
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AN EFFICIENT FUNCTIONAL LIBRARY FOR FINITEAUTOMATA
EFEKTIVNÍ FUNKCIONÁLNÍ KNIHOVNA PRO KONEČNÉ AUTOMATY

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. JAKUB ŘÍHA
AUTOR PRÁCE
SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
Finite automata are an important mathematical abstraction, and in formal verification,
they are used for a concise representation of regular languages. Operations often used on fi-
nite automata in this setting are testing their universality and language inclusion. A naive
approach to implement these operations leads to an explicit determinization of the au-
tomata, which can be costly and undesirable. There is, however, a more advanced method
for performing those operations, called the Antichains algorithm, which avoids such an ex-
plicit determinization. This work shows how finite automata operations can be effectively
implemented in Haskell and compares several approaches of their implementation. The ob-
tained results are compared with VATA, an imperative implementation of a finite automata
library.

Abstrakt
Konečné automaty jsou důležitou matematickou abstrakcí. Ve formální verifikaci se konečné
automaty používají ke stručné reprezentaci regulárních jazyků. V této souvislosti se použí-
vají operace nad konečnými automaty, jako je testování jazykové univerzality a inkluze.
Naivní přístup k implementaci těchto operací vede k explicitní determinizaci konečného
automatu, což může být nakladné a nežádoucí. Nicméně existuje pokročilejší metoda
k vykonávání těchto operací nazývaná Antichains algoritmus, která se vyhýbá explicitní
determinizaci. Tato práce se zabývá efektivní implementací operací nad konečnými au-
tomaty v Haskellu a také porovnává několik implementačních variant. Získané výsledky
jsou poté porovnány s knihovnou VATA, což je imperativní implementace knihovny pro
práci nad konečnými automaty.

Keywords
finite automata, antichain, library, functional language, Haskell, lazy evaluation.

Klíčová slova
konečné automaty, antichain, knihovna, funkcionální jazyk, Haskell, lazy evaluace.

Reference
ŘÍHA, Jakub. An Efficient Functional Library for Finite Automata. Brno, 2017. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Lengál Ondřej.

An Efficient Functional Library for Finite
Automata

Declaration
Hereby I declare that this Master’s thesis was prepared as an original author’s work under
the supervision of Mr. Ondřej Lengál. All the relevant information sources that were used
during preparation of this Master’s thesis are properly cited and included in the list of
references.

. .
Jakub Říha

May 23, 2017

Acknowledgements
I would like to thank my Master’s thesis supervisor, Mr. Ondřej Lengál, for his professional
help and support.

Contents

1 Introduction 3

2 Finite automata 5
2.1 Formal languages . 5
2.2 Finite automata . 6
2.3 The membership decision problem . 7
2.4 Union of two languages . 7
2.5 Product union of two languages . 8
2.6 Intersection . 8
2.7 Determinization of a finite automaton . 9
2.8 Complement of a language . 10
2.9 Testing emptiness of a finite automaton . 10
2.10 Testing language inclusion of a pair of finite automata 10
2.11 Testing universality of a finite automaton 11
2.12 Antichain-based approach . 11

2.12.1 Testing universality of a finite automaton 11
2.12.2 Testing language inclusion of a finite automaton 13

2.13 Finite automata libraries . 14

3 Haskell 16
3.1 Non-strict semantics . 16
3.2 Lazy evaluation . 18
3.3 Profiling . 19
3.4 Monad . 20

3.4.1 Monad laws . 21
3.4.2 Maybe . 22
3.4.3 State . 22
3.4.4 Parsec . 23

4 Analysis 27
4.1 Data structures . 27

4.1.1 Typeclasses . 29
4.2 Input format . 29
4.3 Operations . 30

1

5 Implementation 33
5.1 Library structure . 33
5.2 Data structures . 33
5.3 Visualization . 35
5.4 Operations . 35
5.5 Unit testing . 36

6 Evaluation 37
6.1 Language union . 40
6.2 Language intersection . 41
6.3 Language complement . 41
6.4 Language inclusion . 41
6.5 Language universality . 42

7 Conclusion 43

Bibliography 44

2

Chapter 1

Introduction

Finite automata are extensively used in various branches of computer science ranging from
software engineering and compilers to hardware digital systems. This work focuses specif-
ically on an implementation of a representation of finite word automata and operations
on them used in model checking of computer programs. Such automata may be used to
represent data structures of an unbounded size and their operations to check properties of
such structures in an efficient way.

There are various finite automata libraries, which differ in their intended use, perfor-
mance, and support of various operations. Our work deals with operations related to model
checking. More specifically, these operations are union, intersection, determinization, com-
plement, and decision problems of membership, emptiness, language inclusion, and uni-
versality. Even though there are specialized finite automata libraries focusing on model
checking, our library will differ in that it will use an efficient lazy evaluation implementa-
tion. Lazy evaluation is an evaluation strategy that delays the evaluation of an expression
until its value is needed and that also avoids repeated evaluations (known as sharing).
Such an evaluation strategy could potentially lead to a more efficient implementation of
finite automata operations because it allows to skip unnecessary computations and thus
improve the performance. Our library, implemented as a part of this Master’s thesis, uses
Haskell, a well-known purely functional programming language, which is one of the few
programming languages with non-strict semantics and lazy evaluation.

This thesis is structured into seven chapters. After this introduction, the following
Chapter 2 is concerned with finite word automata. First, it describes theoretical foun-
dations of formal languages and then the definition of a finite automaton and other rele-
vant information is presented. Most of the chapter contains description of the operations
that are to be implemented in our library. A pseudo-code for each operation is provided.
Apart from the above mentioned operations, the chapter also elaborates on an antichain-
based method for deciding universality and language inclusion and on a transformation of
a non-deterministic finite automaton to a deterministic finite automaton using the subset
construction. Finally, the chapter discusses other finite word automata libraries.

Chapter 3 discusses the Haskell programming language. First, it contains general infor-
mation about the language. Then it discusses the non-strict semantics, lazy evaluation, and
how to suppress these to avoid performance penalty in certain circumstances. A descrip-
tion of available tools that can be used to analyze and profile the performance of Haskell
programs follows. The last part of the chapter is concerned with monads. It explains
the purpose of monads and then further elaborates on types of monads that are used in
our library. More specifically, these types of monads are used to implement computations

3

that may fail, computations that work with a global state, and parsing. For this purpose,
we use Parsec, which is a library implementation of a parsing monad in Haskell.

Chapter 4 analyses and discusses the design of our finite automata library. It closely
follows from the two previous theoretical chapters and from the information contained
therein. Data structures, parsing of the input format, and finite automata operations are
discussed there.

The next Chapter 5 is focused on the implementation of our library. The chapter first
briefly describes the library structure and the toolset used to implement this library. Then,
it discusses data structures and their implementation along with the rationale on why we
decided for a such specific solution. The next section is concerted with both textual and
graphical visualization of an arbitrary finite automaton using our library. The following
section describes all variants of finite automata operations that were implemented in the
library. The chapter finishes with a brief description about unit testing.

Chapter 6 deals with benchmarking of the implemented finite automata operations. We
performed a set of benchmarks to compare performance of our solution to VATA, which is
a highly optimized library for non-deterministic finite word and tree automata. The chapter
contains benchmarking results, which compare both libraries as well as two versions of data
structures we implemented.

The last Chapter 7 concludes this text and gives directions for future work beyond this
Master’s thesis. This thesis follows from the Term project we created at the final year.
More specifically, Chapter 2 and 3 of this Master’s thesis were taken from the Term project
with small modifications and extensions.

4

Chapter 2

Finite automata

This chapter introduces finite automata, a mathematical abstraction used in the field
of formal verification. It describes theoretical foundations of formal languages and then
the definition of a finite automaton and other relevant information, which were taken from
Meduna [17]. The second part of the chapter deals with finite automata operations. The de-
scription of those was taken from Meduna [17] and the supervisor of this thesis, Ondřej
Lengál. Finally, the chapter mentions other existing finite automata libraries.

2.1 Formal languages
A formal language is a set of strings of symbols. Formal languages are used extensively in
computer science, and, more specifically, in language theory and in formal theories, systems,
and proofs.

Alphabets and strings

An alphabet is a finite nonempty set of elements that are called symbols.
A sequence of symbols forms a string (also called a word). A string that contains no

symbols is called the empty string, and is denoted by 𝜀. We can then recursively define
strings over an alphabet Σ:

1. 𝜀 is a word over Σ.

2. If 𝑥 is a word over Σ and 𝑎 ∈ Σ, then 𝑥𝑎 is a word over Σ.

Let 𝑥 and 𝑦 be two strings over an alphabet Σ. Then, 𝑥𝑦 is the concatenation of 𝑥 and 𝑦.
It holds for every string 𝑥 that 𝑥𝜀 = 𝜀𝑥 = 𝑥.

Formal languages

Given an alphabet Σ, let Σ* denote the set of all strings over Σ. Let Σ+, defined as
Σ+ = Σ* ∖ {𝜀}, denote the set of all nonempty strings over Σ. The following definition
formalizes a language over Σ as a set of strings over Σ. Let Σ be an alphabet and let
𝐿 ⊆ Σ*. Then 𝐿 is a language over Σ.

Observe that for every alphabet Σ, the set Σ* represents a language over Σ containing
all words over Σ. Such a language is called the universal language over Σ. Because lan-
guages are defined as sets, the operations and notions regarding sets also apply to them.

5

A language 𝐿 is called a finite language if it has 𝑛 members, for some 𝑛 ∈ N0; otherwise, 𝐿
is an infinite language.

Consider a language 𝐿 over an alphabet Σ. The complement of 𝐿, denoted as 𝐿, is
defined as 𝐿 = Σ* ∖ 𝐿.

2.2 Finite automata
A finite automaton (FA) is a 5-tuple:

𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹), (2.1)

where

∙ 𝑄 is a finite set of states,

∙ Σ is the input alphabet,

∙ 𝛿 : 𝑄× Σ→ 2𝑄 is the transition function,

∙ 𝑠 ∈ 𝑄 is the initial state, and

∙ 𝐹 ⊆ 𝑄 is the set of final states.

For convenience, we use 𝑝
𝑎−→ 𝑞 to denote that 𝑞 ∈ 𝛿(𝑝, 𝑎). The workings of a finite

automaton are determined by a sequence of transitions. These transitions are given by the
transition function 𝛿. Given a current state 𝑞 ∈ 𝑄 and an input symbol 𝑎 ∈ Σ, the transition
function outputs a new set of states 𝑅 = 𝛿(𝑞, 𝑎) ⊆ 𝑄.

For a finite automaton 𝑀 , we define a configuration as 𝐶 = (𝑞, 𝑤) from 𝑄×Σ*. Given a
word 𝑤 on the input, the configuration (𝑠, 𝑤) is called the initial configuration and the con-
figuration (𝑞, 𝜀) for 𝑞 ∈ 𝐹 is called a final configuration.

A transition of an automaton 𝑀 is a binary relation on 𝐶 defined as (𝑞, 𝑎𝑤) ⊢𝑀 (𝑞′, 𝑤)
iff 𝑞′ ∈ 𝛿(𝑞, 𝑎). Sometimes, we omit the 𝑀 subscript from the ⊢ symbol when it is clear
which automaton we are referring to. Symbol ⊢+𝑀 is the transitive closure of ⊢𝑀 and ⊢*𝑀 is
its transitive and reflexive closure. A path from a state 𝑞 to a state 𝑞′ of finite automaton
𝑀 is a sequence of transitions (𝑞, 𝑤) ⊢*𝑀 (𝑞′, 𝑤′), where 𝑤,𝑤′ ∈ Σ*. An accepting path is
a path from a state 𝑞 to a state 𝑓 , such that 𝑓 ∈ 𝐹 .

For a set of states 𝑆 ∈ 𝑄, we define 𝑝𝑜𝑠𝑡𝑎(𝑆) =
⋃︀

𝑠∈𝑆{𝑡 | 𝑠
𝑎−→ 𝑡 ∈ 𝛿}, which gives a

set of states reachable from a set of states 𝑆 using transitions that read the symbol 𝑎. We
define 𝑝𝑜𝑠𝑡(𝑆) =

⋃︀
𝑎∈Σ 𝑝𝑜𝑠𝑡𝑎(𝑆), which is a generalized version of the former as it reads an

arbitrary symbol 𝑎 ∈ Σ.
In the rest of this work, we will generalize the definition of a finite automaton to support

multiple initial states so the automaton will be a 5-tuple 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) with the same
meaning as in Equation 2.1 except for the 𝐼 term, which is the set of initial states 𝐼 ⊆ 𝑄.

