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Abstract
This thesis deals with the problem of punctuation reconstruction in the output of automatic
speech recognition systems. Constrains given on the solutions were applicability on general
spoken English language and reasonable accuracy of the punctuation prediction system.
Natural language tends to have in some cases non-deterministic nature and usually consists
of a large number of grammatic rules. Therefore, a machine learning approach was chosen
to solve this problem for its ability to recognize complicated patterns in data. A number
of experiments with recurrent neural networks were executed to find the best network
architecture for punctuation prediction. Resulting models created during these experiments
reach accuracy comparable if not better than the works currently held as state-of-the-art
solutions for punctuation reconstruction.

Abstrakt
Táto práca sa zaoberá rekonštrukciou interpunkcie vo výstupoch systémov na automatický
prepis reči. Výsledný systém by mal byť schopný rekonštruovať interpunkciu vo všeobecnej
zväčša hovorenej angličtine s rozumnou mierou presnosti. Prirodzený ľudský jazyk sa v
istých prípadoch sa môže javiť nedeterministický a tvorba reťazcov často podlieha veľkému
množstvu gramatických pravidiel. Kvôli tomu boli na predikciu interpunkcie vybrané al-
goritmy strojového učenia pre ich schopnosť rozoznať komplikované vzory v dátach. Bolo
vykonaných niekoľko experimentov s rekurentnými neurónovými sieťami za účelom nájdenia
najvhodnejšej architektúry modelu. Výsledné modely vytvorené počas týchto experimen-
tov dosahujú presnosť porovnateľnú ak nie lepšiu než práce, v súčasnosti považované za
najlepšie v obore.
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Chapter 1

Introduction

Readable output of automatic speech recognition systems plays a huge role in their com-
mercial adoption. When a system transcribes speech into text, users usually expect it to be
properly segmented using correct punctuation. Besides the grammatical correctness it also
increases readability of the text and contributes to the general experience user has with
such a system. Many of the conventional automatic speech recognition system lack these
features or their performance in reproducing punctuation is not satisfactory enough.

This thesis aims to address some solutions to this problem. It discusses a system for post-
processing of the transcribed text. The mainly discussed approach used to process the
transcribed text will be neural language modeling. Predominantly used neural networks in
this paper will be recurrent neural networks which have shown to perform well on human
language. Specifically a variation of recurrent neural networks called long short-term mem-
ory architecture will be used in the experiments due to its effectiveness. Long short-term
memory networks are currently state of the art modeling technique for natural language
and have found wide success in fields such as machine translation [24], question answering
[26] and others. In later chapters results of experiments will be presented.

Besides choosing the right modeling techniques, implementation of the training pipeline
will be described. Two different software frameworks were used during the process of
development and qualities and drawbacks of each of them will be mentioned.
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Chapter 2

Problem specification

The core problem of the assignment - punctuation prediction - is by all its means a very
complicated process. The main language which will be evaluated is English language in
which there are many grammatical rules and sentence structures dictating occurrence of
punctuation in the written form of the language. These rules can be often combined into
richer sentence structures and it is not unusual when the grammatical rules for punctuation
are broken. A system for prediction of punctuation symbols needs to somehow embody
these rules and be able to deterministically predict at each step whether the specific symbol
should or should not be used.

Punctuation itself plays a crucial role in written language. It indicates indention of sentences
or it can even give a rhythm to the sentence. Generally, punctuation works as some kind
of additional indicator of metainformation about the written piece and gives it a sense of
structure. Without this information the written piece can be interpreted by reader in a
different way as were the author’s intentions and it can become a lot harder for a reader to
even comprehend the text and read through it. Therefore, experience of using automatic
speech recognition systems without punctuation reconstruction can become unpleasing.

Since this problem is rather interesting, there have already been a couple of solutions
in academic and commercial sphere. Academic attempts are represented by a number
of papers such as following examples [9][21][8][18], though a paper which gave the most
similar solution as the one proposed in this thesis is by Ottokar Tilk [25]. In this paper
Mr. Tilk used long short-term neural networks on text processing with additional prosodic
data indicating pauses in speech. With training data acquired from Estonian national
radio Mr. Tilk’s systems reached accuracy of approximately 0.7 F1 score (on Estonian
language). Systems developed for this thesis reach comparable score using only textual
data. Commercial software such as Grammarly offers also systems able of rather accurate
punctuation prediction, although almost no information about systems which Grammarly
uses internally is public.

The problem of punctuation prediction can be broken down into evaluation of space between
each two consequential words. The system also needs to somehow remember a relevant
number of proceeding words and maybe even have information about succeeding words to
have enough information about currently evaluated space between words. In attempt to
recognize the underlying grammatic rules for punctuation, patter recognition algorithms,
specifically neural networks were chosen.
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Chapter 3

Neural networks for natural
language processing

The beginning of language modeling with neural networks can be marked in the year of 1991
[11]. Firstly, feed forward neural networks (FFNNs) were used for language modeling. In
the first decade of the new millennium, recurrent neural networks (RNNs) rapidly became
popular among the scientific community surpassed FFNNs with the accuracy of modeling
[23]. Andrej Karpathy’s blog on language modeling using RNNs [6] gives many example of
how effective RNNs can be.

