Plan has usually size
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 for domains sizes of power of 2, but for sizes which factorization includes
big primes, plan can consume 3 or 4 times more memory.

40

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Comparison of theoretical vs real memory usage

Domain size [grid points]

U
s
e
d
 m

e
m

o
ry

 [
M

B
]

Real memory usage

Theoretical memory usage

Figure 5.4: Comparison of theoretical memory usage and real memory usage on Tesla P40

Fig. 5.4 shows comparison of the theoretical (red line) and real (blue line) memory
usage. The theoretical memory usage was computed using Eq. (5.1) and real usage was
measured on Tesla P40 GPU. For small domain sizes, the real memory usage is significantly
higher than theoretical. This effect is caused by memory allocations omitted in Eq. (5.1).
When the domain is relatively small, this allocations contribute considerably to the overall
amount of memory. However, their impact is reduced with increasing domain size. The real
memory usage plot also has a some peaks and valleys. This is caused by aforementioned
allocation of FFT plans, which are strongly dependent on domain size factorization. It
can be said that theoretical memory usage reassembles real memory usage very closely and
therefore Eq. (5.1) is a helpful and reliable tool for predicting the memory consumption.

5.4 Performance limitations
To be able to improve the algorithm in future, it is good to know what current performance
limitations and theoretical limits of optimization of algorithm are. Sometimes, a lot of effort
goes into optimization process which eventual does not provide expected results. This could
happen because of two reasons. The first reason is that acceleration is simply unreachable
due to algorithm itself. Therefore, it is good to keep in mind the theoretical limits of
algorithm optimization.The second one is that optimization is focused on other then main
reason of bad performance. So, identifying the weak spots of implementation is absolutely
crucial for success of optimization. This two aspect are main topics of this section.

41

FFT 35.1%

TransposeXY 15.8% TransposeXZ 12.7%

Velocity 6.6%

MatrixAdd3 5.4%

ShearStress 4.5%

MatrixAdd2 4.2%

Others 15.9%

Profile of CUDA implementation (64x64x64)

FFT 36.2%

TransposeXY 8.5%

Velocity 8.4%
TransposeXZ 7.8%

MatrixAdd3 6.4%

ShearStress 5.9%

MatrixAdd2 4.9%

Others 22%

Profile of CUDA implementation (256x256x256)

Figure 5.5: The flat profile of elastic code. On left side, values for 643 domain size. On
right, values for 2563 domain size.

Fig. 5.5 shows the flat profile of elastic code produced by NVIDIA Visual Profiler. This
values sets approximate order of importance of particular kernels and are useful in deter-
mining the theoretical limit of acceleration. Kernels implementing FFT are, as mentioned
in Sec. 5.4, highly optimized and therefore there is no space to accelerate these kernels
further. Next, matrix transposition kernels have been optimized by Dr. Jaroš as a part
of existing framework and these kernels reached their limits in terms of performance. All
other kernels are part of the implementation and therefore their optimization represent a
way to increase performance. However, these kernels do not take up the vast majority of
the overall time. In fact, they take up only 36.9% and 47.5% of time of computation on
domain of a size 643 (left side of figure) and 2563 (right side of figure), respectively. Inter-
estingly, the importance of the implemented kernels is rising with the domain size and so is
the theoretical limit of acceleration. However, even considering better case (domain size a
2563) and allowing the implemented kernels to be theoretically executed in an instant, the
theoretical acceleration limit is only 47.5% given by Ahmdal’s law. So it is safe to say that
application can be accelerated to achieve maximally the double the performance, although
it is only theoretically possible.

To show weak spots and optimization opportunities of the implementation, two imple-
mented kernels with highest impact were chosen and discussed in detail in next sections.

5.4.1 The split-field particle velocity computation

In this section, the velocity kernel is closely analyzed form performance point of view and
acceleration opportunities are discussed. The data presented in this section was gathered
via NVIDIA Visual Profiler, the program for CUDA code profiling.

42

Figure 5.6: Levels of utilization of GPU sub-systems by velocity kernel on Tesla K20 sim-
ulating 2563 grid.

Figure 5.7: Levels of utilization of GPU sub-systems by velocity kernel on Tesla P40 simu-
lating 2563 grid.