A string 𝑤 is accepted by a finite automaton 𝑀 iff (𝑠, 𝑤) ⊢* (𝑓, 𝜀) for some 𝑠 ∈ 𝐼 and
𝑓 ∈ 𝐹 . Then, we can define the set of strings accepted by the finite automaton 𝑀 as 𝐿(𝑀).
Formally,

𝐿(𝑀) = {𝑤 | ∃𝑠 ∈ 𝐼, 𝑓 ∈ 𝐹 : (𝑠, 𝑤) ⊢* (𝑓, 𝜀)}.

We will denote the language of a state 𝑞 ∈ 𝑄 of FA 𝑀 as

𝐿(𝑀)(𝑞) = {𝑤 | ∃𝑓 ∈ 𝐹 : (𝑞, 𝑤) ⊢* (𝑓, 𝜀)}.

6

Types of finite automata

If the transition function of an automaton 𝑀 is of the form 𝑄×Σ→ 𝑄, i.e. |𝛿(𝑞, 𝑎)| ≤ 1 for
every 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, then 𝑀 is called a deterministic finite automaton (DFA); otherwise,
𝑀 is called a non-deterministic finite automaton (NFA). The term deterministic refers to
the fact that for each input string it accepts or rejects the input string using a unique run
of the automaton.

A finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is called a complete FA if it cannot get stuck,
that is, if for any 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ there exists at least one transition rule 𝑞

𝑎−→ 𝑟 ∈ 𝛿 for
some 𝑟 ∈ 𝑄; otherwise, 𝑀 is incomplete.

A state 𝑞 ∈ 𝑄 is accessible if it can be reached by following transitions from the initial
state, i.e. ∃𝑠 ∈ 𝐼 : (𝑠, 𝑤) ⊢* (𝑞, 𝑤′) for some 𝑤,𝑤′ ∈ Σ*. A state 𝑞 ∈ 𝑄 is terminating if it
can reach a final state. Formally, a state 𝑞 ∈ Σ is terminating if there exists 𝑤,𝑤′ ∈ Σ*,
such that (𝑞, 𝑤) ⊢* (𝑓, 𝑤′) where 𝑓 ∈ 𝐹 ; otherwise, 𝑞 is non-terminating.

A complete DFA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is called a well-specified FA (WSFA) iff 1) 𝑀 has
no inaccessible state, and 2) 𝑀 has at most one non-terminating state.

2.3 The membership decision problem
Deciding whether given some 𝑤 ∈ Σ* it holds that 𝑤 ∈ 𝐿(𝑀) is called the membership
problem. Algorithm 1 decides membership problem for a non-deterministic finite automa-
ton 𝑀 .

Algorithm 1 Deciding membership for a non-deterministic finite automaton
Input: A non-deterministic finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) and a string 𝑤 ∈ Σ*.
Output: true if 𝑤 ∈ 𝐿(𝑀); otherwise, false.

1: 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐼
2: while 𝑤 ̸= 𝜀 do
3: Let 𝑤 = 𝑎𝑤′ for 𝑎 ∈ Σ and 𝑤′ ∈ Σ*

4: 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝𝑜𝑠𝑡𝑎(𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
5: 𝑤 ← 𝑤′

6: end while
7: return 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∩ 𝐹 ̸= ∅

2.4 Union of two languages
For two languages accepted by finite automata 𝑀0 and 𝑀1 over the same alphabet, we
can easily construct a finite automaton 𝑀 that accepts the union of the two languages
𝐿(𝑀0) ∪ 𝐿(𝑀1) as presented in Algorithm 2.

Algorithm 2 Construction of a finite automaton for union
Input: Two finite automata 𝑀0 = (𝑄0,Σ, 𝛿0, 𝐼0, 𝐹0) and 𝑀1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1), such that

𝑄0 ∩𝑄1 = ∅.
Output: A finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹), such that 𝐿(𝑀) = 𝐿(𝑀0) ∪ 𝐿(𝑀1).

1: return 𝑀 = (𝑄0 ∪𝑄1,Σ, 𝛿0 ∪ 𝛿1, 𝐼0 ∪ 𝐼1, 𝐹0 ∪ 𝐹1)

7

2.5 Product union of two languages
The previous operation showed how to construct a finite automaton that accepts a union of
two languages. The operation constructs a new set of states 𝑄0 ∪𝑄1. If we implement this
operation in some strongly typed programming language the set of states 𝑄0 and 𝑄1 have
to be of the same type. This fact limits the use of the union operation for FAs that have
the same type of states. For this reason, we present another variant of the union operation,
called a product union, which does not have this limitation in Algorithm 3.

Algorithm 3 Construction of a finite automaton for product union
Input: Two complete finite automata, 𝑀0 = (𝑄0,Σ0, 𝛿0, 𝐼0, 𝐹0) and

𝑀1 = (𝑄1,Σ1, 𝛿1, 𝐼1, 𝐹1).
Output: A finite automaton, 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹), such that 𝐿(𝑀) = 𝐿(𝑀0) ∪ 𝐿(𝑀1).

1: 𝑄← 𝑄0 ×𝑄1

2: 𝛿 ← {(𝑞0, 𝑞1)
𝑎−→ (𝑞′0, 𝑞

′
1) | 𝑞0

𝑎−→ 𝑞′0 ∈ 𝛿0 ∧ 𝑞1
𝑎−→ 𝑞′1 ∈ 𝛿1}

3: 𝐼 ← 𝐼0 × 𝐼1
4: 𝐹 ← 𝐹0 ×𝑄1 ∪𝑄0 × 𝐹1

5: return 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹)

This algorithm creates a FA whose states are a product 𝑄0×𝑄1. Both input automata
must be complete. Algorithm 4 describes how to transform a FA 𝑀 to an equivalent
complete FA. It creates a special state called a 𝑠𝑖𝑛𝑘 to which all missing transitions to
create a complete FA are redirected.

Algorithm 4 Conversion of a finite automaton to an equivalent complete finite automaton
Input: A finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹).
Output: A complete finite automaton 𝑀 ′ = (𝑄′,Σ, 𝛿′, 𝐼, 𝐹), such that 𝐿(𝑀 ′) = 𝐿(𝑀).

1: 𝑄′ ← 𝑄 ∪ 𝑠𝑖𝑛𝑘
2: 𝛿′ ← 𝛿 ∪ {𝑞 𝑎−→ 𝑠𝑖𝑛𝑘 | 𝑞 ∈ 𝑄′, 𝑎 ∈ Σ, |𝑝𝑜𝑠𝑡𝑎(𝑞)| = 0}
3: return 𝑀 ′ = (𝑄′,Σ, 𝛿′, 𝐼, 𝐹)

2.6 Intersection
The family of regular languages is closed under intersection. The intersection can be de-
scribed by DeMorgan’s law as 𝐿1 ∩𝐿2 = 𝐿1 ∪ 𝐿1 and, as a consequence, constructed using
automaton complement and union. We, however, prefer a different solution presented in
Algorithm 5, which is more suitable as it can easily be used when building the resulting
automaton on the fly.

8

Algorithm 5 Construction of a finite automaton for intersection
Input: Two finite automata, 𝑀0 = (𝑄0,Σ, 𝛿0, 𝐼0, 𝐹0) and 𝑀1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1).
Output: A finite automaton, 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹), such that 𝐿(𝑀) = 𝐿(𝑀0) ∩ 𝐿(𝑀1).

1: 𝑄← 𝑄0 ×𝑄1

2: 𝛿 ← {(𝑞0, 𝑞1)
𝑎−→ (𝑞′0, 𝑞

′
1) | 𝑞0

𝑎−→ 𝑞′0 ∈ 𝛿0 ∧ 𝑞1
𝑎−→ 𝑞′1 ∈ 𝛿1}

3: 𝐼 ← 𝐼0 × 𝐼1
4: 𝐹 ← 𝐹0 × 𝐹1

5: return 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹)

2.7 Determinization of a finite automaton
Later in this chapter, we will show Algorithm 7, which constructs the complement of a lan-
guage. Before the construction of the complement, we, however, first need to perform
determinization of a non-deterministic finite automaton using Algorithm 6 by implement-
ing the so-called subset construction, also known as the Rabin-Scott subset construction [19,
p. 210]. The subset construction is exponential in the worst case because the number of
possible subsets of a set 𝑄 is 2𝑄.

Algorithm 6 Conversion of a non-deterministic finite automaton to an equivalent deter-
ministic finite automaton
Input: A finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹).
Output: A deterministic finite automaton 𝑀 ′ = (𝑄′,Σ, 𝛿′, {𝐼}, 𝐹 ′), such that 𝐿(𝑀 ′) =

𝐿(𝑀).
1: 𝑄′ ← ∅
2: Next ← {𝐼}
3: 𝛿′ ← ∅
4: while Next ̸= ∅ do
5: Pick and remove a macro-state 𝑅 from Next and move it to 𝑄′

6: foreach 𝑎 ∈ Σ do
7: 𝑅′ ← 𝑝𝑜𝑠𝑡𝑎(𝑅)
8: Add 𝑅

𝑎−→ 𝑅′ to 𝛿′

9: if 𝑅′ /∈ 𝑄′ then Next ← Next ∪ {𝑅′}
10: end for
11: end while
12: 𝐹 ′ ← {𝑞 | 𝑞 ∈ 𝑄′, 𝑞 ∩ 𝐹 ̸= ∅}
13: return 𝑀 ′ = (𝑄′,Σ, 𝛿′, {𝐼}, 𝐹 ′)

The basic idea of this construction is to simultaneously follow all possible runs of an in-
put string in 𝑀 . It begins with the set of initial states and then considers which states can
be reached when a certain symbol is read. This defines a new set of states that are obtained
by following transitions from the initial states. The procedure is repeated whenever a new
set of states is obtained.

Note that the resulting automaton is also complete. Utilizing the property of 𝑝𝑜𝑠𝑡𝑎 that
∀𝑎 ∈ Σ : 𝑝𝑜𝑠𝑡𝑎(∅) = ∅, it implicitly creates a sink state ∅ and, for every pair (𝑠, 𝑎) ∈ 𝑄× Σ
for which 𝛿(𝑠, 𝑎) = ∅, it creates a transition 𝛿′(𝑠, 𝑎) = ∅. The resulting automaton also does
not contain inaccessible states because the set of states 𝑅 in the algorithm contains only
reachable states.

9

2.8 Complement of a language
It is easy to construct a finite automaton for the complement of the language accepted
by a complete finite automaton as described by Algorithm 7. The resulting automaton is
identical to the input automaton except for the final states as shown in the algorithm.

Algorithm 7 Construction of a finite automaton for the complement of the language
accepted by a complete deterministic finite automaton
Input: A complete deterministic finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹).
Output: A complete deterministic finite automaton 𝑀 ′ = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ′), satisfying

𝐿(𝑀 ′) = Σ* ∖ 𝐿(𝑀).
1: 𝐹 ′ ← 𝑄 ∖ 𝐹
2: return 𝑀 ′ = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ′)

2.9 Testing emptiness of a finite automaton
Testing whether 𝐿(𝑀) = ∅ for some finite automaton 𝑀 is called the emptiness problem
for a FA 𝑀 . A FA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is empty iff there is no accepting path from an initial
state 𝑠 ∈ 𝐼 to a final state 𝑓 ∈ 𝐹 . Algorithm 8 tests whether there is such a path.

Algorithm 8 Testing whether a finite automaton has any path from an initial state to a
final state
Input: A finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹).
Output: true if (𝑖, 𝑤) ⊢* (𝑓, 𝜀) where 𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 ; otherwise, false.

1: if 𝐹 = ∅ then return false
2: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← ∅
3: Next ← 𝐼
4: while Next ̸= ∅ do
5: if Next ∩ 𝐹 ̸= ∅ then return true
6: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪Next
7: Next ← 𝑝𝑜𝑠𝑡(Next) ∖ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
8: end while
9: return false

At the beginning, the algorithm checks whether the input automaton contains any final
state. If not, the algorithm terminates as there cannot be any accepting path without a final
state. Otherwise, it follows all possible runs of an input string. It begins with the set of
initial states and then follows states that can be reached when a certain symbol is read.
The procedure, however, skips previously visited states. When the algorithm reaches a final
state, it terminates as an accepting path was found. This procedure is repeated whenever
a new set of states is obtained. If no final state was reached, the algorithm terminates as
it did not find any accepting path.

2.10 Testing language inclusion of a pair of finite automata
The language inclusion decision problem decides whether 𝐿(𝑀0) ⊆ 𝐿(𝑀1) for two finite
automata 𝑀0 and 𝑀1. This problem is equivalent to testing whether 𝐿(𝑀0) ∩ 𝐿(𝑀1) = ∅,

10

𝑞0 𝑎 ∈ Σ

Figure 2.1: Finite automaton 𝑀Σ* accepting the language Σ*.

which is composed of the operations of intersection, complement, and emptiness testing,
which were described in the previous sections.