3.1 Neural networks

Neural network is a mathematical model which transforms an input vector into an output
vector using internally encoded functions. The motivation behind artificial neural networks
is to simulate any function which transform 𝑥 input data into 𝑦 output data. It was firstly
proposed by McCulloch and Pitts in 1943 [10]. In 1969 Marvin Minsky and Seymour
Papert proposed a paper in which they proved that single-layer perceptron were incapable
of processing the exclusive-or circuit [16]. This problem was, however, later resolved by
adding hidden layers into neural networks.

Figure 3.1: Model of basic artificial neuron
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Basic topology of neural network consists of neurons which represent nodes of a graph.
Neurons are defined by their weights 𝑤 and bias 𝑏. Weights represent edges of the graph
and connect the neurons. The final part of a basic neuron is activation function 𝜙 which cal-
culates the final output of the node. Following formula mathematically describes behavior
of a neuron.

𝑦 = 𝜙(
𝐼∑︁

𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) (3.1)

On the higher level of abstraction, neurons in a neural network form two or more layers. A
layer is a set of neurons. The first layer of a neural network is called the input layer and
the last layer is called the output layer. Any layers in between are hidden layers. Signal
in neural network is propagated from an input layer through hidden layers to an output
layer. The forward propagation is carried by weights 𝑤 which interconnect each neuron in
two neighboring layers. In FFNNs, connections between layers have solely in one direction,
i.e. output vector of the first layer is input vector of the second layer and so on. Image 3.1
describes basic structure of FFNN.

Figure 3.2: Feed forward neural network with one hidden layer

3.1.1 Training

The transformation of input vector into vector depends only on the weights and biases of
the nodes in the network. We can elaborate this statement further and raise two questions:

1. How are the nodes initialized?

2. How can we adjust the values in the nodes so that we get the desired output?
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There are numerous ways of initializing weights and biases in a neural network. The simplest
and most straight forward solution is to initialize all the values to zero. However, this
approach has proven to decrease learning rate and get the weight gradients stuck in local
minimums [5]. Experiments have shown that far better training results are obtained when
weights and biases are initialized according to normal distribution with zero mean value
and variance of approximately 0.01 [5].

The feature of neural networks that brought the most attention to them is that they can
learn.

3.1.1.1 Gradient Descent

In this section supervised learning for neural networks will be discussed. In supervised
learning, a set of (𝑥, 𝑦);𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 variables is given and we are training the network
so that it would learn to simulate function 𝑔 such that 𝑔 : 𝑋 → 𝑌 . First, the training
algorithm must use an objective probabilistic function to calculate the probability of the
value 𝑔(𝑥) being correctly classified by the network as 𝑦. Here is an example of an objective
probabilistic function for simple binary classification.

𝑝(𝑡 | 𝑋) =
∏︁
𝑛

𝑦𝑡𝑛𝑛 (1− 𝑦𝑛)
1−𝑡𝑛 (3.2)

𝑦𝑛 is probability of class 𝐶 predicted by the output of the neural network for input values
𝑥𝑛. 𝑡 is a vector of correct class identities; 𝑡 = 0 if 𝑥𝑛 belongs to class 𝐶1 and 𝑡 = 1 if
𝑥𝑛 belongs to class 𝐶2. Our goal is to maximize the objective function 3.2. It is often
more useful to work with the logarithm of the objective function. The following function
is an example of what is commonly referred as error function or cross entropy, though this
one is specific to the objective function 3.2. It is computed as a negative logarithm of the
objective function (𝑤 represents the vector of weights of the network).

𝐸(𝑤) = − ln(𝑝(𝑡 | 𝑤)) = −
𝑁∑︁

𝑛=1

{︀
𝑡𝑛 ln(𝑦𝑛) + (1− 𝑡𝑛) ln(1− 𝑦𝑛)

}︀
(3.3)

During the training we want to minimize the value of the error function (instead of max-
imizing the objective function, because it was negated). To accomplish this, gradient of
error function is computed.

∇𝐸(𝑤) =
𝑁∑︁

𝑛=1

(𝑦𝑛 − 𝑡𝑛)𝑥𝑛 (3.4)

When such a 𝑤 is found that ∇𝐸(𝑤) = 0, then the optimum of the error function was
found. Yet, this may not be the best configuration of weights for the network, as will be
mentioned later.

The optimum of the error function cannot be computed analytically, therefore it is computed
numerically using following algorithm called gradient descent.

𝑤𝜏+1 = 𝑤𝜏 − 𝜂∇𝐸(𝑤) (3.5)

Following algorithm works fine with training linear regression systems, but since FFNNs
are hierarchical linear regressions, the value of error function needs to be redistributed to
the nodes of the neural network.
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3.1.1.2 Backpropagation

To calculate the adjustment which should be made at a specific node, first the derivative
of the error function with respect to the specific weights needs to be calculated using the
chain rule. 𝛿𝑘 represents output error backpropagated to the layer 𝑘.

𝜕𝐸

𝜕𝑤𝑘,𝑛
=

𝜕𝐸

𝜕𝑎𝑘

𝜕𝑎𝑘
𝜕𝑤𝑘,𝑛

= 𝛿𝑘 · 𝑥𝑛 (3.6)

A general rule for calculating 𝛿𝑘 for neural network with 𝑀 outputs. 𝛿𝑚 is output error on
the output 𝑦𝑚.