Figs. 5.6 and 5.7 present high-level performance analysis. Here, the utilization of the
two main sub-systems of GPU, namely function unit and memory, can be seen. At first
glance, it is clear that there is a large disproportion between utilization of memory and
function unit. The fluid code running on Tesla K20 (Fig. 5.6) was able to utilize memory
roughly up to 75% and function unit only up to 45%. This disproportion is even more
evident when elastic code is ran on more powerful GPU (Fig. 5.7). Here utilization of
memory and function unit reaches roughly 85% and 15%, respectively. This behavior leads
to the conclusion that performance of kernel is most likely bound by memory bandwidth.

43

Figure 5.8: Stall reasons of velocity kernel on Tesla K20 simulating 2563 grid.

Figure 5.9: Stall reasons of velocity kernel on Tesla P40 simulating 2563 grid.

In previous paragraph, it was stated that velocity kernel is most likely limited by the
memory throughput. Figs. 5.8 and 5.9 only support this conclusion. Up on closer inspection
of figures, it is clear that the vast majority of stalls is caused by memory dependency. While
using Tesla P40 to run elastic code, memory dependencies create 64% of all stall reasons
(Fig. 5.9). Unfortunately, older version of NVIDIA Visual Profiler does not display exact
values and therefore it can be only estimated that memory dependencies create roughly
about 80% of all stall reasons on Tesla K20 (Fig. 5.8). The Memory dependency stall
means that load or store operation cannot be completed because required resources are
either fully utilized or too many request of a given type is pending. The NVIDIA Visual
Profiler suggests resolving data alignment and memory access pattern issues, however the
kernel was implemented in such way that it is accessing global memory with best possible
pattern.

Figure 5.10: Global memory throughput achieved by velocity kernel on Tesla K20 simulating
2563 grid.

44

Figure 5.11: Global memory throughput achieved by velocity kernel on Tesla P40 simulating
2563 grid.

In Figs. 5.10 and 5.11, achieved global memory throughput is presented. In both cases,
global memory throughput reaches its limits. This fact in combination with kernel having
aligned access pattern results in conclusion that kernel performance is definitely limited by
the memory throughput.

Figure 5.12: The velocity kernel achieved occupancy on Tesla K20 simulating 2563 grid.

Figure 5.13: The velocity kernel achieved occupancy on Tesla P40 simulating 2563 grid.

Besides memory dependency, execution dependency and memory bandwidth, achieved
occupancy can be also limiting performance of the kernel. But according to Figs. 5.12 and
5.13, kernel is able to fully utilize entire GPU in both cases.

5.4.2 The matrix addition computation

In this section, the matrix addition kernel is analyzed form performance point of view and
acceleration opportunities are discussed. The data and figures was gathered via NVIDIA
Visual Profiler.

45

Figure 5.14: Levels of utilization of GPU sub-systems by matrix add kernel on Tesla K20
simulating 2563 grid.

Figure 5.15: Levels of utilization of GPU sub-systems by matrix add kernel on Tesla P40
simulating 2563 grid.

Figs. 5.14 and 5.15 present the utilization of two main sub-systems of GPU, namely
function unit and memory unit. It is clear, from these figures, that there is a great difference
between utilization level of memory and function unit. This difference is even greater that
in case of the velocity kernel. For Tesla K20 (Fig. 5.6) the utilization of memory is roughly
85% and utilization of function unit is about 25%. In case of elastic code being executed
on Tesla P40 (Fig. 5.7), the utilization of memory sub-system is also about 85%, however
utilization of the function unit drops to only 5%. This is mainly caused by the low arithmetic
complexity of the kernel which is only 1/12 floating-point operation per byte. The kernel
is wasting performance of the GPU. As in the case of velocity kernel, this kernel is almost
certainly limited by the memory throughput.

46

Figure 5.16: Stall reasons of matrix add kernel on Tesla K20 simulating 2563 grid.

Figure 5.17: Stall reasons of matrix add kernel on Tesla P40 simulating 2563 grid.

Figs. 5.16 and 5.17 support the fact that this kernel is most probably bottlenecked by
the memory bandwidth. In fact, matrix addition is prime example of the memory-bound
problem on GPU. Therefore, it comes as no surprise that dominant portion of stalls is caused
by the memory dependencies. On Tesla P40, memory dependencies create staggering 94%
of all stall reasons (Fig. 5.17) and it is estimated that up to 85% of all stalls is caused by
memory dependency on Tesla K20 (Fig. 5.16). The usual technique to resolve such an issue
is to optimize global memory access pattern and align the data. However, the kernel itself
is very straightforward and therefore it was implemented in such way, that there is no way
to further optimize accessing pattern or data alignment.