2.11 Testing universality of a finite automaton
Deciding whether 𝐿(𝑀) = Σ* for some finite automaton 𝑀 , that is whether 𝑀 accepts
every string over the input alphabet Σ, is called the universality problem. This problem
is equivalent to testing whether 𝐿(𝑀Σ*) ⊆ 𝐿(𝑀), which is using the language inclusion
testing and the finite automaton 𝑀Σ* that accepts the language Σ*. 𝑀Σ* is defined as
𝑀Σ* = ({𝑞0},Σ, 𝛿, {𝑞0}, {𝑞0}) where 𝛿 = {𝑞0

𝑎−→ 𝑞0 | 𝑎 ∈ Σ} and is shown in Figure 2.1.

2.12 Antichain-based approach
Apart from the simple classical algorithms for deciding language inclusion and universality
(Sections 2.10 and 2.11, respectively), there exist more efficient approaches. One such
a method is a family of algorithms called the antichain-based approach introduced by De
Wulf et al. in [5]. The idea of these algorithms is to prune states that are being generated
during the subset construction using subsumption [3].

There is, however, a newer solution that combines a simulation-based approach and the
antichain-based approach. This solution utilizes a simulation relation to determine which
states can be pruned. A simulation on an FA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is a relation ⪯ ⊆ 𝑄×𝑄,
such that 𝑝 ⪯ 𝑟 only if 1) 𝑝 ∈ 𝐹 =⇒ 𝑟 ∈ 𝐹 and 2) for every transition 𝑝

𝑎−→ 𝑝′, there exists
a transition 𝑟

𝑎−→ 𝑟′, such that 𝑝′ ⪯ 𝑟′. It holds that the simulation relation implies language
inclusion, that is 𝑝 ⪯ 𝑞 =⇒ 𝐿(𝑀)(𝑝) ⊆ 𝐿(𝑀)(𝑞). The computed simulation relation is
used for pruning unnecessary search paths of the antichain-based method.

The original antichain-based approach that was described by De Wulf et al. [5] is just
a specific version of the more general approach when using the identity relation as the sim-
ulation relation. In the following two sections, we will use this general approach to describe
algorithms that test language universality and inclusion for finite automata.

For this description, it is convenient to introduce some new notation. We will call
a set of states of a FA 𝑀 a macro-state. A macro-state is accepting if it contains at least
one final state; otherwise, it is rejecting. Given a macro-state 𝑃 , we define 𝐿(𝑀)(𝑃) =⋃︀

𝑝∈𝑃 𝐿(𝑀)(𝑝). For two macro-states 𝑃 and 𝑅 and a binary relation ⊑, we write 𝑃 ⊑∀∃ 𝑆
to denote ∀𝑝 ∈ 𝑃.∃𝑠 ∈ 𝑆 : 𝑝 ⊑ 𝑠. We define the post-state of a macro-state 𝑃 as

𝑝𝑜𝑠𝑡(𝑃) = {𝑃 ′ | ∃𝑎 ∈ Σ : 𝑃 ′ = {𝑝′ | ∃𝑝 ∈ 𝑃 : 𝑝
𝑎−→ 𝑝′ ∈ 𝛿}}.

Finally, we use 𝑀⊆ to denote the set of relations over the states of a FA 𝑀 that imply
language inclusion.

2.12.1 Testing universality of a finite automaton

In Section 2.11, we discussed a naive algorithm for testing language universality. The algo-
rithm performs 𝐿(𝑀Σ*) ⊆ 𝐿(𝑀) using a naive algorithm, presented in Section 2.10, for

11

testing language inclusion. Such an algorithm can be inefficient due to likely fast growth
of the number of states during the determinization. Note that in the case of universality
checking, we can terminate the subset construction when we reach a rejecting macro-state.

In this work, we implemented a more efficient algorithm for testing universality using
the antichain-based approach [3]. It runs in the similar manner as the naive algorithm
by performing the subset construction but prunes unnecessary paths and therefore reduces
the number of states that would be processed otherwise. This optimization is based on
the fact that when the algorithm reaches a macro-state 𝑅 whose language is a superset
of the language of a visited macro-state 𝑃 , then there is no need to continue the search
from 𝑅. If a string is not accepted from 𝑅, it is also not accepted from 𝑃 , and, moreover,
because 𝑃 is smaller, it is more likely to reach a rejecting macro-state.

Unfortunately, it is generally hard to test 𝐿(𝑀)(𝑃) ⊆ 𝐿(𝑀)(𝑅) and, therefore, we use
an easy-to-compute alternative: given 𝑃 , 𝑅 to be two macro-states, 𝑀 to be a FA, and ⪯
to be a relation in 𝑀⊆, then 𝑃 ⊑∀∃ 𝑅 implies 𝐿(𝑀)(𝑃) ⊆ 𝐿(𝑀)(𝑅). The ⪯ relation can
be any relation that implies language inclusion like the identity relation or a simulation
relation.

Algorithm 9 Testing universality of a finite automaton using the antichain-based approach
Input: A finite automaton 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) and a relation ⪯∈𝑀⊆.
Output: true if 𝑀 is universal; otherwise, false.

1: if 𝐼 is rejecting then return false
2: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← ∅
3: Next ← {𝐼}
4: while Next ̸= ∅ do
5: Pick and remove a macro-state 𝑅 from Next and move it to the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
6: foreach 𝑃 ∈ {𝑅′ | 𝑅′ ∈ 𝑝𝑜𝑠𝑡(𝑅)} do
7: if 𝑃 is an rejecting macro-state then return false
8: else if @𝑆 ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪Next s.t. 𝑆 ⪯∀∃ 𝑃 then
9: Remove all 𝑆 from 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪Next s.t. 𝑃 ⪯∀∃ 𝑆

10: Add 𝑃 to Next
11: end if
12: end for
13: end while
14: return true

Algorithm 9 tests the universality of a finite automaton 𝑀 using the antichain-based
approach we just discussed. It works as follows: Next is a set of macro-states to be processed
and, at the beginning, it contains the initial states of 𝑀 . The algorithm runs until the set
Next of macro-states is not empty or a rejecting macro-state is found. Meanwhile, it picks
one macro-state 𝑅 from Next and moves it to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑. The algorithm then creates all
successors of the macro-state 𝑅 and terminates if any of these successors are rejecting.
The lines 8 to 10 of the algorithm implement the pruning using the relation ⪯ with regard
to each successor 𝑃 of the macro-state 𝑅. If there are no macro-states in both 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
and Next that are ⪯∀∃-smaller than 𝑃 , then it removes all items of 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 and Next
that are ⪯∀∃-larger than 𝑃 . Finally it adds 𝑃 into Next .

Figure 2.2 shows runs of the classical and the antichain-based universality checking algo-
rithms. The classical approach generated 13 macro-states, whereas, thanks to macro-state
pruning, only 7 states were generated by the antichain-based approach. In this example,

12

𝑠1

𝑠2

𝑠3

𝑠4

𝑎

𝑎
𝑏

𝑏

𝑎

𝑏

𝑎

𝑏

𝑏

(a) Input finite
automaton 𝑀 .

Naive

Antichain
𝑠1, 𝑠2

𝑠2, 𝑠3

𝑠1, 𝑠3

𝑠1, 𝑠2

𝑎

𝑠1, 𝑠3

𝑏

𝑎

𝑠2, 𝑠3

𝑏

𝑎

𝑠1, 𝑠2, 𝑠4

𝑠2, 𝑠3

𝑎

𝑠1, 𝑠2, 𝑠3, 𝑠4

𝑠1, 𝑠2, 𝑠3

𝑠1, 𝑠2, 𝑠3

𝑎

𝑠1, 𝑠2, 𝑠3, 𝑠4

𝑏

𝑎

𝑠1, 𝑠2, 𝑠3, 𝑠4

𝑏

𝑏

𝑏

(b) Run of the universality checking algorithms on the
FA 𝑀 . Areas labelled “Naive” and “Antichain” represent
the naive and antichain-based algorithms, respectively.

Figure 2.2: An example of universality checking of a FA 𝑀 (taken from [3]).

we used identity as the relation ⪯. The search can stop at the state {𝑠1, 𝑠2, 𝑠4} because it
is a superset of the initial state, i.e. {𝑠1, 𝑠2} ⊆ {𝑠1, 𝑠2, 𝑠4}.

2.12.2 Testing language inclusion of a finite automaton

We can use the same techniques we learned in the previous section to implement an algo-
rithm that tests language inclusion using the antichain-based approach. The language
inclusion decision problem decides whether 𝐿(𝑀0) ⊆ 𝐿(𝑀1) for two finite automata 𝑀0

and 𝑀1. The naive algorithm that tests language inclusion, presented in Section 2.10,
builds the product automaton 𝑀0 ×𝑀1 of 𝑀0 and the complement of 𝑀1 and searches
for an accepting state. A state of the product automaton 𝑀0 ×𝑀1 is a pair (𝑝, 𝑃) where
𝑝 is a state of 𝑀0 and 𝑃 is a macro-state of 𝑀1. For convenience, we will call the pair
(𝑝, 𝑃) a product-state. Such a product-state (𝑝, 𝑃) is accepting iff the state 𝑝 is accepting
and the macro-state 𝑃 is rejecting. We will use 𝐿(𝑀0,𝑀1)(𝑝, 𝑃) to denote the language
of the product-state (𝑝, 𝑃). The language of 𝑀0 is not contained in the language of 𝑀1

iff there exists some accepting product-state (𝑝, 𝑃) reachable from some initial product-
state. It holds that 𝐿(𝑀0,𝑀1)(𝑝, 𝑃) = 𝐿(𝑀0)(𝑝) ∖ 𝐿(𝑀1)(𝑃). We define a post-state of
a product-state (𝑝, 𝑃) as

𝑝𝑜𝑠𝑡((𝑝, 𝑃)) = {(𝑝′, 𝑃 ′) | ∃𝑎 ∈ Σ : 𝑝
𝑎−→ 𝑝′ ∈ 𝛿𝑀0 , 𝑃

′ = {𝑝′′ | ∃𝑝 ∈ 𝑃 : 𝑝
𝑎−→ 𝑝′′ ∈ 𝛿𝑀1}}

where 𝛿𝑀0 and 𝛿𝑀1 are the transition functions of 𝑀0 and 𝑀1, respectively.
Algorithm 10 tests the language inclusion of two finite automata using the antichain-

based approach we have just discussed. The algorithm has a similar structure as Algo-
rithm 9, which tests universality. Both algorithms terminate when the set Next is empty.

13

Similarly, Algorithm 10 builds the product automaton and searches for an accepting product-
state. It can stop and conclude that the language inclusion does not hold when it encounters
such an accepting product-state.

Algorithm 10 Testing language inclusion of two finite automata using the antichain-based
approach
Input: Two finite automata, 𝑀0 = (𝑄0,Σ, 𝛿0, 𝐼0, 𝐹0), 𝑀1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1) and a rela-

tion ⪯∈ (𝑀0 ∪𝑀1)
⊆.

Output: true if 𝐿(𝑀0) ⊆ 𝐿(𝑀1); otherwise, false.
1: if there is an accepting product-state in {(𝑖, 𝐼1) | 𝑖 ∈ 𝐼0} then return false
2: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← ∅
3: Next ← {(𝑖, 𝐼1) | 𝑖 ∈ 𝐼0}
4: while Next ̸= ∅ do
5: Pick and remove a product-state (𝑟,𝑅) from Next and move it to the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
6: foreach (𝑝, 𝑃) ∈ {(𝑟′, 𝑅′) | (𝑟′, 𝑅′) ∈ 𝑝𝑜𝑠𝑡((𝑟,𝑅))} do
7: if (𝑝, 𝑃) is an accepting product-state then return false
8: else if @𝑝′ ∈ 𝑃 s.t. 𝑝 ⪯ 𝑝′ then
9: if @(𝑠, 𝑆) ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪Next s.t. 𝑝 ⪯ 𝑠 ∧ 𝑆 ⪯∀∃ 𝑃 then

10: Remove all (𝑠, 𝑆) from 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪Next s.t. 𝑠 ⪯ 𝑝 ∧ 𝑃 ⪯∀∃ 𝑆
11: Add (𝑝, 𝑃) to Next
12: end if
13: end if
14: end for
15: end while
16: return true

The universality checking algorithm utilized the simulation relation to prune unneces-
sary paths during the macro-state construction. This optimization can also be generalized
for language inclusion checking. Let 𝑀0 = (𝑄,Σ0, 𝛿0, 𝐼0, 𝐹0) and 𝑀1 = (𝑄,Σ1, 𝛿1, 𝐼1, 𝐹1) be
two FAs and it holds that 𝑀0 ∩𝑀1 = ∅. Let 𝑀0 ∪𝑀1 be the union of automata 𝑀0 and
𝑀1. Let ⪯ be a relation in (𝑀0 ∪𝑀1)

⊆. During the construction of product-states, we can
halt the algorithm in a product-state (𝑝, 𝑃) if (a) there exists some visited product-state
(𝑟,𝑅), such that 𝑝 ⪯ 𝑟 and 𝑅 ⪯∃∀ 𝑃 , or (b) 𝑝′ ∈ 𝑃 : 𝑝 ⪯ 𝑝′. In other words, 𝑝 ⪯ 𝑟 and
𝑅 ⪯∃∀ 𝑃 implies 𝐿(𝑀0,𝑀1)(𝑝, 𝑃) ⊆ 𝐿(𝑀0,𝑀1)(𝑟,𝑅).