𝜕𝐸

𝜕𝑤𝑘,𝑛
=

(︁ 𝑀∑︁
𝑚=1

𝛿𝑚𝑤𝑚,𝑘

)︁
ℎ𝑘(1− ℎ𝑘) = 𝛿𝑘 (3.7)

After the error value for a node has been calculated, the node’s weights can be updated
using gradient descent algorithm 3.5.

3.2 Recurrent neural networks

Neural networks with feed-forward processing have great performance in some tasks, but
they perform poorly when presented with sequential data. When given sequential data, we
want our model to predict the next token in the series given the previous observations. In
the context of language modeling this could mean predicting next character given all the
previous characters, or as will be later mentioned predicting a whole word given previous
words. This can be achieved by word embeddings.

What gives RNNs advantage over FFNNs is that FFNNs can use only a finite number of
previous tokens to predict the next one while RNNs by their nature predict the next token
using information from all the previous tokens [14].

The general topology of RNN consists of input layer, hidden layer with recurrent connections
and output layer. Recurrent connections in the hidden layer are basically loops from the
output of the hidden layer to its input. Therefore, when hidden layer in RNN is presented
with data from RNN’s input layer in time 𝑡𝑛 it also takes in consideration its own state from
the previous time step 𝑡𝑛−1. And since the previous time step also contains information
about the hidden layer’s state in 𝑡𝑛−2 we can say that in this fashion, a RNN can hold in
memory information about every data it has processed since 𝑡0. The basic implementation
of recurrent neural network is called Elman network after an American cognitive scientist
[3].

Value of weights in the hidden layer of the network can be also called state of the network.
It can be described by following equation where where 𝑠𝑡 is the state of the network in
time step 𝑡, 𝑈 is vector of weights which are applied to the input vector and 𝑊 is vector
of recurrent weights.

𝑠𝑡 = tanh(𝑈𝑥𝑡 +𝑊𝑠𝑡−1) (3.8)

State 𝑠𝑡 is then run through vector 𝑉 and softmax activation function to produce output
𝑜𝑡.

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 𝑠𝑡) (3.9)
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Figure 3.3: Scheme of recurrent neural network

3.2.1 LSTM

Long short-term neural network (LSTM) is a variation of RNN. The main difference is that
they introduce a so called memory cell. Memory cell is a node of a network with LSTM
architecture. Their architecture is more advanced that architecture of nodes in previously
mentioned neural networks. The similarity with standard recurrent neural network is that
form a chain from time 𝑡𝑛 to 𝑡0. However, LSTMs instead of having just one neural layer,
have four interacting in specific ways.

The key element of an LSTM cell is the cell state. It is recurrently fed by the state the
previous cell and current input data can modify this state by linear interactions. LSTM
also allows information to flow freely through the cell state and not be modified by current
input data. This is a huge advantage of LSTM architecture.

LSTM can modify its current state by so called gates. Altogether, there are three gates:
forget gate, input gate and output gate. Forget gate decides what information from the
state 𝑠𝑡−1 should be abandoned. Input gate updates the current state and output gate
calculated the output. All of the three gates work with current input vector 𝑥𝑡 [17][4].

Figure 3.4: Vanilla LSTM architecture, courtesy of Christopher Olah [17]
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State, gates and output of the cell are mathematically described by following equations.

𝑧𝑡 = 𝑔(𝑊𝑧𝑥
𝑡 +𝑅𝑧𝑦

𝑡−1 + 𝑏𝑧) cell input
𝑖𝑡 = 𝜎(𝑊𝑖𝑥

𝑡 +𝑅𝑖𝑦
𝑡−1 + 𝑝𝑖 · 𝑐𝑡−1 + 𝑏𝑖) input gate

𝑓 𝑡 = 𝜎(𝑊𝑓𝑥
𝑡 +𝑅𝑓𝑦

𝑡−1 + 𝑝𝑓 · 𝑐𝑡−1 + 𝑏𝑓 ) forget gate
𝑐𝑡 = 𝑖𝑡 · 𝑧𝑡 + 𝑓 𝑡 · 𝑐𝑡−1 cell state
𝑜𝑡 = 𝜎(𝑊𝑜𝑥

𝑡 +𝑅𝑜𝑦
𝑡−1 + 𝑝𝑜 · 𝑐𝑡−1 + 𝑏𝑜) output gate

𝑦𝑡 = 𝑜𝑡 · ℎ(𝑐𝑡) cell output

(3.10)

LSTM architecture has proven to be effective in language modeling. This thesis takes
advantage of that and LSTM will be the predominant architecture used in the following
experiments. However, one remaining essential part of the stack needs to be explained
before diving into the implementation.

3.3 Training

To train recurrent neural network, same error function as with FFNNs can be used to
calculate networks prediction loss 3.4. To backpropagate the error in time step 𝑡𝑛, we unfold
the recurrent part of the network 𝑛 times. In other words we use standard backpropagation
3.6, but we cannot treat state 𝑠𝑛 as a constant because it depends on 𝑠𝑛−1 and we need to
apply chain rule to each state until 𝑠0. Following image displays a simple recurrent neural
network.

Unfolded neural network at time step 𝑡 = 2 can be then visualized like this.