Figure 5.18: Global memory throughput achieved by matrix add kernel on Tesla K20
simulating 2563 grid.

47

Figure 5.19: Global memory throughput achieved by matrix add kernel on Tesla P40 sim-
ulating 2563 grid.

In Figs. 5.18 and 5.19, achieved global memory throughput is presented. In both
cases,the kernel is fully utilizing global memory. There are two ways to off-load the main
memory. One way is to optimize access pattern and data alignment for global memory
load/store operation, and the other way is to use shared memory to pre-load data and
then calculate with this data instead. As mentioned in the previous paragraph, the kernel
already has the optimized access pattern an aligned data, so this approach is of no avail.
Application of the second approach would not be beneficial simply due to logic of compu-
tation. Taking into consideration all previously mentioned facts, the performance of this
kernel is definitely limited by the memory bandwidth.

Figure 5.20: The occupancy achieved by matrix add kernel on Tesla K20 simulating 2563

grid.

Figure 5.21: The occupancy achieved by matrix add kernel on Tesla P40 simulating 2563

grid.

Figs. 5.20 and 5.21 show that kernel is able to fully occupy the GPU, and therefore,
increasing performance by optimizing number of resources or configuration of kernel is not
possible.

5.4.3 Conclusion

It was clearly shown that performance of both kernels is definitely limited by the memory
bandwidth. It was also shown there is almost no room for optimization. It is true that
only two implemented kernels was discussed in detail, however, those were the kernels
which optimization would have the largest impact on performance. Anyhow, there is the
theoretical limit to the acceleration which states that fluid code will never be more than 2
times faster.

48

All in all, further optimization is not recommended due to fact that cost of the opti-
mization would greatly exceed its benefits.

49

Chapter 6

Conclusion

This thesis can be considered as successful. It fulfills all points of the assignment and in some
way exceeds expectations. One of the biggest accomplishment of thesis is the performance
of implemented solution. This algorithm can be up to 160 times faster compared to the
original MATLAB implementation running on dual 8-core CPU which not only means a
great savings of time but also a great reduction of computation cost. Using implemented
elastic code, simulation in domain of at most 4483 grid points is possible. This simulation
done over 4,655 time steps would last for about 47.9 minutes on Tesla P40. The typical
simulation on domain of a 2563 points carried over 2,660 steps would last for 8.6 minutes
on less powerful Tesla K20.

The performance of the algorithm on specific GPU is strongly dependent on memory
throughput. Therefore, there is a good chance that with the introduction of new line
of GPUs with new Volta architecture, the acceleration factor of the elastic code will rise
significantly. Upcoming Tesla V100 is said to have memory bandwidth of 900 GB/s [15].
Considering this GPU, the elastic code would accelerate MATLAB solution by a factor
around 200. On the other hand, strong performance-bandwidth dependency means that
the algorithm is able to achieve relatively good performance even on slightly outdated GPUs
with good throughput. The predictable memory usage and almost linear time complexity
results in great a scalability. It means that the impact of this thesis will only get greater
as the memory capacity of GPUs increases.

All things considers, there is no doubt that this thesis will find use in many fields of
science. And hopefully, it will be perceived as benefit to the scientific community.

6.1 Impact
In many aspects, the impact of the thesis is a great criterion to measure success. This
thesis has a potential to have a significant impact. To back up this claim, let’s consider
this paper [17]. The paper presents results of using k-Wave for the purpose of transcranial
ultrasonic neurostimulation. The team carried out a few experiments, namely a 2D elastic
simulation with a domain size of 37802 over 258,462 time steps accelerated by NVIDIA
Titan X which took 10.6 hours to complete and a 3D elastic simulation with domain size
of 10243 over 22,718 timesteps which computation took one node of Salomon cluster 112.3
hours. The 112.3 hours of computation on Salomon cluster represents 2,695.2 corehours
which is equivalent of 134.8 USD (according to estimated fair 0.05c per corehour). So, the
simulation lasting for several days or even weeks and costing hundreds of dollars is not a