Figure 2.3 shows run of the naive and the antichain-based language inclusion checking
algorithms. The naive approach generated 13 macro-states, and, thanks to the macro-state
pruning, only 8 states were generated by the antichain-based approach. We also used ⪯ as
the identity relation in this example. The algorithm does not need to continue the search
from the product-states (𝑝1, {𝑞1, 𝑞2}) and (𝑝2, {𝑞1, 𝑞2}) because 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪ Next already
contains product-states (𝑝1, {𝑞1}) and (𝑝2, {𝑞2}).

2.13 Finite automata libraries
This section discusses other finite automata libraries with similar aims and properties as
the library proposed in this work. As mentioned in the introduction, the goal of this work
was to implement an efficient finite automata library for certain operations on automata
that are relevant to formal analysis of computer programs.

14

Naive

Antichain

𝑝1, {𝑞1}

𝑝1, {𝑞2}

𝑝1, {𝑞1, 𝑞2}

𝑎

𝑝2, {𝑞1, 𝑞2}

𝑎

𝑎

𝑝2, {𝑞2}

𝑝1, {𝑞1, 𝑞2}

𝑝1, {𝑞1, 𝑞2}

𝑎

𝑝2, {𝑞1, 𝑞2}

𝑎

𝑎

𝑝2, {𝑞1, 𝑞2}

𝑝1, {𝑞1, 𝑞2}

𝑎

𝑝2, {𝑞1, 𝑞2}

𝑎

𝑝1, {𝑞1}

𝑏

𝑎

𝑝1, {𝑞1}

𝑏

𝑎

(a) Run of the language inclusion checking algorithms on FAs 𝑀0 and 𝑀1. Areas labelled “Naive”
and “Antichain” represent the naive and antichain-based algorithms, respectively.

𝑝1 𝑝2

𝑎

𝑎

𝑎

𝑎, 𝑏

(b) Finite automaton 𝑀0.

𝑞1 𝑞2

𝑎

𝑎

𝑎, 𝑏

(c) Finite automaton 𝑀1.

Figure 2.3: An example of language inclusion checking of FAs 𝑀0 and 𝑀1 (taken from [3]).

The first library mentioned here is VATA [15]. It is a highly optimized library for non-
deterministic finite word and tree automata. The focus of the library is to be used in formal
verification. The library utilizes the antichain-based and a bisimulation up to congruence
approaches to perform language inclusion checking. The library also allows to work with
finite automata and internally uses an explicit representation of a FA.

Another library called Automata was created by Margus Veanes and Loris D’Antoni [1].
According to the project description, Automata is a .NET library for composing and analyz-
ing regular expressions, automata, and transducers over symbolic alphabets, i.e. alphabets
with potentially infinitely many symbols. Apart from word automata, this library also con-
tains algorithms for analysis of tree automata. The library can work with finite alphabets
and also with their symbolic counterparts.

Automaton [2] is a Java library that contains deterministic and non-deterministic finite
automata implementations using a symbolic representation of an alphabet. The library con-
tains standard finite automata operations as well as some non-standard ones (intersection,
complement, etc.).

15

Chapter 3

Haskell

Haskell is a standardized, general-purpose purely functional language, which has non-strict
semantics and strong static typing. It is one of the most popular functional programming
languages. The language could be described according to its main properties [10]:

∙ Static typing. All Haskell expressions have types that are checked during the compi-
lation time. All expressions must logically fit together according to the type system.
Otherwise, the compiler will reject the program.

∙ Type inference. When writing Haskell programs, one does not have to explicitly
indicate all types. The compiler will try to automatically infer types in the program.
Of course, types can be written out explicitly if desired.

∙ Laziness. Function arguments are not evaluated when they are bound to variables
but their evaluation is postponed until their results are needed by other computa-
tions. This enables to write clearer code, custom control structures, or to achieve
performance benefits.

∙ Purity. Every Haskell function is a pure function, forbidding to write code that
performs side-effects or mutates state. This leads to a much more maintainable and
error-prone code. Side-effects are performed inside monads. Monad is a mechanism
of how to build program components by joining simple components in robust ways.
By using this mechanism, all side-effects are explicitly separated from a pure code.

∙ Concurrency. Thanks to the Haskell’s purity, the language is suitable for concurrent
programming due to its explicit handling of effects. The language comes with a light-
weight concurrency library and an efficient parallel garbage collector.

3.1 Non-strict semantics
In the following explanation, we will use a mathematical symbol ⊥ that is called the bottom,
and refers to a computation that never completes successfully. It includes computations
that fail due to some kind of an error, or computations that just falls into an infinite loop
(without returning any data).

Haskell is an expression language, which means the program run corresponds to a reduc-
tion of an expression. There are two relevant reduction strategies called the strict semantics
and the non-strict semantics. Here, the reduction strategies refer to the semantics of the

16

head ([1,2] ++ [3,4])

head (1:([2] ++ [3,4]))

head (1:2:([] ++ [3,4]))

head (1:2:[3,4])

1
(a) Strict evaluation.

head ([1,2] ++ [3,4])

head (1:([2] ++ [3,4]))

1
(b) Non-strict evaluation.

Figure 3.1: Strict and non-strict reduction strategies on the Haskell expression head ([1,2]
++ [3,4]). In this case the non-strict reduction skips the reduction of the innermost sub-
expression [2] ++ [3,4].

expression. They simply define what kinds of values in the domain map to what kinds of
values in the codomain [22]. In particular, a strict function must map the value ⊥ to ⊥;
a non-strict function is not required to do this.

A strict function must map the value ⊥ to ⊥. That effectively means that an expression
language has a strict semantics if all sub-expressions of the expression are reduced before
the expression. That is, the reduction starts with the innermost sub-expressions and then
gradually works outwards. On the other hand, an expression language has a non-strict
semantics if expressions can have a value even though some of their sub-expressions do
not. This means that the reduction starts with the outermost expression and gradually re-
duces sub-expressions inwards. Figure 3.1 represents both reduction strategies on a Haskell
expression head ([1,2] ++ [3,4]).

Haskell expressions can have certain properties based on how much they are reduced.
An expression is in the weak head normal form (WHNF), if it is either:

∙ a constructor (eventually applied to arguments) like Just (square 16) or (:) 1;

∙ a built-in function applied to too few arguments (perhaps none) like (+) 2 or sqrt;

∙ or a lambda abstraction.

An expression is in the normal form (NF), if it is fully reduced, and no sub-expression
could be evaluated any further [11]. For example, the normal form of the expression Just
(square 16) is Just 4.

Haskell is one of the few languages that utilize the non-strict semantics. This allows
programs to work with conceptually infinite data structures. Generally, the main advantage
of non-strict languages over strict languages is cleaner, more maintainable code, and also
that they allow lazy evaluation.

17

3.2 Lazy evaluation
Strict and non-strict semantics, which were discussed in the previous section, were concerned
with the mathematical meaning of an expression [22]. However, the previous section was
not discussing such concepts as the running time of a function, memory consumption, or
even a computer.

On the other hand, this section discusses operational semantics, i.e. how the program
is executed on a real computer. One such a strategy is called lazy evaluation [11]. Lazy
evaluation means that expressions are not evaluated when they are bound to variables
but their evaluation is deferred until their results are needed by other computations. As
a consequence, function arguments are not evaluated before they are passed to a function
but only when their values are actually needed. Haskell uses lazy evaluation to implement
non-strict semantics.

Such deferred values are stored as thunks. A thunk is a value that is yet to be evaluated.
It is essentially a data structure containing values that are needed to evaluate an expression,
plus a pointer to the expression itself. When the result is needed, the program evaluates
the expression and then replaces the thunk with the result.

Suppressing non-strict semantics

Non-strict evaluation can sometimes hurt run-time performance if not used carefully. Specif-
ically, the program needs to hold on to data passed into an expression to evaluate them
later if needed. If such data would be evaluated anyway, it is more economical to evaluate
them immediately. Luckily, Haskell has mechanisms to eagerly evaluate sub-expressions
and thus to suppress non-strict evaluation if needed [11].

First such a mechanism is called the strictness analysis. Haskell compilers like GHC
are performing strictness analysis, which attempts to determine which sub-expressions are
always evaluated by the expression and therefore can be evaluated by the caller instead.

Strictness analysis can improve the run-time performance by eagerly evaluating some
sub-expressions. Unfortunately, the analysis often cannot optimize all sub-expressions suit-
able for eager evaluation. Therefore, Haskell enables to explicitly annotate sub-expressions
to be evaluated eagerly. The basic method to explicitly introduce strictness to Haskell
program is the seq function. Its type annotation is seq :: a -> b -> b and has an im-
portant property that it is strict on its first argument. seq is given by the following two
definitions:
⊥ ‘seq‘ b = ⊥ a ‘seq‘ b = b.

These two definitions are all seq must satisfy. If the compiler can statically prove that
the first argument is not ⊥ or that its second argument is ⊥, it does not have to evaluate
anything. However, such a situation almost never happens in practice. For example, seq
function is used in a definition of a standard library function foldl’:

foldl ’ :: (a -> b -> a) -> a -> [b] -> a
foldl ’ _ z [] = z
foldl ’ f z (x:xs) =

let
c = f z x

in
c ‘seq ‘ foldl ’ f c xs

18

This function is commonly called the strict fold. As opposed to the ordinary foldl function,
the strict fold eagerly evaluates its accumulator parameter.

Another way of how to add required strictness to a code is the GHC’s language extension
called the bang patterns. By using this extension, we can suggest a function parameter to be
strict by annotating the parameter with the ! symbol. For example, f !x !y = z defines
a function f with both its parameters to be evaluated strictly. Specifically,
f !x !y = z

is semantically equivalent to
f x y

| (x ‘seq ‘ y) ‘seq ‘ False = undefined
| otherwise = z

Bang patterns are the easiest way to modify strictness properties of some code as they are
syntactically less invasive than other methods [18, p. 574].

The last mechanism to explicitly introduce strictness that we will mention is the strict
infix application operator ($!) [11]. It differs from the standard application operator ($)
in that it evaluates its arguments strictly. So instead of writing
f (g x)

if 1) you were to evaluate g x anyway, and 2) f is not visibly strict or inlined, it is more
efficient to write
f $! (g x).

3.3 Profiling
Haskell is a high-level language that allows to program in abstractions like functors, monoids,
monads, and others. The language specification goes to great lengths to avoid prescribing
any specific evaluation model. Most of the time, it is beneficial to free ourselves from low-
level details and, instead, focus on the essence of the problem we are trying to solve [18,
p. 561-578].

Unfortunately, in real-world programming, it is often necessary to concentrate on lower-
level details in order to optimize the program’s performance. Haskell programs do not run
on abstract machines but on real hardware with time and space constraints. Therefore, it
is essential to use the right profiling tools when performance matters to analyze run-time
behaviour of a program. Luckily, the GHC platform provides these tools.

GHC allows to collect runtime statistics by passing specific flags to the Haskell runtime,
using a special +RTS flag to introduce arguments reserved for the runtime system. Some
other useful flags are:

∙ The -s flag instructs the runtime to gather statistics about the memory and garbage
collector. It gives information about what a program is doing. In particular, it tells
how much time was spent in garbage collection and what the maximum live memory
usage was.

∙ The -p flag enables to get the time and allocation profiling report. Such a report
gives information about the proportion of time and memory each function consumed
in relation to all other functions. This report is especially useful to quickly narrow
down a problematic location in a code that is responsible for a performance bottleneck.

19

∙ The -K flag is used to set a specific stack limit for a program. A non-optimized
program or profiling can often lead to a stack overflow and, therefore, it is sometimes
useful to set a larger stack limit.

∙ The -hc flag turns on the heap profile information gathering of a program. Heap
profile is useful for revealing memory leaks in programs, which is a situation when
memory is consumed and not disposed afterwards. This leads to a heavy garbage
collector activity.

Apart from the runtime statistics gained during profiling, it is often useful to analyze
lazy evaluation. To check the laziness of a program, we can use the Hood debugger [8]. This
debugger is based on the idea of observing functions and structures as they are evaluated.
It provides information about which part of a data structure is evaluated and which part
is not. Hood provides the function observe :: String -> a -> a. The first parameter
just defines a name that is associated with the observation. The second parameter is
then passed unmodified as a result and additionally records to which result its parameter is
evaluated. In the end, we can check the records and find out which parts of a data structure
passed into observe were evaluated and which were not.