Now backpropagation algorithm from section 3.1.1.2 can be applied with a little tweak. We
need to sum up the contributions of each previous time steps to the gradient because they
all share weights 𝑊 . Following equation demonstrates the calculation of the partial error
of 𝑊 for the time step 𝑡 = 2.

𝜕𝐸2

𝜕𝑊
=

3∑︁
𝑘=0

𝜕𝐸2

𝜕𝑦2

𝜕𝑦2
𝜕𝑠2

𝜕𝑠2
𝜕𝑠𝑘

𝜕𝑠𝑘
𝜕𝑊

= 𝛿2 (3.11)

This algorithm is called backpropagation through time (BPTT).

While vanilla RNNs have performed well on sequential data, more complex recurrent ar-
chitectures tend to produce even better results.
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3.4 Optimization

During the training of a neural network, the network may come to the state when it is
overfitting. This means that the accuracy of network is increasing of the training data, but
it is decreasing on the test data set. The network is losing the ability to generalize. There
is a number of methods to prevent this. One of the methods is early stopping when the
training process is programmed to detect increasing error on the testing data set. When
detection is triggered, learning rate 𝜂 in equation 3.5 can be decreased of the whole training
can be stopped.

Another method to avoid overfitting is called dropout. During training each neuron has a
certain probability 𝑝 which describes how likely it is that the state of the neuron will be
reset. This technique adds noise to the network and makes each neuron less dependent on
the others and network is forced to use its nodes efficiently. Experiments have shown that
dropout decreases error of predictions of neural networks [22].

3.5 Word embedding

It has been mentioned in the previous section that recurrent neural networks perform well in
modeling sequential data, specifically language. The sequential time line can be represented
as a sequence of incoming tokens. In language modeling, tokens can be symbols of the
language such as the English alphabet with punctuation and white spaces. However, in the
realm of language modeling we can bring individual tokens to high abstraction, representing
whole words. The most basic method for word representation is indexing individual words in
a vocabulary. Although this representation is easy to acquire and robust, it cannot capture
any relationship between the words. This chapter discusses a neural modeling technique
which allows us to store a word with its contextual meaning in a multidimensional vector.
This approach has in some cases proven to outperform standard N-gram models with one
hot word encoding [13].

Figure 3.5: Transformation of words to embeddings

There are already existing tools to acquire such representations of words, for example the
word2vec algorithm [15]. Input of the word2vec algorithm is a text corpus and output is a
file with word vectors. The algorithm internally first constructs a vocabulary of the words
and then using feed forward neural network learns their vector representation.
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Word vectors hold some interesting properties. When algebraic operations are applied
on word vectors, the resulting vector is surprisingly close to the result which we would
intuitively expect.

𝑣𝑒𝑐𝑡𝑜𝑟(𝑃𝑎𝑟𝑖𝑠)− 𝑣𝑒𝑐𝑡𝑜𝑟(𝐹𝑟𝑎𝑛𝑐𝑒) + 𝑣𝑒𝑐𝑡𝑜𝑟(𝐼𝑡𝑎𝑙𝑦) =̇ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑅𝑜𝑚𝑒)

or

𝑣𝑒𝑐𝑡𝑜𝑟(𝐾𝑖𝑛𝑔)− 𝑣𝑒𝑐𝑡𝑜𝑟(𝑀𝑎𝑛) + 𝑣𝑒𝑐𝑡𝑜𝑟(𝑊𝑜𝑚𝑎𝑛) =̇ 𝑣𝑒𝑐𝑡𝑜𝑟(𝑄𝑢𝑒𝑒𝑛)

To observe the desired results, the model needs to be trained on a large data set using
sufficiently large vector space. There exist a pretrained models such as Global Vectors for
Word Representation [GloVe] model [19] or word2vec pretrained model [12]. Experiments
in this thesis were conducted using mostly 300-dimensional and in special occasions 60-
dimensional pretrained word vectors from pretrained GloVe model.
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Chapter 4

Implementation

For implementation and training of language models, two different software stacks were
considered.

4.1 Tensorflow

Tensorflow is an open source machine learning library developed by Google. It’s core is
written in C++ and it comes with Python wrappers. The advantages of Tensorflow are its
strong support for distributed computing across many machines and also a vibrant online
community. The main drawback is huge consumption of memory during training. This was
a deliberate decision of Tensorflow’s developers to accelerate the process of training, but
for the purposes of this thesis it is inconvenient. Therefore, after a couple of experiments
the alternative presented in the next section was chosen.

4.2 Keras and Theano

Keras and Theano are independent libraries, which together form a popular machine learn-
ing stack.

Theano is an open source library used for linear algebra calculations. It uses a NumPy-like
syntax and is compiled to run efficiently on CPUs or GPUs.

Keras is an open source high-level neural network library. It runs on top of Theano, which
it uses for fast computation. It offers a variety of preprogammed abstract structures such
as FFNNs, RNNs, LSTMs and many more. All of these structures can be used directly and
offer a variety of functions to adjust to adjust the architecture of the models. The process
of training in Keras can be completely automated, but if needed Keras allows almost any
training parameters to be manually adjusted. All these features make Keras very easy to
use and in combination with Theano also reasonably fast during training.
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4.3 Modeling

To reconstruct punctuation an appropriate language modeling needs to be chosen. The
model needs to rely completely on the textual data of transcript. Contrary to [25], informa-
tion about pause duration between words is not provided to the current model. Generally,
the model is implemented as one or more RNN/LSTM blocks capped by one feed forward
layer with a sigmoid activation function on its end. The first 𝑛 layers of RNN/LSTM units
are supposed to learn high level features from the textual data while the remaining feed
forward layer is meant to combine these features into probability of a punctuation symbol
after the current token. Two different ways of creating input for the network are proposed.