50

rare. This is a reason why acceleration of such simulations are so important. The latter
simulation have not been accelerated by GPU because at that time there was no acceleration
of 3D elastic code. Nowadays, it is possible to accelerate this kind of simulation thanks to
the code developed in thesis. To demonstrate the benefits of using the accelerated version
of the elastic simulation, consider the following example. A researcher needs to compute a
simulation and decides to use k-Wave and MATLAB’s built-in GPU acceleration on Anselm
cluster. The simulation overall time is 96 hours which means 1,536 corehours (allocation
of entire node only) and 76.8 USD. Had researcher used my implementation, he would not
have only got the result in around 20 hours but also save 80% of the expenses related to
simulation using exactly the same machine. This example clearly depicts the benefits of
using the elastic code. In medical use, this means that patients do not have to wait for the
diagnosis for weeks and the governments do not have to pay hundreds of dollars for such
simulations. It would be great if this thesis makes the future medical care better and more
accessible. Potential to do it surely possesses.

6.2 Further improvements
As discussed in Sec. 5.4, it seams that developed elastic code reaches its limits in terms
of performance and so there is a very little space to further improvements. However, the
current version does not fully support all features of the elastic simulation present in k-
Wave. Therefore the implementation of these features has a high priority. This issue will be
very likely resolved in a few months following publishing of this thesis. Moreover, relatively
favorable memory consumption allows for implementation of a higher order time stepping
scheme such as Runge-Kutta. This would provide ability to use larger time step with the
same accuracy further decreasing simulation time. This kind of time stepping scheme of
higher order was never implemented in k-Wave elastic code so it will certainly provide a
challenge.

51

Bibliography

[1] Fundation, F. U.: Focused Ultrasound Treatment. [Online; cited 2.12.2016].
Retrieved from: https://www.fusfoundation.org/diseases-and-conditions/
oncological/brain-cancer

[2] Georgiou, P. S.; Jaros, J.; Payne, H.; et al.: Beam distortion due to gold fiducial
markers during salvage high-intensity focused ultrasound in the prostate. Med. Phys..
vol. 44, no. 2. 2017: page 679–693. doi:10.1002/mp.12044.
Retrieved from: http://bug.medphys.ucl.ac.uk/papers/2017-Georgiou-MP.pdf

[3] Group, T. H.: The HDF5. [Online; cited 2.4.2017].
Retrieved from: https://support.hdfgroup.org/HDF5/

[4] Harlow, F. H.; Welch, J. E.: Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface. The Physics of Fluids. vol. 8, no. 12.
1965: pp. 2182–2189. doi:10.1063/1.1761178.
Retrieved from: http://aip.scitation.org/doi/abs/10.1063/1.1761178

[5] Intel: Intel Xeon Processor E5-2699 v3. [Online; cited 3.3.2017].
Retrieved from: https://ark.intel.com/products/81061/Intel-Xeon-Processor-
E5-2699-v3-45M-Cache-2_30-GHz

[6] Jathoul, A. P.; Laufer, J.; Ogunlade, O.; et al.: Deep in vivo photoacoustic imaging of
mammalian tissues using a tyrosinase-based genetic reporter. Nature Photonics.
vol. 9. 2015: pp. 239–246. doi:10.1038/nphoton.2015.22.
Retrieved from: http://bug.medphys.ucl.ac.uk/papers/2015-Jathoul-NATPH.pdf

[7] Jing, Y.; Meral, C.; Clement, G.: Time-reversal transcranial ultrasound beam
focusing using a k-space method. Physics in medicine and biology.. vol. 57. 2015: pp.
901–917. doi:10.1038/nphoton.2015.22. ISSN: 1361-6560.
Retrieved from: http://bug.medphys.ucl.ac.uk/papers/2015-Jathoul-NATPH.pdf

[8] Kadlubiak, K.: Fast Tissue Image Reconstruction Using a Graphics Card. Bakalářská
práce. VUT v Brně. 2015.