3.4 Monad
In functional programming, monads are a way of how to join computer program components
in robust ways. A monad often encapsulates values of a particular datatype, creating
a new type with an associated computation. The computation on that particular datatype
depends on a specific type of the monad. Monads find many uses in functional programming
as they provide a convenient framework for simulating effects found in other languages, such
as global state, exception handling, output, or non-determinism. Monads allow to represent
a wide variety of concepts commonly found in imperative languages in a pure, functional
way without the need for special syntactic constructs [16] [18, p. 325-357].

The following definition is a simplified version of a Monad type class:

class Monad m where
return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Many types have monadic behaviour and thus implement this type class, such as Maybe,
[], IO and many others. The first function that the Monad type class defines is return.
It receives a value and puts it in a minimal default monadic context that still holds that
value. In other words, it takes some value and “wraps” it in a monad. Such a minimal
default context of course depends on a specific type of a monad represented by the type
parameter m. In case of the Maybe monad, where m is Maybe, the function return is defined
as follows:

return a = Just a

When using the [] monad, it is defined as:

return a = [a]

The second function, (>>=), also called the bind operator, takes a monadic value (that is,
a value with a context) and feeds it to a function that takes a normal value but returns

20

a monadic value. Utilizing this knowledge, we can compose a sequence of function calls
(forming a pipeline) with several bind operators chained together in an expression. In this
pipeline, the bind operator unwraps the value of the previous monadic context and passes
it to function a -> m b, which creates a new monad with a type parameter b. Afterwards,
this monad is fed to the next bind operators composed in the pipeline.

The following code snippet is an example of such a pipeline:

return 5
>>= (\x -> if x > 10 then Just x else Nothing)

>>= (\y -> Just y)

Initially, the value 5 is wrapped in a default context (in this case Just 5) and send to
the pipeline. The first bind operator passes the value into the first transformation function,
which returns Nothing. Afterwards, this monad is passed into the second bind operator,
which skips transformation function and immediately returns Nothing. Bind operation
implements logic that decides whether to unwrap the value and pass it to the transformation
function or to skip this step completely.

Haskell provides a special syntactic construct called the do-notation, which allows to
write monadic pipelines in a such a way that mimics an appearance of imperative lan-
guages. The compiler translates do-notation to expressions involving chained bind opera-
tors. The pipeline showed in the previous snippet can be rewritten in a do-notation as:

do
x <- return 5
y <- if x > 10 then Just x else Nothing
Just y

3.4.1 Monad laws

Every monad implementation should be compatible with certain laws that specify what
behaviour is expected from a monad. Haskell language itself does not enforce these laws
through the compiler—it is up to the author of a Monad instance to follow them. Abiding
to these laws ensures that we can expect some common behaviour when using monads.
Every law below can be read as: the expression on the left-hand side of (==) is equivalent
to the expression on the right-hand side.

(return x) >>= f == f x
m >>= return == m

(m >>= f) >>= g == m >>= (\x -> (f x >>= g))

Intuitively, the first and the second law state that return acts as a neutral element of
(>>=). The third law states that binding two functions in succession is the same as binding
a composition of the functions.

There are many types of monads found in the Haskell standard library and many more
in other, third-party packages. In the following sections, we will explore three of them that
are useful when implementing our library.

21

3.4.2 Maybe

The Maybe monad is used to create a chain of sequential computations that may fail. If one
computation in such a chain fails, the rest of the chain is skipped and Nothing is returned.
The implementation of this monad has the following definition:

instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x

The return function only wraps the value in a default context. The behaviour of the bind
operator depends on the input. If the input is Nothing, the bind operator returns Nothing.
When the input is Just x, the value x is fed to the transformation function and the result
is returned.

3.4.3 State

Because Haskell is a pure language, programs are made of functions that cannot change
global state or variables. They can only perform computations based on their inputs and
then return results. This restriction is actually useful most of the time as it simplifies
the reasoning about programs. We do not need to keep in mind the values of all variables
at a specific point of time. However, this property comes with a price as some problems
are inherently stateful, which can be tedious to model in a pure language.

Due to the above-mentioned problem, Haskell provides the State monad, which allows
to attach state information of any type to a calculation and, thus, to imitate a mutable
environment. Together with the do-notation, a code using the State monad resembles
an imperative one. A state is implicitly handled inside the State monad and the need to
transfer all state through parameters of pure functions is unnecessary.

Basically, the State monad is a function that takes some state s and returns a value a
along with some new state [16]:

newtype State s a = state { runState :: s -> (a,s) }

Now, that we described the State monad, we can move to its implementation:

instance Monad (State s) where
return x = state $ \s -> (x,s)
(state h) >>= f = state $ \s -> let (a, newState) = h s

(state g) = f a
in g newState

The return function always wraps the passed value in a default minimal monadic context.
It is also the case of the State monad in which return takes a value and makes a stateful
computation that always has that value as its result. So return creates a stateful com-
putation that presents a certain value as the result and keeps the state unchanged. Now,
we will move on to (>>=). The bind operator must return some stateful computation,
and, therefore, it returns a lambda wrapped in the state data constructor. This lambda
represents a stateful computation that will be returned. Generally, a bind operator usually
unwraps the value from the previous context and applies the transformation function on it.
It works exactly in the same way with the State monad. By unwrapping a stateful compu-
tation h out of a previous context and passing the current state s to it, a new intermediate

22

result (a, newState) is produced. Afterwards, the transformation function f is applied
and a new stateful computation g is finally returned. (>>=) kind of glues two stateful com-
putations together, only the second one is hidden inside a function that takes the previous
one’s result.

As a simple demonstration of the State monad, let us consider an abstract data type,
stack, implemented using a single-linked list where list’s head represents the top element of
the stack:

type Stack = [Int]

We can then define the two essential stack operations, pop and push, in terms of the State
monad as follows:

pop :: State Stack Int
pop = state $ \(x:xs) -> (x,xs)

push :: Int -> State Stack ()
push a = state $ \xs -> ((),a:xs)

pop is a stateful computation with a state of type Stack that returns a value of type Int.
Given the input stack (x:xs), pop just removes the top element x from the stack and
returns it. push requires a parameter of type Int to become a stateful computation with
a state of type Stack that does not return any value (expressed as the () type). push
simply adds the parameter to the stack.

Given these operations, we can conveniently use do-notation to implement a function,
which manipulates a stack without the need to explicitly pass a state of type Stack around:

computation :: State Stack Int
computation = do

push 3
a <- pop
pop

Specifically, the function is a stateful computation on the Stack type that pushes value 3,
pops a value to a, and finally pops again.

3.4.4 Parsec

Parsec is a monadic parser combinator library for Haskell. It can parse context-sensitive, in-
finite look-ahead grammars but reaches the best performance on predictive (LL) grammars.
LL grammars are grammars that can be parsed by an LL parser, which parses the input
from left to right and constructs a leftmost derivation of the sentence. According to Daan
Leijen [13], combinator parsing, which is also used in Parsec, offers several advantages over
YACC and event-based parsing as:

∙ The combinator parsers are developed in the same language as the rest of the program.
The user does not have to learn both parser’s domain specific language (e.g. Yacc)
and the actual programming language (e.g. C). This offers several benefits, such as
simplicity for the user as well as availability of developer tools of the host language.

∙ Parsers are first-class objects of the programming language. Therefore, they can be
passed as parameters, returned as values, or put into lists. A user can also easily
extend available parsers to meet his specific needs.

23

In the previous section, we saw that the State monad is used to carry an implicit state.
The Parsec library utilizes the ParsecT monad, which is similar to the State monad in
the sense that it also carries a state. The actual ParsecT monad used by the Parsec library
is rather complex. In order to introduce its structure without going into unnecessary details,
we will present a simpler variant called the Parser monad:

type Error = String

type ParserState = String

newtype Parser a = Parser {
runParse :: ParserState -> Either Error (a, ParserState)
}

This monad has two logically distinct aspects. The first one is the idea of a parse failing
and providing a message with the details. We represent this using the Error type found on
the left-hand side of the Either type. The other idea involves carrying around a piece of an
implicit state (ParserState) with a partially consumed input of the type String. The fol-
lowing definition contains the bind operation. It simply chains two parsers, firstParser
and secondParser, together:

(>>=) :: Parser a -> (a -> Parser b) -> Parser b
firstParser >>= secondParser = Parser chainedParser

where chainedParser initState =
case runParse firstParser initState of

Left errMessage ->
Left errMessage

Right (firstResult , newState) ->
runParse (secondParser firstResult) newState

It wraps the function chainedParser to a new parser and returns this parser. Inside
chainedParser, the firstParser parser is run with the following two possible outcomes:
1) it returns an error, which is then passed into the resulting chainedParser parser or 2) it
returns a successful result, which is then run by the secondParser parser.

The original monad used in Parsec is declared as ParsecT s u m a with

1. a stream type s, which determines a type of data to be parsed (e.g. String, ByteString,
and others),

2. a user state type u, because ParsecT is also a state monad,

3. an underlying monad m,

4. and a return type a, which is returned from the monad if the parsing was successful.

The library also defines these, more specialized, versions of ParsecT among others:

type Parsec s u = ParsecT s u Identity

type Parser = Parsec ByteString ()

The type Parser, which represents a parser with a ByteString stream type without a user
state, is used in our library.

24

Sequence and choice

Apart from the bind operator for chaining two parsers, the Parsec library contains many
utility functions and constructs to define custom parsing logic in a simpler and more ele-
gant way. Two important operations for specifying grammars are sequence and choice. In
Parsec, we can use the monadic do-notation to perform sequencing because sequencing is
implemented using the bind operator. The following parser parses an opening parenthesis
immediately followed by a closing parenthesis:

openClose :: Parser Char
openClose = do

char ’(’
char ’)’

Note that the char parser parses a single character, which specified by its parameter.
To define a choice parser, we can use the choice operator (<|>), which applies its second

operand unless the first operand succeeds. Let us move on to an example of a parser that
recognizes all inputs with matching pairs of parentheses:

parens :: Parser ()
parens = do

char ’(’
parens
char ’)’
parens
<|> return ()

Matching parentheses consist of either an open parenthesis followed by a matching pair of
parenthesis, a closing parenthesis and another matching pair of parentheses, or it is empty;
the empty alternative is implemented using the return x parser, which always succeeds
with the value x without consuming any input.

Adding semantics

In the previous example, we built the parens parser, which processes some text according
to predefined syntax rules. Given an input text, the parser would then return information
whether the parsing succeeded or did not. The parser simply recognizes matching pairs of
parenthesis but does not return a useful value. We can extend this parser by adding some
semantic actions. These will compute the maximal nesting level of the parentheses. The <-
construct will be used to bind the intermediate values returned by the parsers:

nesting :: Parser Int
nesting = do

char ’(’
n <- nesting
char ’)’
m <- nesting
return (max (n+1) m)
<|> return 0

Notice that now the nesting parser has the Int data type. It is a type that contains
the maximal nesting level value. This value is then returned when parsing is invoked.

25

Sequences and separators

Let us consider an example of a parser that parses a word, that is a sequence of one or
more characters:

word :: Parser String
word = do

c <- letter
do

cs <- word
return (c:cs)

<|> return [c]

After parsing a letter, it either parses the rest of the word or returns the single letter as
a string. It is not particularly hard to follow the logic of this parser but it can quickly become
unclear with a more complicated parsing logic. Therefore, the Parsec library provides some
useful abstractions to clarify and simplify such logic. One such abstraction is the many1
parser that parses a sequence of one or more parsers. Using this parser, the previous word
parser can be substantially simplified:

word :: Parser String
word = many1 letter

Apart from the many1 parser, the library provides the many parser, which parses a sequence
of zero or more parsers.

Parsec also provides parsers that allow to parse a sequence of parsers delimined by some
separator. These parsers are called sepBy and sepBy1. We can implement a parser that
parses a sequence of words in which each word is separated by a comma:

words :: Parser [String]
words = sepBy1 word separator

separator :: Parser Char
separator = char ’,’

By utilizing the Parsec library, one can easily build-up a hierarchy of parsers from simple
to more complex ones. Such a hierarchy of parsers can then express parsing logic in a clear,
declarative fashion. The library provides many basic parsers to simplify its usage. We use
the Parsec library in our library to parse the Timbuk text format, which is elaborated on
in Section 4.2.

26

Chapter 4

Analysis

This chapter focuses on the design and analysis of the proposed finite automata library
written in Haskell. First, data structures that are used for representing automata will be
presented. Then, the textual input format for the library will be described. In the end, sup-
ported operations over finite automata (union, intersection and complement) and decision
problems (membership, emptiness, language inclusion, and universality) will be discussed.