4.3.1 Input without context

When feeding the network with input without context, each token is represented by word
vector of a single word. Therefore, when the network is computing probability of a punctu-
ation symbol for token 𝑥𝑡, it holds in its memory information about all the previous tokens
𝑥𝑡−1 ... 𝑥0, but it has no information about the potential proceeding words which can come
quite useful.

4.3.2 Input with context

On the other hand, when we want to provide context to the network, we need to construct
tokens 𝑥𝑡 differently. A token is represented by a matrix of 𝑁 vertically concatenated word
vectors. A punctuation symbol is modeled after 𝑀 words, where 𝑀 < 𝑁 and 𝑀,𝑁 ∈ N.
The remaining 𝑁−𝑀 words are following after the hypothetical punctuation symbol. Order
of words in the matrix is same as was given in the transcribed sequence of words. We can
call this set of words a word frame. This way of creating input tokens gives network valuable
information about the words after currently evaluated spot for punctuation symbol. Size
of an input matrix is then (word vector size)×𝑁 .

Figure 4.1: Sample word frame scheme

A problem arises with edge cases, when evaluating token 𝑥𝑡, where 𝑡 < 𝑀 or
(total number of tokens − 𝑡) < 𝑁 −𝑀 . These are the cases when we are evaluating punc-
tuation symbol for a word too close to the beginning or the end of of a transcript. This
can be easily solved by implementing special tag for ”empty“ word. Empty words hold
no semantic meaning and their sole purpose is to create a padding for word frames. Since
empty words should hold no meaning, the word vector they are mapped to consists solely
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of zeros. Because of this these words do not bring any noise to the system and also they do
not accidentally trigger any neuron because all the weights are effectively factored to zero.
Given this knowledge, each transcript would be prefixed by 𝑀 − 1 empty word tags and
suffixed by 𝑁 empty word tags so that sufficient padding is provided for word frames.

4.3.3 Model parameters

Training error is computed as binary cross entropy. Models are trained using Adagrad
optimizer, a modified version of gradient descent algorithm. Dropout with value 0.4 is
applied on every RNN/LSTM layer. This decision was made because the experience with
training recurrent models for punctuation reconstruction is that the models tend to overfit.
Such a strong dropout partially eliminates this problem.

4.4 Processing pipeline

Most of the parts of the processing pipeline have already been mentioned, such as frame-
work, model, etc., but it has not been described as whole yet.

Figure 4.2: Scheme of processing pipeline

Figure 4.4 describes the whole process of transforming speech into well structured text.
However, this section will discuss only the punctuation reconstruction system.

4.4.1 Preprocessing

One of the main reasons for preprocessing is to supply model with less noise in the data
with goal of increasing its accuracy. There is a number of Python libraries which simplify
this process, such as nltk, pandas or scaPy.

Loaded corpus first needs to be transformed into universal form, i.e. changing all characters
into lower case or inserting white characters in appropriate places (surrounding punctuation
symbols with white spaces so they would not be connected with proceeding words).

Special tags can give model extra metainformation about the text which could either reduce
complexity or increase accuracy of classification. Special tags are either added by replacing
other symbols (reducing complexity) or just added to specific places such as empty word
tags discussed in section 4.3.2. When combined with word embeddings, they bring in the
advantage of having unique, unused embedding. With multi-class classification, unique tags
for each punctuation symbol are added. Tags need to have syntax different from the rest
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of natural language to be easily parsed. In this project a XML-like syntax of tags was
used, such as </s> as a replacement of period symbol of </0> for empty word. A sentence

”Hello. I wish I had more time for this work. But I will do my best to finish it.“ would after
processing look something like this ”</0> </0> </0> </0> hello </s> i wish i had more
time for this work </s> but i will do my best to finish it </s> </0> </0>“. This example
is preprocessed for word window with prefix of four words and suffix of two words.

In some cases, preprocessing needs to be done as a prerequisite to create a corpus suited
specifically for needs of some experiment. In this case a standalone script runs through
the original corpora modifies them and creates various new corpora according to needs
of experiments. In case of this thesis project, following approach was used to counter
overfitting of model on one corpus. The goal was to develop a network which would be able
to generalize on text from different corpora than the one it was trained on. The standard
training corpus was Wall Street Journal (WSJ), however, performance on different corpora,
e.g. CNN news transcript, was not so satisfying. The preprocessing script created four
new corpora consisting of data from both, WSJ and CNN datasets. The ratio of WSJ vs.
CNN data in new datasets was given according to logarithmic scale, i.e. 1/2, 1/4, 1/8 and
1/16. Sentences from datasets were extracted using nltk toolkit and shuffled into the new
dataset. Results of this experiment will be discussed in the next chapter.