[9] Khronos: The open standard for parallel programming of heterogeneous systems.
[Online; cited 1.12.2014].
Retrieved from: https://www.khronos.org/opencl

[10] Levites, J.; Jones, S.: Iside Kepler: world’s fastest and most efficient accelerator.
[Online; cited 1.2.2015].
Retrieved from: http://on-demand.gputechconf.com/gtc-express/2012/
presentations/inside-tesla-kepler-k20-family.pdf

52

https://www.fusfoundation.org/diseases-and-conditions/oncological/brain-cancer
https://www.fusfoundation.org/diseases-and-conditions/oncological/brain-cancer
http://bug.medphys.ucl.ac.uk/papers/2017-Georgiou-MP.pdf
https://support.hdfgroup.org/HDF5/
http://aip.scitation.org/doi/abs/10.1063/1.1761178
https://ark.intel.com/products/81061/Intel-Xeon-Processor-E5-2699-v3-45M-Cache-2_30-GHz
https://ark.intel.com/products/81061/Intel-Xeon-Processor-E5-2699-v3-45M-Cache-2_30-GHz
http://bug.medphys.ucl.ac.uk/papers/2015-Jathoul-NATPH.pdf
http://bug.medphys.ucl.ac.uk/papers/2015-Jathoul-NATPH.pdf
https://www.khronos.org/opencl
http://on-demand.gputechconf.com/gtc-express/2012/presentations/inside-tesla-kepler-k20-family.pdf
http://on-demand.gputechconf.com/gtc-express/2012/presentations/inside-tesla-kepler-k20-family.pdf

[11] NVIDIA: About CUDA. [Online; cited 12.2.2015].
Retrieved from: https://developer.nvidia.com/about-cuda

[12] NVIDIA: CUDA Toolkit Documentation. [Online; cited 14.11.2016].
Retrieved from: http://docs.nvidia.com/cuda/#axzz4VLr2fdRC

[13] NVIDIA: GeForce GTX TITAN specifications. [Online; cited 20.2.2015].
Retrieved from: http://www.geforce.co.uk/hardware/desktop-gpus/geforce-
gtx-titan/specifications

[14] NVIDIA: Inside Pascal: NVIDIA’s Newest Computing Platform. [Online; cited
3.10.2016].
Retrieved from: https://devblogs.nvidia.com/parallelforall/inside-pascal

[15] NVIDIA: NVIDIA Tesla V100. [Online; cited 2.5.2017].
Retrieved from: https://www.nvidia.com/en-us/data-center/tesla-v100/

[16] NVIDIA: The cuFFT. [Online; cited 1.4.2017].
Retrieved from: https://developer.nvidia.com/cufft

[17] Robertson, J. L.; Cox, B. T.; Jaros, J.; et al.: Accurate simulation of transcranial
ultrasound propagation for ultrasonic neuromodulation and stimulation. J. Acoust.
Soc. Am.. vol. 141, no. 3. 2017: pp. 1726–1738. doi:10.1121/1.4976339.
Retrieved from: http://bug.medphys.ucl.ac.uk/papers/2017-Robertson-JASA.pdf

[18] Robertson, J. L.; Cox, B. T.; Treeby, B. E.: Quantifying numerical errors in the
simulation of transcranial ultrasound using pseudospectral methods. In IEEE
International Ultrasonics Symposium. 2014. pp. 2000–2003.
doi:10.1109/ULTSYM.2014.0498.
Retrieved from:
http://bug.medphys.ucl.ac.uk/papers/2014-Robertson-IEEEIUS.pdf

[19] Rupp, K.: CPU, GPU and MIC Hardware Characteristics over Time. [Online; cited
12.10.2016].
Retrieved from: https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time

[20] Techtarget: GPGPU (general purpose graphics processing unit) . [Online; cited
17.1.2017].
Retrieved from: http://whatis.techtarget.com/definition/GPGPU-general-
purpose-graphics-processing-unit

[21] Treeby, B.; Cox, B.; Jaros, J.: The k-Wave user manual. [Online; cited 21.4.2017].
Retrieved from: http://www.k-wave.org/manual/k-wave_user_manual_1.0.1.pdf

[22] Treeby, B. E.; Cox, B. T.: k-Wave: MATLAB toolbox for the simulationand
reconstruction of photoacoustic wave fields. Journal of Biomedical Optics. 2010:
page 15. ISSN: 1083-3668.