4.1 Data structures
It is important to carefully encode mathematical structures to their data structure coun-
terparts in Haskell, as the choice of data structures is crucial to the performance of the im-
plemented operations. Mathematically, a non-deterministic finite automaton is a 5-tuple
𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) consisting of states, alphabet, transitions, initial states, and final states.
Each string of the alphabet Σ is made of symbols 𝑎 ∈ Σ. We want our design of data
structures to be as general as possible to cover various use cases in which users may use
the library. Instead of hard-coding some of the types representing individual components
of a FA, it is more appropriate to generalize such types utilizing Haskell’s support for type
parameters.

We can take a simple approach to encode a single transition in Haskell as a record data
structure:

data Transition sym sta =
Transition

{ symbol :: sym
, source :: sta
, target :: sta
}

This approach follows the mathematical notation of a transition presented in Chapter 2.
There, we used the notation 𝑝

𝑎−→ 𝑞 to denote that 𝑞 ∈ 𝛿(𝑝, 𝑎). Note, that the Haskell types
to represent symbol and state are represented as type parameters sym and sta, respectively.

Similarly, we can use a simple approach to represent a finite automaton in Haskell in
a way that closely follows its mathematical definition:

27

Table 4.1: Asymptotic time complexity of access, insertion, and deletion operations on
a random element of [] and Set [23, 24]. The number of elements in a container is repre-
sented by 𝑛. For the union operation, the number of elements in containers is represented
by 𝑚 and 𝑛.

Operation [] Set

Access 𝑂(𝑚) 𝑂(log𝑚)

Insertion 𝑂(𝑚) 𝑂(log𝑚)

Deletion 𝑂(𝑚) 𝑂(log𝑚)

Union 𝑂(𝑚2 + 𝑚𝑛) 𝑂(𝑚 log(𝑛/𝑚 + 1)),𝑚 ≤ 𝑛

data Fa sym sta =
Fa

{ initialStates :: [sta]
, finalStates :: [sta]
, transitions :: [Transition sym sta]
}

A finite automaton is represented as a record data structure Fa. As in the previous code
snippet, types for representing symbols and states are given as type parameters. We need
to keep information about sets of initial and final states to be able to distinguish them from
other states. However, it is not necessary to store the set of states itself because it can be
retrieved explicitly by enumerating the states stored inside transitions. A similar point holds
for the alphabet—it is not always necessary to store the alphabet explicitly. The alphabet
can be retrieved from transitions. However, for certain operations like complement, it is
important to be able to pass a custom alphabet into the operation. Therefore, we provide
two variants of all FA operations: 1) a variant that uses an alphabet retrieved from FA
transitions, and 2) a variant that uses an external alphabet passed as an argument to
the operation.

One problem with the above-mentioned approach is performance. Operations on a finite
automaton heavily use container and set operations, such as accessing a specific element,
inserting and deleting an element, or a set union. In the previous code snippet, the sets
of initial states, final states, and transitions were represented by the Haskell’s list data
structure (denoted as [] in Haskell). Internally, [] is implemented as an immutable single-
linked list. Such a list is a non-trivial constant-factor faster for operations at the head, the
first element of a list, making it a more efficient choice for stack-like and stream-like access
patterns [11].

Haskell allows to work with other containers apart from lists. One such a container is
called Set located in the library containers (in module Data.Set). The implementation of
Set is based on size-balanced binary trees (or trees of bounded balance) [24]. Table 4.1 com-
pares time complexity for certain operations of [] and Set. It is clear that for the listed
operations, Set has better asymptotic time complexity than the list. Apart from this,
Set implicitly stores only unique elements. On the other hand, it is necessary to manu-
ally remove duplicate elements after performing certain list operations to keep elements of
the list unique. Function nub removes duplicate elements in a list but its time complexity
is quadratic.

28

There exist other ways of how to implement individual components of a finite automaton
apart from the [] and Set containers. For example, one such a way is to use a lookup table
to implement a container of transitions.

4.1.1 Typeclasses

Haskell provides a way to specify that some data structure supports some specific ab-
straction. This functionality is provided through typeclasses. Haskell has many build-in
typeclasses like Functor, Applicative, Monad or Monoid. We will not explain these in-
dividual typeclasses here. In our setting, it could be useful for a finite automaton Fa to
support the Functor typeclass. The fmap function could map over states of Fa. Its type
declaration would be

fmap :: (sta1 -> sta2) -> Fa sym sta1 -> Fa sym sta2

This would open up new possibilities, such as transforming all states sta of Fa to a different
type. For example, states of a string type could be mapped to a numerical type, which
could in turn cause performance improvement when doing FA operations. The string would
be transformed by some hashing function to a number. In this case, however, we would
need to be aware of collisions, which can occur when doing hashing.

A finite automaton Fa can be also considered a member of the Monoid typeclass with
respect to the union operation. Monoids are structures with an associative binary operation
and an identity element. The union operation on two FAs is an associative binary operation.
Its identity element is a FA accepting an empty language.

4.2 Input format
One requirement of the library is the possibility to load a finite automaton stored in the Tim-
buk text format, which is also used by the VATA library [15]. We use the Parsec library,
described in section 3.4.4, to parse the Timbuk input format into our data structures. Note
that the Timbuk format stores a tree automaton, a more general type of automaton than
a FA. Such a tree automaton has to be then converted to a FA.

Figure 4.2 shows an example of a simple FA represented in the Timbuk file format. Line
1 starts with the keyword Ops and then enumerates all alphabet symbols of the FA. The
number on the right-hand side of the colon symbol represents the arity of a symbol. Symbol
arity is essential for tree automata. In the case of FAs, though, symbol arities are irrelevant
and can be safely ignored. The name of the automaton and enumeration of states, fi-
nal states, and transitions are presented on lines 3–11. Every transition in the Timbuk
format has the following structure: <label> (<src-states>) -> <tgt-state>, where
<src-states>, in the FA setting, is a single source state and the whole string repre-
sents the FA transition <source> <label>−−−−−→ <tgt-state>. The <src-states> component
may also be omited, in which case it denotes that <tgt-state> is an initial state of the FA.
For instance, a Timbuk transition on line 7 of Figure 4.2 denotes that 1 is an initial state
of the automaton. On the other hand, line 8 represents the transition 1

𝑎0−→ 2.

29

1 Ops a0:1 a1:1
2
3 Automaton A
4 States 1 2 3 4
5 Final States 2 3
6 Transitions
7 x -> 1
8 a0 (1) -> 2
9 a0 (1) -> 3

10 a1 (2) -> 4
11 a1 (3) -> 4

(a) A FA encoded in the Timbuk file format.

1

2 3

4

𝑎0
𝑎0

𝑎1
𝑎1

(b) A FA corresponding to its textual repre-
sentation presented in (a).

Figure 4.1: Example of a simple finite automaton represented in the Timbuk file format.

The following example is a parser processing one transition encoded in the Timbuk
format using Parsec:

transition :: Parser Transition
transition = do

{ label <- label
; inputStates <- transitionStateList
; string " -> "
; finalState <- state
; return (Transition label inputStates finalState)
}

This parser contains a do-block, which sequentially parses individual sub-components of
a Timbuk transition. label and state are simple parsers that parse one or more alphanu-
meric symbols. transitionStateList is a more complex parser composed of other simple
parsers. Finally, a new Transition data record is then wrapped in a monadic value and
returned using the return function.

4.3 Operations
One of the main tasks of this thesis is to implement certain operations over finite automata.
These operations and their respective algorithms were described in Chapter 2. Table 4.2
lists all the algorithms for reference. As can be seen in the table, we presented two variants
of the problems of language inclusion and universality testing. Therefore, we implemented
both variants of these algorithms to compare their performance. The naive versions are
expected to be inefficient as these algorithms internally use determinization, which has
exponential time complexity. Antichain-based versions also internally determinize automata
but they try to minimize this costly operation by skipping parts of automata if possible.

All algorithms were described in the form of an imperative pseudocode in Chapter 2.
We need to take into account some issues that arise when using Haskell to implement these
algorithms. One such an issue is the absence of while, for, and other iterative constructs
in Haskell. In this language, the said constructs are instead implemented using recursion.

30

Table 4.2: Algorithms presented in Chapter 2.

Operation Location
Membership Algorithm 1
Union Algorithm 2
Intersection Algorithm 5
Determinization Algorithm 6
Complement Algorithm 7
Emptiness Section 2.9

Language inclusion Naive Section 2.10
Antichain Algorithm 10

Universality Naive Section 2.11
Antichain Algorithm 9

This brings up another issue—efficiency. Haskell provides the tail-recursion optimization
that can eliminate this problem.

A tail call is a function call performed as the final action of some function. If such a tail
call can be executed recursively, we talk about a tail-recursive call [18]. A tail-recursive
function is a function with a tail-recursive call. Such a function performs its calculation
first, and then it executes the tail-recursive call, passing the results of the current step
to the next recursive step. Once the tail-recursive function is ready to perform the next
recursive step, it does not need to keep the current stack frame anymore. This allows for
a considerable optimization. A compiler can optimize away the creation of stack frames in
such a situation and use a much more effective jump instruction instead. This technique
resembles a classical loop constructs found in imperative languages. The technique avoids
stack overflow and reduces memory consumption. It is therefore vital to write all recursive
logic as tail-recursive if possible. However, some recursive constructs are not possible to
express as tail-recursive.

Another issue arising from the use of Haskell is that the language uses lazy evaluation
by default. It is therefore important to work with lazy evaluation carefully. Such a form
of evaluation can lead to performance gains if used correctly by skipping evaluation of
parts of finite automata that are unnecessary. When used incorrectly, lazy evaluation can,
however, contribute to higher memory consumption as the Haskell runtime stores thunks in
memory. Thunks were discussed in Section 3.2. These thunks can then be kept in memory
unnecessarily, leading to a considerable memory overhead. Section 3.3 showed some useful
tools on how to analyze performance of Haskell programs. Such tools can be also used
to track down a location in the code that is responsible for memory leaks caused by lazy
evaluation. When such a location is found, we can use certain techniques to suppress lazy
evaluation as described in Section 3.2.

Finally, the last issue involves a global state. In imperative languages, the global state
can often be accessed from an arbitrary location of the program. This is a huge disadvantage
as it can greatly complicate the program logic: we have to worry about every variable’s
value at some point in time in order to understand the program logic and to ensure it
works properly. This problem is greatly reduced in purely functional languages like Haskell.
Haskell programs are made of functions that cannot change any global state or variables,

31

they can only do some computation and then return a result. This restriction actually makes
it easier to think about such programs. It also allows to perform aggressive optimizations
by compiler as many of those rely on pureness. However, in pure languages, we cannot rely
on a global state at various locations of a program to store our data into it. All state must
be explicitly passed from one location to another, which can quickly become burdensome.
This is especially true for imperative-like algorithms presented in Chapter 2. Therefore, it
could be useful to utilize the State monad presented in Section 3.4.3 when implementing
these algorithms. With the State monad, one can define a state that is accessible at any
location inside the state monad context without the need to explicitly pass such a state
around the program.

32

Chapter 5

Implementation

In the previous chapter, we discussed the issues encountered when using Haskell to imple-
ment certain finite automata operations. We performed analysis and presented two variants
of how to implement data structures representing a finite automaton. We also described the
Timbuk file format and the Parsec library, which we use to perform parsing of this format.
In the last part, we talked about operations that are implemented in the library. Due to the
fact that Haskell is a purely functional and lazily evaluated language, we will need to pay
special attention during the implementation to be sure that the code is both readable and
efficient. This chapter is concerned with the actual implementation of the finite automaton
library and is implemented as a part of this Master’s thesis. The source code of this library
is available on Github [25].

5.1 Library structure
The library uses Stack as a development tool [21]. Stack makes developing in Haskell easier
by taking care of installing a Haskell compiler, required packages, as well as building, test-
ing, and benchmarking Haskell projects. We use the GHC compiler, which is the de facto
standard compiler for Haskell [7]. The project is split into two main directories: src direc-
tory containing source code and tests directory containing unit tests and benchmarking
scripts. For a better explanation, individual parts of the library will be referenced by their
Haskell module names in the following sections.

5.2 Data structures
We implemented data structures to represent a tree automaton (module Types.Fta) and
a finite automaton (module Types.Fa). The tree automaton data structure is only used
while parsing the Timbuk file format. The file is parsed into a tree automaton, which is
then transformed into a corresponding finite automaton. Of course, the file could be parsed
into the finite automaton directly. The reason for this detour is to be able to load a tree
automaton from a Timbuk format file. We can then simply extend the library to support
various tree automata operations in the future.

We implemented two variants of the finite automaton data structure. The first variant
is implemented in terms of an immutable single-linked list ([]) and the second one in terms
of Set located in the Haskell library containers. We implemented all the FA operations

33

we discussed in this Master’s thesis for both [] and Set variants. Comparison of both
versions in terms of performance, as well as other testing, is available in Chapter 6.