4.4.2 Data manipulation

Since datasets used in this project reach sizes of 3.5GB, an efficient way of data manipula-
tion needs to be used. If not careful, the training script can easily use up all the requested
memory (when using Sun Grid Engine computational cluster) and even be terminated dur-
ing training leading to loss of time and non-complete training data.

Fortunately, Python comes with a generator construct designed exactly for such a problems.
A generator in Python can be created either as a function using key word yield or as a
class. In both cases the construct acts as an iterable and therefore can be iterated over.
The core principle of generators is that they are able to read, parse and modify data on
the go. This feature significantly lowers memory requirements of the algorithm and makes
generators very beneficial when working with large amounts of data.

For the purposes of this project two generators were used. A sequence generator for com-
puting word frames 4.3.2 and corresponding targets (punctuation symbols) from labeled
data. The next one is a batch generator which operated as a superset of sequence generator
and used it to generate new batches of word frames and labels. These generator were used
directly in training script to save memory.

4.4.3 Training script and classification

Training script can be considered as the core of the project. It uses preprocessing and data
manipulation scripts, builds model, trains it on data and stores results.

For building models, Keras with Theano, and Tensorflow were used, each having its advan-
tages and disadvantages already discussed in 4.1 and 4.2. Non of these options supported
rapid model prototyping, though. Rapid model prototyping meaning creating new deep
models parametrically, i.e. specifying architecture of the network with a parameter. For
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this purpose a custom function on top of the Keras framework was created which later
allowed for automatic testing of numerous different network architectures.

Keras in combination with Theano, which was the predominantly used framework, offered
rich set of functions for training and allowed high control over the process while still working
with high-level abstract functions. As mentioned in 4.4.2, the training process closely
cooperated with generators to use memory optimally.

The standard way of storing trained model is saving the network architecture in a separate
file encoded in JSON format. The weights are encoded in HDF5 format and also stored in
separate file. This allows for later use of the trained network. It can be trained on further
data of used for classification. Tensorflow lets you even create an executable program
for classification from trained network. This is very useful in production and lets you
circumvent loading of large Keras & Theano libraries and gives you almost instant time of
classification.

Tensorflow also comes with a useful feature called TensorBoard. It a training visualization
tool which gives you statistics and training progress graphs in well organized dashboard and
is also able to send you notifications via the Internet on specified events during training.
TensorBoard is, however, not compatible with Keras and Theano framework. To be able
to use it, training output files need to be ported to required format and just then displayed
using TensorBoard. This approach displays training data statically after the training is
done. A better approach is to use Keras as abstraction library and Tensorflow as low-level
library for linear algebra. This allows you to use all the features of TensorBoard, but comes
with the expense of huge memory consumption, as it is already mentioned in 4.1.
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Chapter 5

Training and Experiments

As for all machine learning models, the key part of their success is training them on datasets
which represent their use case as accurately as possible. Science has not yet come up with a
definite heuristic of how to determine the right network architecture and the best training
hyperparameters. Although, recently there have been some attempts to come up with a
meta-learning algorithms which can adjust their hyperparameters according to the problem
[1] [20], this thesis takes a more conventional approach. Instead, a conventional approach
to training neural networks was chosen.

First, the hyperparameters are set to values which have been known to perform well on
similar problems. A baseline model is selected giving accuracy which we want to increase.
A baseline model can be either a naïve solution to the problem or a model developed by
somebody else which we want to outperform.

The hard part of creating a well performing model is then to select the best neural network
architecture and training hyperparameters. Since there is no rigorous heuristic for that,
the best performance is achieved by executing numerous experiments with different neural
network architectures and probing through the space of hyperparameters until the best
performing are found. Many skilled machine learning engineers even develop a kind of
intuition for this process.

The baseline model used for this project was a classifier developed by Karel Beneš for
Speech@FIT research group. Accuracy of some models developed for this project has in-
creased by 14% against the baseline model.

5.1 Evaluation

To compare performance of different models a method of measurement needs to be estab-
lished. Since this project operates with binary or multi-class classification, classification
attempts can be divided into four groups: true positive, false positive, true negative and
false negative (miss). Using these variables a statistical measure F1 score can be computed.

F1 score is a statistical measure ranging from 0 to 1 with bigger number meaning more
accurate classification. To compute F1 score for binary classification a confusion matrix
needs to be created first. Confusion matrix is basically just a matrix holding count of true
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positive, false positive, true negative and false negative classifications. These scores are
collected at the end of each epoch by validating model on a validation dataset.

The confusion matrix is then aggregated into the F1 value of the model at its current stage
of training. Function for F1 score operates with two variables, precision and recall.

Precision is defined as number of correct positive results divided by the number of all positive
results. In other words it expresses how sensitive the model is to positive classification.

precision =
true positive

true positive + false positive (5.1)

Recall is defined as the number of correct positive results divided by the number of positive
results that should have been returned. This value can be interpreted as ability of the
model to stay conservative in some decisions and not to prematurely classify positively.

recall = true positive
true positive + miss (5.2)

The value of F1 is then given by following equation.

𝐹1 =
2

1
recall +

1
precision

(5.3)

Another important issue to consider when comparing and measuring accuracy is the dataset
on which the models are trained and validated. To achieve the most objective comparison,
the datasets need to be the same. Exception to this are experiments in section 5.6 where
two different datasets were merged together with goal of avoiding overfitting.