[23] Treeby, B. E.; Jaros, J.; Rohrbach, D.; et al.: Modelling elastic wave propagation
using the k-Wave MATLAB toolbox. In IEEE International Ultrasonics Symposium.
2014. pp. 146–149. doi:10.1109/ULTSYM.2014.0037. [Online; cited 18.12.2016].
Retrieved from: http://bug.medphys.ucl.ac.uk/papers/2014-Treeby-IEEEIUS.pdf

53

https://developer.nvidia.com/about-cuda
http://docs.nvidia.com/cuda/#axzz4VLr2fdRC
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-titan/specifications
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-titan/specifications
https://devblogs.nvidia.com/parallelforall/inside-pascal
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://developer.nvidia.com/cufft
http://bug.medphys.ucl.ac.uk/papers/2017-Robertson-JASA.pdf
http://bug.medphys.ucl.ac.uk/papers/2014-Robertson-IEEEIUS.pdf
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time
http://whatis.techtarget.com/definition/GPGPU-general-purpose-graphics-processing-unit
http://whatis.techtarget.com/definition/GPGPU-general-purpose-graphics-processing-unit
http://www.k-wave.org/manual/k-wave_user_manual_1.0.1.pdf
http://bug.medphys.ucl.ac.uk/papers/2014-Treeby-IEEEIUS.pdf

[24] UK, C. R.: Worldwide cancer statistics. [Online; cited 3.2.2017].
Retrieved from: http://www.cancerresearchuk.org/health-professional/
cancer-statistics/worldwide-cancer

[25] Wikipedia: Category: Nvidia microarchitectures. [Online; cited 12.4.2017].
Retrieved from:
https://en.wikipedia.org/wiki/Category:Nvidia_microarchitectures

[26] Wikipedia: xUnit. [Online; cited 12.12.2016].
Retrieved from: https://en.wikipedia.org/wiki/XUnit

54

http://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer
https://en.wikipedia.org/wiki/Category:Nvidia_microarchitectures
https://en.wikipedia.org/wiki/XUnit

Appendix A

Performance benchmark data

55

Table A.1: Execution time per time step [ms] of the GPU code for heterogeneous simulations
for different 3D grid sizes ranging from 643 to 5123.

Domain Size M-CPU M-GPU Tesla K20 GTX 980 Titan X Tesla P40 Tesla P100
64× 64× 64 88.18 58.74 4.26 2.33 2.03 1.81 1.51
96× 64× 64 130.32 60.81 6.00 3.55 2.65 2.42 1.89

128× 64× 64 156.10 62.35 7.39 5.15 3.48 3.32 2.24
96× 96× 64 180.47 75.81 8.28 5.98 3.86 3.82 2.44
96× 96× 96 265.21 92.66 11.55 8.95 6.11 6.39 3.38

128× 128× 64 287.43 77.16 13.17 10.29 7.87 7.57 4.04
128× 96× 96 345.46 95.89 14.71 11.71 8.69 8.39 4.59

128× 128× 96 468.94 113.52 19.10 15.32 10.74 11.07 5.81
128× 128× 128 609.04 138.94 25.32 20.04 14.19 14.24 7.41
160× 128× 128 763.79 170.57 32.47 25.43 17.95 17.87 9.30
160× 160× 128 946.91 218.39 41.85 32.03 22.20 22.64 11.61
160× 160× 160 1212 281.22 53.72 40.12 29.39 28.38 14.34
256× 128× 128 1245 249.15 49.52 39.83 28.09 28.31 14.19
192× 160× 160 1656 335.90 64.18 47.66 32.78 33.70 16.90
192× 192× 160 1844 382.92 76.12 56.89 38.87 39.89 20.28
192× 192× 192 2542 458.45 89.73 67.76 45.98 47.33 24.21
224× 192× 192 2913 525.04 101.84 79.11 53.78 55.12 28.16
256× 256× 128 3359 472.90 99.93 81.15 56.63 57.13 29.18
224× 224× 192 3692 634.52 120.85 93.83 70.56 65.74 34.08
224× 224× 224 4392 754.54 139.84 109.80 75.12 76.66 39.40
256× 224× 224 5137 808.50 155.49 125.39 85.40 87.51 44.66
256× 256× 224 6100 908.82 179.29 142.91 98.02 99.65 50.49
256× 256× 256 7010 962.49 194.54 109.69 110.86 54.58
288× 256× 256 7816 231.30 128.96 129.24 64.82
288× 288× 256 8651 158.29 145.52 73.25
288× 288× 288 9854 165.05 163.76 82.62
320× 288× 288 11358 184.18 181.50 91.52
320× 320× 288 12965 197.66 196.99 97.05
320× 320× 320 15016 224.40 224.00 113.03
512× 256× 256 16202 229.35 227.16 114.29
352× 320× 320 16351 244.86 246.33 123.78
352× 352× 320 17892 290.60 270.45 136.91
352× 352× 352 20382 288.84 290.11 143.93
384× 352× 352 23502 325.79 324.79 164.76
384× 384× 352 26120 354.58 178.89
384× 384× 384 28758 386.76 194.59
416× 384× 384 29976 461.92 232.33
416× 416× 384 31291 545.57 273.61
512× 512× 256 36215 454.63 228.49
416× 416× 416 34085 640.67
448× 416× 416 38311 637.41
448× 448× 416 41221 630.15
448× 448× 448 44294 617.90
480× 448× 448 47452
480× 480× 448 48794
480× 480× 480 52088
512× 480× 480 60347
512× 512× 480 68842
512× 512× 512 73716