The Fa data type (module Types) is declared as follows:

data Fa sym sta =
Fa

{ initialStates :: Set sta
, finalStates :: Set sta
, transitions :: Set (Transition sym sta)
} deriving (NFData , Generic)

The type derives two typeclasses: NFData and Generic. They specify that the Fa type can
be evaluated to the normal form. Fa also derives the Show typeclass using the Haskell’s
instance keyword. As described in the previous Chapter 4, we do not need to explicitly
store the set of all FA states and the alphabet. These can be retrieved from initial and
final states and transitions. Alphabet can also be passed externally if needed by certain
operations.

Originally, we did not intend to use the Set data type from the containers library
but wanted to use the Set data type from the set-monad library instead. The set-monad
library exports Set data type and set-manipulating functions [9]. This data type and
the functions behave exactly as their counterparts from the containers library. In addition,
the set-monad library extends Set by providing Functor, Applicative, Monad, and other
instances. The original Set of the containers library is not a monad due to the limits
of Haskell’s type system and the way things are currently structured. Specifically, Set
operations require elements to be instances of the Ord typeclass but the Monad typeclass
signature does not allow for that [6]. Because Set from the set-monad library is a Monad
instance, we can conveniently use some of Haskell’s language constructs to easily implement
set-manipulation logic in our algorithms. More specifically, we can use the do-notation and
list comprehension to simulate a mathematical set-builder notation. This notation is also
used in description of finite automata operations found in Chapter 2. To be able to use list
comprehension with Set, one can enable the MonadComprehensions language extension.

We originally implemented the library with the set-monad version of Set. Unfor-
tunately, after the implementation, we realized that the set-monad library has a sig-
nificant performance overhead. The library is just a wrapper over the Set data type
of the containers library. When executing any operation, this wrapper converts Set
from the one representation to another, which is extremely inefficient. Therefore, we fi-
nally decided to use the containers library version of Set despite not having Functor,
Applicative, Monad instances available at our disposal.

To overcome the inconvenience of not having the Monad instance, we implemented
our own version of monad operations: functions return and andThen (module Helpers).
The andThen function represents the bind operation and is defined as follows:

andThen :: Set a -> (a -> Set b) -> Set b
andThen monad f =

(unions . Set.map f) monad

The parameter monad is mapped over the function f and the result is concatenated. We
cannot use do-notation nor list comprehension in conjunction with andThen but we can use
this function to form a chain of computations that simulates these constructs.

34

Figure 5.1: Graphical visualization of an example FA using the displayFA function.

5.3 Visualization
One of the useful functionalities of a finite automaton library is the ability to visualize and
display a finite automaton to the user. We implemented two visualization variants—textual
and graphical. Textual visualization simply prints arbitrary automaton on the standard
output in the Timbuk format. For this reason, the type Fa (module Types) is a member of
the Show typeclass. On the other hand, to display any FA graphically, one can use the unc-
tion displayFa (module Vizualization), which opens a new window and renders an image
of the automaton inside the window. This functionality is implemented using the gtk li-
brary, a Haskell binding to the Gtk+ graphical user interface library [20]. Figure 5.1 shows
an example of a simple FA displayed in a window using the function displayFa.

5.4 Operations
Finite automata operations are located in the following five different modules:

1. Operations.Regular contains all FA operations supported by the library: union,
intersection, determinization, complement, and decision problems of membership,
emptiness, language inclusion, and universality. The decision problems of language
inclusion and universality are implemented using the naive algorithm versions (Sec-
tions 2.10 and 2.11).

2. Operations.WithExternalSymbols is similar to the module Operations.Regular.
There is one important difference though: every operation in this module has one

35

extra parameter of the type Set sym, which is used to pass an external alphabet to
the operation. This external alphabet is then used instead of the implicit alphabet,
which is retrieved from transitions. This module does not contain operations for which
this extra parameter is irrelevant (union and the decision problem of membership).

3. Operations.Product contains a single operation, union. This version of union is
called the product union and was introduced in Algorithm 3. Its type definition is Fa
sym sta1 -> Fa sym sta2 -> Fa sym (Set sta1, Set sta2). Unlike the classi-
cal version of union, this operation accepts two FAs that may have different types of
states sta1 and sta2, respectively.

4. Operations.Antichain.Universality contains the antichain-based version of the lan-
guage universality testing operation (Algorithm 2.2).

5. Operations.Antichain.Inclusion contains the antichain-based version of the lan-
guage inclusion testing operation (Algorithm 2.3).

The operations shown in Chapter 2 are specified in the form of an imperative pseu-
docode. Due to this fact, our implementation uses list comprehension and a state monad.
These techniques simplify writing of imperative-like code that performs set manipulation.
Especially, the determinization and antichain-based language inclusion and universality op-
erations use a state to track which FA states have been already visited and which are about
to be processed. Therefore, we use the state monad to keep such a state inside the monad
context. This renders an explicit passing of the state unnecessary.

In Section 3.2, we talked about lazy evaluation where we discussed its advantages and
disadvantages with regard to performance. In the next chapter, we will discuss performance
results of lazy evaluation as well as influence of suppressing lazy evaluation on performance.
Our implementation uses two methods to suppress lazy evaluation: the first method is
the use of bang patterns. Bang patterns offer a convenient way how to force evaluation of
function parameters to normal form. The second method is the use of the deepseq library
that contains the function force [4]. This function forces evaluation of an expression to
the normal form. This function is elaborated on in the next chapter.

5.5 Unit testing
To have higher confidence that the implemented operations were implemented correctly, we
wrote a set of unit tests to check the functionality of the operations. We chose Hspec [12]
as a testing framework that integrates other Haskell testing frameworks (QuickCheck,
SmallCheck, and HUnit) under the one set of API. Our unit tests are located in mod-
ules Tests.Operations and Tests.Parsing. All tests follow the same pattern of loading
some Timbuk format files, which are located in the directory tests/Examples, and sub-
sequently testing some functionality. Tests in the module Tests.Parsing check whether
the parsing functionality is correct. Tests in the module Tests.Operations always perform
some specific operation on FAs and check afterwards the correctness by making sure that
the resulting automaton accepts or rejects certain strings.

36

Chapter 6

Evaluation

The previous chapter discussed the library implementation. This chapter is concerned
with performance testing of this implemented library. We call this library “Automata”
in the following text. The testing was performed on a laptop with Intel(R) Core(TM)
i5-2410M CPU at 2.30 GHz and 8 GiB of memory at 1333 MHz running Ubuntu 16.04.2
LTS.

During testing, we had to take into account the fact that the Haskell language is eval-
uated lazily by default. This can considerably complicate the testing procedure due to
the property of lazy evaluation: the fact that code is evaluated only when its result is actu-
ally needed. We paid special attention to the issue of lazy evaluation and therefore created
the following function to evaluate our tests:

benchmarkForce :: (NFData a, NFData p)
=> (p -> a)
-> p
-> IO a

benchmarkForce action param = ...

The NFData typeclass marks types that have ability to be evaluated to normal form and
the parameter action is the function to be benchmarked. benchmarkForce first ensures
that the function’s parameters are evaluated to the normal form. This is an important
step, because, for example, if a benchmarking function starts to measure the duration
of a complement operation of a finite automaton, the library at that moment can just
start parsing the input automaton from a file. This is possible due to the nature of lazy
evaluation, in which a function is evaluated at the last possible moment, only when its result
is requested. This can render the testing results useless as the testing procedure could be
measuring execution time of the complement operation as well as other things irrelevant to
the actual benchmarking (like automaton parsing or hard drive access times). The execution
time of automaton parsing is indeed mostly irrelevant to the overall efficiency. What matters
for us is the efficiency of the FA operations. To avoid this problem, we use the library
deepseq [4]. This library contains the function force :: NFData a => a -> a, which
evaluates its argument a to the normal form. Therefore, the benchmarkForce function first
evaluates its argument param to the normal form before doing anything else. Afterwards,
benchmarkForce starts measuring the execution time, passes the argument param into
the action function, and forces evaluation of this function into the normal form. After
the function output is available, the measurement stops. The same logic applies to testing
arbitrary binary functions, in which case the function has the following declaration:

37

benchmarkForce :: (NFData a, NFData p, NFData r)
=> (p -> r -> a)
-> p
-> r
-> IO a

benchmarkForce action param1 param2 = ...

In this case, parameters param1 and param2 are to be passed into the benchmarked function
action.

We performed testing on a sample of 20 finite automata saved in the Timbuk file format
from [14]. These automata have an evenly distributed number of states in the range of 1
to 400. We used the benchmarkForce function to test the implemented library operations.
In the previous chapter, we noted that the data structures of the Automata library were
implemented using both [] and Set with the intention to compare performance of those
data structures. Therefore, benchmarking tests of both solutions are presented.

We performed identical performance testing with the VATA library to compare it with
the Automata library. VATA implements its own benchmarking functionality, which mea-
sures execution time of an operation to be executed. During benchmarking, VATA was
executed as follows:

vata -t -r expl_fa <operation > <file(s)>

This command turns on a benchmarking mode, instructs VATA to use the explicit represen-
tation of a finite automaton, and executes the operation <operation> on file(s) <file(s)>.
Note that VATA does not support all the operations that Automata supports. Therefore,
we benchmarked VATA with regard to union, intersection, and antichain-based language
inclusion and universality testing operations. VATA also does not directly support the uni-
versality testing operation. To overcome this problem, we reduced the universality testing
operation to testing language inclusion as presented in Section 2.11, to support this opera-
tion in VATA.

We tried to present the benchmark results in the best possible way to give a good
overview of the performance of individual operations. When we executed some benchmark
with FAs that had an increasing number of states, the results had outliers. As expected,
the execution time of individual operations depends more on the structure of input automata
than on the number of states. Therefore, our results are presented as medians, last deciles,
sorted sequences, etc. to suppress the noise in the data and to give a clear picture.

Table 6.1 presents a performance overview. To get an intuition of an average perfor-
mance behaviour of FA operations, we ran every operation on the sample set and com-
puted the presented indicators. We used the simple version of the union operation instead
of the product union version presented in Section 2.5. We also used the antichain-based
versions of the language inclusion and universality operations instead of the naive versions.
The naive variants were much slower than the corresponding antichain-based operations.
Actually, the execution time of a test suite for them would be extremely large and, therefore,
we did not consider them in this table. However, the naive variants are plotted in graphs
that are shown later in this chapter. The first column of the table represents operations
that were tested. The second column of the table represents a library on which the test
suite was performed: 1) VATA: the VATA library, 2) Automata ([]): the Automata library
implemented in terms of the [] data structure, and 3) Automata (Set): the Automata
library implemented in terms of the Set data structure. Other columns of the table present
the median values (50%), the last deciles (90%), the last percentiles (99%), and the maxi-

38

Table 6.1: Overview of the FA operations performance results.

Operation Library Required time (milliseconds)
50% 90% 99% 100%

Union
VATA 0.549 0.930 1.054 1.085

Automata ([]) 14.465 51.042 75.785 81.346
Automata (Set) 5.967 18.320 21.785 22.310

Intersection VATA 0.043 1.257 3.143 4.097
Automata ([]) 20.128 88.160 135.992 149.308

Determinization Automata ([]) 122.238 573.196 684.678 799.672
Automata (Set) 59.781 211.919 248.382 287.973

Complement Automata ([]) 125.299 579.269 693.527 810.212
Automata (Set) 58.491 220.620 258.893 296.217

Inclusion VATA 3.251 5.231 5.839 5.995
Automata ([]) 3.953 14.890 49.470 71.703

Universality
VATA 0.666 1.091 1.201 1.218

Automata ([]) 4.591 13.113 15.460 15.853
Automata (Set) 4.502 13.379 15.939 16.306

mum values (100%) of the execution time. For example, the value 0.549 in the first row of
the column 50% means that 50% examples of the sample set required less than 0.549 ms to
execute when performing union operation using the VATA library.

The VATA library is clearly many times faster than the Automata library in the all
cases. The Automata (Set) variant of the library is considerably faster in union, deter-
minization and complement operations then the [] variant. However, this does not hold
for the universality operation. In the case of universality, both variants have almost identical
performance.

We also focused on the suppression of lazy evaluation to improve performance of the FA
operations. In Section 3.2, we discussed the reason why it can be beneficial to resort to
such a thing. We used the profiling tools presented in Section 3.3 to detect problematic
locations with regard to performance. It turns out that by suppressing lazy evaluation
in any location in the source code did not have any significant influence on performance.
Therefore, we do not present benchmarking results of such optimization here. To detect
problematic source code locations, we used profiling tools provided by the GHC platform,
which were discussed in Section 3.3. We mostly used the -p switch to collect the time
and allocation profiling report. This report provides an overview of the program’s runtime
behaviour. It gives us information of the proportion of time and space each function was
responsible for. It also contains the cost center report, structured as a call graph. This cost
center report is valuable tool to track down a problematic source code location with regard
to performance. The following sections discuss performance results of individual operations
that were benchmarked.