5.2 Dataset

Datasets are often considered to be the key component of well performing machine learning
model. Also, ideal datasets for a task are often hard to get by and acquiring such a dataset
can be a task of its own. When creating a machine learning algorithm, it is helpful to have
an idea of the data it will be processing when applied into business.

Punctuation reconstruction algorithm developed in this project is meant to be applied
mostly on transcripts of lectures and public events. This means that a combination of
prepared and improvised, formal and informal language is going to be processed. With this
kind of language, especially informal, it is hard decide the correct punctuation and often
many plausible solutions are available.

To simulate this kind of language, Wall Street Journal corpus and its subset, Pen Tree bank
data set were used. Wall Street Journal corpus was created as a manual transcription of
AP News collected over the period of years from 1988 to 1990 [27].

To measure accuracy of a model objectively and avoid overfitting a separate validation
dataset is needed. Best case is when the validation dataset is from a different source than
the training dataset. However, this is not always possible. Common practice is to split the
main dataset into training and validation parts before training.
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It should be also noted that experiments in section 5.6 are aimed to extend generalization
of the network and the CNN news transcript corpus is used in combination with the Wall
Street Journal corpus.

Both, the Wall Street Journal dataset and the CNN dataset were provided by my supervisor.

5.3 Wordframe experiment

Motivation behind this experiment was to decide the best feature selection; one-by-one 4.3.1
or wordframes 4.3.2. Conventional approach to using recurrent neural network is to predict
next element according to the previous elements. However, the premise behind this exper-
iment was that giving the network information about words succeeding the hypothetical
punctuation symbol. This idea proofed to be correct.

Graph below shows progress of F1 score calculated on validation dataset. A neural network
with shallow LSTM architecture was used and they were trained with the same hyper-
parameters. The training dataset used for this experiment was Penn Tree bank corpus.
Individual experiments differ in the number of words in contained in their suffix. Length
of wordframe was 19 words and therefore length of prefix was 19− len(suffix).

Figure 5.1: Comparison of F1 score for wordframe experiment

From the graph we can conclude that wordframes with suffix of length 2 or 3 have signifi-
cantly higher accuracy then the rest. An LSTM network with input wordframe consisting
of 5 prefixes and 3 suffixes was then trained on the whole Wall Street Journal dataset and
reached F1 score of 0.5824.

Also other experiments have shown that length of prefix bigger than 10 makes insignificant
difference in the final results and only increases complexity of the model.
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5.4 Deep LSTM network experiment

Deep neural networks have gained great popularity due to their ability to recognize ab-
stract features in complex data such as images [7] or voice [2]. Human language, especially
spontaneous human language, is sequential data generated by complex algorithm with many
abstract features. By this description human language seems as a perfect fit for deep neural
network and its ability to recognize abstract features might come handy with punctuation
reconstruction.

A number of tests were prepared to discover the number of hidden layers leading to the best
classification accuracy. An LSTM neural network with wordframe input of 7/4 prefix/suffix
ratio were used. All the experiments were executed using the same training hyperparame-
ters. The models were trained on Penn Tree bank corpus. Individual experiments differ in
number of hidden layers in the model.

Following graph shows change in F1 score during the process of training. Deep LSTM
networks with two, three, five and eight number of layers were trained and examined.

Figure 5.2: Training of deep LSTMs

From these experiments we can conclude that different number of hidden layers does not
influence accuracy, but only increases the complexity of the model. We can also see that
models seem to saturate from thirteenth epoch at value of approximately 0.53.
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Following table shows final scores of the examined models after the last epoch of training.

# hidden layers F1 score
2 0.5436
3 0.5360
5 0.5609
8 0.5429

Table 5.1: Deep LSTM final results

Deep LSTM neural network with five hidden layers from the experiments above was also
trained on the whole Wall Street Journal corpus. Resulting F1 score was 0.6374. The
model was also trained on CNN corpus resulting into 0.7455 F1 score.

The set of experiments on deep LSTM networks definitely proofed that deep models have
significantly higher accuracy than basic shallow models. The deep models achieved higher
accuracy when trained on larger datasets such as CNN corpus.

5.5 Deep vanilla recurrent neural network experiment

Recurrent neural networks have shown great potential [6] in natural language processing.
Even though it is a significantly simpler model than long short-term memory architecture,
it might still perform well on punctuation classification. Following set of experiments was
set up to discover effectiveness of RNNs on this task.

A set of three deep RNNs was tested on Penn Tree bank dataset. RNNs with wordframe
input of 7/4 prefix/suffix ratio were used. All the experiments were executed using the same
training hyperparameters. Individual experiments differ in the number of hidden layers.

Figure 5.3: Training of deep RNNs
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RNNs with three and four hidden layers seem to saturate at the tenth epoch. However,
RNN with five hidden layers still tends to rise. Also we can see a lot more turbulence in F1

score progression in the graph above than in the graph of LSTM training. We can conclude
that deep RNN networks reach worse accuracy than LSTM networks with the best F1 score
0.5246. Since performance of these models did not surpass LSTMs, no further experiments
with larger corpora were prepared.