56

Appendix B

Format of the HDF5 input file

Table B.1: List of datasets that may be present in the input HDF5 file.
Name Size

(Nx, Ny, Nz)
Data
Type

Domain
Type

Conditions

1. Simulation Flags

ux_source_flag (1, 1, 1) long real
uy_source_flag (1, 1, 1) long real
uz_source_flag (1, 1, 1) long real
sxx_source_flag (1, 1, 1) long real
syy_source_flag (1, 1, 1) long real
szz_source_flag (1, 1, 1) long real
sxy_source_flag (1, 1, 1) long real
sxz_source_flag (1, 1, 1) long real
syz_source_flag (1, 1, 1) long real
p0_source_flag (1, 1, 1) long real
nonuniform_grid_flag (1, 1, 1) long real must be set to 0
absorbing_flag (1, 1, 1) long real

2. Grid Properties

Nx (1, 1, 1) long real
Ny (1, 1, 1) long real
Nz (1, 1, 1) long real
Nt (1, 1, 1) long real
dt (1, 1, 1) float real
dx (1, 1, 1) float real
dy (1, 1, 1) float real
dz (1, 1, 1) float real

57

Table B.1: List of datasets that may be present in the input HDF5 file continued . . .
Name Size

(Nx, Ny, Nz)
Data
Type

Domain
Type

Conditions

3. Medium Properties

3.1 Regular Medium Properties

rho0 (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

rho0_sgx (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

rho0_sgy (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

rho0_sgz (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

mu (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

mu_sgx (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

mu_sgy (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

mu_sgz (Nx, Ny, Nz) float real heterogeneous
lambda (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous
c_ref (1, 1, 1) float real

3.2 Absorbing Medium Properties (defined if ‘absorbing_flag = 1’)

alpha_coeff_norm (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

alpha_power_norm (1, 1, 1) float real

alpha_coeff_shear (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

alpha_power_shear (1, 1, 1) float real

4. Sensor Properties

sensor_mask_type (1, 1, 1) long real
sensor_mask_index (Nsens, 1, 1) long real sensor_mask_type = 0
sensor_mask_corners (Ncubes, 6, 1) long real sensor_mask_type = 1

58

Table B.1: List of datasets that may be present in the input HDF5 file continued . . .
Name Size

(Nx, Ny, Nz)
Data
type

Domain
Type

Conditions

5. Source Properties

5.1 Velocity Source Terms (defined if ux_source_flag = 1 or uy_source_flag = 1
uz_source_flag = 1)

u_source_mode (1, 1, 1) long real
u_source_many (1, 1, 1) long real
u_source_index (Nsrc, 1, 1) long real
ux_source_input (1, Nt_src, 1) float real u_source_many = 0

(Nsrc, Nt_src, 1) float real u_source_many = 1
uy_source_input (1, Nt_src, 1) float real u_source_many = 0

(Nsrc, Nt_src, 1) float real u_source_many = 1
uy_source_input (1, Nt_src, 1) float real u_source_many = 0

(Nsrc, Nt_src, 1) float real u_source_many = 1

5.2 Stress Source Terms (defined if sxx_source_flag = 1 or syy_source_flag = 1
or szz_source_flag = 1 or sxy_source_flag = 1 or sxz_source_flag = 1 or
syz_source_flag = 1)

s_source_mode (1, 1, 1) long real
s_source_many (1, 1, 1) long real
s_source_index (Nsrc, 1, 1) long real
sxx_source_input (1, Nt_src, 1) float real sxx_source_many = 0

(Nsrc, Nt_src, 1) float real sxx_source_many = 1
syy_source_input (1, Nt_src, 1) float real syy_source_many = 0