39

0 100 200 300 400

0

2

4

Ranking

T
im

e
[m

s]

(a) VATA

0 100 200 300 400

0

200

400

600

800

Ranking

T
im

e
[m

s]

[]

Set

VATA

(b) VATA (brown, solid) and Auto-
mata with [] (blue, dash-dotted) and
Set (red, dotted) variants

Figure 6.1: Performance results of the union operation.

6.1 Language union
Figure 6.1 shows performance results of the union operation, which was presented in Algo-
rithm 2. We took our sample set of 20 FAs and created 400 FA pairs out of them. These pairs
were run through the union operation and the execution time of each pair was recorded.
Afterwards, the execution times were sorted to get an increasing function. The horizon-
tal axis of both plots of the figure represents the ranking of pairs from fastest to slowest.
The vertical axis represents the execution time in milliseconds. The VATA library is orders
of magnitude faster than the Automata library for both variants of data structures ([]
and Set). However, Set variant is substantially faster than the [] variant. We suppose
that the difference in performance of these variants is due to the expected asymptotic time
complexity of operations of both data structures as we described in Chapter 4.

0 100 200 300 400

0

500

1,000

1,500

2,000

2,500

Ranking

T
im

e
[m

s]

Set

[]

VATA

Figure 6.2: Performance results of the intersection operation for VATA (brown, solid) and
Automata with [] (blue, dash-dotted) and Set (red, dotted) variants.

40

6.2 Language intersection
Figure 6.2 shows performance results of the intersection operation, which was presented in
Algorithm 5. The graph was created in the same way as the figure in the previous section.
Similarly to the union operation results, the VATA library outperforms the both Automata
library variants with regard to the intersection operation. The Set variant is, however,
substantially slower than the [] variant. GHC’s profiler showed that the the Set variant
spent most resources in the andThen function. We discussed this function in Section 5.2.
We were not able to identify the reason why andThen was performing so poorly.

6.3 Language complement
We do not show graph of the determinization operation. Complement operation is im-
plemented using determinization and, therefore, performance results are almost identical.
Figure 6.3 shows performance results of the complement operation, which was presented
in Algorithm 7. Because it is a unary operation, we did not have to create pairs of FAs
from the sample set. We only ran the sample set through the complement operation and
recorded the execution time for each FA. Afterwards, we sorted the results and plotted
them in the graph. Because VATA does not support the complement operation, we only
tested Automata with the [] and Set variants. The Set variant was faster for FAs with
more than 5 states.

6.4 Language inclusion
Figure 6.4 shows performance results of the naive and the antichain-based language inclusion
testing variants, which were presented in Section 2.10 and Algorithm 10, respectively. This
figure was created in the same way as Figure 6.1 and 6.2. As with the other performance
results, this operation implemented in VATA was significantly faster than in Automata.
The Set variant was slower than the [] variant due to bad performance of the andThen
function. As expected, the naive variant was slowest.

0 5 10 15 20

0

1,000

2,000

3,000

Ranking

T
im

e
[m

s]

[]

Set

Figure 6.3: Performance results of the complement operation for Automata with [] (blue,
dash-dotted) and Set (red, dotted) variants.

41

0 100 200 300 400

0

5

10

15

20

Ranking

T
im

e
[m

s]

(a) VATA

0 100 200 300 400

0

1,000

2,000

Ranking

T
im

e
[m

s]

[]

Set

Naive

VATA

(b) VATA (brown, solid) and Automata
with [] (blue, dash-dotted), Set (red, dot-
ted), and naive (black, dashed) variants

Figure 6.4: Performance results of the language inclusion testing operation.

6.5 Language universality
Figure 6.5 shows performance results of the naive and the antichain-based language inclu-
sion testing variants, which were presented in Section sec:universality and Algorithm 10,
respectively. We used different data to conduct this benchmark. We created 500 universal
FAs with an ascending number of states in the range 1–500. Every created FA is a single-
linked list where the head element is the initial state. Beside that, there are no other initial
nor final states. We processed these FAs in the same way as in the other benchmarks.
Figure 6.5 shows that VATA was significantly faster than both Automata variants. Perfor-
mance of [] and Set variants were almost identical. As expected, the naive variant was
slowest.

0 100 200 300 400 500
0

1

2

Ranking

T
im

e
[m

s]

(a) VATA

0 100 200 300 400 500

0

20

40

60

80

Ranking

T
im

e
[m

s]

[]
Set

Naive

VATA

(b) VATA (brown, solid) and Automata
with [] (blue, dash-dotted), Set (red, dot-
ted), and naive (black, dashed) variants

Figure 6.5: Performance results of the universality testing operation.

42

Chapter 7

Conclusion

The aim of this Master’s thesis was to introduce, discuss, and analyze the theoretical and
design considerations regarding a finite automata library for the use in the field of formal
verification. We also implemented this library in Haskell, a popular non-strict functional
language. The library supports operations of union, intersection, determinization, com-
plement, and the decision problems of membership, emptiness, language inclusion, and
universality. We also implemented more efficient variants of testing language inclusion, and
universality using the antichain-based approach. This Master’s thesis also explained se-
lected topics of the Haskell programming language relevant to the library implementation.
It elaborated on the reduction and evaluation logic of Haskell’s runtime environment, on
non-strict semantics, and lazy evaluation. Profiling tools for Haskell were presented as well
as a description of monads.

The main purpose was to implement an efficient purely functional library written in
Haskell, which effectively uses lazy evaluation in library operations. Beside that, we per-
formed a benchmarking of the implemented library and compared its performance to VATA.
Benchmarks demonstrated that VATA was significantly faster in all operations despite op-
timizations we implemented. The greatest influence on performance of the implemented
library was the right choice of an efficient data structure. Therefore, beside the implemen-
tation using an immutable single-linked list, we also implemented a variant of the library
that utilizes Set, an efficient implementation of a set using a size-balanced binary tree. We
also focused on a correct use of lazy evaluation in the library. We found out that our ex-
periments with suppressing lazy evaluation at certain locations did not yield any significant
improvement in performance of the finite automata operations.

Future work can be oriented in more directions: we can implement and test the library
with other purely functional data structures, such as some kind of a lookup table or a hash
set. The library can also offer more FA operations, such as FA minimization. Finally, we
could also extend the library with tree automata operations.

43

Bibliography

[1] Automata. [Online; visited 01.01.2017].
Retrieved from: https://github.com/AutomataDotNet/Automata

[2] Aarhus University: Automaton. [Online; visited 01.01.2017].
Retrieved from: http://www.brics.dk/automaton/

[3] Abdulla, P. A.; Chen, Y.-F.; Holík, L.; Mayr, R.; Vojnar, T.: When Simulation Meets
Antichains. In Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 6015, pp. 158-174, Springer Berlin
Heidelberg. 2010.

[4] Collective of authors: deepseq: Deep evaluation of data structures. [Online; visited
06.04.2017].
Retrieved from: https://hackage.haskell.org/package/deepseq

[5] De Wulf, M.; Doyen, L.; Henzinger, T. A.; Raskin, J.-F.: Antichains: A New
Algorithm for Checking Universality of Finite Automata. In Proc. of CAV’06, LNCS
4144, Springer. 2006.

[6] Eaton, F.: Why is Data.Set not a Monad? [Online; visited 29.04.2017].
Retrieved from:
https://mail.haskell.org/pipermail/libraries/2007-May/007486.html

[7] Gamari, B.: The Glasgow Haskell Compiler. [Online; visited 27.04.2017].
Retrieved from: https://www.haskell.org/ghc/

[8] Gill, A.: Hood: Debugging by observing in place. [Online; visited 26.12.2016].
Retrieved from: https://hackage.haskell.org/package/hood

[9] Giorgidze, G.: Haskell: Data.Set.Monad. [Online; visited 11.05.2017].
Retrieved from: https:
//hackage.haskell.org/package/set-monad-0.2.0.0/docs/Data-Set-Monad.html

[10] haskell.org: Haskell Language. [Online; visited 02.01.2017].
Retrieved from: https://www.haskell.org/

[11] HaskellWiki: HaskellWiki. [Online; visited 25.12.2016].
Retrieved from: https://wiki.haskell.org/Haskell

[12] Hspec contributors: Hspec: A Testing Framework for Haskell. [Online; visited
30.04.2017].
Retrieved from: https://hspec.github.io/

44

https://github.com/AutomataDotNet/Automata
http://www.brics.dk/automaton/
https://hackage.haskell.org/package/deepseq
https://mail.haskell.org/pipermail/libraries/2007-May/007486.html
https://www.haskell.org/ghc/
https://hackage.haskell.org/package/hood
https://hackage.haskell.org/package/set-monad-0.2.0.0/docs/Data-Set-Monad.html
https://hackage.haskell.org/package/set-monad-0.2.0.0/docs/Data-Set-Monad.html
https://www.haskell.org/
https://wiki.haskell.org/Haskell
https://hspec.github.io/

[13] Leijen, D.: Parsec, a fast combinator parser. [Online; visited 01.01.2017].
Retrieved from: http://research.microsoft.com/en-us/um/people/daan/
download/parsec/parsec-letter.pdf

[14] Lengál, O.: automata-benchmarks. [Online; visited 18.05.2017].
Retrieved from:
https://github.com/ondrik/automata-benchmarks/tree/master/nfa

[15] Lengál, O.; Šimáček, J.; Vojnar, T.: The VATA Tree Automata Library. [Online;
visited 03.01.2017].
Retrieved from:
http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

[16] Lipovača, M.: Learn You a Haskell for Great Good! [Online; visited 26.03.2017].
Retrieved from: http://learnyouahaskell.com

[17] Meduna, A.: Automata and Languages: Theory and Applications. Springer. 2000.
ISBN 978-1-4471-0501-5.

[18] O’Sullivan, B.; Goerzen, J.; Stewart, D.: Real World Haskell. O’Reilly. 2009. ISBN
978-0-596-51498-3.

[19] Schneider, K.: Verification of Reactive Systems. Springer. 2013. ISBN
978-3-6621-0778-2.

[20] Simon, A.; Coutts, D.: gtk: Binding to the Gtk+ graphical user library interface.
[Online; visited 10.04.2017].
Retrieved from: https://hackage.haskell.org/package/gtk

[21] Stack contributors: The Haskell Tool Stack. [Online; visited 27.04.2017].
Retrieved from: https://haskellstack.org

[22] Stack Overflow: Haskell: How does non-strict and lazy differ? [Online; visited
25.12.2016].
Retrieved from: http://stackoverflow.com/questions/7140978/haskell-how-
does-non-strict-and-lazy-differ

[23] University of Glasgow: Haskell: Data.List. [Online; visited 06.04.2017].
Retrieved from:
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-List.html

[24] University of Glasgow: Haskell: Data.Set. [Online; visited 06.04.2017].
Retrieved from: https:
//hackage.haskell.org/package/containers-0.5.10.2/docs/Data-Set.html

[25] Říha, J.: An efficient functional library for finite automata. [Online; visited
27.04.2017].
Retrieved from: https://github.com/jakubriha/automata/

45

http://research.microsoft.com/en-us/um/people/daan/download/parsec/parsec-letter.pdf
http://research.microsoft.com/en-us/um/people/daan/download/parsec/parsec-letter.pdf
https://github.com/ondrik/automata-benchmarks/tree/master/nfa
http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
http://learnyouahaskell.com
https://hackage.haskell.org/package/gtk
https://haskellstack.org
http://stackoverflow.com/questions/7140978/haskell-how-does-non-strict-and-lazy-differ
http://stackoverflow.com/questions/7140978/haskell-how-does-non-strict-and-lazy-differ
https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-List.html
https://hackage.haskell.org/package/containers-0.5.10.2/docs/Data-Set.html
https://hackage.haskell.org/package/containers-0.5.10.2/docs/Data-Set.html
https://github.com/jakubriha/automata/

	Introduction
	Finite automata
	Formal languages
	Finite automata
	The membership decision problem
	Union of two languages
	Product union of two languages
	Intersection
	Determinization of a finite automaton
	Complement of a language
	Testing emptiness of a finite automaton
	Testing language inclusion of a pair of finite automata
	Testing universality of a finite automaton
	Antichain-based approach
	Testing universality of a finite automaton
	Testing language inclusion of a finite automaton

	Finite automata libraries

	Haskell
	Non-strict semantics
	Lazy evaluation
	Profiling
	Monad
	Monad laws
	Maybe
	State
	Parsec

	Analysis
	Data structures
	Typeclasses

	Input format
	Operations

	Implementation
	Library structure
	Data structures
	Visualization
	Operations
	Unit testing

	Evaluation
	Language union
	Language intersection
	Language complement
	Language inclusion
	Language universality

	Conclusion
	Bibliography