# hidden layers F1 score
3 0.4872
4 0.4713
5 0.5246

Table 5.2: Deep RNN final results

5.6 Extending corpus experiment

Even though deep LSTM networks in section 5.4 were reaching great accuracies, their
performance declined drastically when they were evaluated on CNN dataset (keeping in
mind they were trained on Wall Street Journal dataset). Since production data is more
general and broad then data in Wall Street Journal corpus, this issue needed to be overcome.

One suggested solution was to combine the two corpora and train a model on the newly
created corpus. The combination was not trivial since the text needed to be treated not
as a sequence of characters, nor a sequence of words, but a sequence of sentences where
each sentence needed to keep its atomicity. Also special cases like dot symbol used after
abbreviations needed to be taken in account. Although these special cases were relatively
rare, nltk library came very helpful with its function for parsing sentences out of text.

A set of four new corpora was created with each corpus containing different proportion of
Wall Street Journal and CNN corpora. The proportions were established logarithmically
with first new corpus having a half of sentences from Wall Street Journal and a half from
CNN. The remaining ratios were 1/4, 1/8 and 1/16 of CNN data in the new corpus. Legend
on the left side of figure 5.6 symbolizes these portions of CNN sentences included in new
dataset. The chart itself shows training progress of four models with same architecture and
configuration of hyperparameters trained on these four different datasets. The evaluation
was done on validation dataset which is one tenth of the training dataset.
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Figure 5.4: Training progress of corpus expansion experiment

Interesting properties can be deduced from these trainings. For example the network trained
on a corpus consisting of half CNN half WSJ sentences had significantly better scores on
validation dataset than the remaining networks. Interestingly, the network trained on a
dataset consisting of only one sixteenth of CNN sentences performed also quite well on its
validation dataset.

All of the models reached exceptionally high F1 score of approximately 0.72 during val-
idation. These results need to be taken with a grain of slat because as it is repeatedly
mentioned, the evaluation was done on a portion of the training dataset. Following chart,
however, displays evaluations done on AMI corpus. AMI corpus is a multi-modal data set
consisting of 100 hours of meeting recordings. The nature of this corpus is more conver-
sational than textual and therefore it models automatic speech recognition system outputs
more accurately.
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Figure 5.5: Test evaluation of expanding corpus models on AMI dataset

Although scores acquired from this evaluation have not reached any extraordinary values, a
clear patter was discovered. The more CNN sentences (or less WSJ sentences) were included
in the training dataset, the better results were achieved on AMI dataset evaluation. From
this relationship we might imply that the more sentences from CNN corpus are included
in the training dataset, the more accurate will be results of the model be when fed with
actual speech transcripts.

Low F1 score can be compensated by proportionally inflating the training corpus, i.e. keep-
ing the ratio of WSJ vs. CNN sentences in the training corpus same, but increasing its
volume. As it was already mentioned, sizes of the training corpora used in this experiment
were 200 MB each. Since the size of the whole CNN corpus is approximately 3,5 GB there is
definitely space for improvements. Following table displays exact F1 scores achieved during
evaluation by each model where the models are differentiated by proportion of CNN data
in their training dataset.

proportion of CNN training data F1 score
1/2 0.4771
1/4 0.3938
1/8 0.3312
1/16 0.2834

Table 5.3: Test evaluation of expanding corpus models on AMI dataset results
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Chapter 6

Conclusion

In this thesis, I have developed a punctuation reconstruction system for speech transcripts.
I was particularly focused on language modeling using recurrent neural networks which I
used for predicting punctuation. The predominantly used neural network architecture were
long short-term memory networks.

The models were evaluated using Penn Tree bank, Wall Street Journal and CNN data
sets. Evaluations have shown that networks fed with contextual tokens with specific ratio
of prefix/suffix words achieve significantly better accuracy on predictions. Also, it was
observer that deep long short-term memory networks have higher accuracy of predictions
than shallow networks. Models with the highest accuracy reached F1 score of 0.6374 and
0.7455 which is more than the baseline model created before at Speech@FIT and in this
paper [25] by Ottokar Tilk. A pattern was discovered indicating that CNN corpus suits
speech transcription data more accurately and models trained on this dataset achieve higher
accuracy. I have also found several ways of how to execute trained models instantly which
will be very useful in commercial applications.
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Appendix A

CD Content

/

data/ – sample datasets used for training

cleaning-scripts/ – scripts (not all) used for text preprocessing

modeling-scripts/ – scripts used for building and training neural network models

generators/ – Python modul containing batch and sequence generators

utils/ – utility scripts used for plotting and sentence extraction

experiments/ – configuration scripts for SGE and experiment results

CNN_experiments/ – experiment executed on CNN dataset

small_cnn_lstm_5d_35e/ – LSTM trained on a subset of CNN dataset

smallsmall_cnn_lstm_5d_35e/ – LSTM trained on a smaller subset of CNN dataset

deep_lstm_experiments/ – a number of experiments with different LSTM architecture

deep_rnn_experiments/ – a number of sample experiments with different RNN architecture

expand_corpus_experiments/

experiments/ – experiments trained on corpora with different CNN/WSJ ratio

1_2/ – one half of CNN data

1_4/ – one quarter of CNN data

1_8/ – one eight of CNN data

1_16/ – one sixteenth of CNN data

n_last_experiments/ – a set of experiments with different word frame prefix/suffix ratios
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