(Nsrc, Nt_src, 1) float real syy_source_many = 1
szz_source_input (1, Nt_src, 1) float real szz_source_many = 0

(Nsrc, Nt_src, 1) float real szz_source_many = 1
sxy_source_input (1, Nt_src, 1) float real sxy_source_many = 0

(Nsrc, Nt_src, 1) float real sxy_source_many = 1
sxz_source_input (1, Nt_src, 1) float real sxz_source_many = 0

(Nsrc, Nt_src, 1) float real sxz_source_many = 1
syz_source_input (1, Nt_src, 1) float real syz_source_many = 0

(Nsrc, Nt_src, 1) float real syz_source_many = 1

5.3 IVP Source Terms (defined if p0_source_flag = 1)

p0_source_input (Nx, Ny, Nz) float real

59

Table B.1: List of datasets that may be present in the input HDF5 file continued . . .
Name Size

(Nx, Ny, Nz)
Data
type

Domain
Type

Conditions

6. k-space and Shift Variables

ddx_k_shift_pos_r (Nx/2 + 1, 1, 1) float complex
ddx_k_shift_neg_r (Nx/2 + 1, 1, 1) float complex
ddy_k_shift_pos (1, Ny, 1) float complex
ddy_k_shift_neg (1, Ny, 1) float complex
ddz_k_shift_pos (1, 1, Nz) float complex
ddz_k_shift_neg (1, 1, Nz) float complex
x_shift_neg_r (Nx/2 + 1, 1, 1) float complex
y_shift_neg_r (1, Ny/2 + 1, 1) float complex
z_shift_neg_r (1, 1, Nz/2 + 1) float complex

7. PML Variables

pml_x_size (1, 1, 1) long real
pml_y_size (1, 1, 1) long real
pml_z_size (1, 1, 1) long real
pml_x_alpha (1, 1, 1) float real
pml_y_alpha (1, 1, 1) float real
pml_z_alpha (1, 1, 1) float real
pml_x (Nx, 1, 1) float real
pml_x_sgx (Nx, 1, 1) float real
pml_y (1, Ny, 1) float real
pml_y_sgy (1, Ny, 1) float real
pml_z (1, 1, Nz) float real
pml_z_sgz (1, 1, Nz) float real
mpml_x (Nx, 1, 1) float real
mpml_x_sgx (Nx, 1, 1) float real
mpml_y (1, Ny, 1) float real
mpml_y_sgy (1, Ny, 1) float real
mpml_z (1, 1, Nz) float real
mpml_z_sgz (1, 1, Nz) float real

60

	Introduction
	The k-Wave toolbox
	Wave propagation trough elastic medium
	Assignment tasks

	Graphics Processing Unit
	Architecture comparison
	General Purpose Graphics Computing Unit
	GPGPU framework

	CUDA-capable GPU architectures
	Host interface
	Copy engine
	DRAM adapter
	Device memory
	Streaming multiprocessor

	CUDA thread execution model
	Kernel
	Grid
	Block
	Thread
	Warp and lane

	CUDA memory model
	Global memory
	Local memory
	Registers
	Shared memory
	Texture memory
	Constant memory

	Reference Implementation
	The k-Wave implementation
	Governing equations

	Implementation of governing equations in MATLAB
	Computation of gradients of stress tensor
	Computation of split-field particle velocity
	Spatial velocity gradient calculation
	Spatial gradients of the time derivative of the velocity
	Computation of stress tensor values in next time step
	Conclusion

	Existing CUDA framework
	Main components of framework

	Implementation
	Implementation breakdown into tasks
	Technologies used in development
	The Google test
	The HDF5 library
	The cuFFT library

	Compute kernels implementation on GPU
	Computation of gradients of stress tensor
	Computation of split-field particle velocity
	Spatial velocity gradient calculation
	Implementation of stress tensor computation
	Implementation of velocity and stress sources
	Unit tests of individual kernels
	Current limitations of implementation

	Modification of I/O file format
	Integration with the framework
	Integration with the k-Wave
	Numerical accuracy testing
	Performance testing
	Documentation

	Experimental Results
	Performance evaluation
	Numerical accuracy
	Memory consumption
	Performance limitations
	The split-field particle velocity computation
	The matrix addition computation
	Conclusion

	Conclusion
	Impact
	Further improvements

	Bibliography
	Performance benchmark data
	Format of the HDF5 input file

